Next Article in Journal
High- and Moderate-Risk Variants Among Breast Cancer Patients and Healthy Donors Enrolled in Multigene Panel Testing in a Population of Central Russia
Next Article in Special Issue
Neuroprotective and Anti-Inflammatory Effects of Dimethyl Fumarate, Monomethyl Fumarate, and Cannabidiol in Neurons and Microglia
Previous Article in Journal
Non-Categorical Analyses Identify Rotenone-Induced ‘Parkinsonian’ Rats Benefiting from Nano-Emulsified Punicic Acid (Nano-PSO) in a Phenotypically Diverse Population: Implications for Translational Neurodegenerative Therapies
Previous Article in Special Issue
Gene Expression and Alternative Splicing Analysis in a Large-Scale Multiple Sclerosis Study
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Review

Should We Consider Neurodegeneration by Itself or in a Triangulation with Neuroinflammation and Demyelination? The Example of Multiple Sclerosis and Beyond

by
Océane Perdaens
1 and
Vincent van Pesch
1,2,*
1
Neurochemistry Group, Institute of NeuroScience, Université Catholique de Louvain (UCLouvain), 1200 Brussels, Belgium
2
Department of Neurology, Cliniques Universitaires Saint-Luc, Université Catholique de Louvain (UCLouvain), 1200 Brussels, Belgium
*
Author to whom correspondence should be addressed.
Int. J. Mol. Sci. 2024, 25(23), 12637; https://doi.org/10.3390/ijms252312637
Submission received: 31 October 2024 / Revised: 20 November 2024 / Accepted: 20 November 2024 / Published: 25 November 2024

Abstract

:
Neurodegeneration is preeminent in many neurological diseases, and still a major burden we fail to manage in patient’s care. Its pathogenesis is complicated, intricate, and far from being completely understood. Taking multiple sclerosis as an example, we propose that neurodegeneration is neither a cause nor a consequence by itself. Mitochondrial dysfunction, leading to energy deficiency and ion imbalance, plays a key role in neurodegeneration, and is partly caused by the oxidative stress generated by microglia and astrocytes. Nodal and paranodal disruption, with or without myelin alteration, is further involved. Myelin loss exposes the axons directly to the inflammatory and oxidative environment. Moreover, oligodendrocytes provide a singular metabolic and trophic support to axons, but do not emerge unscathed from the pathological events, by primary myelin defects and cell apoptosis or secondary to neuroinflammation or axonal damage. Hereby, trophic failure might be an overlooked contributor to neurodegeneration. Thus, a complex interplay between neuroinflammation, demyelination, and neurodegeneration, wherein each is primarily and secondarily involved, might offer a more comprehensive understanding of the pathogenesis and help establishing novel therapeutic strategies for many neurological diseases and beyond.

Graphical Abstract

1. Introduction

Multiple sclerosis (MS) is a chronic immune-mediated, demyelinating, and neurodegenerative disorder of the central nervous system (CNS) affecting 2.8 million people worldwide [1,2]. Based on the criteria of disease activity and progression [3], it has been phenotypically divided into relapsing-remitting MS (RRMS), and progressive MS (PMS, primary (PPMS) when progressing from disease onset, secondary (SPMS) when following a relapsing-remitting course). RRMS patients present with subacute neurological deficits during relapses, which are the expression of an acute and focal inflammatory assault within the CNS, separated by longer periods of remission. In contrast, PMS patients experience ongoing disability worsening independently of relapses [3,4].
The pathogenesis of MS is still incompletely understood. Especially regarding its primary trigger, two dogmas are still in opposition. According to the outside-in theory, the infiltration of activated peripheral immune cells induces a central inflammatory, demyelinating, and neurodegenerating cascade. On the contrary, in the inside-out theory, a primarily unknown central insult releases autoantigenic myelin components, resulting in a secondary inflammatory (peripheral and central) response. Depending on the individual predisposition among other yet unknown factors, the immune response might be explosive (Marburg variant) to insidious (primary progressive MS) with a continuum in between (RRMS evolving into SPMS) [5]. Since women have a higher predisposition to autoimmunity, a 3:1 female-to-male ratio is observed in RRMS but not in PMS [6,7].
Multiple sclerosis is heterogeneous in its clinical presentation (the distinctive phenotypes), but also by the ongoing and changing underlying pathophysiological mechanisms. This is further evidenced by the differences in inflammatory and demyelinating activity in the different types of MS lesions [8,9]. Active demyelinating plaques are associated with perivenous inflammation mediated by a bulk invasion of peripheral adaptive and innate immune cells through a disrupted blood–brain barrier (BBB) in acute and relapsing MS. On the contrary, a compartmentalized inflammatory response involving tissue-resident CD8+ T cells and B cells is associated with low-grade myelin and axonal loss at the margins of smoldering, slowly expanding white matter lesions containing macrophages/microglia and cortical subpial demyelination. These are more predictive of disease progression causing brain and spinal cord atrophy [2,10,11,12,13,14,15,16]. Recent knowledge has changed the paradigm of MS pathogenesis. Hereby, all phenotypes are now considered within a single continuum wherein inflammation and neurodegeneration coexist at varying levels during the disease course [17] (Figure 1). As SPMS can follow a relapsing-remitting course, PPMS might be preceded by a silent disease course in which acute inflammatory events remain subclinical [18]. Remarkably, PPMS and SPMS start approximately around the same age, on average in the fifth decade of life, yet in SPMS, progression is influenced by the relapse course within the first two years of disease onset but almost not by later relapses [6,19,20]. Therefore, progression becomes clinically evident when the compensatory mechanisms for axonal/neuronal loss and demyelination are exhausted, due to both disease mechanisms and senescence processes affecting all cell types and exacerbated by the disease pathogenesis. Within the immune system, these are referred to as inflammaging and immunosenescence [21,22].
Over the last two decades, treatment options have largely increased in MS. Current disease-modifying therapies (DMTs) mostly target the peripheral immune system and are efficient in reducing the relapse rate and thus controlling disease activity [23,24]. Of note, recent clinical trials evidenced disease progression independent of relapse activity (PIRA) in RRMS occurring already early in the disease, further highlighting the unconstrained burden of neurodegeneration [20]. The natural history of MS has remarkably shifted since the introduction of DMTs, mainly marked by a longer period between diagnosis of RRMS and onset of SPMS [25]. DMTs might thus have silenced the inflammatory processes, bringing the natural history of SPMS to that of PPMS, given that SPMS occurs at the same age as PPMS, nearly irrespective of the relapse history [5,6,19]. However, there is still no specific treatment for neurodegeneration-associated disease progression [23,26].
The pathogenesis of MS has long been fragmented in its understanding and research. This review presents a distinctive perspective, diverging from previous analyses, by examining the complex interactions between neuroinflammation, demyelination, and neurodegeneration. This approach offers an innovative framework for reevaluating multiple sclerosis and other neurodegenerative disorders, while simultaneously paving the way for novel therapeutic interventions in the future. We emphasize, through the example of MS, that neurodegeneration cannot be dissociated from neuroinflammation and demyelination. The definition of MS highlights the three preeminent facets of its unique pathogenesis (Figure 2). Herein, neuroinflammation, driven by both the innate and adaptive immune system, and demyelination overtly direct its pathogenesis, while neurodegeneration has long been underestimated. Moreover, the weight of each in the disease pathogenesis might determine the different phenotypes of MS. In particular, PMS reflects a diffuse functional and structural harm to the CNS rather than the sum of focally acquired demyelinating white and gray matter lesions. Each of these processes are also involved in other neurodegenerative disorders such as Alzheimer’s (AD) and Parkinson’s disease (PD), although in a different proportion [27,28,29,30,31,32,33,34,35]. Moreover, the metabolic syndrome causes a chronic low-grade systemic inflammation and has been linked to neurodegenerative disorders [36]. Thus, a better understanding of the complex intrication between these pathophysiological mechanisms could foster the search for novel and possibly complementary therapeutic strategies.

2. Neuroinflammation in MS

While it is still debated whether the primum movens of MS is peripheral (activation of the immune system against myelin epitopes) or central (CNS damage, demyelination, and microglial activation prior to the breakdown of the BBB and the invasion by peripheral immune cells), it is now accepted that, in addition to CD4+ T helper (Th) cells (Th1/Th17), cytotoxic CD8+ T cells, B cells as well as CNS-resident cells, namely microglia and astrocytes, play an important role in the disease [37,38,39,40,41]. Nevertheless, inflammation, especially driven by microglial activation, leads to mitochondrial dysfunction, energy failure and oxidative damage in the different involved cell types, amplified by aging processes and long-lasting accumulation of CNS damage [27,28] (Figure 3 and Figure 4, Supplementary Table S1).

2.1. Self-Sustained

The acute phase of the disease is characterized by the multifocal, recurrent invasion of the CNS by peripheral encephalitogenic, autoreactive CD4+ T cells, through an abnormally permeable BBB [2]. These T cells are reactivated in the CNS and release proinflammatory cytokines (e.g., interferon gamma [IFNg], interleukin [IL] 12, IL17, granulocyte-macrophage colony stimulating factor [GM-CSF]) and chemokines that attract more immune cells from the periphery (CD4+ and CD8+ T cells, B cells and plasma cells, monocytes and macrophages), and activate CNS-resident cells (microglia and astrocytes), while regulatory T cells are impaired in their suppressive function. This results in the distinctive lesions of the white matter characterized by focal perivenular inflammation, neuroaxonal damage, and gliosis, although cortical demyelination may occur early as well [2,12,38,39,42,43,44,45]. While the CD4+ T cells initiate the autoimmune processes but are less involved in later stages [46], cytotoxic CD8+ T cells become rapidly more abundant [38,39]. B cells release autoantibodies with an uncertain pathogenicity in MS, that however may potentiate the activation of autoreactive T cells and microglia, i.e., by opsonizing an endogenous (myelin) antigen [47,48,49,50]. B cells also secrete pro- (IL6, IL12, tumor necrosis factor alpha [TNFa], IFNg, GM-CSF, lymphotoxin) and anti-inflammatory (IL10 by regulatory B cells) cytokines and act as antigen-presenting cells, hereby supporting CD4+ and CD8+ T cells as well as myeloid cells [51,52,53,54,55,56,57,58]. Activated microglia and astrocytes release proinflammatory cytokines and chemokines. Thereby, they promote their own activation via a direct autocrine (e.g., microglial TNFa) or paracrine (e.g., microglial IL1b on astrocytes, astrocytic IL6, and lymphotoxin-alpha on microglia) positive feedback loop. They recruit and reactivate peripheral immune T and B cells within the lesions, that clonally expand and further activate microglia and astrocytes. They also release anti-inflammatory cytokines (e.g., microglial IL10-inducing astrocytic transforming growth factor beta [TGFb] which in turn attenuates microglial activation) to restrain mutual inflammatory processes [28,40,59,60,61,62,63,64,65,66,67]. Reactive astrocytes may release both beneficial (retinoic acid, peroxiredoxin 6, sonic hedgehog) and detrimental factors (cytokines, chemokines, matrix metalloproteinases [MMPs], and reactive oxygen/nitrogen species [ROS/RNS]) affecting BBB integrity [66,68,69,70]. However, the ablation of reactive astrocytes increased the leukocytic CNS-infiltration, resulting in a fulminant course of experimental autoimmune encephalomyelitis (EAE) [71]. Astrocytes are thus required to contain the inflammatory assault [72]. Herein, they induce the expression of ectoendonucleases CD39 and CD73 in activated CD4+ T cells and hereby partially reverse the balance toward an immunoregulatory response [73]. During the reparative process, proliferative astrocytes form a glial scar around the lesion to segregate necrotic nerve tissue and inflammatory cells from the surrounding healthy tissue [74].
The chronic phase of the disease is characterized by a diffuse and compartmentalized inflammation, behind a functional and closed BBB. T cells, in particular CD8+ tissue-resident memory cells, and B cells relocate to the perivascular Virchow–Robin and meningeal spaces [2,16,75,76]. Hereby, B cells take a more prominent role and can form tertiary follicle-like structures that are associated with an earlier onset of PMS [77,78]. Moreover, more pronounced meningeal inflammation was associated with increased CSF-levels of proinflammatory cytokines and chemokines, in particular TNF, IFNg, and CXCL13, as well as molecules involved in B cell recruitment, function, and development [79]. Both microglia and astrocytes can exhibit a wide spectrum ranging from a pro- to an anti-inflammatory phenotype. Although they are able to contain the damage in the acute phase, overreactive microglia and astrocytes, sustained by inflammation-induced mitochondrial dysfunction, interact with other immune cells and glial cells via the release of proinflammatory cytokines and glutamate, the activation of the complement system as well as the production of ROS/RNS [80,81,82,83,84,85,86,87]. Moreover, inflammasome activation is involved in microgliosis and astrogliosis [88]. Microglial nucleotide-binding oligomerization domain, leucine-rich repeat, and pyrin domain-containing 3 (NLRP3) inflammasome induces neurotoxic astrocytes and contributes to cognitive impairment in the late phase of EAE [89]. Microglia and astrocytes thus support a self-sustained chronic inflammation-promoting disease progression.

2.2. Impacting Demyelination and Neurodegeneration

Proinflammatory cytokines released by peripheral and CNS-resident immune cells may harm myelin, neurons, and glial cells, causing demyelination, axonal transection (even in acute lesions), and cell death, which alters axonal conduction and exposes the axons to the proinflammatory environment, further contributing to axonal degeneration [90,91,92]. Both CD4+ and CD8+ T cells can induce microtubule axonal destabilization via lytic granules [93]. Th17 cells can form immune synapses with oligodendrocyte progenitor cells (OPCs) and axons and induce a partially reversible intra-axonal calcium influx, but therapies targeting solely CD4+ T cells (e.g., via a monoclonal antibody against the p40 subunit of IL12 and IL23) are inefficient in MS [94,95,96]. Cytotoxic CD8+ T cells target axons and oligodendrocytes through antigen presentation by major histocompatibility complex class I (MHC-I) molecules and granule exocytosis (containing perforin, granzyme B) in immune synapses, directly causing oligodendrogliopathy, demyelination, axonal damage, and neurotoxicity/neuronal apoptosis [97,98,99,100,101,102,103,104]. Their interaction with CD4+ T cells seems indispensable [46,105]. Noticeably, the CSF of MS patients contains elevated, neurotoxic levels of granzyme B and IL1B and the expression of granzyme B in peripheral CD8+ T cells of SPMS patients positively correlates with the progression of clinical symptoms [106,107].
The high prevalence of oligoclonal bands (OCBs) in MS patients as well as the efficacy of B cell depletion therapies support the involvement of B cells, in particular clonally expanded plasmablasts, but also memory B cells, and plasma cells [108,109,110,111,112,113,114]. OCBs remain stable over the years in MS patients. Their absence predicts a more benign course (possibly because of reduced plasma cell invasion), while the presence of IgM OCBs was associated with MS conversion (from CIS to RRMS and progression to SPMS), an increased relapse rate, and disability score [78,115,116,117,118,119,120]. The specific targets of OCBs are still unknown. The presence of autoantibodies against epitopes of myelin proteins such as myelin basic protein (MBP), proteolipid protein (PLP), or myelin oligodendrocyte glycoprotein (MOG), remains controversial [52,121,122,123,124,125]. Antibodies against Epstein–Barr virus (EBV) proteins have been identified as well, whereby molecular mimicry was evidenced between the EBV nuclear antigen 1 (EBNA1, an EBV transcription factor) and glial cell adhesion molecule (GlialCAM) [126,127,128]. However, antibodies were found in areas with myelin breakdown and have been implicated in demyelination by several mechanisms: (i) antibody-dependent cellular cytotoxicity by release of inflammatory components by innate immune effector cells (e.g., macrophages or granulocytes) expressing the Fc-gamma receptor, that recognizes and binds the gamma chain of the antigen-bound antibody complex, (ii) cell-induced demyelination via opsonization and phagocytosis of antibody-bound antigens (e.g., myelin) by phagocytotic cells expressing the Fc-gamma receptor, (iii) complement-dependent cytotoxicity and demyelination by antibody-dependent activation of the complement cascade and assembly and deposition of the membrane attack complex at sites of active myelin destruction, and (iv) direct antibody-induced demyelination, wherein the crosslinking of anti-MOG antibodies with MOG complexes resulted in the phosphorylation of specific proteins related to cellular stress response and cytoskeletal stability leading to retraction of oligodendrocyte processes [53,54,129,130,131,132,133,134,135,136,137,138,139,140,141]. Antibodies directed against the axo-nodal protein neurofascin, detected in the serum of MS patients, exacerbated the clinical course of MOG-induced EAE by causing axonal injury without demyelination nor enhanced CNS-inflammation. These antibodies inhibited axonal conduction in a complement-dependent manner [142]. Furthermore, B cells of RRMS patients have a direct or indirect (through activation of microglia or astrocytes) cytotoxic effect on oligodendrocytes and neurons that is independent of immunoglobulins by secreting (a) currently unidentified soluble toxic factor(s) [82,143,144]. Thereby, gray matter demyelination, widespread neuronal loss in subpial cortical lesions, and cortical atrophy corroborate with the extent of meningeal inflammation, alongside CSF protein levels of TNF, IFNg, and CXCL13, and is even more pronounced in the presence of tertiary follicle-like structures [77,79,91,144,145,146,147]. This is associated with higher and earlier disability [79]. Persistent intrathecal expression of TNFa and IFNg could induce meningeal inflammation in vivo, causing subpial demyelination and neuronal death by necroptosis [148]. Noticeably, a subtype of excitatory projection neurons was selectively vulnerable and reduced in demyelinated areas within the upper cortical layers, commonly underlying meningeal inflammation marked by infiltrating plasma cells. Single-nucleus RNA sequencing of these neurons outlined the upregulation of oxidative stress, mitochondrial dysfunction, and cell stress and cell death pathways [149].
Activated microglia appear in the periphery of chronic active, slowly expanding lesions, often loaded with iron, congregating low-grade, smoldering inflammation. These lesions are associated with chronic axonal damage and concurrent low-grade demyelination and are thus predictive of progression in RRMS and SPMS [12,15,150,151,152]. Activated microglia also spread diffusely throughout the brain and are strongly involved in diffuse axonal and neuronal damage in the normal appearing white (NAWM) and gray matter, as well as in cortical subpial and deep gray matter demyelination [10,144,153,154,155,156,157,158]. In fact, neurodegeneration is more closely linked to diffuse injury in the NAWM than the white matter lesion load/demyelination extent [10,159]. Although the NAWM appears macroscopically normal, it shows microscopically normally myelinated axon fibers but reduced axonal densities [160,161]. The diffuse pathology within the normal appearing white and gray matter starts early in disease but expands with disease progression [162,163]. It is partially linked to Wallerian degeneration following axonal transection in white matter lesions but is rather closely associated with diffusely scattered CNS-inflammation and cortical lesion volume and is thus partially independent of focal demyelination [10,21,97,158,164]. Chronic inflammation further induces glutamate release by glial cells causing nodal and paranodal disruption in the NAMW [165]. Remarkably, the extent of paranodal axoglial disruption is correlated with local microglial inflammation and axonal injury in NAWM, but not with demyelinating lesions and infiltrating lymphocytes [166].
Gene expression studies evidenced that microglial activation, oxidative burst, and DNA damage are more pronounced in areas of cortical lesions, associated with oligodendrocyte and neuronal injury [154]. Moreover, complement C3 upregulation by activated microglia mediates hippocampal dendritic loss and memory impairment in early stage EAE [167]. Microglia can induce, via TNFa and the complement C1q, neurotoxic astrocytes, that impair neuronal outgrowth and OPC migration, maturation, and differentiation, by expressing certain molecules (such as Netrin1, Jagged) and by releasing several other molecules (such as hyaluronan, fibronectin, chondroitin sulfate proteoglycans, fibroblast growth factor) in the extracellular matrix [65,166,168,169,170,171,172]. Reactive astrocytes can also promote TNF-mediated OPC cell death [173]. Activation of inflammasome complex component NLRP3 mediates via downstream caspase-1 and IL18 microglial activation and astrogliosis accompanied by enhanced demyelination and oligodendrocyte loss [174]. Furthermore, the neuron- and oligodendrocyte-anchored immunoregulatory “Don’t eat me”-signals, CD200 and CD47, dampen the activity of their receptor/ligand on microglia and macrophages, but in chronic active and inactive MS lesions, CD200 and CD47 expression is reduced, which is accompanied by increased microglial activation, complement expression at the lesion rim, and axonal and oligodendroglial damage [175,176,177,178,179].
Microglial activation is supported by a metabolic shift from oxidative phosphorylation (OXPHOS), predominant in homeostatic microglia, to glycolysis in activated microglia, to allow rapid ATP production despite its relative inefficiency, in order to rapidly support the production of proinflammatory cytokines in microglia, but this alters phagocytosis [180,181,182]. Moreover, with excessive aerobic glycolysis, increased lactate production contributes to extracellular acidification. Metabolic reprogramming in microglia can thereby enhance neuroinflammatory processes and neuronal damage [180,183,184,185].
Inflammation and oxidative stress are closely linked as they are mutually causative and sustainable [186]. Herein, microglia, macrophages, and astrocytes play a preeminent role by producing ROS and RNS (via NADPH oxidase, myeloperoxidase) [187,188]. ROS/RNS can damage mitochondrial and cellular components, oxidize mitochondrial DNA (lacking protective histones), lipids and/or membrane proteins. ROS/RNS inhibit the mitochondrial respiratory chain and mitochondrial DNA damage itself affects the transcription of its subunits, which further compromises OXPHOS and results in liberation of electrons nourishing ROS, thus amplifying the oxidative stress. Proinflammatory cytokines can also alter mitochondrial components and the enzymes of the tricarboxylic acid (TCA, or Krebs) cycle and of OXPHOS [27,81,154,189,190]. Moreover, mitochondrial dysfunction contributes to virtual hypoxia (reduced oxygen consumption and energy failure in conditions of normal blood and oxygen supply) damageable to the tissue. This is enhanced by true hypoxia with reduced oxygen supply due to severe inflammation, especially in watershed areas (at boundaries between blood supply territories of several cerebral arteries) where the lesion load is increased [27,191,192,193,194].
Thus, the imbalance between the production of free radicals vs. antioxidant molecules, i.e., by the decline in the neuroprotective nuclear factor erythroid 2-related factor 2 (Nrf2) antioxidant pathway, generates oxidative stress, leading to mitochondrial dysfunction, energy deficits, and ion imbalance in neurons, oligodendrocytes, and OPCs, mirrored by the expression of proteins linked to hypoxia, cellular and endoplasmic reticulum stress, and by the translocation of apoptosis-inducing factors [195,196,197,198,199,200,201,202,203,204,205,206]. OPCs and oligodendrocytes are threatened by ROS/RNS due to their limited antioxidant defense mechanisms and high iron content. OPCs are subsequently unable to differentiate into myelinating oligodendrocytes [205,207,208,209]. Moreover, nitric oxide can alter myelin architecture and cause its decompaction by protein S-nitrosylation, especially of PLP [210]. In neurons, the reduced expression of the transcriptional co-activator, peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PPARGC1A), regulating mitochondrial function, and increased levels of clonally expanded mitochondrial DNA deletions are associated with decreased expression of OXPHOS subunits and antioxidants, thereby supporting their vulnerability [211,212]. Axonal mitochondrial dysfunction was evidenced prior to the onset of neurological symptoms in EAE. Mitochondrial dysfunction was associated with reduced mitochondrial trafficking and correlated in number and location with infiltrating immune cells, especially NO-producing macrophages as well as activated microglia and astrocytes at the onset of neurological deficit in the absence of demyelination [213]. Axons are susceptible to mitochondrial dysfunction, enhanced by demyelination and subsequent exposure to the deleterious environmental conditions. As axonal transport is highly energy demanding, its early compromise accelerates axonal damage [214,215,216]. Furthermore, mutations in mitochondrial DNA and reduced expression of nuclear DNA-encoded mitochondrial proteins and axonal motor proteins cause axonal degeneration while they are better tolerated in small cells [211,216,217].
As a result, oxidative stress causes functional impairment without structural damage when it is mild, with structural damage when a certain threshold is reached, resulting in neuroaxonal damage and demyelination, and ultimately apoptotic cell death and tissue destruction [27,218,219,220]. In inactive plaques, axonal mitochondria are increased (in content, size, activity, speed of movement) to respond to the increased energy demand. In surviving chronically demyelinated axons, remyelination partially reduces mitochondrial numbers and function but these remained higher than in unaffected myelinated axons [221,222,223]. Brain autopsy samples of MS patients have a higher proportion of neurons with mitochondrial dysfunction than in controls and cortical neurons with mitochondrial DNA deletions are equally distributed through the cortex, independent of the presence of cortical lesions [211].
An astrocytic–microglial interplay also mediates excitotoxicity [224]. Excitotoxicity refers to the excessive stimulation of excitatory metabotropic glutamate receptors (mGluR1, mGluR5) and ionotropic receptors (alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA), kainate, N-methyl-D-aspartate (NMDA)), induced by glutamate. This causes axonal/neuronal and oligodendroglial damage and cell death by direct cytotoxicity or by increasing intracellular calcium concentrations (by influx or by mobilization of intracellular stocks), which induces lipid peroxidation via the formation of free radicals and ROS [225,226,227,228,229,230,231,232,233,234]. Glutamate release by activated microglia/macrophages and leukocytes is enhanced by the release of microglial ATP and proinflammatory cytokines such as TNFa and IL1b. Moreover, its uptake by astrocytes is impaired due to the loss of glutamate transporters, resulting in increased extracellular glutamate concentrations [224,235,236,237,238]. Remarkably TNFa-dependent excitotoxic cell death occurred in murine brain slices incubated with CSF of PMS patients [236]. Glutamate concentrations are increased in active lesions and the NAWM as well as in the CSF of MS patients during relapse and are associated with brain volume loss [239,240,241,242]. Glutamate ionotropic receptor NMDA type subunit 2A (GRIN2A), a subunit of the NMDA receptor, has been identified as a susceptibility gene for MS risk and severity [243,244]. Similarly, a higher genetic score, corresponding to the total number of risk alleles (although without GRIN2A) linked with higher baseline glutamate levels, correlated with higher gray matter glutamate concentrations and brain atrophy at 1-year follow-up [245]. Furthermore, tryptophan and quinolinic acid can also contribute to excitotoxicity. Tryptophan is mainly metabolized via the kynurenine pathway, leading to the production of kynurenic acid (neuroprotective) or quinolinic acid (neurotoxic). During acute neuroinflammation, the production of kynurenic acid is predominant, but this pathway is shifted during chronic enzymatic activation toward the production of neurotoxic metabolites. Quinolinic acid is also an agonist of NMDA receptors, inducing synaptic glutamate release, inhibiting its reuptake and reducing its conversion to glutamine [246,247].
However, microglia can also be neuroprotective by the transition from a pro- to an anti-inflammatory/proregenerative phenotype, presumably via necroptosis of the former [248,249]. In fact, two distinct microglia clusters have been identified in the chronic active lesion edge, i.e., an iron cluster characterized by MHC-II and inflammatory markers (especially IL1b and complement C1q) as well as iron-related genes, thus involved in microglial activation and reactive microgliosis, and a foamy cluster characterized by foam-cell differentiation and lipid storage, thus involved in myelin phagocytosis [85]. They are recruited by astrocytes and involved in the clearance of myelin debris, which is indispensable for OPC differentiation and remyelination [250,251,252,253,254]. Microglia and astrocytes promote the recruitment, proliferation, and differentiation of OPCs as well as axonal regeneration and neurogenesis, i.e., by secreting several chemotactic molecules, neurotrophic factors, and growth factors (insulin like growth factor 1 [Igf1], activin A) [171,252,255,256,257,258,259,260]. Thereby, incomplete demyelination in periplaque regions suggests an attempt of tissue remodeling in PMS spinal lesions, alongside a reduced axonal density. However, despite the superimposition of a pro- and anti-inflammatory transcriptomic signature, the poor phagocytic activity of macrophages/microglia, the altered function of astrocytes, and low-grade inflammatory events prevail in these lesions [261]. Hence, the protective/reparative processes fail with disease progression due to the sustained proinflammatory activation as seen by the preferential accumulation of proinflammatory microglia-expressing genes involved in immune defense and inflammatory processes at the edge of slowly expanding lesions [87,262].
In conclusion, the interplay between microglia and astrocytes is the driver of self-perpetuating focal and diffuse neuroinflammation and modulates the oxidative balance and synaptic conduction. Their chronic (over-)activation leads to oxidative stress, excitotoxicity, and an anti-regenerative microenvironment, causing neurodegeneration, demyelination, and failure of remyelination and self-repair in the progressive phase of MS [28,152].

3. Demyelination in MS

Myelin is naturally degraded, and its turnover is ensured by the pool of OPCs in the adult brain (accounting for 5–10% of cells within the CNS) [263]. ROS cause damage to myelin sheaths and facilitate macrophage/microglia activation. OPCs and oligodendrocytes are harmed by the inflammatory environment, the oxidative stress and the direct cytotoxicity generated by CD8+ T cells, reactive microglia and astrocytes [90,143,264,265,266,267,268,269]. OPCs and oligodendrocytes are sensitive to oxidative stress due to their limited antioxidant capacity and high iron content, which hampers their differentiation to oligodendrocytes and prompts cell death [207,270,271,272]. On the contrary, the inside-out theory postulates that a primary cytopathy affecting oligodendrocytes and myelin by a yet unknown mechanism might be the earliest event, possibly years before the first symptoms. Hereby, the shedding of myelin debris will trigger a secondary immune response marked by T and B cell infiltration depending on the host’s predisposition to respond to these autoantigenic components [5,273,274].
Remyelination occurs at the beginning of the disease, thanks to surviving oligodendrocytes and to the proliferation, migration, and differentiation of OPCs upon signals emanating from microglia/astrocytes and clearance of myelin debris [252,258,259,275,276,277,278,279]. There seems to be a critical window of time promiscuous for remyelination, beyond which demyelination-related axonal damage and thus functional loss cannot recover completely [280]. However, newly formed myelin is thinner and shorter [281]. Its efficiency declines with age and this is further accelerated by disease progression due to impaired OPC recruitment and differentiation [282,283,284]. Moreover, remyelination is often incomplete and limited to the lesion borders as only approximately 20% of chronic lesions are completely remyelinated, alongside hypomyelinated shadow plaques [285]. Incompletely myelinated axons with shorter internodes are more susceptible to neurodegeneration due to the inappropriate redistribution of juxtanodal components and nodal sodium channels [281,286] (Figure 3 and Figure 4, Supplementary Table S1).

3.1. Self-Sustained

Single-cell RNA sequencing identified similar OPC and oligodendrocyte subclusters in MS patients and controls, although in a different proportion. It also highlighted changes in their transcriptional signatures and an alteration in oligodendroglial heterogeneity in MS lesions and the NAWM. Several oligodendrocyte subclusters were enriched in MS, namely a mature actively myelinating subcluster, an end-state and an immune oligodendrocyte subcluster, the latter expressing immune genes (such as CD74 (a component of MHC-II), complement C3 and C1QB) and being closely associated with microglia. Oppositely, OPC and intermediate oligodendrocyte subclusters were underrepresented. Notably, the reduction in another end-state oligodendrocyte subcluster that was transcriptionally directed toward signaling, cell-to-cell adhesion, and viability rather than myelination might be important in the understanding of MS pathogenesis [287].
Citrullination accompanies ongoing demyelination in active and chronic active lesions, where myelin swelling and MBP citrullination and degradation are increased [288]. Myelin-associated peptidyl arginine deiminase (PAD) is upregulated in spontaneously demyelinating transgenic mice prior to the onset of clinical or pathological signs of demyelination [289]. Moreover, myelin of MS patients is developmentally immature as it is enriched in citrullinated MBP, as seen in early childhood, as well as PAD [290,291]. However, it is still debated whether PAD is enhanced in the NAWM [290,292]. This calcium-dependent enzyme is responsible for the conversion of positively charged arginine to uncharged citrulline, thereby causing a primary defect in the interaction of MBP with the plasma membrane and with other molecules [293]. Moreover, elevation of intracellular calcium levels resulted in MBP phase transition and network disassembly causing myelin vesiculation at the inner layers [294]. Myelin defects may thus begin at the inner myelin sheath while the outer layers remain intact and even occur beyond areas of inflammation.
Likewise, in a subset of active lesions, a primary oligodendrogliopathy is characterized by the early degeneration of distal, periaxonal oligodendrocyte processes, and by the loss of myelin-associated glycoprotein (MAG) expression but a prominent nuclear expression of hypoxia inducible factor 1a (HIF1a) [295,296]. Oligodendrocyte apoptosis resulted in rapid demyelination. It is accompanied by a localized gliosis and microglial activation, in the absence of peripheral immune cell infiltration [297,298,299,300]. Macrophages may then be recruited for the clearance of myelin debris, while T and B cells were only evidenced in recently demyelinated tissue, with possibly already signs of oligodendrocyte regeneration [300,301]. Early loss of oligodendrocytes is prominent in tissue bordering rapidly expanding MS lesions [301].
In MS, lipid and fatty acid metabolism is altered, resulting in the reduction in circulating polyunsaturated fatty acids, prone for (per)oxidation, alongside the compensatory increase in saturated fatty acids with a shorter carbon chain, that reduce the membrane fluidity [302]. Myelin is highly enriched in lipids, with a unique composition (cholesterol/phospholipids/glycolipids in a 2:2:1 ratio), whereby lipids form microdomains, called lipid rafts, that are important for the guidance of membrane proteins, trafficking, and signaling [303]. Lipid and energy metabolism as well as myelin turnover by macroautophagy and lysosome-mediated degradation of lipids into fatty acids are prominent in the physiology and pathophysiology of OPCs/oligodendrocytes [304]. However, they decline with aging and pathological conditions, thereby affecting the well-being of oligodendrocytes, the stability and structural integrity of the myelin sheaths, and their ability to interact with myelin proteins [304,305,306]. Moreover, different serum metabolomic/lipidomic signatures were associated with MS (decrease in two phospholipids, namely phosphatidylcholine and phosphatidylethanolamine, with antioxidant properties) and disease severity (increase in lysophospholipids and oxidized fatty acids), which may reflect the activation of the immune system (lipids and amino acids as signaling molecules) or changes in CNS lipid composition due to myelin destruction [307,308]. Subtle changes in myelin lipid biochemical signatures were detected even in the NAWM [309]. Oppositely, oxidized phosphatidylcholine is harmful for oligodendrocytes and neurons [310]. Sphingolipid biosynthesis, de novo or by degradation of sphingomyelin, is enhanced by the proinflammatory impulses and/or oxidative stress, resulting in the generation of ceramide species that are interconvertible into sphingosine, both inducing oligodendroglial apoptosis [311,312,313,314,315]. Increased sphingosine levels in MS brains may thus contribute to demyelination [311]. Oxysterols can also cause oligodendrocyte cell death by inducing simultaneously oxidative stress, apoptosis, and autophagy [316]. Finally, apoptotic oligodendrocytes express cyclooxygenase 2 (COX2) in Theiler’s murine encephalomyelitis virus-induced demyelinating disease [317,318]. COX2 mediates the metabolism of arachidonic acid into active lipid mediators, i.e., prostanoids, among which proinflammatory prostaglandins PGD2 and d15-PGJ2 induce apoptosis of OPCs [319].
OPCs and oligodendrocytes rely on glycolysis for ATP production. Under stress conditions, oligodendrocytes can withdraw their processes to reduce their metabolic needs, adopting a survival modus, while OPCs cannot and also rely on a higher rate of oxidative metabolism, rendering them more vulnerable to cell stressors and subsequent cell death as seen in MS [275,320]. Moreover, hypoglycemic conditions reduce the proliferating, differentiating, and myelinating capacity of OPCs and oligodendrocytes. This can be rescued by lactate uptake via monocarboxylate transporter 1 (MCT1), which is, however, downregulated in OPCs, but not in oligodendrocytes, under prolonged deprivation conditions [275,321,322,323]. CSF lactate levels of MS patients increase in the acute phase and even more as disease progresses, reflecting an increased extra-mitochondrial glucose metabolism due to mitochondrial dysfunction [324].

3.2. Impacting Neuroinflammation and Neurodegeneration

Oligodendrocytes safeguard axonal integrity by two means. First, myelin ensures the insulation of axons allowing a time- and energy-saving electrical saltatory conduction. This relies on the highly organized assembly of Ranvier nodes, enriched in voltage-gated sodium channels, alongside paranodal axo-glial junctions where several adhesion molecules anchor the myelin loops to the axon [325]. Demyelination causes a diffuse redistribution of the nodal/paranodal/juxtaparanodal ion channels and molecules, whereas remyelination requires the aggregation of these molecules to restore nerve conduction and possibly prevent or lessen secondary axonal degeneration [286,325,326]. Secondly, an axon–oligodendrocyte interaction fine-tunes, independently of the myelin sheath, axonal energy demands during neuronal conduction, as the synaptic release of glutamate during action potential propagation induces NMDA receptors in oligodendrocytes that translocate glucose transporter 1 (GLUT1) into their membrane to fuel glycolysis [327]. Oligodendrocytes can then ensure trophic and metabolic support to axons by shuttling pyruvate/lactate via MCT1 (expressed in oligodendrocytes)—MCT2 (expressed in neurons) which allows to generate mitochondrial ATP and thus ensures mitochondrial function and transport within axons [328,329,330,331]. Reduced mitochondrial complex IV activity in demyelinated axons enhances glutamate-mediated axon injury [221]. Demyelination and insufficient remyelination exposes axons to extracellular stressors and thus to oxidative stress and increases energy demands by the ectopic redistribution of sodium and calcium channels along the denuded axolemma, that are normally only localized at the Ranvier nodes and the nerve terminal, respectively, together with the impaired lactate supply to axons, resulting in an energy deficit [33,286,330,332,333]. Moreover, ion channels fail to maintain the sodium/potassium flux needed for the propagation of the action potential [334,335]. Hence, primary oligodendrocyte death leads to inflammation-independent axonal damage with subcellular changes and loss of symbiotic interactions, even before demyelination occurs [336,337]. This is further supported by a mouse model in which toxin-induced focal subpial demyelination results in the selective degeneration and functional impairment of an interneuron subtype (characterized by the staining of calcium-binding protein parvalbumin), that is normally myelinated and particularly ATP-demanding and thus depending on nutrient supply by oligodendrocytes. The selective loss of these inhibitory interneurons has also been observed in MS brains [299]. Demyelination further facilitates transsynaptic degeneration [338].
Chronic demyelination causes neuronal apoptosis by inducing the mitogen-activated protein kinase (MAPK) stress pathway via dual leucine zipper kinase and by phosphorylating downstream c-Jun. Neuronal apoptosis can experimentally be prevented by remyelination [339]. Myelin forms an oxidative buffer for axons, as oxidative stress induces the expression of heme oxygenase 1 (HO1) via Nrf2 in oligodendrocytes, resulting in the production of ferrous iron (II/Fe2+) and bilirubin, an antioxidant. However, in a chronic setting, this additional source of ferrous iron is harmful by contributing to iron overload [199,340,341]. Hence, the impact of HO1 overexpression in EAE is still disputed [342,343]. Moreover, uncleared myelin debris inhibit OPC differentiation [251,344]. They also expose myelin-associated inhibitory factors, such as reticulon 4, previously known as neurite outgrowth inhibitory factor (NogoA), as well as MAG and oligodendrocyte-myelin glycoprotein (OMG), that bind to Nogo receptor 1 expressed on axons, and thereby inhibit axonal growth and regeneration [345,346,347]. Finally, myelin debris clearance induces a proinflammatory phenotype in foamy macrophages/microglia that negatively impact the disease by releasing inflammatory and toxic mediators and by presenting brain-derived autoantigens. In a second phase, they adopt an anti-inflammatory phenotype upon activation of the nuclear liver X receptor (LXR) and peroxisome proliferator-activated receptor (PPAR) by myelin-processed lipid metabolites. However, aging reduces their ability to process the cholesterol-rich myelin debris, resulting in the formation of cholesterol crystals and the activation of the NLRP3 inflammasome [348].
Oligodendrocyte metabolic dysfunction can impact energy supply to neurons and contribute to neurodegeneration [330,349]. Beta oxidation in mitochondria and peroxisomes is essential for oligodendrocytes upon glucose deprivation to break down fatty acid, possibly by utilizing myelin lipids, in order to maintain axon support in an attempt to prevent neurodegeneration [350,351,352]. Elevated very long-chain fatty acids (VLCFA) induce oxidative stress in oligodendrocytes and have been associated with neurotoxicity [353,354]. Hereby, peroxisomes contribute to axon maintenance through beta oxidation of VLCFA and ROS detoxification [350,355,356]. Myelin phagocytosis can trigger anti-inflammatory reprogramming, but excessive lipid uptake, especially of myelin debris enriched in VLCFA, can disrupt lipid metabolism and promote a proinflammatory phenotype, since macrophages and phagocytes in the rim of chronic active white matter lesions do not upregulate peroxisomal genes involved in beta oxidation [353]. Peroxisome deficiency in oligodendrocytes causes axonal degeneration, demyelination, and neuroinflammation [355]. Furthermore, peroxisomal transcripts are reduced in the gray matter neurons and white matter macrophages and oligodendrocytes in MS brains, further contributing to these processes [357,358].
Increased fatty acid metabolism can contribute to ROS production and oxidative stress [359]. Saturated fatty acids promote microglial activation and inflammation, while proinflammatory stimuli in microglia promote saturated fatty acid synthesis [360,361,362,363]. Ceramide-enriched exosomes released from stressed, cytokine-induced oligodendrocytes as well as increased ceramide biosynthesis in reactive astrocytes mediate oligodendrocyte cell death [364,365]. On the contrary, ceramides may also trigger further immune responses by enhancing the effect of Th1 cytokines [364]. Remarkably, increased ceramide levels (C24 and/or C16) in the CSF of (P)MS patients can cause mitochondrial dysfunction and bioenergetic failure in neurons in vitro [366,367]. Increased oxysterol levels have been linked to the disruption of the BBB [368,369]. OPCs can both contribute to BBB disruption and associated CNS inflammation in injured white matter, as well as support BBB integrity and control neuroinflammation, as genetic ablation of NG2+ OPCs led to microglial overactivation and neuronal death [370,371,372,373,374,375]. On the contrary, NG2 knockout mice display milder EAE with reduced immune responses [376,377,378]. Remarkably, specific subsets of OPCs/oligodendrocytes display immunomodulatory and/or immunocompetent properties. They express MS susceptibility genes (e.g., interferon responsive genes), MHC-I genes thereby directly attracting cytotoxic CD8+ T cells, or Ifng-induced MHC-II genes thereby promoting CD4+ T cells. Some are capable of phagocytosis, even of myelin, and express various cytokines and chemokines [267,379,380]. Furthermore, oligodendrocyte death is sufficient to trigger an adaptive autoimmune response against myelin resulting in extensive myelin and axonal loss [381]. Myelin sheaths may be prone to generating antigenic components [382,383,384]. Citrullinated MBP is highly immunogenic, in particular through the MS-associated HLA-DR15 haplotype and can induce Th17 differentiation in CD4+ T cells of healthy controls [385]. Citrullinated Mbp also causes EAE given that encephalitogenic T cells preferentially react with it [386].
Finally, iron metabolism in OPCs and oligodendrocytes is necessary for oxygen utilization, for enzymes involved in ATP production, cholesterol and lipid synthesis thereby promoting OPC differentiation and myelination [387,388]. Iron accumulation in brains is age-dependent, and further enhanced in MS patients, in particular with advanced phenotypes, and slightly correlates with cognitive impairment [389,390,391]. Iron accumulates, in decreasing order, in oligodendrocytes, macrophages/microglia, and astrocytes [392]. However, intracellular iron is cytotoxic when it exceeds the storage capacity of ferritin and induces cell death, and ferroptosis (an iron-dependent lipid peroxidation under glutathione insufficiency), thereby impeding remyelination [270,271,393,394]. Moreover, redox active ferrous iron (II/Fe2+) accumulates in the intracellular and extracellular space (especially in the rim of chronic lesions and in the vicinity of active lesion sites), released from harmed oligodendrocytes and myelin debris, and is oxidized to ferric iron (III/Fe3+). This produces hydroxyl radicals, alongside the increase in lipid peroxidation and the reduction in antioxidant pathways, leading to ferroptosis [395]. The uptake of oxidized iron by microglia causes their dystrophy and a second wave of iron (II) release [152,270,271,396,397,398]. Therefore, iron deposition and release exacerbate the oxidative stress, creating a noxious environment for other cells and subsequent axonal/neuronal injury. This further contributes to the maintenance of a low-grade chronic inflammation by promoting a proinflammatory microglial polarization, as suggested by the formation of a paramagnetic rim in smoldering lesions [152,399,400]. Moreover, the iron load is higher in the basal ganglia and thalamus, two regions where gray matter atrophy occurs early in MS [389,401]. Both correlate with cognitive impairment, albeit iron accumulation to a lesser extent [391].

4. Neurodegeneration in MS

Neurodegeneration starts at onset of disease as evidenced by atrophy and widespread abnormalities on brain MRI, both in white and gray matter, and is not only restricted to lesions. Extra-lesional gray matter changes more consistently correlate with disability [146,163,402,403]. Although it may initially result from Wallerian degeneration in periplaque white matter, distal of earlier acquired white matter lesions, it further develops independently of the extent of active disease, i.e., the total white matter lesion load, but is rather linked to mechanisms of intrinsic neurodegeneration or subsequently driven by diffuse smoldering microglial activation and meningeal lymphocytic inflammation [10,33,144,152,159,164]. Axonal and neuronal injury may even occur without demyelination [97,404,405].
Axonal injury correlates better with the patient’s permanent neurological deficits [406,407,408,409]. Neurodegeneration is the greatest determinant of the risk and latency to disease progression, which occurs once the compensatory capacity of neuronal injury is exceeded and hence depends on the patient’s age rather than the number of relapses, explaining why DMTs have a more modest impact on disease progression [6,21,23,26,410] (Figure 3 and Figure 4, Supplementary Table S1).

4.1. Self-Sustained

Early gray matter neurodegeneration occurs, mainly driven by local failure of trophic and anti-inflammatory cellular interactions, despite the upregulation of myelination pathways, as evidenced by spatial transcriptomics and high-sensitivity proteomics performed on cortical brain tissues of SPMS patients vs. controls. Remarkably trophic interactions were already reduced in intact gray matter of MS patients as compared to controls but further reduced in degenerating MS gray matter [411]. Basal autophagy and mitophagy ensure cellular homeostasis; both their loss and excess cause neuronal cell death [412,413,414].
Axonal transection in white matter lesions, occurring early in the disease course, causes Wallerian or anterograde (downstream) and retrograde (upstream) axonal degeneration, thus at a distance from the site of initial injury [164,415]. Moreover, axonal/neuronal injury can also anterogradely or retrogradely induce the transsynaptic degeneration of a synaptically connected neuron, which may occur both in demyelinated and in normal appearing tissue in MS [416,417,418]. At a distance from an acute attack of optic neuritis, the atrophy of the thalamus and primary visual cortex is accelerated (suggesting anterograde transsynaptic degeneration), while the ganglion cell-inner plexiform (GCIP) layer and the inner nuclear layer of the retina are thinner (suggesting retrograde transsynaptic degeneration) [417]. Moreover, the magnitude of tissue injury, the reduction in the GCIP layer, and thalamic atrophy were positively correlated. Furthermore, thalamic and subcortical gray matter atrophy and visual outcome were also correlated [417]. Transsynaptic degeneration may thus signify a more aggressive primary demyelinating event, poorer tissue repair, or remyelination failure [416,417,419]. Remarkably, even patients without a history of optic neuritis show a thinning of the retinal layers, suggesting that lesions on the optic radiation can impact the retina [419].
Paranodes can be elongated and disorganized on myelinated axons at the border of chronic lesions, and thereby contribute to axonal degeneration and subsequently threaten further myelin loss [420]. Focal axonal damage can occur with intact myelin sheaths, initiated by intra-axonal mitochondrial pathology, resulting in an axonal energy deficit and major ion imbalance, mainly of sodium and calcium [219]. Calcium overload, exacerbated by sodium pump deficiency and excessive glutamate release, critically contributes to axonopathy [421]. Sodium accumulates in the axoplasm, and is replaced by calcium, due to the decreased activity of the sodium/potassium ATPase, and the reversing of the sodium/calcium exchanger [214,422,423,424]. Increased sodium channel Nav1.2 activity exacerbates neuroaxonal degeneration independently of immune cell infiltrates [425]. Inhibition of axonal voltage-gated sodium channels prevents mitochondrial morphological changes induced by oxidative stress and preserves the mitochondrial membrane potential [422]. Alteration in glutamate levels also results in calcium influx through extrasynaptic or overactivated presynaptic NMDA receptors, and calcium-mediated excitotoxicity [232,426,427]. Respiratory chain deficits further compromise mitochondrial calcium storage via mitochondrial calcium uniporter (MCU), critical for axonal survival, resulting instead in fragmented mitochondria and autophagosomes. Hence, in neuronal MCU-deficient mice with EAE mitochondrial dysfunction, myelin loss, axonal injury, and inflammation were elevated while remyelination was suppressed [428]. However, this relies on a very tight balance since mitochondrial calcium overload secondary to MCU overexpression can also induce neuronal cell death [429]. Likewise, MCU inhibition under oxidative stress conditions prevents the decrease in mitochondrial motility and preserves the membrane potential [422]. Furthermore, the monocationic TRPM4 channel (transient receptor potential cation channel subfamily M member) is activated by high intracellular calcium levels, while it is impermeable to it, and blocked by high cytosolic ATP levels, thereby colocalizing with axonal injury, while its inactivation reduced neuronal/axonal degeneration [430,431]. Proton-gated acid-sensing ion channels (ASIC) are activated by inflammation-linked tissue acidosis, allowing excessive calcium and sodium influx which subsequently leads to neurodegeneration. The increased expression of ASICs in oligodendrocytes and axons within lesions of EAE mice has been linked to axonal and myelin damage. In Asic1a-deficient mice or mice treated by amiloride, neurodegeneration is reduced independently of lymphocyte/myeloid infiltration [432,433].
As a result, neuroaxonal cytosolic calcium levels increase and activate calcium-activated neutral proteases such as calpains, inducing the proteolytic degradation of cytoskeletal proteins, structural axonal damage, and the disruption of axonal transport, microscopically seen as axonal swelling [214,423,428,434,435,436]. This leads to a vicious circle that further compromises mitochondrial function and energy production, although axonal redistribution of sodium channels, voltage-gated calcium channels, acid-sensing ion channel (ASIC1a), and/or TRPM4 is initially an attempt to preserve axonal conductance and integrity [33,333,424,425,431,432,433]. Moreover, calcium overload activates the mitochondrial permeability transition pores, resulting in the release of mitochondrial solutes (up to 1500 kD, of which cytochrome c), matrix swelling, membrane disruption, and thus ultimately mitochondrial collapse and cell death [437,438,439].

4.2. Impacting Neuroinflammation and Demyelination

Chronically demyelinated axons may not be receptive to remyelination given that their radial ensheathment was found to be rare even though premyelinating oligodendrocytes extended processes to demyelinated axons in chronic lesions [440]. Moreover, a primary axonal insult could potentiate acute oligodendrocyte loss by lack of axonally-derived growth factor and drive secondary demyelination [331,441]. Synaptic dysfunction impacts OPC differentiation, as OPCs have electrical properties (via sodium channels, glutamate/GABA receptors) and sense synaptic inputs from neurons within neuron-to-OPC synapses [442,443]. Furthermore, bidirectional neuronal–microglial communication is involved in synaptic transmission. Neuronal ATP release secondary to NMDA receptor activation triggers microglial process outgrowth, while microglia can affect synaptic activity and plasticity [444,445].
Finally, ion imbalance in axons further contributes to microglial activation and neuroinflammation subsequently reinforcing neurodegeneration. Sodium channel Nav1.6 is upregulated in microglia and macrophages in EAE and MS and contributes to their activation and their phagocytic properties [446]. The increased activity of neuronal voltage-gated Nav1.2 channel (by a gain of function mutation) in transgenic mice with EAE exacerbated inflammation-induced neurodegeneration, irrespective of immune cell alterations [425].

5. Triangulation in Other Neurodegenerative Disorders

Both Alzheimer’s (AD) and Parkinson’s disease (PD) are neurodegenerative disorders deeply linked to age wherein protein aggregates, extracellular amyloid beta plaques, and intracellular neurofibrillary tau tangles in AD, alpha-synuclein in intraneuronal Lewy bodies in PD, accumulate in distinctive areas, the hippocampus and neocortex in AD, the substantia nigra (pars compacta) and striatum in PD. These aggregates disrupt metabolic processes, leading to neurodegeneration via a common denominator that is neuroinflammation [30]. In fact, there is also the toxic accumulation of a protein in MS, namely of synaptic protein Bassoon, in the neuronal cell bodies, induced by neuroinflammation, while its genetic ablation prevents inflammation-induced neuro-axonal injury in mice [447].
First, aging is marked by a chronic inflammatory state, with increased proinflammatory mediators and oxidative stress, which is accompanied by BBB disruption at the cellular and molecular level manifesting by its increased permeability. However, the removal of certain neurotoxic substances, such as amyloid beta, is lessened given the reduced expression of efflux transporters [448,449]. The aged brain microenvironment induces microglial priming towards an activated phenotype by itself [450,451,452]. Moreover, cellular senescence in microglia, due to continuous mitotic urge, alters their proliferative response and shifts them towards a proinflammatory phenotype [452,453]. There is transcriptional evidence of a decrease in OPCs and in particular differentiating OPCs in the aging brain, in part due to inflammatory factors released by activated microglia [454,455]. Advanced age is associated with gray matter atrophy due to neuronal loss and with neuroglial functional alterations due to cellular senescence [456,457]. Moreover, continuous white matter deterioration, reflecting demyelination, and axonal damage results in its microstructural disorganization [458,459]. Gray matter volume thereby inversely correlates with increased levels of circulating proinflammatory cytokines, namely TNFa and IL1b, in non-demented elderly subjects [460] (Figure 5, Supplementary Table S1).

5.1. Neuroinflammation

Long-term chronic inflammation breaks down beneficial defense mechanisms. Additionally, the inflammatory microenvironment and senescence induce neurotoxic microglia, producing IL1b, TNFa, induced nitric oxide synthase (iNOS), ROS. This results in BBB breakdown and amplifies a peripheral and central inflammatory response and oxidative stress, disrupting brain homeostasis and causing neuronal damage [461,462,463,464,465,466]. Changes in the microenvironment, excessive accumulation of amyloid beta plaques in AD, and the presence of alpha-synuclein in PD, both potent activators of the immune system, enhance cellular senescence processes (DNA damage, accelerated telomere shortening, slowed cell cycle) and lead to microglial activation and astrogliosis. This induces the activation of the NLRP3 inflammasome, which itself activates microglia/astrocytes, and the release of proinflammatory cytokines and oxidative molecules [464,467,468,469,470,471,472,473,474,475]. Microglial NLRP3 activation induced by amyloid beta promotes tau hyperphosphorylation and aggregation, which can subsequently activate microglial NLRP3 as well [476,477]. Microglial phagocytosis of protein aggregates is impaired [478,479,480]. Oxidative and endoplasmic reticulum stress further accelerates protein misfolding, causing cellular damage and mitochondrial dysfunction [481]. Mitochondrial dysfunction with enhanced ROS production in microglia in turn triggers the activation of the inflammasome [482,483,484]. This vicious circle sustains neuroinflammation, hallmarked by a dramatic response in primed microglia, which, combined with age-related systemic inflammation, amplifies neurodegeneration and promotes disease progression [464,485,486].
Three amyloid beta-reactive microglia subpopulations have been described in AD. A first subpopulation, with three distinctive states hallmarked by the expression of the transmembrane glycoprotein nonmetastatic melanoma protein B (GPNMB), displays neuroinflammatory alterations early in the process of amyloid beta plaque deposition, characterized by the upregulation of genes involved in autophagy, antigen processing, and presentation or cytokine response [487]. A second microglial subpopulation, called white matter-associated microglia (WAM), responds to myelin debris and contains MBP+ intracellular particles [488]. Finally, damage-associated microglia (DAM) are characterized by the downregulation of homeostatic genes (e.g., purinergic receptor P2RY12), which correlates with neuronal cell loss, and the upregulation of DAM genes, such as apolipoprotein E (APOE) and triggering receptor expressed on myeloid cells 2 (TREM2) [489,490,491]. TREM2 is crucial to the metabolic reprogramming of microglia and the maturation of DAM. However, inappropriate DAM activation is deleterious [492]. TREM2 induces an APOE pathway that mediates a switch from homeostatic to neurodegenerative microglia [493,494]. On the contrary, TREM2 risk variants for late-onset AD exhibit a reduced function and TREM2 inactivating mutations cause lethal early-onset dementia (i.e., Nasu–Hakola disease) [492,495]. TREM2 deficiency impairs microgliosis (in particular clustering around amyloid beta plaques), enhances their autophagy and apoptosis, and causes axonal dystrophy [496,497,498]. Moreover, while acute exposure to amyloid beta enhances microglial phagocytosis, it regresses with chronic exposure [499]. Increased systemic inflammation impairs microglial amyloid beta clearance in mice via mechanisms mediated by the NLRP3 inflammasome [500]. APOE4, a risk factor for sporadic AD, supports a stronger proinflammatory reaction and causes the breakdown of the BBB by activating a proinflammatory cascade (mediated by cyclophilin A) resulting in the neuronal uptake of blood-circulating neurotoxins, all of which subsequently contribute to neurodegeneration [501,502]. Finally, AD astrocyte clusters are involved in synapse organization, cytoskeletal and extracellular matrix organization, in acute inflammatory response, oxidative and glutamate signaling, in apoptotic signaling due to DNA damage, and may also lose their neuroprotective roles at a transcriptional level [503]. Reactive astrogliosis has been evidenced by increased GFAP plasma levels in the early, preclinical stage of AD, and correlates with neuronal injury (neuritic plaques, amyloid beta plaques, and neurofibrillary tangles) and the clinical onset of cognitive impairment [504,505].
Likewise in PD, alpha-synuclein aggregation may result from a proinflammatory state, a compromised protein-folding machinery and reduced proteolytic abilities linked to aging [506,507]. Single-nucleus RNA sequencing of human postmortem midbrain tissue in PD revealed (i) reactive astrogliosis and (ii) activated microglia, both characterized by the expression of heat shock proteins, (iii) dysfunctional dopaminergic neurons, and (iv) a decrease in myelinating oligodendrocytes that are moreover transcriptionally stressed. This is accompanied by the stress-induced upregulation of the unfolded protein response pathways, in particular detrimental to neuron survival [508,509,510]. Increased levels of IL1b, IL6, TNFa, IFNg, and TGFb1 in the striatum of neurotoxin-treated aged mice as well as a higher density of microglia and forward cytotoxic CD8+ T cells in the substantia nigra have been linked to the decreased density of dopaminergic neurons [511,512,513]. The proinflammatory response in macrophages and microglia is mediated via the JAK/STAT (Janus kinase/Signal transducer and activator of transcription) pathway, resulting in the expression of iNOS, IL6, TNFa, MHC-II. Notably, pharmacological inhibition of JAK/STAT in a rat model of PD overexpressing alpha-synuclein suppressed microglial activation, macrophage, and T cell infiltration and the expression of proinflammatory mediators while it prevented the degeneration of dopaminergic neurons [514].
However, similar to MS, peripheral immune dysregulation might play a role as a pathogenic trigger in AD and PD, inducing neuroinflammation and consequential neuronal damage resulting in motor and cognitive impairment [30]. Clonally expanded T cells have been identified both in AD and PD brains [515,516]. AD may start with a sequence of immunological events. Several serum cytokines (IL1b, IL2, IL4, IL10) are elevated [517]. In particular, cytokines such as IL1b, IL6, TNFa, IFNg, and TGFb can induce gamma-secretase enzymatic activity through the Jun N-terminal kinase (JNK) pathway, resulting in the cleavage of amyloid beta precursor protein and amyloid beta formation [518]. Amyloid beta further activates glial cells [467]. In PD, peripheral immune cells (monocytes, T cells) might initially react to alpha-synuclein primarily misfolded in the olfactory bulb or enteric nervous system and propagating then transsynaptically from nerve cell to nerve cell via the gut–brain axis and the vagal nerve [519,520,521,522]. Moreover, CD8+ T cell infiltration precedes alpha-synuclein aggregation and neuronal cell death [511]. Peripheral inflammation further activates microglia prior to neurotoxic astrocytes and dopaminergic neuron loss in a PD mice model [523]. BBB disruption and peripheral inflammation potentiate neuroinflammation and the degeneration of nigral dopaminergic neurons in animal models [524,525,526].
Finally, iron levels are elevated in brain regions affected by neurodegeneration, namely in the frontal, parietal, and temporal lobe, the amygdala, the cingulate cortex, globus pallidum, putamen, and caudate nucleus in AD and in the substantia nigra and the caudate nucleus in PD [527,528,529]. In PD, iron was increased in microglia and dopaminergic neurons and was closely linked to microgliosis [529]. In AD, the iron load is less dramatic than in PD despite neuroinflammation. The correlation with neuroinflammation is still unclear, but iron may contribute to amyloid beta formation [530,531] (Figure 5, Supplementary Table S1).

5.2. Demyelination

Although demyelination is not at the forefront of AD and PD, white matter degeneration is known to occur in these diseases, even in preclinical stages, and can contribute to disease progression [32,532,533]. Moreover, misfolded proteins contribute to oligodendrocyte disruption through lipid dysregulation and organellar stress [31].
Remarkably, the areas more vulnerable to AD pathology have the most protracted and extended course of myelination. The latest myelinated brain regions degenerate first (called neuropathologic retrogenesis), which was also evidenced in PD [534,535,536]. White matter hyperintensities (on brain MRI), reflecting mainly small vessel disease and inflammation, predict incident AD and the rate of cognitive decline. They correlate with CSF amyloid beta levels and are associated with genetic risk factors for AD [537,538,539,540,541,542]. Intracortical myelin density is decreased and is not limited to the vicinity of plaques [543]. Alteration in myelin content even precedes amyloid beta plaque and tau tangle pathology [544]. Hereby, the decrease in myelin structures on quantitative MRI measures is negatively correlated with the CSF concentration of tau and amyloid beta in patients at risk of AD, yet without cognitive symptoms [534]. Myelin defects in AD mouse models trigger the production of amyloid beta and the cleavage of cortical amyloid precursor protein. Moreover, although successfully induced, DAMs preferentially clear damaged myelin rather than amyloid plaques [543]. Oligodendrocyte damage in AD is related to (i) amyloid beta-induced cytotoxicity, with in particular elevated levels of soluble amyloid beta in the white matter, (ii) intracellular glial fibrillary tangles formation, while white matter lesions are associated with cortical hyperphosphorylated tau and may be due to Wallerian degeneration, (iii) iron release from myelin breakdown which promotes amyloid beta oligomerization, (iv) hypoxic insult fostered by cerebrovascular pathology, (v) excitotoxicity and intracellular calcium accumulation, and (vi) excessive age-related DNA damage [532,545,546,547,548,549,550,551,552,553,554,555,556]. Single-cell RNA sequencing on the postmortem prefrontal cortex of AD patients identified oligodendrocyte clusters with upregulation of axonogenesis, synapse organization, and cholesterol metabolism vs. an oligodendrocyte cluster with downregulation of synapse transmission, ion transmembrane transport, and metabolism [503]. Oligodendrocyte transcriptional signatures reflected impaired axonal myelination alongside metabolic adaptation to neuronal degeneration [494]. Moreover, APOE4 isoform altered intracellular lipid homeostasis resulting in increased unsaturated fatty acids in induced pluripotent stem cell-derived glia [557]. Oxidative stress, induced by amyloid beta, reduces the expression of genes promoting OPC differentiation [558]. Amyloid beta aggregates trigger senescence in OPCs [559]. Oligodendrocytes are less functional in the human precuneus in early AD [489]. Glycolytic defects in the oligodendrocyte can induce the assembly of the NLRP3 inflammasome and pyroptotic oligodendrocyte cell death [560].
In PD, dopaminergic neurons of the substantia nigra are unmyelinated or lightly myelinated and thus lack the basal support of the oligodendrocyte in case of increased energy requirements [561]. Moreover, alpha-synuclein preferentially aggregates in unmyelinated axons, enhancing their vulnerability to external stressors and degeneration [533]. However, regional white matter hyperintensities (on brain MRI) are associated with motor deficits, possibly independently of dopaminergic neuron loss [562]. Hereby, accumulation of alpha-synuclein in motor tracts was associated with an increase in the density of OPCs and an enlargement of mature oligodendrocytes but a decrease in myelin proteins alongside a progressive disorganization of white matter axon (scattered alignment) [563]. Oligodendrocytes generated from patient-induced pluripotent stem cells show a delayed maturation, but an increased expression of MHC genes [564]. Cell-type-specific signatures in the PD cingulate cortex/substantia nigra revealed that OPCs/oligodendrocytes were predominantly affected within metabolic processes, gene regulation, and cell differentiation [565,566]. Diffusion tensor imaging further supports white matter disruption in the cingulum of PD patients [567]. Furthermore, cognitive impairment in PD is associated with abnormalities of (pre-)frontal and interhemispheric white matter tracts, rather than with gray matter atrophy [568,569]. Alpha-synuclein inhibits oligodendrocyte maturation and myelination by increasing the content of myelin phospholipids [570].
Moreover, both in AD and PD, oligodendrocytes exhibit a reactive immunocompetent phenotype characterized by the upregulation of complement component C4b in response to amyloid beta and alpha-synuclein exposure, and accompanied by the expression of serine peptidase inhibitor, clade A, member 3N (Serpina3n), and proteasome 20S subunit beta 9 (PSMB9), respectively [494,564]. Finally, astrocytosis in the white matter is associated with loss of myelin in AD, PD, and normal aging [571].
Finally, sulfatide depletion in relevant brain regions in AD and PD mice models indicates myelin disruption. In PD brains, only long-chain hydroxylated sulfatides were depleted suggesting the contribution of oxidative stress [572,573]. Sulfatide deficiency is sufficient to induce AD-like neuroinflammation by microglial and astrocytic activation (marked by increased expression of AD risk genes) and contributed to cognitive impairment [574]. Furthermore, lysophosphatidylethanolamines and lysophosphatidylcholines, implicated in neuroinflammation via activation of phospholipase A2, accumulate in amyloid plaques [572]. APOE4 isoform alters the metabolism of several lipids and increases cholesterol biosynthesis but decreases its transport in oligodendrocytes, resulting in increased formation of cholesteryl esters with aberrant intracellular storage in lipid droplets and decreased localization to the plasma membrane, causing endoplasmic reticulum stress, and hypomyelination [575]. Both sulfatide depletion and cholesterol alteration are mediated by APOE4 and accelerated by amyloid beta accumulation in AD [572,574,575] (Figure 5).

5.3. Neurodegeneration

Protein misfolding triggers neuronal dysfunction and death, mainly by membrane destabilization or permeabilization [576,577,578,579]. Hereby, endoplasmic reticulum stress upregulates the unfolded protein response pathways, in an attempt to degrade misfolded proteins, but prolonged cellular stress eventually leads to apoptosis, in particular, in neurons [508,509,510]. In AD, the abnormal accumulation of amyloid beta as oligomers forms pore-like structures with channel activity in the synapses causing synaptic damage. Alteration in glutamate receptors and signaling pathways, circuitry hyperexcitability, mitochondrial and lysosomal dysfunction further contribute to synaptic and axonal pathology and defective neurogenesis in AD [580]. Synapses are also remarkably vulnerable to synucleopathy, given that the progression of brain atrophy in PD has been linked to the structural and functional brain connectivity in the caudate nucleus, nucleus accumbens, hippocampus, and posterior cortical regions, while it was inversely related to the presence of oligodendrocytes [581].
Dopaminergic neurons may increase their pacemaking and bursting activity in order to compensate for the lost neurons in maintaining dopamine levels but are also more vulnerable due to increased intracellular calcium levels [582,583,584,585]. However, this increases their energetic needs and oxidative stress while mitochondrial function may be hampered (via respiratory chain dysfunction), and can induce excitotoxicity and subsequent intracellular calcium excess [583,586,587,588,589,590]. Reactive astrocytes fail to overexpress glutamate transporters for its turnover [591]. Neuronal hyperactivity and oxidative stress also enhance alpha-synuclein aggregation, release, and spreading [592,593,594]. Increased cytosolic dopamine levels are toxic, as mitochondrial dysfunction promotes dopamine oxidation, and these metabolites then promote lysosomal dysfunction and alpha-synuclein accumulation, further contributing to oxidative stress and mitochondrial dysfunction which are also enhanced by aging processes [595,596]. This damages dopaminergic neurons, that also stimulate microglial activation which subsequently contributes to dopaminergic neuron necrosis [464,467,597,598]. On the other hand, nuclear receptor-related 1 protein (NURR1) expression, a transcription factor important in dopaminergic neuron homeostasis and regulation of neuroinflammation, was significantly downregulated in peripheral blood mononuclear cells of PD patients alongside the upregulation of several cytokines (TNFa, IL1b, IL6, and IL10) [599].
Finally, neuronal NLRP1 inflammasome activation induces caspase 1 (CASP1)/IL1b-mediated neuroinflammation, CASP6-mediated axonal degeneration, and neuronal pyroptosis in AD [600,601]. CASP1 also contributes to alpha-synuclein cleavage and its subsequent intraneuronal aggregation in neuroblastoma cells in vitro [602] (Figure 5).

6. Triangulation in Metabolic Syndrome

Metabolic syndrome, a compilation of central obesity, hypertension, dyslipidemia, and (pre-)diabetes, is accompanied by a chronic low-grade inflammation nourished by the adipose tissue [36,603]. The hypertrophy of the adipose tissue creates a hypoxic environment causing endoplasmic reticulum stress, lipolysis (above liposynthesis), insulin resistance, and cell death in adipocytes, driven by the overactivation of hypoxic inducible factor 1 alpha (HIF1a). This results in the release of damage-associated molecular proteins and in an increase in circulating free fatty acids, both inducing a proinflammatory immune response via Toll-like receptor 4 (TLR4) and downstream Nuclear factor kappa B (NFkB) pathway mediated by macrophages, thereby enhancing the former [36,604,605,606]. Moreover, stressed hypertrophic adipocytes release cytokines (TNFa, IL6) and adipokines (increased leptin, decreased adiponectin) thereby closing the loop of a reciprocal influence [607]. Increased circulating free fatty acid, decreased circulating adiponectin levels, and leptin resistance decrease lipid oxidation in non-adipose tissues, further enhancing lipid accumulation, lipotoxicity and insulin resistance [604,608,609]. Furthermore, obesity contributes to oxidative stress via several mechanisms such as hyperglycemia, hyperleptinemia, low antioxidant defense, chronic inflammation, and post-prandial ROS production [610].
Of note, leptin, a hormone of satiety released by the adipose tissue to regulate anorexigenic-mediated energy balance via its receptors in the hypothalamus, also has neurotrophic properties via receptors expressed in the hippocampus and neocortex. Its opponent, adiponectin, activates anorexigenic neurons in the hypothalamus at low glucose levels and inhibits them at high levels. It has further insulin-sensitizing, anti-inflammatory, anti-apoptotic, and neuroprotective properties [611,612,613].
Hence, obesity has been linked to neurodegeneration and neurodegenerative disorders as MS, AD, and PD [614,615,616,617,618,619,620]. The mechanisms are multiple but mainly rely on BBB compromise, neuroinflammation, oxidative stress, mitochondrial dysfunction, insulin and leptin resistance causing impaired synaptic plasticity and neuronal death [36] (Figure 6, Supplementary Table S1).

6.1. Metabolic Syndrome as Trigger of Neurodegeneration

6.1.1. Neuroinflammation

The peripheral chronic low-grade inflammation instigated by the adipocytes can facilitate the passage of peripheral immune cells through the BBB [621]. Moreover, hyperglycemia-induced oxidative stress in pericytes contributes to BBB disruption [622]. This subsequently causes neuroinflammation, more prominently in certain brain areas rather involved in cognition and memory, such as the cerebral cortex, hypothalamus, and hippocampus [623,624,625,626].
Leptin supports proinflammatory immune responses within the CNS, especially in microglia [627,628,629]. Neuroinflammation and microglial activation contribute to hypothalamic leptin resistance [630]. Oppositely, adiponectin has an anti-inflammatory effect by repressing macrophage and microglial activation via TLR4 and AdipoR1/NFkB signaling and thereby enhancing their anti-inflammatory phenotype, but adiponectin levels decrease in obesity [629,631,632,633].
Furthermore, the diversity of the gut microbiota regulates the BBB and microglial homeostasis and supports normal brain development and functioning via chemical and physical connections mediated by immune, enteric, and neural pathways [634,635,636,637,638]. On the contrary, obesity-induced gut dysbiosis causes microglial activation, among others by the release of various bacterial products in the blood (such as lipopolysaccharide) [639,640] (Figure 6, Supplementary Table S1).

6.1.2. Demyelination

Acute nutrient shift influences OPC proliferation and differentiation, while chronic nutrient shift affects both oligodendrogenesis and myelination. Hereby, undernutrition has a negative impact, and overnutrition has a positive impact on these processes, possibly via insulin, leptin, or thyroid hormones. However, chronic overnutrition accompanied with neuroinflammation, BBB disruption, and brain insulin resistance could halt OPCs and oligodendrocytes, leading to hypomyelination [641,642,643,644]. A chronic high-fat diet in mice promotes the loss of OPCs and oligodendrocytes in the brain and spinal cord alongside transcriptomic and metabolomic changes in endoplasmic reticulum stress, mitochondrial dysfunction, and oxidative stress pathways [645]. It also triggers myelin microstructure disruption and prolonged microglial activation in the hypothalamus [646]. The impact of obesity on the white matter is still disputed; however, a lower myelin content has been linked to obesity in cognitively healthy adults, including the anterior and posterior thalamic radiation, the inferior fronto-occipital fasciculus, the inferior and superior longitudinal fasciculus, the uncinate fasciculus, the corpus callosum, the internal capsule, the cingulate gyrus, the hippocampus, and the corticospinal tract [647,648,649,650] (Figure 6, Supplementary Table S1).

6.1.3. Neurodegeneration

Obesity compromises the gray matter in cognitively normal, young to middle-aged and elderly subjects, as marked by reduced cortical thickness and brain atrophy, especially in the left and right inferior frontal gyrus, the left middle temporal gyrus, the left precentral gyrus, the cingulate gyrus, hippocampus, thalamus, and the left cerebellum [651,652,653,654,655]. This is partially explained by the cerebral hypoperfusion linked to obesity [656,657]. Moreover, hyperglycemia may result in the downregulation of GLUT1 (expressed on brain endothelial cells) and GLUT3 (expressed on neurons) in order to reduce cerebral glucose uptake and its cytotoxicity [658,659,660]. Others showed an increased glucose uptake in the brain with hyperinsulinemia [661,662]. Herein, insulin signaling in hypothalamic astrocytes regulates glucose uptake across the BBB [663]. Insulin receptors are highly expressed in the brain, in particular in the cortex, the hypothalamus, and the hippocampus [664,665]. Insulin is crucially involved in synaptic plasticity and activity, but insulin transport through the BBB is compromised with insulin resistance, impairing its central action [666,667,668,669]. Thus, impaired central insulin signaling enhanced by hyperinsulinemia and insulin resistance affects neuronal and synaptic functioning, thereby impairing memory and learning processes [667,669,670,671,672]. Insulin resistance correlated negatively with gray matter volume in the right medial frontal cortex in healthy controls and in the medial temporal cortex in AD patients [673].
Both leptin and adiponectin promote neuronal proliferation in the hippocampus and synaptogenesis, and modulate post-synaptic signaling [674,675,676,677,678]. Leptin receptors are widely expressed in the brain, including the hypothalamus, hippocampus, and neocortex [679,680]. Obesity is accompanied by hyperleptinemia with leptin resistance (due to impaired leptin receptor signaling and leptin insensitivity at the BBB or an impaired and saturated transport through the BBB) and hypoadiponectinemia [666,668,681,682,683]. While leptin levels are increased in the blood, they appear lower in the CSF [666,684]. Impaired leptin signaling in the CNS and reduced adiponectin levels may contribute to neuronal atrophy in the hippocampus resulting in memory and/or learning ability impairment, especially in AD. However, the involvement of adiponectin is still debated [685,686,687,688,689].
A high-fat diet causes oxidative stress, supported by a decrease in the mitochondrial oxidative capacity, in the brain cortex and even more in synaptic regions, negatively impacting neuronal plasticity. It is associated with neuroinflammation [690]. A high-fat diet further impairs hippocampal synaptic plasticity by inactivating insulin receptor substrate 1 (IRS1) and downregulating glucose transporters GLUT3/GLUT4 [691]. Obesity-induced gut dysbiosis is also involved in hippocampal apoptosis via mitochondrial dysfunction and oxidative stress, as well as gut and systemic inflammation and microglial activation [639] (Figure 6, Supplementary Table S1).

6.2. Metabolic Syndrome as Risk Factor of Neurodegenerative Disorders

In MS, obesity occurring during adolescence is especially incriminated in increasing the risk of MS. It also potentiates the risk linked to other genetic and environmental factors [619,692,693,694]. Obesity is further associated with an increased risk of conversion from CIS to RRMS, a higher relapse rate and disability burden and progression, a reduced pharmacokinetic response to treatment, as well as cognitive decline and brain atrophy [618,695,696,697,698,699,700,701,702,703,704], although others also found no association with physical and cognitive disability worsening or brain atrophy [705,706,707]. The additional impact of obesity on gut dysbiosis, CNS inflammation, BBB breakdown, and oxidative stress exacerbates disease severity in EAE and MS patients [708,709,710,711,712,713]. Oppositely, caloric restriction could reduce cuprizone-induced demyelination and enhance alternative microglial activation [714]. Herein, the peculiar role of leptin has been highlighted. Leptin drives EAE susceptibility, which can be delayed by acute starvation, and leptin-deficient mice are resistant to EAE [715,716]. Oppositely, treatment with adiponectin ameliorated EAE, while adiponectin deficiency worsened EAE, which was characterized by enhanced neuroinflammation, demyelination, and axonal injury [717]. Leptin levels are increased in both the serum and CSF of RRMS patients and the expression of its receptor is upregulated in CD8+ T cells and monocytes during relapse [718,719]. It increases the proliferation of autoreactive T cells and the production of cytokines, but inhibits Treg proliferation [719,720]. Moreover, active CNS lesions contained high levels of leptin on post-mortem analysis [721].
In AD, obesity and diabetes are independent risk factors [614]. A higher body mass index and in particular central obesity in mid-life increases the risk of dementia, while remarkably, in late life, it seems to diminish the burden of the disease [722,723,724,725,726]. A high-fat diet in animal models of AD accelerated cognitive decline due to decreased synaptic plasticity. Underlying mechanisms are BBB disruption, systemic and central inflammation (among which microglial activation), adipokine and insulin signaling dysregulation, altered brain energy metabolism, oxidative stress (partially by reduced activation of redox-sensitive transcription factor Nrf2), and neuronal apoptosis [727,728,729,730,731,732,733,734,735]. Transgenic APP/PS1 mice have chronically elevated basal extracellular and stimulus-evoked levels of glutamate in the hippocampus which are further enhanced by a high-fat diet [736]. A high-fat diet and impaired glucose metabolism also increase amyloid beta deposition and/or tau phosphorylation [730,737,738,739,740]. Moreover, oligodendrocytes treated with palmitate (a saturated fatty acid) enhance insulin resistance in recipient neurons [739].
Late middle-aged persons with insulin resistance already have an increased amyloid deposition in the frontal and temporal areas [741]. Hyperinsulinemia has been associated with a higher risk of AD and promotes the amyloid beta pathology given that (i) insulin increases the secretion of amyloid beta, (ii) it also decreases its degradation given the competition of both insulin and amyloid beta for insulin-degrading enzyme, and (iii) amyloid beta competes with insulin for binding and activation of insulin receptors [742,743,744,745]. Amyloid beta oligomers bind to neurons and cause the dendritic insulin receptors to be redistributed within the cell body, downregulated, and less activated [746]. Insulin signaling pathways are impaired in AD, especially via insulin receptor substate 1 [747]. Increased activation of Glycogen synthase kinase 3 beta (GSK3b) in the brains of AD patients, in particular the hippocampus, accompanies impaired insulin signaling downstream the insulin receptor/insulin-like growth factor receptor through the Phosphoinositide-3-kinase (PI3K)/AKT pathway, resulting in increased phosphorylation of tau and increased production of amyloid beta peptides [747,748,749,750,751,752]. Insulin resistance further impairs glucose uptake and metabolism in the brain by reducing neuronal GLUT expression, thereby contributing to neuronal energy deficit and impaired synaptic activity [753,754,755,756]. Insulin mediates the translocation of GLUT4 to the plasma membrane supporting glucose demand for the activity of hippocampal neurons [757]. On the contrary, effects on GLUT1 and GLUT3 might be indirect via insulin resistance-induced hyperglycemia or during excitatory stress and their downregulation might contribute to neurotoxic tau and amyloid beta oligomer formation [758,759].
Higher cholesterol levels decrease leptin levels and induce the amyloidogenic pathway, which occurs predominantly in cholesterol-enriched lipid rafts via beta- and gamma-secretases [760,761,762,763,764]. Leptin treatment may alter the lipid composition of lipid rafts. Hereby, it can reverse the cholesterol-induced amyloid beta formation by reducing beta-secretase levels and activity. It also increases amyloid beta clearance and degradation by increasing the levels of low-density lipoprotein receptor-related protein 1 and insulin-degrading enzyme and by increasing APOE-dependent amyloid beta uptake, and promotes the alpha-secretase-mediated non-amyloidogenic pathway [764,765]. Leptin further supports hippocampal neurogenesis and is positively correlated with the volume of the right hippocampus [678,766]. Thus, leptin plays a protective role in AD. Its levels are decreased in the blood but increased in the CSF of AD patients [767,768]. However, leptin resistance was evidenced in neurons, given the reduced expression of its receptor, further enhanced by the APOE4 isoform. Remaining leptin receptors were moreover localized to neurofibrillary tangles [686,767]. Furthermore, the Akt-pathway coupled to these receptors is desensitized in the hippocampus by a high-fat diet in adolescent mice [769]. Oppositely, adiponectin levels are increased in the blood but decreased in the CSF of AD patients and colocalizes with tau in neurofibrillary tangles [685,768]. Plasma/CSF adiponectin levels correlated with hippocampal atrophy and poorer cognitive outcome, although only in women regarding the plasma levels [685,689]. Adiponectin protected in vitro human neuroblastoma cells against amyloid beta-induced cytotoxicity due to oxidative stress, by suppressing NFkB activation [770]. Aged adiponectin-deficient mice showed spatial memory and learning difficulties and developed AD-linked processes such as amyloid beta deposition, tau hyperphosphorylation, alongside impaired insulin signaling, microgliosis and astrogliosis, and increased GSK3b activation in the hippocampus and frontal cortex [771]. Intraperitoneal injection of adiponectin in high-fat diet mice could restore glucose metabolism, reduce amyloid beta aggregates, while improving cognitive functions [735].
Finally, obesity-induced cerebral hypoperfusion and endothelial dysfunction, associated with reduced synthesis and increased degradation (due to oxidative stress) of nitric oxide, enhance the production of amyloid beta in turn worsening endothelial dysfunction [772].
In PD, it is not yet well established whether a higher body mass index is a risk factor for the disease [616,773]. PD patients with diabetes experience a faster motor progression and cognitive decline [774,775]. A high-fat diet in rodent PD models accelerates the deposit of alpha-synuclein and exacerbates neurotoxicity and neurodegeneration, alongside earlier motor decline and death [776,777,778,779]. A high-fat diet reduces the expression of peroxisome proliferator-activated receptors and of tyrosine hydroxylase, a precursor molecule of dopamine synthesis, in parts of the dopaminergic axis, namely in the substantia nigra and/or ventral tegmental area, which is accompanied by enhanced neuroinflammation, astrogliosis/microgliosis, oxidative stress, mitochondrial and/or peroxisomal dysfunction, as well as the loss of dopaminergic neurons in the substantia nigra [780,781]. A high-fat diet and insulin resistance impair dopamine transmission, given a decrease in the expression and function of presynaptic dopamine transporters and in the expression of postsynaptic dopamine D2 receptors. Herein, high-fat-fed insulin-resistant young adult rats exhibited a blunted dopamine release and clearance [782,783]. Moreover, the insulin receptor is downregulated in the substantia nigra of PD patients as compared to controls [784].
In conclusion, metabolic syndrome is a risk factor for the development of MS, AD, and potentially PD.

7. Possible Therapeutic Strategies for the Future

Disease-modifying therapies (DMTs) in MS mainly target the peripheral immune cells. While they can temper the inflammatory component of the disease, they do not directly act on the other components related to disease progression. So far only two DMTs are approved for PMS, i.e., siponimod for active SPMS, and ocrelizumab for PPMS, and seem more effective in younger patients with a shorter progressive phase, when active inflammation is possibly still superimposed [23,26,785,786]. Novel therapeutic strategies are urgently needed. It seems of interest to focus on the pathological mechanisms that are not targeted by current DMTs, such as microgliosis/astrogliosis, oxidative stress, ion imbalance, and remyelination failure [26,787] (Figure 7). Similarly, in AD and PD, therapies aiming to clear amyloid beta plaques and dopaminergic therapies, respectively, are not sufficient to halt disease progression [532,533].
Clinical trials (phase 2 or 3, https://clinicaltrials.gov) are ongoing for Bruton’s tyrosine kinase (BTK) inhibitors in relapsing and/or progressive MS [788]. BTK is a non-receptor tyrosine kinase downstream of the B cell receptor and Toll-like receptor in B cells, participating in their development and maturation [788,789,790,791]. It also mediates microglia and macrophage activation via IgG-specific Fc receptor III and TLR signaling [788]. Its expression level is increased in microglia mainly, to a lesser extent in B cells and astrocytes [792,793,794]. Different from B cell depletion therapy, BTK inhibitors alter B cell function as antigen-presenting cells for the development of encephalitogenic T cells without affecting their frequency and functional integrity [790]. They reduced the severity of secondary progressive autoimmune demyelination in an in vivo mice model and promoted remyelination [794,795]. In particular, Tolebrutinib was recently evidenced to significantly delay confirmed disability progression in patients with non-relapsing SPMS (Hercules study), while it could not reduce the annualized relapse rate in relapsing MS patients (Gemini 1 and 2 studies) [796]. The protein kinase C modulator, bryostatin-1 (phase 1), is able to shift the transcriptional program of microglia and CNS-related macrophages toward a regenerative phenotype supporting phagocytosis and OPC differentiation and preventing the activation of neurotoxic astrocytes [797] (Figure 7). Other yet experimental strategies aim to improve mitochondrial function by restoring the calcium homeostasis or by scavenging peroxynitrite [412,798].
An innovating strategy to rescue energy production and mitochondrial function in injured cells relies on mitochondrial autotransplantation (Figure 7), whereby mitochondria isolated from healthy cells (usually skeletal muscular cells) are administered centrally or systemically in order to be non-specifically incorporated via macropinocytosis in other cells, including the injured cells [799,800,801,802]. Mitochondrial transplantation could ameliorate the clinical outcome of animal models of PD and the cardiac function of four children with cardiac ischemia [803,804,805]. Similarly, enhancing axonal mitochondrial content or activity improved in vitro and in vivo models of MS, for example, by the delivery of functional mitochondria via extracellular vesicles isolated from neural stem cells [806,807,808]. Targeting RNS-mediated excessive autophagy/mitophagy (e.g., by inhibiting peroxynitrite) or inhibiting Kelch-like ECH-associated protein 1 (Keap1) and Keap1–Nrf2 protein–protein interactions in order to enhance the antioxidant Nrf2 pathway are other promising strategies that are currently explored in MS and other neurodegenerative disorders [412,809].
Several remyelinating therapies have already been or are currently being tested, however, with no major breakthrough so far [810]. Clemastine fumarate, a H1-antihistamine inhibiting M1 muscarinic receptors, can promote OPC differentiation and myelination by restoring the non-canonical Contactin 1/Notch1/Deltex 1 signaling pathway and/or by inhibiting the NLRP3 inflammasome pathway and subsequent pyroptosis while enhancing antioxidant mediators (Nrf2 and HO1) (Figure 7). It was shown to suppress microglial and astrocytic activation as well [811,812,813]. Phase 2 and 3 trials in MS are still ongoing [814,815,816]. Moreover, in an AD mouse model, it could decrease amyloid beta deposition, and increase densities of OPCs, oligodendrocytes, and myelin possibly by preventing OPCs from entering in a state of cellular senescence [817]. A clinical trial on opicinumab, an antibody against LINGO1 (leucine-rich repeat neuronal protein 1, a surface protein on OPCs inhibiting their differentiation) in patients with relapsing MS did not reach the primary endpoint (i.e., multicomponent disability improvement over 72 weeks) and its development was thus halted, although outcomes may have been assessed too early following the treatment. Moreover, remyelination therapies will probably be more effective in supporting the remyelinating capacity when administered early, given that opicinumab showed better results in younger patients with shorter disease duration [818,819].
Metformin is largely used in the treatment of type 2 diabetes. It reduces the endogenous glucose production in the liver, as well as the net intestinal glucose uptake by increasing the anaerobic glucose metabolism in enterocytes, resulting in reduced blood glucose levels [820]. Metformin was also found to reduce the risk of cognitive impairment in patients with type 2 diabetes, but an increase in the risk has been evidenced by others [821,822,823]. Metformin mainly acts by activating the AMP-activated kinase and subsequently suppressing NFkB, which acknowledged its anti-inflammatory properties. In MS patients with metabolic syndrome treated with metformin, MBP-reactive cells secreting IFNg and IL17 were reduced, while Tregs were increased in number and regulatory function [824]. In cuprizone-treated mice, it alleviated microgliosis and astrogliosis in the corpus callosum alongside the downregulation of proinflammatory genes without affecting anti-inflammatory genes except of Trem2 [825]. It also reduced demyelination and apoptotic signaling cascades while it enhanced oligodendrogenesis (from the recruitment of OPCs to the differentiation in mature oligodendrocytes) by decreasing the oxidative stress and maintaining ATP levels in oligodendrocytes via induction of antioxidant Nrf2 and inactivation of mechanistic target of rapamycin kinase (mTOR), respectively, subsequently to AMP kinase activation. Thus, metformin has proregenerative effects on OPCs [826] (Figure 7). Hereby, both metformin treatment and alternate-day fasting enhanced remyelination in aged rats. On a cellular level, metformin mimics fasting, reversing certain changes of aging in OPCs, thereby restoring their regenerative capacity and creating a permissive environment for remyelination [827]. Metformin treatment started at the time of EAE induction reduced microglia count, decreased dysmyelination, and improved functional outcomes, while treatment started upon presentation of disease symptoms failed to do so [828]. In a clinical trial on metformin as adjuvant therapy to interferon beta in RRMS patients, it demonstrated a potential effect in reducing malondialdehyde, an oxidative stress marker, but not on any other immunological, MRI, and clinical outcome. However, this was assessed after 6 months of therapy only [829]. Several clinical trials evaluating the benefit of metformin in promoting remyelination and impeding neurodegeneration are ongoing. Regarding AD, patients with mild cognitive impairment, with or without diabetes, and treated with metformin had a better cognitive outcome compared to the respective untreated group alongside reduced thinning of cortical thickness [830]. Metformin could also prevent amyloid plaque load (by reducing beta-secretase expression) and tau phosphorylation (by inducing protein phosphatase 2A or reducing mTOR complex 1) and spreading of tau pathology in respective transgenic mice models [831,832,833]. It reduced neuroinflammation (microgliosis/astrogliosis and proinflammatory mediators) and enhanced neurogenesis in the hippocampus and the cortex in vivo, and hereby improved cognitive functions [831]. It also restored mitochondrial function and insulin sensitivity in neurons in vitro [834,835]. In PD rodent models, it prevented alpha-synuclein phosphorylation, dopaminergic neuronal loss, and improved motor functions [836,837]. Some reported a reduced risk for PD by metformin therapy in combination with sulfonylurea, while others did not, or even showed an increased risk for PD by long-term metformin therapy in patients with type 2 diabetes [823,838,839,840]. Given these controversial results, more studies are necessary to identify patients’ characteristics that may predict a beneficial impact of metformin therapy.
The results of several in vivo studies have prompted the evaluation of novel therapeutic strategies targeting microgliosis/astrogliosis, oxidative stress and/or promoting remyelinating/regenerative processes. Clinical trials have been launched for some, and already arrested for others. However, some elements might be important to take into consideration. The CNS might be less accessible to a potential drug, highlighting the need for an efficient CNS delivery strategy. Research is growing in biotechnology systems, such as nanoparticles or carrier peptides, as it may grant in the future an efficient and targeted drug delivery to the cells of interest with increased solubility, stability, and BBB penetration, with sustained release and the possibility of targeted transfer of combination therapies [806,841,842,843]. Neurodegeneration is a slow process that takes years and begins long before the first clinical symptoms, stressing the need for early intervention. Moreover, the best parameter to assess and follow up neurodegeneration in clinical trials is still unclear (for example, thalamic volume on brain MRI, measurements of macular ganglion cell layer and retinal nerve fiber layer by optical coherence tomography) [844,845]. In addition, clinical trials may miss a clinical effect depending on the stage of the disease when patients are enrolled and the duration of treatment. Since neurodegeneration starts early in the disease and intertwines with neuroinflammation and demyelination, especially in MS, changing strategies to target concomitantly these different pathological mechanisms early in the disease in order to prevent further neuronal damage appear to be an absolute necessity. It might be more relevant to consider a combination therapy with an immune-modulating (both peripheral and central) and a promising remyelinating/neuroprotective agent, which should be started early on and continued for a sufficient duration with relevant multiparametric outcomes measured. For example, a combination treatment with a calpain inhibitor and a novel protease-resistant altered small peptide ligand that mimics MBP improved EAE more strongly than each treatment separately. Altered peptide ligands are analogs of immunogenic peptides in which T-cell receptor contact residues have been altered, perturbing the effector function of T cells. Calpain inhibitor is neuroprotective by reducing myelin loss and axonal damage, and anti-inflammatory by reducing CD4+ T cell expansion while the altered MBP peptide ligand attenuates Th17 cells and increases myeloid suppressor cells and Tregs [846] (Figure 7).

8. Conclusions

Neurodegeneration is a major component of chronic CNS disorders, but also beyond, in chronic disorders with increased systemic inflammation, such as obesity and the metabolic syndrome. Even though neurodegenerative disorders greatly differ in their etiology, pathogenesis, disease course, and CNS topography, they share several pathophysiological mechanisms. Hereby, neurodegeneration alongside neuroinflammation and demyelination drive disease pathogenesis by sustaining themselves and each other through underlying mechanisms such as inflammation and microglial activation, oxidative stress, ion imbalance and energy deficit, mitochondrial dysfunction, excitotoxicity, iron accumulation, virtual and tissue hypoxia, loss of trophic support, myelin alterations, and impaired axonal transport. The connections between these mechanisms are complicated and remain to be fully elucidated. However, it also shows the urge to rethink therapeutic strategies in order to address these processes simultaneously and early on to prevent the subsequent manifold vicious circles underlying these devastating diseases.

Perspectives

This review elucidates critical issues concerning the interconnected mechanisms of neurodegeneration, neuroinflammation, and demyelination, particularly in the context of diseases such as MS, AD, and PD. Several directions are proposed to address these issues more effectively.
Firstly, additional mechanistic research is required to examine the interplay of mitochondrial dysfunction and oxidative stress in both neurons and glial cells to elucidate new molecular targets, to investigate the role of OPCs in remyelination failure and explore methods to enhance their differentiation and function, and finally to further investigate how systemic factors such as metabolic syndrome exacerbate neuroinflammation and neurodegeneration.
Secondly, there exists a critical need for biomarker development for the early detection of neuroinflammatory and neurodegenerative processes, enabling timely intervention prior to significant damage occurring. Advanced imaging techniques could be implemented to monitor the progression of diffuse white matter and gray matter damage.
Thirdly, cross-disease insights, as revealed in this review, could leverage the shared pathways in MS, AD, and PD to develop treatments targeting common mechanisms such as protein aggregation, iron metabolism dysregulation, and senescence-driven inflammation. Immunomodulatory therapies should be refined to minimize adverse effects while targeting the chronic inflammation central to these diseases. This could include therapies aimed at converting proinflammatory microglia and astrocytes to anti-inflammatory phenotypes. Further research is necessary to investigate how environmental and lifestyle factors such as diet, exercise, and stress management influence neurodegenerative pathways and incorporate these into holistic care plans, enabling personalized treatment approaches.
Finally, integrated therapeutic approaches could be explored, combining anti-inflammatory agents targeting microglia with antioxidants to mitigate oxidative stress activation or agents promoting remyelination and axonal repair.
By pursuing these directions, future research and therapeutic developments could significantly enhance the understanding and treatment of neurodegenerative disorders, improving outcomes for patients across multiple diseases.

Supplementary Materials

The following supporting information can be downloaded at: https://www.mdpi.com/article/10.3390/ijms252312637/s1.

Author Contributions

Conceptualization, O.P.; methodology, O.P.; validation, O.P. and V.v.P.; investigation, O.P.; writing—original draft preparation, O.P.; writing—review and editing, O.P. and V.v.P.; visualization, O.P.; supervision, V.v.P.; project administration, O.P. and V.v.P. All authors have read and agreed to the published version of the manuscript.

Funding

This research received no external funding.

Data Availability Statement

No new data were created or analyzed in this study. Data sharing is not applicable to this article.

Conflicts of Interest

The authors declare no conflicts of interest.

References

  1. Walton, C.; King, R.; Rechtman, L.; Kaye, W.; Leray, E.; Marrie, R.A.; Robertson, N.; La Rocca, N.; Uitdehaag, B.; van der Mei, I.; et al. Rising Prevalence of Multiple Sclerosis Worldwide: Insights from the Atlas of MS, Third Edition. Mult. Scler. 2020, 26, 1816–1821. [Google Scholar] [CrossRef] [PubMed]
  2. Lassmann, H. Pathogenic Mechanisms Associated with Different Clinical Courses of Multiple Sclerosis. Front. Immunol. 2019, 9, 3116. [Google Scholar] [CrossRef] [PubMed]
  3. Lublin, F.D.; Reingold, S.C.; Cohen, J.A.; Cutter, G.R.; Sørensen, P.S.; Thompson, A.J.; Wolinsky, J.S.; Balcer, L.J.; Banwell, B.; Barkhof, F.; et al. Defining the Clinical Course of Multiple Sclerosis. Neurology 2014, 83, 278–286. [Google Scholar] [CrossRef] [PubMed]
  4. Thompson, A.J.; Banwell, B.L.; Barkhof, F.; Carroll, W.M.; Coetzee, T.; Comi, G.; Correale, J.; Fazekas, F.; Filippi, M.; Freedman, M.S.; et al. Diagnosis of Multiple Sclerosis: 2017 Revisions of the McDonald Criteria. Lancet Neurol. 2018, 17, 162–173. [Google Scholar] [CrossRef] [PubMed]
  5. Stys, P.K.; Zamponi, G.W.; van Minnen, J.; Geurts, J.J.G. Will the Real Multiple Sclerosis Please Stand Up? Nat. Rev. Neurosci. 2012, 13, 507–514. [Google Scholar] [CrossRef]
  6. Scalfari, A.; Neuhaus, A.; Degenhardt, A.; Rice, G.P.; Muraro, P.A.; Daumer, M.; Ebers, G.C. The Natural History of Multiple Sclerosis, a Geographically Based Study 10: Relapses and Long-Term Disability. Brain 2010, 133, 1914–1929. [Google Scholar] [CrossRef]
  7. Xing, E.; Billi, A.C.; Gudjonsson, J.E. Sex Bias and Autoimmune Diseases. J. Investig. Dermatol. 2022, 142, 857–866. [Google Scholar] [CrossRef]
  8. Kuhlmann, T.; Ludwin, S.; Prat, A.; Antel, J.; Brück, W.; Lassmann, H. An Updated Histological Classification System for Multiple Sclerosis Lesions. Acta Neuropathol. 2017, 133, 13–24. [Google Scholar] [CrossRef]
  9. Lucchinetti, C.; Brück, W.; Parisi, J.; Scheithauer, B.; Rodriguez, M.; Lassmann, H. Heterogeneity of Multiple Sclerosis Lesions: Implications for the Pathogenesis of Demyelination. Ann. Neurol. 2000, 47, 707–717. [Google Scholar] [CrossRef]
  10. Kutzelnigg, A.; Lucchinetti, C.F.; Stadelmann, C.; Brück, W.; Rauschka, H.; Bergmann, M.; Schmidbauer, M.; Parisi, J.E.; Lassmann, H. Cortical Demyelination and Diffuse White Matter Injury in Multiple Sclerosis. Brain 2005, 128, 2705–2712. [Google Scholar] [CrossRef]
  11. Treaba, C.A.; Granberg, T.E.; Sormani, M.P.; Herranz, E.; Ouellette, R.A.; Louapre, C.; Sloane, J.A.; Kinkel, R.P.; Mainero, C. Longitudinal Characterization of Cortical Lesion Development and Evolution in Multiple Sclerosis with 7.0-T MRI. Radiology 2019, 291, 740–749. [Google Scholar] [CrossRef] [PubMed]
  12. Frischer, J.M.; Weigand, S.D.; Guo, Y.; Kale, N.; Parisi, J.E.; Pirko, I.; Mandrekar, J.; Bramow, S.; Metz, I.; Brück, W.; et al. Clinical and Pathological Insights into the Dynamic Nature of the White Matter Multiple Sclerosis Plaque. Ann. Neurol. 2015, 78, 710–721. [Google Scholar] [CrossRef] [PubMed]
  13. Cree, B.A.C.; Hollenbach, J.A.; Bove, R.; Kirkish, G.; Sacco, S.; Caverzasi, E.; Bischof, A.; Gundel, T.; Zhu, A.H.; Papinutto, N.; et al. Silent Progression in Disease Activity–Free Relapsing Multiple Sclerosis. Ann. Neurol. 2019, 85, 653–666. [Google Scholar] [CrossRef] [PubMed]
  14. Cagol, A.; Benkert, P.; Melie-Garcia, L.; Schaedelin, S.A.; Leber, S.; Tsagkas, C.; Barakovic, M.; Galbusera, R.; Lu, P.-J.; Weigel, M.; et al. Association of Spinal Cord Atrophy and Brain Paramagnetic Rim Lesions with Progression Independent of Relapse Activity in People with MS. Neurology 2024, 102, e207768. [Google Scholar] [CrossRef] [PubMed]
  15. Elliott, C.; Belachew, S.; Wolinsky, J.S.; Hauser, S.L.; Kappos, L.; Barkhof, F.; Bernasconi, C.; Fecker, J.; Model, F.; Wei, W.; et al. Chronic White Matter Lesion Activity Predicts Clinical Progression in Primary Progressive Multiple Sclerosis. Brain 2019, 142, 2787–2799. [Google Scholar] [CrossRef]
  16. Machado-Santos, J.; Saji, E.; Tröscher, A.R.; Paunovic, M.; Liblau, R.; Gabriely, G.; Bien, C.G.; Bauer, J.; Lassmann, H. The Compartmentalized Inflammatory Response in the Multiple Sclerosis Brain Is Composed of Tissue-Resident CD8+ T Lymphocytes and B Cells. Brain 2018, 141, 2066–2082. [Google Scholar] [CrossRef]
  17. Kuhlmann, T.; Moccia, M.; Coetzee, T.; Cohen, J.A.; Correale, J.; Graves, J.; Marrie, R.A.; Montalban, X.; Yong, V.W.; Thompson, A.J.; et al. Multiple Sclerosis Progression: Time for a New Mechanism-Driven Framework. Lancet Neurol. 2023, 22, 78–88. [Google Scholar] [CrossRef]
  18. Krieger, S.C.; Cook, K.; De Nino, S.; Fletcher, M. The Topographical Model of Multiple Sclerosis. Neurol. Neuroimmunol. Neuroinflamm. 2016, 3, e279. [Google Scholar] [CrossRef]
  19. Tutuncu, M.; Tang, J.; Zeid, N.A.; Kale, N.; Crusan, D.J.; Atkinson, E.J.; Siva, A.; Pittock, S.J.; Pirko, I.; Keegan, B.M.; et al. Onset of Progressive Phase Is an Age Dependent Clinical Milestone in Multiple Sclerosis. Mult. Scler. 2013, 19, 188–198. [Google Scholar] [CrossRef]
  20. Kappos, L.; Wolinsky, J.S.; Giovannoni, G.; Arnold, D.L.; Wang, Q.; Bernasconi, C.; Model, F.; Koendgen, H.; Manfrini, M.; Belachew, S.; et al. Contribution of Relapse-Independent Progression vs Relapse-Associated Worsening to Overall Confirmed Disability Accumulation in Typical Relapsing Multiple Sclerosis in a Pooled Analysis of 2 Randomized Clinical Trials. JAMA Neurol. 2020, 77, 1132–1140. [Google Scholar] [CrossRef]
  21. Bjartmar, C.; Wujek, J.R.; Trapp, B.D. Axonal Loss in the Pathology of MS: Consequences for Understanding the Progressive Phase of the Disease. J. Neurol. Sci. 2003, 206, 165–171. [Google Scholar] [CrossRef] [PubMed]
  22. Perdaens, O.; van Pesch, V. Molecular Mechanisms of Immunosenescene and Inflammaging: Relevance to the Immunopathogenesis and Treatment of Multiple Sclerosis. Front. Neurol. 2022, 12, 811518. [Google Scholar] [CrossRef] [PubMed]
  23. Hauser, S.L.; Cree, B.A.C. Treatment of Multiple Sclerosis: A Review. Am. J. Med. 2020, 133, 1380–1390.e2. [Google Scholar] [CrossRef] [PubMed]
  24. Cree, B.A.C.; Mares, J.; Hartung, H.-P. Current Therapeutic Landscape in Multiple Sclerosis: An Evolving Treatment Paradigm. Curr. Opin. Neurol. 2019, 32, 365. [Google Scholar] [CrossRef]
  25. Tedeholm, H.; Skoog, B.; Lisovskaja, V.; Runmarker, B.; Nerman, O.; Andersen, O. The Outcome Spectrum of Multiple Sclerosis: Disability, Mortality, and a Cluster of Predictors from Onset. J. Neurol. 2015, 262, 1148–1163. [Google Scholar] [CrossRef]
  26. Hollen, C.W.; Paz Soldán, M.M.; Rinker, J.R.; Spain, R.I. The Future of Progressive Multiple Sclerosis Therapies. Fed. Pract. 2020, 37, S43–S49. [Google Scholar]
  27. Mahad, D.H.; Trapp, B.D.; Lassmann, H. Pathological Mechanisms in Progressive Multiple Sclerosis. Lancet Neurol. 2015, 14, 183–193. [Google Scholar] [CrossRef]
  28. Husseini, L.; Geladaris, A.; Weber, M.S. Toward Identifying Key Mechanisms of Progression in Multiple Sclerosis. Trends Neurosci. 2023, 47, 58–70. [Google Scholar] [CrossRef]
  29. Lee, J.Y.; Biemond, M.; Petratos, S. Axonal Degeneration in Multiple Sclerosis: Defining Therapeutic Targets by Identifying the Causes of Pathology. Neurodegener. Dis. Manag. 2015, 5, 527–548. [Google Scholar] [CrossRef]
  30. Dias-Carvalho, A.; Sá, S.I.; Carvalho, F.; Fernandes, E.; Costa, V.M. Inflammation as Common Link to Progressive Neurological Diseases. Arch. Toxicol. 2024, 98, 95–119. [Google Scholar] [CrossRef]
  31. Festa, L.K.; Grinspan, J.B.; Jordan-Sciutto, K.L. White Matter Injury across Neurodegenerative Disease. Trends Neurosci. 2024, 47, 47–57. [Google Scholar] [CrossRef] [PubMed]
  32. Parrilla, G.E.; Gupta, V.; Wall, R.V.; Salkar, A.; Basavarajappa, D.; Mirzaei, M.; Chitranshi, N.; Graham, S.L.; You, Y. The Role of Myelin in Neurodegeneration: Implications for Drug Targets and Neuroprotection Strategies. Rev. Neurosci. 2023, 35, 271–292. [Google Scholar] [CrossRef] [PubMed]
  33. Friese, M.A.; Schattling, B.; Fugger, L. Mechanisms of Neurodegeneration and Axonal Dysfunction in Multiple Sclerosis. Nat. Rev. Neurol. 2014, 10, 225–238. [Google Scholar] [CrossRef] [PubMed]
  34. Gao, C.; Jiang, J.; Tan, Y.; Chen, S. Microglia in Neurodegenerative Diseases: Mechanism and Potential Therapeutic Targets. Signal Transduct. Target. Ther. 2023, 8, 359. [Google Scholar] [CrossRef] [PubMed]
  35. de Oliveira, L.G.; de Souza Angelo, Y.; Iglesias, A.H.; Peron, J.P.S. Unraveling the Link Between Mitochondrial Dynamics and Neuroinflammation. Front. Immunol. 2021, 12, 624919. [Google Scholar] [CrossRef]
  36. Neto, A.; Fernandes, A.; Barateiro, A. The Complex Relationship between Obesity and Neurodegenerative Diseases: An Updated Review. Front. Cell. Neurosci. 2023, 17, 1294420. [Google Scholar] [CrossRef]
  37. Trapp, B.D.; Nave, K.-A. Multiple Sclerosis: An Immune or Neurodegenerative Disorder? Annu. Rev. Neurosci. 2008, 31, 247–269. [Google Scholar] [CrossRef]
  38. Babbe, H.; Roers, A.; Waisman, A.; Lassmann, H.; Goebels, N.; Hohlfeld, R.; Friese, M.; Schröder, R.; Deckert, M.; Schmidt, S.; et al. Clonal Expansions of CD8+ T Cells Dominate the T Cell Infiltrate in Active Multiple Sclerosis Lesions as Shown by Micromanipulation and Single Cell Polymerase Chain Reaction. J. Exp. Med. 2000, 192, 393–404. [Google Scholar] [CrossRef]
  39. Malmeström, C.; Lycke, J.; Haghighi, S.; Andersen, O.; Carlsson, L.; Wadenvik, H.; Olsson, B. Relapses in Multiple Sclerosis Are Associated with Increased CD8+ T-Cell Mediated Cytotoxicity in CSF. J. Neuroimmunol. 2008, 196, 159–165. [Google Scholar] [CrossRef]
  40. Zrzavy, T.; Hametner, S.; Wimmer, I.; Butovsky, O.; Weiner, H.L.; Lassmann, H. Loss of “homeostatic” Microglia and Patterns of Their Activation in Active Multiple Sclerosis. Brain 2017, 140, 1900–1913. [Google Scholar] [CrossRef]
  41. Prineas, J.W.; Lee, S. Multiple Sclerosis: Destruction and Regeneration of Astrocytes in Acute Lesions. J. Neuropathol. Exp. Neurol. 2019, 78, 140–156. [Google Scholar] [CrossRef] [PubMed]
  42. Cao, Y.; Goods, B.A.; Raddassi, K.; Nepom, G.T.; Kwok, W.W.; Love, J.C.; Hafler, D.A. Functional Inflammatory Profiles Distinguish Myelin-Reactive T Cells from Patients with Multiple Sclerosis. Sci. Transl. Med. 2015, 7, 287ra74. [Google Scholar] [CrossRef] [PubMed]
  43. Fletcher, J.M.; Lonergan, R.; Costelloe, L.; Kinsella, K.; Moran, B.; O’Farrelly, C.; Tubridy, N.; Mills, K.H.G. CD39+Foxp3+ Regulatory T Cells Suppress Pathogenic Th17 Cells and Are Impaired in Multiple Sclerosis1. J. Immunol. 2009, 183, 7602–7610. [Google Scholar] [CrossRef] [PubMed]
  44. Granberg, T.; Fan, Q.; Treaba, C.A.; Ouellette, R.; Herranz, E.; Mangeat, G.; Louapre, C.; Cohen-Adad, J.; Klawiter, E.C.; Sloane, J.A.; et al. In Vivo Characterization of Cortical and White Matter Neuroaxonal Pathology in Early Multiple Sclerosis. Brain 2017, 140, 2912–2926. [Google Scholar] [CrossRef] [PubMed]
  45. Murphy, A.C.; Lalor, S.J.; Lynch, M.A.; Mills, K.H.G. Infiltration of Th1 and Th17 Cells and Activation of Microglia in the CNS during the Course of Experimental Autoimmune Encephalomyelitis. Brain Behav. Immun. 2010, 24, 641–651. [Google Scholar] [CrossRef]
  46. Leuenberger, T.; Paterka, M.; Reuter, E.; Herz, J.; Niesner, R.A.; Radbruch, H.; Bopp, T.; Zipp, F.; Siffrin, V. The Role of CD8+ T Cells and Their Local Interaction with CD4+ T Cells in Myelin Oligodendrocyte Glycoprotein35-55-Induced Experimental Autoimmune Encephalomyelitis. J. Immunol. 2013, 191, 4960–4968. [Google Scholar] [CrossRef]
  47. Spadaro, M.; Winklmeier, S.; Beltrán, E.; Macrini, C.; Höftberger, R.; Schuh, E.; Thaler, F.S.; Gerdes, L.A.; Laurent, S.; Gerhards, R.; et al. Pathogenicity of Human Antibodies against Myelin Oligodendrocyte Glycoprotein. Ann. Neurol. 2018, 84, 315–328. [Google Scholar] [CrossRef]
  48. Flach, A.-C.; Litke, T.; Strauss, J.; Haberl, M.; Gómez, C.C.; Reindl, M.; Saiz, A.; Fehling, H.-J.; Wienands, J.; Odoardi, F.; et al. Autoantibody-Boosted T-Cell Reactivation in the Target Organ Triggers Manifestation of Autoimmune CNS Disease. Proc. Natl. Acad. Sci. USA 2016, 113, 3323–3328. [Google Scholar] [CrossRef]
  49. van der Poel, M.; Hoepel, W.; Hamann, J.; Huitinga, I.; Dunnen, J. den IgG Immune Complexes Break Immune Tolerance of Human Microglia. J. Immunol. 2020, 205, 2511–2518. [Google Scholar] [CrossRef]
  50. Kinzel, S.; Lehmann-Horn, K.; Torke, S.; Häusler, D.; Winkler, A.; Stadelmann, C.; Payne, N.; Feldmann, L.; Saiz, A.; Reindl, M.; et al. Myelin-Reactive Antibodies Initiate T Cell-Mediated CNS Autoimmune Disease by Opsonization of Endogenous Antigen. Acta Neuropathol. 2016, 132, 43–58. [Google Scholar] [CrossRef]
  51. Bar-Or, A.; Fawaz, L.; Fan, B.; Darlington, P.J.; Rieger, A.; Ghorayeb, C.; Calabresi, P.A.; Waubant, E.; Hauser, S.L.; Zhang, J.; et al. Abnormal B-Cell Cytokine Responses a Trigger of T-Cell-Mediated Disease in MS? Ann. Neurol. 2010, 67, 452–461. [Google Scholar] [CrossRef] [PubMed]
  52. Owens, G.P.; Bennett, J.L.; Lassmann, H.; O’Connor, K.C.; Ritchie, A.M.; Shearer, A.; Lam, C.; Yu, X.; Birlea, M.; DuPree, C.; et al. Antibodies Produced by Clonally Expanded Plasma Cells in Multiple Sclerosis Cerebrospinal Fluid. Ann. Neurol. 2009, 65, 639–649. [Google Scholar] [CrossRef]
  53. Blauth, K.; Soltys, J.; Matschulat, A.; Reiter, C.R.; Ritchie, A.; Baird, N.L.; Bennett, J.L.; Owens, G.P. Antibodies Produced by Clonally Expanded Plasma Cells in Multiple Sclerosis Cerebrospinal Fluid Cause Demyelination of Spinal Cord Explants. Acta Neuropathol. 2015, 130, 765–781. [Google Scholar] [CrossRef] [PubMed]
  54. Elliott, C.; Lindner, M.; Arthur, A.; Brennan, K.; Jarius, S.; Hussey, J.; Chan, A.; Stroet, A.; Olsson, T.; Willison, H.; et al. Functional Identification of Pathogenic Autoantibody Responses in Patients with Multiple Sclerosis. Brain 2012, 135, 1819–1833. [Google Scholar] [CrossRef] [PubMed]
  55. Molnarfi, N.; Schulze-Topphoff, U.; Weber, M.S.; Patarroyo, J.C.; Prod’homme, T.; Varrin-Doyer, M.; Shetty, A.; Linington, C.; Slavin, A.J.; Hidalgo, J.; et al. MHC Class II-Dependent B Cell APC Function Is Required for Induction of CNS Autoimmunity Independent of Myelin-Specific Antibodies. J. Exp. Med. 2013, 210, 2921–2937. [Google Scholar] [CrossRef] [PubMed]
  56. Fraussen, J.; Claes, N.; Van Wijmeersch, B.; van Horssen, J.; Stinissen, P.; Hupperts, R.; Somers, V. B Cells of Multiple Sclerosis Patients Induce Autoreactive Proinflammatory T Cell Responses. Clin. Immunol. 2016, 173, 124–132. [Google Scholar] [CrossRef]
  57. Li, R.; Rezk, A.; Miyazaki, Y.; Hilgenberg, E.; Touil, H.; Shen, P.; Moore, C.S.; Michel, L.; Althekair, F.; Rajasekharan, S.; et al. Proinflammatory GM-CSF-Producing B Cells in Multiple Sclerosis and B Cell Depletion Therapy. Sci. Transl. Med. 2015, 7, 310ra166. [Google Scholar] [CrossRef]
  58. Staun-Ram, E.; Miller, A. Effector and Regulatory B Cells in Multiple Sclerosis. Clin. Immunol. 2017, 184, 11–25. [Google Scholar] [CrossRef]
  59. Norden, D.M.; Fenn, A.M.; Dugan, A.; Godbout, J.P. TGFβ Produced by IL-10 Redirected Astrocytes Attenuates Microglial Activation. Glia 2014, 62, 881–895. [Google Scholar] [CrossRef]
  60. Savarin, C.; Hinton, D.R.; Valentin-Torres, A.; Chen, Z.; Trapp, B.D.; Bergmann, C.C.; Stohlman, S.A. Astrocyte Response to IFN-γ Limits IL-6-Mediated Microglia Activation and Progressive Autoimmune Encephalomyelitis. J. Neuroinflamm. 2015, 12, 79. [Google Scholar] [CrossRef]
  61. O’Loughlin, E.; Madore, C.; Lassmann, H.; Butovsky, O. Microglial Phenotypes and Functions in Multiple Sclerosis. Cold Spring Harb. Perspect. Med. 2018, 8, a028993. [Google Scholar] [CrossRef] [PubMed]
  62. Touil, H.; Kobert, A.; Lebeurrier, N.; Rieger, A.; Saikali, P.; Lambert, C.; Fawaz, L.; Moore, C.S.; Prat, A.; Gommerman, J.; et al. Human Central Nervous System Astrocytes Support Survival and Activation of B Cells: Implications for MS Pathogenesis. J. Neuroinflamm. 2018, 15, 114. [Google Scholar] [CrossRef] [PubMed]
  63. Kim, R.Y.; Hoffman, A.S.; Itoh, N.; Ao, Y.; Spence, R.; Sofroniew, M.V.; Voskuhl, R.R. Astrocyte CCL2 Sustains Immune Cell Infiltration in Chronic Experimental Autoimmune Encephalomyelitis. J. Neuroimmunol. 2014, 274, 53–61. [Google Scholar] [CrossRef] [PubMed]
  64. Kiss, M.G.; Mindur, J.E.; Yates, A.G.; Lee, D.; Fullard, J.F.; Anzai, A.; Poller, W.C.; Christie, K.A.; Iwamoto, Y.; Roudko, V.; et al. Interleukin-3 Coordinates Glial-Peripheral Immune Crosstalk to Incite Multiple Sclerosis. Immunity 2023, 56, 1502–1514.e8. [Google Scholar] [CrossRef] [PubMed]
  65. Liddelow, S.A.; Guttenplan, K.A.; Clarke, L.E.; Bennett, F.C.; Bohlen, C.J.; Schirmer, L.; Bennett, M.L.; Münch, A.E.; Chung, W.-S.; Peterson, T.C.; et al. Neurotoxic Reactive Astrocytes Are Induced by Activated Microglia. Nature 2017, 541, 481–487. [Google Scholar] [CrossRef]
  66. Aharoni, R.; Eilam, R.; Arnon, R. Astrocytes in Multiple Sclerosis—Essential Constituents with Diverse Multifaceted Functions. Int. J. Mol. Sci. 2021, 22, 5904. [Google Scholar] [CrossRef]
  67. Kuno, R.; Wang, J.; Kawanokuchi, J.; Takeuchi, H.; Mizuno, T.; Suzumura, A. Autocrine Activation of Microglia by Tumor Necrosis Factor-Alpha. J. Neuroimmunol. 2005, 162, 89–96. [Google Scholar] [CrossRef]
  68. Alvarez, J.I.; Dodelet-Devillers, A.; Kebir, H.; Ifergan, I.; Fabre, P.J.; Terouz, S.; Sabbagh, M.; Wosik, K.; Bourbonnière, L.; Bernard, M.; et al. The Hedgehog Pathway Promotes Blood-Brain Barrier Integrity and CNS Immune Quiescence. Science 2011, 334, 1727–1731. [Google Scholar] [CrossRef]
  69. Mizee, M.R.; Nijland, P.G.; van der Pol, S.M.A.; Drexhage, J.A.R.; van het Hof, B.; Mebius, R.; van der Valk, P.; van Horssen, J.; Reijerkerk, A.; de Vries, H.E. Astrocyte-Derived Retinoic Acid: A Novel Regulator of Blood–Brain Barrier Function in Multiple Sclerosis. Acta Neuropathol. 2014, 128, 691–703. [Google Scholar] [CrossRef]
  70. Yun, H.-M.; Park, K.-R.; Kim, E.-C.; Hong, J.T. PRDX6 Controls Multiple Sclerosis by Suppressing Inflammation and Blood Brain Barrier Disruption. Oncotarget 2015, 6, 20875–20884. [Google Scholar] [CrossRef]
  71. Toft-Hansen, H.; Füchtbauer, L.; Owens, T. Inhibition of Reactive Astrocytosis in Established Experimental Autoimmune Encephalomyelitis Favors Infiltration by Myeloid Cells over T Cells and Enhances Severity of Disease. Glia 2011, 59, 166–176. [Google Scholar] [CrossRef] [PubMed]
  72. Linnerbauer, M.; Rothhammer, V. Protective Functions of Reactive Astrocytes Following Central Nervous System Insult. Front. Immunol. 2020, 11, 573256. [Google Scholar] [CrossRef] [PubMed]
  73. Filipello, F.; Pozzi, D.; Proietti, M.; Romagnani, A.; Mazzitelli, S.; Matteoli, M.; Verderio, C.; Grassi, F. Ectonucleotidase Activity and Immunosuppression in Astrocyte-CD4 T Cell Bidirectional Signaling. Oncotarget 2016, 7, 5143–5156. [Google Scholar] [CrossRef] [PubMed]
  74. Voskuhl, R.R.; Peterson, R.S.; Song, B.; Ao, Y.; Morales, L.B.J.; Tiwari-Woodruff, S.; Sofroniew, M.V. Reactive Astrocytes Form Scar-Like Perivascular Barriers to Leukocytes during Adaptive Immune Inflammation of the CNS. J. Neurosci. 2009, 29, 11511–11522. [Google Scholar] [CrossRef]
  75. Choi, S.R.; Howell, O.W.; Carassiti, D.; Magliozzi, R.; Gveric, D.; Muraro, P.A.; Nicholas, R.; Roncaroli, F.; Reynolds, R. Meningeal Inflammation Plays a Role in the Pathology of Primary Progressive Multiple Sclerosis. Brain 2012, 135, 2925–2937. [Google Scholar] [CrossRef]
  76. Fransen, N.L.; Hsiao, C.-C.; van der Poel, M.; Engelenburg, H.J.; Verdaasdonk, K.; Vincenten, M.C.J.; Remmerswaal, E.B.M.; Kuhlmann, T.; Mason, M.R.J.; Hamann, J.; et al. Tissue-Resident Memory T Cells Invade the Brain Parenchyma in Multiple Sclerosis White Matter Lesions. Brain 2020, 143, 1714–1730. [Google Scholar] [CrossRef]
  77. Magliozzi, R.; Howell, O.; Vora, A.; Serafini, B.; Nicholas, R.; Puopolo, M.; Reynolds, R.; Aloisi, F. Meningeal B-Cell Follicles in Secondary Progressive Multiple Sclerosis Associate with Early Onset of Disease and Severe Cortical Pathology. Brain 2007, 130, 1089–1104. [Google Scholar] [CrossRef]
  78. Fransen, N.L.; de Jong, B.A.; Heß, K.; Kuhlmann, T.; Vincenten, M.C.J.; Hamann, J.; Huitinga, I.; Smolders, J. Absence of B Cells in Brainstem and White Matter Lesions Associates with Less Severe Disease and Absence of Oligoclonal Bands in MS. Neurol. Neuroimmunol. Neuroinflamm. 2021, 8, e955. [Google Scholar] [CrossRef]
  79. Magliozzi, R.; Howell, O.W.; Nicholas, R.; Cruciani, C.; Castellaro, M.; Romualdi, C.; Rossi, S.; Pitteri, M.; Benedetti, M.D.; Gajofatto, A.; et al. Inflammatory Intrathecal Profiles and Cortical Damage in Multiple Sclerosis. Ann. Neurol. 2018, 83, 739–755. [Google Scholar] [CrossRef]
  80. Tanuma, N.; Sakuma, H.; Sasaki, A.; Matsumoto, Y. Chemokine Expression by Astrocytes Plays a Role in Microglia/Macrophage Activation and Subsequent Neurodegeneration in Secondary Progressive Multiple Sclerosis. Acta Neuropathol. 2006, 112, 195–204. [Google Scholar] [CrossRef]
  81. Mossakowski, A.A.; Pohlan, J.; Bremer, D.; Lindquist, R.; Millward, J.M.; Bock, M.; Pollok, K.; Mothes, R.; Viohl, L.; Radbruch, M.; et al. Tracking CNS and Systemic Sources of Oxidative Stress during the Course of Chronic Neuroinflammation. Acta Neuropathol. 2015, 130, 799–814. [Google Scholar] [CrossRef] [PubMed]
  82. Touil, H.; Li, R.; Zuroff, L.; Moore, C.S.; Healy, L.; Cignarella, F.; Piccio, L.; Ludwin, S.; Prat, A.; Gommerman, J.; et al. Cross-Talk between B Cells, Microglia and Macrophages, and Implications to Central Nervous System Compartmentalized Inflammation and Progressive Multiple Sclerosis. eBioMedicine 2023, 96, 104789. [Google Scholar] [CrossRef] [PubMed]
  83. Correale, J. The Role of Microglial Activation in Disease Progression. Mult. Scler. 2014, 20, 1288–1295. [Google Scholar] [CrossRef] [PubMed]
  84. Correale, J.; Farez, M.F. The Role of Astrocytes in Multiple Sclerosis Progression. Front. Neurol. 2015, 6, 180. [Google Scholar] [CrossRef] [PubMed]
  85. Absinta, M.; Maric, D.; Gharagozloo, M.; Garton, T.; Smith, M.D.; Jin, J.; Fitzgerald, K.C.; Song, A.; Liu, P.; Lin, J.-P.; et al. A Lymphocyte–Microglia–Astrocyte Axis in Chronic Active Multiple Sclerosis. Nature 2021, 597, 709–714. [Google Scholar] [CrossRef]
  86. Mendiola, A.S.; Ryu, J.K.; Bardehle, S.; Meyer-Franke, A.; Ang, K.K.-H.; Wilson, C.; Baeten, K.M.; Hanspers, K.; Merlini, M.; Thomas, S.; et al. Transcriptional Profiling and Therapeutic Targeting of Oxidative Stress in Neuroinflammation. Nat. Immunol. 2020, 21, 513–524. [Google Scholar] [CrossRef]
  87. Yong, V.W. Microglia in Multiple Sclerosis: Protectors Turn Destroyers. Neuron 2022, 110, 3534–3548. [Google Scholar] [CrossRef]
  88. Freeman, L.; Guo, H.; David, C.N.; Brickey, W.J.; Jha, S.; Ting, J.P.-Y. NLR Members NLRC4 and NLRP3 Mediate Sterile Inflammasome Activation in Microglia and Astrocytes. J. Exp. Med. 2017, 214, 1351–1370. [Google Scholar] [CrossRef]
  89. Hou, B.; Zhang, Y.; Liang, P.; He, Y.; Peng, B.; Liu, W.; Han, S.; Yin, J.; He, X. Inhibition of the NLRP3-Inflammasome Prevents Cognitive Deficits in Experimental Autoimmune Encephalomyelitis Mice via the Alteration of Astrocyte Phenotype. Cell Death Dis. 2020, 11, 377. [Google Scholar] [CrossRef]
  90. di Penta, A.; Moreno, B.; Reix, S.; Fernandez-Diez, B.; Villanueva, M.; Errea, O.; Escala, N.; Vandenbroeck, K.; Comella, J.X.; Villoslada, P. Oxidative Stress and Proinflammatory Cytokines Contribute to Demyelination and Axonal Damage in a Cerebellar Culture Model of Neuroinflammation. PLoS ONE 2013, 8, e54722. [Google Scholar] [CrossRef]
  91. Lucchinetti, C.F.; Popescu, B.F.G.; Bunyan, R.F.; Moll, N.M.; Roemer, S.F.; Lassmann, H.; Brück, W.; Parisi, J.E.; Scheithauer, B.W.; Giannini, C.; et al. Inflammatory Cortical Demyelination in Early Multiple Sclerosis. N. Engl. J. Med. 2011, 365, 2188–2197. [Google Scholar] [CrossRef] [PubMed]
  92. Pouly, S.; Becher, B.; Blain, M.; Antel, J.P. Interferon-Gamma Modulates Human Oligodendrocyte Susceptibility to Fas-Mediated Apoptosis. J. Neuropathol. Exp. Neurol. 2000, 59, 280–286. [Google Scholar] [CrossRef] [PubMed]
  93. Miller, N.M.; Shriver, L.P.; Bodiga, V.L.; Ray, A.; Basu, S.; Ahuja, R.; Jana, A.; Pahan, K.; Dittel, B.N. Lymphocytes with Cytotoxic Activity Induce Rapid Microtubule Axonal Destabilization Independently and before Signs of Neuronal Death. ASN Neuro 2013, 5, e00105. [Google Scholar] [CrossRef] [PubMed]
  94. Kang, Z.; Wang, C.; Zepp, J.; Wu, L.; Sun, K.; Zhao, J.; Chandrasekharan, U.; DiCorleto, P.E.; Trapp, B.D.; Ransohoff, R.M.; et al. Act1 Mediates IL-17–Induced EAE Pathogenesis Selectively in NG2+ Glial Cells. Nat. Neurosci. 2013, 16, 1401–1408. [Google Scholar] [CrossRef] [PubMed]
  95. Siffrin, V.; Radbruch, H.; Glumm, R.; Niesner, R.; Paterka, M.; Herz, J.; Leuenberger, T.; Lehmann, S.M.; Luenstedt, S.; Rinnenthal, J.L.; et al. In Vivo Imaging of Partially Reversible Th17 Cell-Induced Neuronal Dysfunction in the Course of Encephalomyelitis. Immunity 2010, 33, 424–436. [Google Scholar] [CrossRef]
  96. Elliott, M.; Benson, J.; Blank, M.; Brodmerkel, C.; Baker, D.; Sharples, K.R.; Szapary, P. Ustekinumab: Lessons Learned from Targeting Interleukin-12/23p40 in Immune-Mediated Diseases. Ann. N. Y. Acad. Sci. 2009, 1182, 97–110. [Google Scholar] [CrossRef]
  97. Bitsch, A.; Schuchardt, J.; Bunkowski, S.; Kuhlmann, T.; Brück, W. Acute Axonal Injury in Multiple Sclerosis: Correlation with Demyelination and Inflammation. Brain 2000, 123, 1174–1183. [Google Scholar] [CrossRef]
  98. Zang, Y.C.Q.; Li, S.; Rivera, V.M.; Hong, J.; Robinson, R.R.; Breitbach, W.T.; Killian, J.; Zhang, J.Z. Increased CD8+ Cytotoxic T Cell Responses to Myelin Basic Protein in Multiple Sclerosis. J. Immunol. 2004, 172, 5120–5127. [Google Scholar] [CrossRef]
  99. Kuhlmann, T.; Lingfeld, G.; Bitsch, A.; Schuchardt, J.; Brück, W. Acute Axonal Damage in Multiple Sclerosis Is Most Extensive in Early Disease Stages and Decreases over Time. Brain 2002, 125, 2202–2212. [Google Scholar] [CrossRef]
  100. Meuth, S.G.; Herrmann, A.M.; Simon, O.J.; Siffrin, V.; Melzer, N.; Bittner, S.; Meuth, P.; Langer, H.F.; Hallermann, S.; Boldakowa, N.; et al. Cytotoxic CD8+ T Cell-Neuron Interactions: Perforin-Dependent Electrical Silencing Precedes but Is Not Causally Linked to Neuronal Cell Death. J. Neurosci. 2009, 29, 15397–15409. [Google Scholar] [CrossRef]
  101. Haile, Y.; Simmen, K.C.; Pasichnyk, D.; Touret, N.; Simmen, T.; Lu, J.-Q.; Bleackley, R.C.; Giuliani, F. Granule-Derived Granzyme B Mediates the Vulnerability of Human Neurons to T Cell-Induced Neurotoxicity. J. Immunol. 2011, 187, 4861–4872. [Google Scholar] [CrossRef] [PubMed]
  102. Sobottka, B.; Harrer, M.D.; Ziegler, U.; Fischer, K.; Wiendl, H.; Hünig, T.; Becher, B.; Goebels, N. Collateral Bystander Damage by Myelin-Directed CD8+ T Cells Causes Axonal Loss. Am. J. Pathol. 2009, 175, 1160–1166. [Google Scholar] [CrossRef] [PubMed]
  103. Nitsch, R.; Pohl, E.E.; Smorodchenko, A.; Infante-Duarte, C.; Aktas, O.; Zipp, F. Direct Impact of T Cells on Neurons Revealed by Two-Photon Microscopy in Living Brain Tissue. J. Neurosci. 2004, 24, 2458–2464. [Google Scholar] [CrossRef] [PubMed]
  104. Göbel, K.; Melzer, N.; Herrmann, A.M.; Schuhmann, M.K.; Bittner, S.; Ip, C.W.; Hünig, T.; Meuth, S.G.; Wiendl, H. Collateral Neuronal Apoptosis in CNS Gray Matter during an Oligodendrocyte-Directed CD8+ T Cell Attack. Glia 2010, 58, 469–480. [Google Scholar] [CrossRef] [PubMed]
  105. Reuter, E.; Gollan, R.; Grohmann, N.; Paterka, M.; Salmon, H.; Birkenstock, J.; Richers, S.; Leuenberger, T.; Brandt, A.U.; Kuhlmann, T.; et al. Cross-Recognition of a Myelin Peptide by CD8+ T Cells in the CNS Is Not Sufficient to Promote Neuronal Damage. J. Neurosci. 2015, 35, 4837–4850. [Google Scholar] [CrossRef]
  106. Shi, Z.; Wang, X.; Wang, J.; Chen, H.; Du, Q.; Lang, Y.; Kong, L.; Luo, W.; Qiu, Y.; Zhang, Y.; et al. Granzyme B + CD8 + T Cells with Terminal Differentiated Effector Signature Determine Multiple Sclerosis Progression. J. Neuroinflamm. 2023, 20, 138. [Google Scholar] [CrossRef]
  107. Lee, P.R.; Johnson, T.P.; Gnanapavan, S.; Giovannoni, G.; Wang, T.; Steiner, J.P.; Medynets, M.; Vaal, M.J.; Gartner, V.; Nath, A. Protease-Activated Receptor-1 Activation by Granzyme B Causes Neurotoxicity That Is Augmented by Interleukin-1β. J. Neuroinflamm. 2017, 14, 131. [Google Scholar] [CrossRef]
  108. Colombo, M.; Dono, M.; Gazzola, P.; Roncella, S.; Valetto, A.; Chiorazzi, N.; Mancardi, G.L.; Ferrarini, M. Accumulation of Clonally Related B Lymphocytes in the Cerebrospinal Fluid of Multiple Sclerosis Patients1. J. Immunol. 2000, 164, 2782–2789. [Google Scholar] [CrossRef]
  109. Winges, K.M.; Gilden, D.H.; Bennett, J.L.; Yu, X.; Ritchie, A.M.; Owens, G.P. Analysis of Multiple Sclerosis Cerebrospinal Fluid Reveals a Continuum of Clonally Related Antibody-Secreting Cells That Are Predominantly Plasma Blasts. J. Neuroimmunol. 2007, 192, 226–234. [Google Scholar] [CrossRef]
  110. von Büdingen, H.-C.; Harrer, M.D.; Kuenzle, S.; Meier, M.; Goebels, N. Clonally Expanded Plasma Cells in the Cerebrospinal Fluid of MS Patients Produce Myelin-Specific Antibodies. Eur. J. Immunol. 2008, 38, 2014–2023. [Google Scholar] [CrossRef]
  111. Cepok, S.; Rosche, B.; Grummel, V.; Vogel, F.; Zhou, D.; Sayn, J.; Sommer, N.; Hartung, H.-P.; Hemmer, B. Short-Lived Plasma Blasts Are the Main B Cell Effector Subset during the Course of Multiple Sclerosis. Brain 2005, 128, 1667–1676. [Google Scholar] [CrossRef] [PubMed]
  112. Dobson, R.; Ramagopalan, S.; Davis, A.; Giovannoni, G. Cerebrospinal Fluid Oligoclonal Bands in Multiple Sclerosis and Clinically Isolated Syndromes: A Meta-Analysis of Prevalence, Prognosis and Effect of Latitude. J. Neurol. Neurosurg. Psychiatry 2013, 84, 909–914. [Google Scholar] [CrossRef] [PubMed]
  113. Ferrand, M.; Epstein, J.; Soudant, M.; Guillemin, F.; Pittion-Vouyovitch, S.; Debouverie, M.; Mathey, G. Real-Life Evaluation of the 2017 McDonald Criteria for Relapsing–Remitting Multiple Sclerosis after a Clinically Isolated Syndrome Confirms a Gain in Time-to-Diagnosis. J. Neurol. 2023, 271, 125–133. [Google Scholar] [CrossRef] [PubMed]
  114. Margoni, M.; Preziosa, P.; Filippi, M.; Rocca, M.A. Anti-CD20 Therapies for Multiple Sclerosis: Current Status and Future Perspectives. J. Neurol. 2022, 269, 1316–1334. [Google Scholar] [CrossRef] [PubMed]
  115. Avasarala, J.R.; Cross, A.H.; Trotter, J.L. Oligoclonal Band Number as a Marker for Prognosis in Multiple Sclerosis. Arch. Neurol. 2001, 58, 2044–2045. [Google Scholar] [CrossRef]
  116. Farrell, M.A.; Kaufmann, J.C.; Gilbert, J.J.; Noseworthy, J.H.; Armstrong, H.A.; Ebers, G.C. Oligoclonal Bands in Multiple Sclerosis: Clinical-Pathologic Correlation. Neurology 1985, 35, 212–218. [Google Scholar] [CrossRef]
  117. Villar, L.M.; Masjuan, J.; González-Porqué, P.; Plaza, J.; Sádaba, M.C.; Roldán, E.; Bootello, A.; Alvarez-Cermeño, J.C. Intrathecal IgM Synthesis Predicts the Onset of New Relapses and a Worse Disease Course in MS. Neurology 2002, 59, 555–559. [Google Scholar] [CrossRef]
  118. Capuano, R.; Zubizarreta, I.; Alba-Arbalat, S.; Sepulveda, M.; Sola-Valls, N.; Pulido-Valdeolivas, I.; Andorra, M.; Martinez-Heras, E.; Solana, E.; Lopez-Soley, E.; et al. Oligoclonal IgM Bands in the Cerebrospinal Fluid of Patients with Relapsing MS to Inform Long-Term MS Disability. Mult. Scler. 2021, 27, 1706–1716. [Google Scholar] [CrossRef]
  119. Villar, L.M.; Masjuan, J.; González-Porqué, P.; Plaza, J.; Sádaba, M.C.; Roldán, E.; Bootello, A.; Alvarez-Cermeño, J.C. Intrathecal IgM Synthesis Is a Prognostic Factor in Multiple Sclerosis. Ann. Neurol. 2003, 53, 222–226. [Google Scholar] [CrossRef]
  120. Petereit, H.-F.; Reske, D. Expansion of Antibody Reactivity in the Cerebrospinal Fluid of Multiple Sclerosis Patients—Follow-up and Clinical Implications. Fluids Barriers CNS 2005, 2, 3. [Google Scholar] [CrossRef]
  121. Quintana, F.J.; Farez, M.F.; Izquierdo, G.; Lucas, M.; Cohen, I.R.; Weiner, H.L. Antigen Microarrays Identify CNS-Produced Autoantibodies in RRMS. Neurology 2012, 78, 532–539. [Google Scholar] [CrossRef] [PubMed]
  122. Kennedy, P.G.E.; George, W.; Yu, X. The Elusive Nature of the Oligoclonal Bands in Multiple Sclerosis. J. Neurol. 2024, 271, 116–124. [Google Scholar] [CrossRef] [PubMed]
  123. Reindl, M.; Linington, C.; Brehm, U.; Egg, R.; Dilitz, E.; Deisenhammer, F.; Poewe, W.; Berger, T. Antibodies against the Myelin Oligodendrocyte Glycoprotein and the Myelin Basic Protein in Multiple Sclerosis and Other Neurological Diseases: A Comparative Study. Brain 1999, 122, 2047–2056. [Google Scholar] [CrossRef] [PubMed]
  124. O’Connor, K.C.; Chitnis, T.; Griffin, D.E.; Piyasirisilp, S.; Bar-Or, A.; Khoury, S.; Wucherpfennig, K.W.; Hafler, D.A. Myelin Basic Protein-Reactive Autoantibodies in the Serum and Cerebrospinal Fluid of Multiple Sclerosis Patients Are Characterized by Low-Affinity Interactions. J. Neuroimmunol. 2003, 136, 140–148. [Google Scholar] [CrossRef] [PubMed]
  125. Schirmer, L.; Srivastava, R.; Hemmer, B. To Look for a Needle in a Haystack: The Search for Autoantibodies in Multiple Sclerosis. Mult. Scler. 2014, 20, 271–279. [Google Scholar] [CrossRef]
  126. Cepok, S.; Zhou, D.; Srivastava, R.; Nessler, S.; Stei, S.; Büssow, K.; Sommer, N.; Hemmer, B. Identification of Epstein-Barr Virus Proteins as Putative Targets of the Immune Response in Multiple Sclerosis. J. Clin. Investig. 2005, 115, 1352–1360. [Google Scholar] [CrossRef]
  127. Wang, Z.; Kennedy, P.G.; Dupree, C.; Wang, M.; Lee, C.; Pointon, T.; Langford, T.D.; Graner, M.W.; Yu, X. Antibodies from Multiple Sclerosis Brain Identified Epstein-Barr Virus Nuclear Antigen 1 & 2 Epitopes Which Are Recognized by Oligoclonal Bands. J. Neuroimmune Pharmacol. 2021, 16, 567–580. [Google Scholar] [CrossRef]
  128. Lanz, T.V.; Brewer, R.C.; Ho, P.P.; Moon, J.-S.; Jude, K.M.; Fernandez, D.; Fernandes, R.A.; Gomez, A.M.; Nadj, G.-S.; Bartley, C.M.; et al. Clonally Expanded B Cells in Multiple Sclerosis Bind EBV EBNA1 and GlialCAM. Nature 2022, 603, 321–327. [Google Scholar] [CrossRef]
  129. Liu, Y.; Given, K.S.; Harlow, D.E.; Matschulat, A.M.; Macklin, W.B.; Bennett, J.L.; Owens, G.P. Myelin-Specific Multiple Sclerosis Antibodies Cause Complement-Dependent Oligodendrocyte Loss and Demyelination. Acta Neuropathol. Commun. 2017, 5, 25. [Google Scholar] [CrossRef]
  130. Linington, C.; Bradl, M.; Lassmann, H.; Brunner, C.; Vass, K. Augmentation of Demyelination in Rat Acute Allergic Encephalomyelitis by Circulating Mouse Monoclonal Antibodies Directed against a Myelin/Oligodendrocyte Glycoprotein. Am. J. Pathol. 1988, 130, 443–454. [Google Scholar]
  131. Marta, C.B.; Montano, M.B.; Taylor, C.M.; Taylor, A.L.; Bansal, R.; Pfeiffer, S.E. Signaling Cascades Activated upon Antibody Cross-Linking of Myelin Oligodendrocyte Glycoprotein: POTENTIAL IMPLICATIONS FOR MULTIPLE SCLEROSIS *. J. Biol. Chem. 2005, 280, 8985–8993. [Google Scholar] [CrossRef] [PubMed]
  132. Genain, C.P.; Cannella, B.; Hauser, S.L.; Raine, C.S. Identification of Autoantibodies Associated with Myelin Damage in Multiple Sclerosis. Nat. Med. 1999, 5, 170–175. [Google Scholar] [CrossRef] [PubMed]
  133. Mead, R.J.; Singhrao, S.K.; Neal, J.W.; Lassmann, H.; Morgan, B.P. The Membrane Attack Complex of Complement Causes Severe Demyelination Associated with Acute Axonal Injury1. J. Immunol. 2002, 168, 458–465. [Google Scholar] [CrossRef] [PubMed]
  134. Ingram, G.; Loveless, S.; Howell, O.W.; Hakobyan, S.; Dancey, B.; Harris, C.L.; Robertson, N.P.; Neal, J.W.; Morgan, B.P. Complement Activation in Multiple Sclerosis Plaques: An Immunohistochemical Analysis. Acta Neuropathol. Commun. 2014, 2, 53. [Google Scholar] [CrossRef] [PubMed]
  135. Mosley, K.; Cuzner, M.L. Receptor-Mediated Phagocytosis of Myelin by Macrophages and Microglia: Effect of Opsonization and Receptor Blocking Agents. Neurochem. Res. 1996, 21, 481–487. [Google Scholar] [CrossRef]
  136. Walsh, M.J.; Murray, J.M. Dual Implication of 2′,3′-Cyclic Nucleotide 3′ Phosphodiesterase as Major Autoantigen and C3 Complement-Binding Protein in the Pathogenesis of Multiple Sclerosis. J. Clin. Investig. 1998, 101, 1923–1931. [Google Scholar] [CrossRef]
  137. Breij, E.C.W.; Brink, B.P.; Veerhuis, R.; van den Berg, C.; Vloet, R.; Yan, R.; Dijkstra, C.D.; van der Valk, P.; Bö, L. Homogeneity of Active Demyelinating Lesions in Established Multiple Sclerosis. Ann. Neurol. 2008, 63, 16–25. [Google Scholar] [CrossRef]
  138. Mar, P. Antibody-Dependent Cellular Cytotoxicity in Multiple Sclerosis. J. Neurol. Sci. 1980, 47, 285–303. [Google Scholar] [CrossRef]
  139. Weber, M.S.; Hemmer, B.; Cepok, S. The Role of Antibodies in Multiple Sclerosis. Biochim. Biophys. Acta (BBA)—Mol. Basis Dis. 2011, 1812, 239–245. [Google Scholar] [CrossRef]
  140. Sádaba, M.C.; Tzartos, J.; Paíno, C.; García-Villanueva, M.; Álvarez-Cermeño, J.C.; Villar, L.M.; Esiri, M.M. Axonal and Oligodendrocyte-Localized IgM and IgG Deposits in MS Lesions. J. Neuroimmunol. 2012, 247, 86–94. [Google Scholar] [CrossRef]
  141. Raine, C.S.; Cannella, B.; Hauser, S.L.; Genain, C.P. Demyelination in Primate Autoimmune Encephalomyelitis and Acute Multiple Sclerosis Lesions: A Case for Antigen-Specific Antibody Mediation. Ann. Neurol. 1999, 46, 144–160. [Google Scholar] [CrossRef] [PubMed]
  142. Mathey, E.K.; Derfuss, T.; Storch, M.K.; Williams, K.R.; Hales, K.; Woolley, D.R.; Al-Hayani, A.; Davies, S.N.; Rasband, M.N.; Olsson, T.; et al. Neurofascin as a Novel Target for Autoantibody-Mediated Axonal Injury. J. Exp. Med. 2007, 204, 2363–2372. [Google Scholar] [CrossRef] [PubMed]
  143. Lisak, R.P.; Benjamins, J.A.; Nedelkoska, L.; Barger, J.L.; Ragheb, S.; Fan, B.; Ouamara, N.; Johnson, T.A.; Rajasekharan, S.; Bar-Or, A. Secretory Products of Multiple Sclerosis B Cells Are Cytotoxic to Oligodendroglia in Vitro. J. Neuroimmunol. 2012, 246, 85–95. [Google Scholar] [CrossRef] [PubMed]
  144. Magliozzi, R.; Howell, O.W.; Reeves, C.; Roncaroli, F.; Nicholas, R.; Serafini, B.; Aloisi, F.; Reynolds, R. A Gradient of Neuronal Loss and Meningeal Inflammation in Multiple Sclerosis. Ann. Neurol. 2010, 68, 477–493. [Google Scholar] [CrossRef]
  145. Howell, O.W.; Reeves, C.A.; Nicholas, R.; Carassiti, D.; Radotra, B.; Gentleman, S.M.; Serafini, B.; Aloisi, F.; Roncaroli, F.; Magliozzi, R.; et al. Meningeal Inflammation Is Widespread and Linked to Cortical Pathology in Multiple Sclerosis. Brain 2011, 134, 2755–2771. [Google Scholar] [CrossRef]
  146. Klaver, R.; Popescu, V.; Voorn, P.; Galis-de Graaf, Y.; van der Valk, P.; de Vries, H.E.; Schenk, G.J.; Geurts, J.J.G. Neuronal and Axonal Loss in Normal-Appearing Gray Matter and Subpial Lesions in Multiple Sclerosis. J. Neuropathol. Exp. Neurol. 2015, 74, 453–458. [Google Scholar] [CrossRef]
  147. Zivadinov, R.; Ramasamy, D.P.; Vaneckova, M.; Gandhi, S.; Chandra, A.; Hagemeier, J.; Bergsland, N.; Polak, P.; Benedict, R.H.; Hojnacki, D.; et al. Leptomeningeal Contrast Enhancement Is Associated with Progression of Cortical Atrophy in MS: A Retrospective, Pilot, Observational Longitudinal Study. Mult. Scler. 2017, 23, 1336–1345. [Google Scholar] [CrossRef]
  148. James, R.E.; Schalks, R.; Browne, E.; Eleftheriadou, I.; Munoz, C.P.; Mazarakis, N.D.; Reynolds, R. Persistent Elevation of Intrathecal Pro-Inflammatory Cytokines Leads to Multiple Sclerosis-like Cortical Demyelination and Neurodegeneration. Acta Neuropathol. Commun. 2020, 8, 66. [Google Scholar] [CrossRef]
  149. Schirmer, L.; Velmeshev, D.; Holmqvist, S.; Kaufmann, M.; Werneburg, S.; Jung, D.; Vistnes, S.; Stockley, J.H.; Young, A.; Steindel, M.; et al. Neuronal Vulnerability and Multilineage Diversity in Multiple Sclerosis. Nature 2019, 573, 75–82. [Google Scholar] [CrossRef]
  150. Absinta, M.; Sati, P.; Masuzzo, F.; Nair, G.; Sethi, V.; Kolb, H.; Ohayon, J.; Wu, T.; Cortese, I.C.M.; Reich, D.S. Association of Chronic Active Multiple Sclerosis Lesions with Disability In Vivo. JAMA Neurol. 2019, 76, 1474–1483. [Google Scholar] [CrossRef]
  151. Elliott, C.; Arnold, D.L.; Chen, H.; Ke, C.; Zhu, L.; Chang, I.; Cahir-McFarland, E.; Fisher, E.; Zhu, B.; Gheuens, S.; et al. Patterning Chronic Active Demyelination in Slowly Expanding/Evolving White Matter MS Lesions. AJNR Am. J. Neuroradiol. 2020, 41, 1584–1591. [Google Scholar] [CrossRef] [PubMed]
  152. Pukoli, D.; Vécsei, L. Smouldering Lesion in MS: Microglia, Lymphocytes and Pathobiochemical Mechanisms. Int. J. Mol. Sci. 2023, 24, 12631. [Google Scholar] [CrossRef] [PubMed]
  153. van Horssen, J.; Singh, S.; van der Pol, S.; Kipp, M.; Lim, J.L.; Peferoen, L.; Gerritsen, W.; Kooi, E.-J.; Witte, M.E.; Geurts, J.J.G.; et al. Clusters of Activated Microglia in Normal-Appearing White Matter Show Signs of Innate Immune Activation. J. Neuroinflamm. 2012, 9, 156. [Google Scholar] [CrossRef]
  154. Fischer, M.T.; Wimmer, I.; Höftberger, R.; Gerlach, S.; Haider, L.; Zrzavy, T.; Hametner, S.; Mahad, D.; Binder, C.J.; Krumbholz, M.; et al. Disease-Specific Molecular Events in Cortical Multiple Sclerosis Lesions. Brain 2013, 136, 1799–1815. [Google Scholar] [CrossRef] [PubMed]
  155. Nowacki, P.; Koziarska, D.; Masztalewicz, M. Microglia and Astroglia Proliferation within the Normal Appearing White Matter in Histologically Active and Inactive Multiple Sclerosis. Folia Neuropathol. 2019, 57, 249–257. [Google Scholar] [CrossRef] [PubMed]
  156. Schweser, F.; Raffaini Duarte Martins, A.L.; Hagemeier, J.; Lin, F.; Hanspach, J.; Weinstock-Guttman, B.; Hametner, S.; Bergsland, N.; Dwyer, M.G.; Zivadinov, R. Mapping of Thalamic Magnetic Susceptibility in Multiple Sclerosis Indicates Decreasing Iron with Disease Duration: A Proposed Mechanistic Relationship between Inflammation and Oligodendrocyte Vitality. Neuroimage 2018, 167, 438–452. [Google Scholar] [CrossRef]
  157. Magliozzi, R.; Fadda, G.; Brown, R.A.; Bar-Or, A.; Howell, O.W.; Hametner, S.; Marastoni, D.; Poli, A.; Nicholas, R.; Calabrese, M.; et al. “Ependymal-in” Gradient of Thalamic Damage in Progressive Multiple Sclerosis. Ann. Neurol. 2022, 92, 670–685. [Google Scholar] [CrossRef]
  158. van den Bosch, A.M.R.; Hümmert, S.; Steyer, A.; Ruhwedel, T.; Hamann, J.; Smolders, J.; Nave, K.-A.; Stadelmann, C.; Kole, M.H.P.; Möbius, W.; et al. Ultrastructural Axon-Myelin Unit Alterations in Multiple Sclerosis Correlate with Inflammation. Ann. Neurol. 2023, 93, 856–870. [Google Scholar] [CrossRef]
  159. De Stefano, N.; Matthews, P.M.; Filippi, M.; Agosta, F.; De Luca, M.; Bartolozzi, M.L.; Guidi, L.; Ghezzi, A.; Montanari, E.; Cifelli, A.; et al. Evidence of Early Cortical Atrophy in MS. Neurology 2003, 60, 1157–1162. [Google Scholar] [CrossRef]
  160. Rovaris, M.; Bozzali, M.; Iannucci, G.; Ghezzi, A.; Caputo, D.; Montanari, E.; Bertolotto, A.; Bergamaschi, R.; Capra, R.; Mancardi, G.L.; et al. Assessment of Normal-Appearing White and Gray Matter in Patients with Primary Progressive Multiple Sclerosis: A Diffusion-Tensor Magnetic Resonance Imaging Study. Arch. Neurol. 2002, 59, 1406–1412. [Google Scholar] [CrossRef]
  161. Ciccarelli, O.; Werring, D.J.; Wheeler–Kingshott, C.A.M.; Barker, G.J.; Parker, G.J.M.; Thompson, A.J.; Miller, D.H. Investigation of MS Normal-Appearing Brain Using Diffusion Tensor MRI with Clinical Correlations. Neurology 2001, 56, 926–933. [Google Scholar] [CrossRef] [PubMed]
  162. Pietroboni, A.M.; Colombi, A.; Contarino, V.E.; Russo, F.M.L.; Conte, G.; Morabito, A.; Siggillino, S.; Carandini, T.; Fenoglio, C.; Arighi, A.; et al. Quantitative Susceptibility Mapping of the Normal-Appearing White Matter as a Potential New Marker of Disability Progression in Multiple Sclerosis. Eur. Radiol. 2023, 33, 5368–5377. [Google Scholar] [CrossRef] [PubMed]
  163. Yaldizli, Ö.; Pardini, M.; Sethi, V.; Muhlert, N.; Liu, Z.; Tozer, D.J.; Samson, R.S.; Wheeler-Kingshott, C.A.; Yousry, T.A.; Miller, D.H.; et al. Characteristics of Lesional and Extra-Lesional Cortical Grey Matter in Relapsing-Remitting and Secondary Progressive Multiple Sclerosis: A Magnetisation Transfer and Diffusion Tensor Imaging Study. Mult. Scler. 2016, 22, 150–159. [Google Scholar] [CrossRef] [PubMed]
  164. Dziedzic, T.; Metz, I.; Dallenga, T.; König, F.B.; Müller, S.; Stadelmann, C.; Brück, W. Wallerian Degeneration: A Major Component of Early Axonal Pathology in Multiple Sclerosis. Brain Pathol. 2010, 20, 976–985. [Google Scholar] [CrossRef] [PubMed]
  165. Gallego-Delgado, P.; James, R.; Browne, E.; Meng, J.; Umashankar, S.; Tan, L.; Picon, C.; Mazarakis, N.D.; Faisal, A.A.; Howell, O.W.; et al. Neuroinflammation in the Normal-Appearing White Matter (NAWM) of the Multiple Sclerosis Brain Causes Abnormalities at the Nodes of Ranvier. PLoS Biol. 2020, 18, e3001008. [Google Scholar] [CrossRef]
  166. Howell, O.W.; Rundle, J.L.; Garg, A.; Komada, M.; Brophy, P.J.; Reynolds, R. Activated Microglia Mediate Axoglial Disruption That Contributes to Axonal Injury in Multiple Sclerosis. J. Neuropathol. Exp. Neurol. 2010, 69, 1017–1033. [Google Scholar] [CrossRef]
  167. Bourel, J.; Planche, V.; Dubourdieu, N.; Oliveira, A.; Séré, A.; Ducourneau, E.-G.; Tible, M.; Maitre, M.; Lesté-Lasserre, T.; Nadjar, A.; et al. Complement C3 Mediates Early Hippocampal Neurodegeneration and Memory Impairment in Experimental Multiple Sclerosis. Neurobiol. Dis. 2021, 160, 105533. [Google Scholar] [CrossRef]
  168. Back, S.A.; Tuohy, T.M.F.; Chen, H.; Wallingford, N.; Craig, A.; Struve, J.; Luo, N.L.; Banine, F.; Liu, Y.; Chang, A.; et al. Hyaluronan Accumulates in Demyelinated Lesions and Inhibits Oligodendrocyte Progenitor Maturation. Nat. Med. 2005, 11, 966–972. [Google Scholar] [CrossRef]
  169. Lau, L.W.; Keough, M.B.; Haylock-Jacobs, S.; Cua, R.; Döring, A.; Sloka, S.; Stirling, D.P.; Rivest, S.; Yong, V.W. Chondroitin Sulfate Proteoglycans in Demyelinated Lesions Impair Remyelination. Ann. Neurol. 2012, 72, 419–432. [Google Scholar] [CrossRef]
  170. Stoffels, J.M.J.; de Jonge, J.C.; Stancic, M.; Nomden, A.; van Strien, M.E.; Ma, D.; Šišková, Z.; Maier, O.; ffrench-Constant, C.; Franklin, R.J.M.; et al. Fibronectin Aggregation in Multiple Sclerosis Lesions Impairs Remyelination. Brain 2013, 136, 116–131. [Google Scholar] [CrossRef]
  171. Tepavčević, V.; Kerninon, C.; Aigrot, M.S.; Meppiel, E.; Mozafari, S.; Arnould-Laurent, R.; Ravassard, P.; Kennedy, T.E.; Nait-Oumesmar, B.; Lubetzki, C. Early Netrin-1 Expression Impairs Central Nervous System Remyelination. Ann. Neurol. 2014, 76, 252–268. [Google Scholar] [CrossRef] [PubMed]
  172. Hammond, T.R.; Gadea, A.; Dupree, J.; Kerninon, C.; Nait-Oumesmar, B.; Aguirre, A.; Gallo, V. Astrocyte-Derived Endothelin-1 Inhibits Remyelination through Notch Activation. Neuron 2014, 81, 588–602. [Google Scholar] [CrossRef] [PubMed]
  173. Kim, S.; Steelman, A.J.; Koito, H.; Li, J. Astrocytes Promote TNF-Mediated Toxicity to Oligodendrocyte Precursors. J. Neurochem. 2011, 116, 53–66. [Google Scholar] [CrossRef] [PubMed]
  174. Jha, S.; Srivastava, S.Y.; Brickey, W.J.; Iocca, H.; Toews, A.; Morrison, J.P.; Chen, V.S.; Gris, D.; Matsushima, G.K.; Ting, J.P.-Y. The Inflammasome Sensor, NLRP3, Regulates CNS Inflammation and Demyelination via Caspase-1 and Interleukin-18. J. Neurosci. 2010, 30, 15811–15820. [Google Scholar] [CrossRef]
  175. Koning, N.; Bö, L.; Hoek, R.M.; Huitinga, I. Downregulation of Macrophage Inhibitory Molecules in Multiple Sclerosis Lesions. Ann. Neurol. 2007, 62, 504–514. [Google Scholar] [CrossRef]
  176. Koning, N.; Swaab, D.F.; Hoek, R.M.; Huitinga, I. Distribution of the Immune Inhibitory Molecules CD200 and CD200R in the Normal Central Nervous System and Multiple Sclerosis Lesions Suggests Neuron-Glia and Glia-Glia Interactions. J. Neuropathol. Exp. Neurol. 2009, 68, 159–167. [Google Scholar] [CrossRef]
  177. Manich, G.; Recasens, M.; Valente, T.; Almolda, B.; González, B.; Castellano, B. Role of the CD200-CD200R Axis During Homeostasis and Neuroinflammation. Neuroscience 2019, 405, 118–136. [Google Scholar] [CrossRef]
  178. Zhang, H.; Li, F.; Yang, Y.; Chen, J.; Hu, X. SIRP/CD47 Signaling in Neurological Disorders. Brain Res. 2015, 1623, 74–80. [Google Scholar] [CrossRef]
  179. Junker, A.; Krumbholz, M.; Eisele, S.; Mohan, H.; Augstein, F.; Bittner, R.; Lassmann, H.; Wekerle, H.; Hohlfeld, R.; Meinl, E. MicroRNA Profiling of Multiple Sclerosis Lesions Identifies Modulators of the Regulatory Protein CD47. Brain 2009, 132, 3342–3352. [Google Scholar] [CrossRef]
  180. Miao, J.; Chen, L.; Pan, X.; Li, L.; Zhao, B.; Lan, J. Microglial Metabolic Reprogramming: Emerging Insights and Therapeutic Strategies in Neurodegenerative Diseases. Cell. Mol. Neurobiol. 2023, 43, 3191–3210. [Google Scholar] [CrossRef]
  181. Voloboueva, L.A.; Emery, J.F.; Sun, X.; Giffard, R.G. Inflammatory Response of Microglial BV-2 Cells Includes a Glycolytic Shift and Is Modulated by Mitochondrial Glucose-Regulated Protein 75/Mortalin. FEBS Lett. 2013, 587, 756–762. [Google Scholar] [CrossRef] [PubMed]
  182. Gimeno-Bayón, J.; López-López, A.; Rodríguez, M.J.; Mahy, N. Glucose Pathways Adaptation Supports Acquisition of Activated Microglia Phenotype. J. Neurosci. Res. 2014, 92, 723–731. [Google Scholar] [CrossRef] [PubMed]
  183. Orihuela, R.; McPherson, C.A.; Harry, G.J. Microglial M1/M2 Polarization and Metabolic States. Br. J. Pharmacol. 2016, 173, 649–665. [Google Scholar] [CrossRef] [PubMed]
  184. Wang, Q.; Lu, M.; Zhu, X.; Gu, X.; Zhang, T.; Xia, C.; Yang, L.; Xu, Y.; Zhou, M. The Role of Microglia Immunometabolism in Neurodegeneration: Focus on Molecular Determinants and Metabolic Intermediates of Metabolic Reprogramming. Biomed. Pharmacother. 2022, 153, 113412. [Google Scholar] [CrossRef] [PubMed]
  185. Jha, A.K.; Huang, S.C.-C.; Sergushichev, A.; Lampropoulou, V.; Ivanova, Y.; Loginicheva, E.; Chmielewski, K.; Stewart, K.M.; Ashall, J.; Everts, B.; et al. Network Integration of Parallel Metabolic and Transcriptional Data Reveals Metabolic Modules That Regulate Macrophage Polarization. Immunity 2015, 42, 419–430. [Google Scholar] [CrossRef] [PubMed]
  186. Ortiz, G.G.; Pacheco-Moisés, F.P.; Bitzer-Quintero, O.K.; Ramírez-Anguiano, A.C.; Flores-Alvarado, L.J.; Ramírez-Ramírez, V.; Macias-Islas, M.A.; Torres-Sánchez, E.D. Immunology and Oxidative Stress in Multiple Sclerosis: Clinical and Basic Approach. J. Immunol. Res. 2013, 2013, e708659. [Google Scholar] [CrossRef]
  187. Fischer, M.T.; Sharma, R.; Lim, J.L.; Haider, L.; Frischer, J.M.; Drexhage, J.; Mahad, D.; Bradl, M.; van Horssen, J.; Lassmann, H. NADPH Oxidase Expression in Active Multiple Sclerosis Lesions in Relation to Oxidative Tissue Damage and Mitochondrial Injury. Brain 2012, 135, 886–899. [Google Scholar] [CrossRef]
  188. Gray, E.; Thomas, T.L.; Betmouni, S.; Scolding, N.; Love, S. Elevated Activity and Microglial Expression of Myeloperoxidase in Demyelinated Cerebral Cortex in Multiple Sclerosis. Brain Pathol. 2008, 18, 86–95. [Google Scholar] [CrossRef]
  189. Lu, F.; Selak, M.; O’Connor, J.; Croul, S.; Lorenzana, C.; Butunoi, C.; Kalman, B. Oxidative Damage to Mitochondrial DNA and Activity of Mitochondrial Enzymes in Chronic Active Lesions of Multiple Sclerosis. J. Neurol. Sci. 2000, 177, 95–103. [Google Scholar] [CrossRef]
  190. Tobore, T.O. Oxidative/Nitroxidative Stress and Multiple Sclerosis. J. Mol. Neurosci. 2021, 71, 506–514. [Google Scholar] [CrossRef]
  191. Trapp, B.D.; Stys, P.K. Virtual Hypoxia and Chronic Necrosis of Demyelinated Axons in Multiple Sclerosis. Lancet Neurol. 2009, 8, 280–291. [Google Scholar] [CrossRef] [PubMed]
  192. Holland, C.M.; Charil, A.; Csapo, I.; Liptak, Z.; Ichise, M.; Khoury, S.J.; Bakshi, R.; Weiner, H.L.; Guttmann, C.R.G. The Relationship between Normal Cerebral Perfusion Patterns and White Matter Lesion Distribution in 1,249 Patients with Multiple Sclerosis. J. Neuroimaging 2012, 22, 129–136. [Google Scholar] [CrossRef] [PubMed]
  193. Haider, L.; Zrzavy, T.; Hametner, S.; Höftberger, R.; Bagnato, F.; Grabner, G.; Trattnig, S.; Pfeifenbring, S.; Brück, W.; Lassmann, H. The Topograpy of Demyelination and Neurodegeneration in the Multiple Sclerosis Brain. Brain 2016, 139, 807–815. [Google Scholar] [CrossRef] [PubMed]
  194. Mahad, D.; Ziabreva, I.; Lassmann, H.; Turnbull, D. Mitochondrial Defects in Acute Multiple Sclerosis Lesions. Brain 2008, 131, 1722–1735. [Google Scholar] [CrossRef]
  195. Karg, E.; Klivényi, P.; Németh, I.; Bencsik, K.; Pintér, S.; Vécsei, L. Nonenzymatic Antioxidants of Blood in Multiple Sclerosis. J. Neurol. 1999, 246, 533–539. [Google Scholar] [CrossRef]
  196. Perianes-Cachero, A.; Lobo, M.V.T.; Hernández-Pinto, A.M.; Busto, R.; Lasunción-Ripa, M.A.; Arilla-Ferreiro, E.; Puebla-Jiménez, L. Oxidative Stress and Lymphocyte Alterations in Chronic Relapsing Experimental Allergic Encephalomyelitis in the Rat Hippocampus and Protective Effects of an Ethanolamine Phosphate Salt. Mol. Neurobiol. 2020, 57, 860–878. [Google Scholar] [CrossRef]
  197. van Horssen, J.; Schreibelt, G.; Drexhage, J.; Hazes, T.; Dijkstra, C.D.; van der Valk, P.; de Vries, H.E. Severe Oxidative Damage in Multiple Sclerosis Lesions Coincides with Enhanced Antioxidant Enzyme Expression. Free Radic. Biol. Med. 2008, 45, 1729–1737. [Google Scholar] [CrossRef]
  198. McMahon, J.M.; McQuaid, S.; Reynolds, R.; FitzGerald, U.F. Increased Expression of ER Stress- and Hypoxia-Associated Molecules in Grey Matter Lesions in Multiple Sclerosis. Mult. Scler. 2012, 18, 1437–1447. [Google Scholar] [CrossRef]
  199. Stahnke, T.; Stadelmann, C.; Netzler, A.; Brück, W.; Richter-Landsberg, C. Differential Upregulation of Heme Oxygenase-1 (HSP32) in Glial Cells after Oxidative Stress and in Demyelinating Disorders. J. Mol. Neurosci. 2007, 32, 25–37. [Google Scholar] [CrossRef]
  200. Graumann, U.; Reynolds, R.; Steck, A.J.; Schaeren-Wiemers, N. Molecular Changes in Normal Appearing White Matter in Multiple Sclerosis Are Characteristic of Neuroprotective Mechanisms Against Hypoxic Insult. Brain Pathol. 2006, 13, 554–573. [Google Scholar] [CrossRef]
  201. Maldonado, P.P.; Guevara, C.; Olesen, M.A.; Orellana, J.A.; Quintanilla, R.A.; Ortiz, F.C. Neurodegeneration in Multiple Sclerosis: The Role of Nrf2-Dependent Pathways. Antioxidants 2022, 11, 1146. [Google Scholar] [CrossRef] [PubMed]
  202. Hayashi, G.; Jasoliya, M.; Sahdeo, S.; Saccà, F.; Pane, C.; Filla, A.; Marsili, A.; Puorro, G.; Lanzillo, R.; Brescia Morra, V.; et al. Dimethyl Fumarate Mediates Nrf2-Dependent Mitochondrial Biogenesis in Mice and Humans. Hum. Mol. Genet. 2017, 26, 2864–2873. [Google Scholar] [CrossRef] [PubMed]
  203. Cunnea, P.; Mháille, A.N.; McQuaid, S.; Farrell, M.; McMahon, J.; FitzGerald, U. Expression Profiles of Endoplasmic Reticulum Stress-Related Molecules in Demyelinating Lesions and Multiple Sclerosis. Mult. Scler. 2011, 17, 808–818. [Google Scholar] [CrossRef] [PubMed]
  204. van Horssen, J.; Drexhage, J.A.R.; Flor, T.; Gerritsen, W.; van der Valk, P.; de Vries, H.E. Nrf2 and DJ1 Are Consistently Upregulated in Inflammatory Multiple Sclerosis Lesions. Free Radic. Biol. Med. 2010, 49, 1283–1289. [Google Scholar] [CrossRef] [PubMed]
  205. Juurlink, B.H.; Thorburne, S.K.; Hertz, L. Peroxide-Scavenging Deficit Underlies Oligodendrocyte Susceptibility to Oxidative Stress. Glia 1998, 22, 371–378. [Google Scholar] [CrossRef]
  206. Voortman, M.M.; Damulina, A.; Pirpamer, L.; Pinter, D.; Pichler, A.; Enzinger, C.; Ropele, S.; Bachmaier, G.; Archelos, J.-J.; Marsche, G.; et al. Decreased Cerebrospinal Fluid Antioxidative Capacity Is Related to Disease Severity and Progression in Early Multiple Sclerosis. Biomolecules 2021, 11, 1264. [Google Scholar] [CrossRef]
  207. Giacci, M.K.; Bartlett, C.A.; Smith, N.M.; Iyer, K.S.; Toomey, L.M.; Jiang, H.; Guagliardo, P.; Kilburn, M.R.; Fitzgerald, M. Oligodendroglia Are Particularly Vulnerable to Oxidative Damage after Neurotrauma In Vivo. J. Neurosci. 2018, 38, 6491–6504. [Google Scholar] [CrossRef]
  208. Spaas, J.; van Veggel, L.; Schepers, M.; Tiane, A.; van Horssen, J.; Wilson, D.M.; Moya, P.R.; Piccart, E.; Hellings, N.; Eijnde, B.O.; et al. Oxidative Stress and Impaired Oligodendrocyte Precursor Cell Differentiation in Neurological Disorders. Cell. Mol. Life Sci. 2021, 78, 4615–4637. [Google Scholar] [CrossRef]
  209. Madsen, P.M.; Pinto, M.; Patel, S.; McCarthy, S.; Gao, H.; Taherian, M.; Karmally, S.; Pereira, C.V.; Dvoriantchikova, G.; Ivanov, D.; et al. Mitochondrial DNA Double-Strand Breaks in Oligodendrocytes Cause Demyelination, Axonal Injury, and CNS Inflammation. J. Neurosci. 2017, 37, 10185–10199. [Google Scholar] [CrossRef]
  210. Bizzozero, O.A.; DeJesus, G.; Howard, T.A. Exposure of Rat Optic Nerves to Nitric Oxide Causes Protein S-Nitrosation and Myelin Decompaction. Neurochem. Res. 2004, 29, 1675–1685. [Google Scholar] [CrossRef]
  211. Campbell, G.R.; Ziabreva, I.; Reeve, A.K.; Krishnan, K.J.; Reynolds, R.; Howell, O.; Lassmann, H.; Turnbull, D.M.; Mahad, D.J. Mitochondrial DNA Deletions and Neurodegeneration in Multiple Sclerosis. Ann. Neurol. 2011, 69, 481–492. [Google Scholar] [CrossRef] [PubMed]
  212. Witte, M.E.; Nijland, P.G.; Drexhage, J.A.R.; Gerritsen, W.; Geerts, D.; van het Hof, B.; Reijerkerk, A.; de Vries, H.E.; van der Valk, P.; van Horssen, J. Reduced Expression of PGC-1α Partly Underlies Mitochondrial Changes and Correlates with Neuronal Loss in Multiple Sclerosis Cortex. Acta Neuropathol. 2013, 125, 231–243. [Google Scholar] [CrossRef] [PubMed]
  213. Sadeghian, M.; Mastrolia, V.; Rezaei Haddad, A.; Mosley, A.; Mullali, G.; Schiza, D.; Sajic, M.; Hargreaves, I.; Heales, S.; Duchen, M.R.; et al. Mitochondrial Dysfunction Is an Important Cause of Neurological Deficits in an Inflammatory Model of Multiple Sclerosis. Sci. Rep. 2016, 6, 33249. [Google Scholar] [CrossRef] [PubMed]
  214. Fang, C.; Bourdette, D.; Banker, G. Oxidative Stress Inhibits Axonal Transport: Implications for Neurodegenerative Diseases. Mol. Neurodegener. 2012, 7, 29. [Google Scholar] [CrossRef] [PubMed]
  215. Bros, H.; Millward, J.M.; Paul, F.; Niesner, R.; Infante-Duarte, C. Oxidative Damage to Mitochondria at the Nodes of Ranvier Precedes Axon Degeneration in Ex Vivo Transected Axons. Exp. Neurol. 2014, 261, 127–135. [Google Scholar] [CrossRef]
  216. Dutta, R.; McDonough, J.; Yin, X.; Peterson, J.; Chang, A.; Torres, T.; Gudz, T.; Macklin, W.B.; Lewis, D.A.; Fox, R.J.; et al. Mitochondrial Dysfunction as a Cause of Axonal Degeneration in Multiple Sclerosis Patients. Ann. Neurol. 2006, 59, 478–489. [Google Scholar] [CrossRef]
  217. Hares, K.; Kemp, K.; Rice, C.; Gray, E.; Scolding, N.; Wilkins, A. Reduced Axonal Motor Protein Expression in Non-Lesional Grey Matter in Multiple Sclerosis. Mult. Scler. 2014, 20, 812–821. [Google Scholar] [CrossRef]
  218. Ciccarelli, O.; Altmann, D.R.; McLean, M.A.; Wheeler-Kingshott, C.A.; Wimpey, K.; Miller, D.H.; Thompson, A.J. Spinal Cord Repair in MS. Neurology 2010, 74, 721–727. [Google Scholar] [CrossRef]
  219. Nikić, I.; Merkler, D.; Sorbara, C.; Brinkoetter, M.; Kreutzfeldt, M.; Bareyre, F.M.; Brück, W.; Bishop, D.; Misgeld, T.; Kerschensteiner, M. A Reversible Form of Axon Damage in Experimental Autoimmune Encephalomyelitis and Multiple Sclerosis. Nat. Med. 2011, 17, 495–499. [Google Scholar] [CrossRef]
  220. You, W.; Knoops, K.; Boesten, I.; Berendschot, T.T.J.M.; van Zandvoort, M.A.M.J.; Benedikter, B.J.; Webers, C.A.B.; Reutelingsperger, C.P.M.; Gorgels, T.G.M.F. A Time Window for Rescuing Dying Retinal Ganglion Cells. Cell Commun. Signal. 2024, 22, 88. [Google Scholar] [CrossRef]
  221. Mahad, D.J.; Ziabreva, I.; Campbell, G.; Lax, N.; White, K.; Hanson, P.S.; Lassmann, H.; Turnbull, D.M. Mitochondrial Changes within Axons in Multiple Sclerosis. Brain 2009, 132, 1161–1174. [Google Scholar] [CrossRef] [PubMed]
  222. Kiryu-Seo, S.; Ohno, N.; Kidd, G.J.; Komuro, H.; Trapp, B.D. Demyelination Increases Axonal Stationary Mitochondrial Size and the Speed of Axonal Mitochondrial Transport. J. Neurosci. 2010, 30, 6658–6666. [Google Scholar] [CrossRef] [PubMed]
  223. Zambonin, J.L.; Zhao, C.; Ohno, N.; Campbell, G.R.; Engeham, S.; Ziabreva, I.; Schwarz, N.; Lee, S.E.; Frischer, J.M.; Turnbull, D.M.; et al. Increased Mitochondrial Content in Remyelinated Axons: Implications for Multiple Sclerosis. Brain 2011, 134, 1901–1913. [Google Scholar] [CrossRef] [PubMed]
  224. Pascual, O.; Ben Achour, S.; Rostaing, P.; Triller, A.; Bessis, A. Microglia Activation Triggers Astrocyte-Mediated Modulation of Excitatory Neurotransmission. Proc. Natl. Acad. Sci. USA 2012, 109, E197–E205. [Google Scholar] [CrossRef] [PubMed]
  225. Ferretti, G.; Bacchetti, T.; Principi, F.; Di Ludovico, F.; Viti, B.; Angeleri, V.A.; Danni, M.; Provinciali, L. Increased Levels of Lipid Hydroperoxides in Plasma of Patients with Multiple Sclerosis: A Relationship with Paraoxonase Activity. Mult. Scler. 2005, 11, 677–682. [Google Scholar] [CrossRef]
  226. Takahashi, J.L.; Giuliani, F.; Power, C.; Imai, Y.; Yong, V.W. Interleukin-1beta Promotes Oligodendrocyte Death through Glutamate Excitotoxicity. Ann. Neurol. 2003, 53, 588–595. [Google Scholar] [CrossRef]
  227. Centonze, D.; Muzio, L.; Rossi, S.; Furlan, R.; Bernardi, G.; Martino, G. The Link between Inflammation, Synaptic Transmission and Neurodegeneration in Multiple Sclerosis. Cell Death Differ. 2010, 17, 1083–1091. [Google Scholar] [CrossRef]
  228. Ohgoh, M.; Hanada, T.; Smith, T.; Hashimoto, T.; Ueno, M.; Yamanishi, Y.; Watanabe, M.; Nishizawa, Y. Altered Expression of Glutamate Transporters in Experimental Autoimmune Encephalomyelitis. J. Neuroimmunol. 2002, 125, 170–178. [Google Scholar] [CrossRef]
  229. Leuchtmann, E.A.; Ratner, A.E.; Vijitruth, R.; Qu, Y.; McDonald, J.W. AMPA Receptors Are the Major Mediators of Excitotoxic Death in Mature Oligodendrocytes. Neurobiol. Dis. 2003, 14, 336–348. [Google Scholar] [CrossRef]
  230. Kaindl, A.M.; Degos, V.; Peineau, S.; Gouadon, E.; Chhor, V.; Loron, G.; Le Charpentier, T.; Josserand, J.; Ali, C.; Vivien, D.; et al. Activation of Microglial N-Methyl-D-Aspartate Receptors Triggers Inflammation and Neuronal Cell Death in the Developing and Mature Brain. Ann. Neurol. 2012, 72, 536–549. [Google Scholar] [CrossRef]
  231. Geurts, J.J.G.; Wolswijk, G.; Bö, L.; van der Valk, P.; Polman, C.H.; Troost, D.; Aronica, E. Altered Expression Patterns of Group I and II Metabotropic Glutamate Receptors in Multiple Sclerosis. Brain 2003, 126, 1755–1766. [Google Scholar] [CrossRef] [PubMed]
  232. Grasselli, G.; Rossi, S.; Musella, A.; Gentile, A.; Loizzo, S.; Muzio, L.; Di Sanza, C.; Errico, F.; Musumeci, G.; Haji, N.; et al. Abnormal NMDA Receptor Function Exacerbates Experimental Autoimmune Encephalomyelitis. Br. J. Pharmacol. 2013, 168, 502–517. [Google Scholar] [CrossRef] [PubMed]
  233. Pitt, D.; Werner, P.; Raine, C.S. Glutamate Excitotoxicity in a Model of Multiple Sclerosis. Nat. Med. 2000, 6, 67–70. [Google Scholar] [CrossRef] [PubMed]
  234. Stojanovic, I.R.; Kostic, M.; Ljubisavljevic, S. The Role of Glutamate and Its Receptors in Multiple Sclerosis. J. Neural Transm. 2014, 121, 945–955. [Google Scholar] [CrossRef] [PubMed]
  235. Hardin-Pouzet, H.; Krakowski, M.; Bourbonniére, L.; Didier-Bazes, M.; Tran, E.; Owens, T. Glutamate Metabolism Is Down-Regulated in Astrocytes during Experimental Allergic Encephalomyelitis. Glia 1997, 20, 79–85. [Google Scholar] [CrossRef]
  236. Rossi, S.; Motta, C.; Studer, V.; Barbieri, F.; Buttari, F.; Bergami, A.; Sancesario, G.; Bernardini, S.; De Angelis, G.; Martino, G.; et al. Tumor Necrosis Factor Is Elevated in Progressive Multiple Sclerosis and Causes Excitotoxic Neurodegeneration. Mult. Scler. 2014, 20, 304–312. [Google Scholar] [CrossRef]
  237. Gentile, A.; De Vito, F.; Fresegna, D.; Rizzo, F.R.; Bullitta, S.; Guadalupi, L.; Vanni, V.; Buttari, F.; Stampanoni Bassi, M.; Leuti, A.; et al. Peripheral T Cells from Multiple Sclerosis Patients Trigger Synaptotoxic Alterations in Central Neurons. Neuropathol. Appl. Neurobiol. 2020, 46, 160–170. [Google Scholar] [CrossRef]
  238. Rossi, S.; Motta, C.; Studer, V.; Macchiarulo, G.; Volpe, E.; Barbieri, F.; Ruocco, G.; Buttari, F.; Finardi, A.; Mancino, R.; et al. Interleukin-1β Causes Excitotoxic Neurodegeneration and Multiple Sclerosis Disease Progression by Activating the Apoptotic Protein P53. Mol. Neurodegener. 2014, 9, 56. [Google Scholar] [CrossRef]
  239. Sarchielli, P.; Greco, L.; Floridi, A.; Floridi, A.; Gallai, V. Excitatory Amino Acids and Multiple Sclerosis: Evidence from Cerebrospinal Fluid. Arch. Neurol. 2003, 60, 1082–1088. [Google Scholar] [CrossRef]
  240. Srinivasan, R.; Sailasuta, N.; Hurd, R.; Nelson, S.; Pelletier, D. Evidence of Elevated Glutamate in Multiple Sclerosis Using Magnetic Resonance Spectroscopy at 3 T. Brain 2005, 128, 1016–1025. [Google Scholar] [CrossRef]
  241. Tisell, A.; Leinhard, O.D.; Warntjes, J.B.M.; Aalto, A.; Smedby, Ö.; Landtblom, A.-M.; Lundberg, P. Increased Concentrations of Glutamate and Glutamine in Normal-Appearing White Matter of Patients with Multiple Sclerosis and Normal MR Imaging Brain Scans. PLoS ONE 2013, 8, e61817. [Google Scholar] [CrossRef] [PubMed]
  242. Azevedo, C.J.; Kornak, J.; Chu, P.; Sampat, M.; Okuda, D.T.; Cree, B.A.; Nelson, S.J.; Hauser, S.L.; Pelletier, D. In Vivo Evidence of Glutamate Toxicity in Multiple Sclerosis. Ann. Neurol. 2014, 76, 269–278. [Google Scholar] [CrossRef] [PubMed]
  243. De Jager, P. Genome-Wide Association Study of Severity in Multiple Sclerosis. Genes. Immun. 2011, 12, 615–625. [Google Scholar] [CrossRef]
  244. Baranzini, S.E.; Wang, J.; Gibson, R.A.; Galwey, N.; Naegelin, Y.; Barkhof, F.; Radue, E.-W.; Lindberg, R.L.P.; Uitdehaag, B.M.G.; Johnson, M.R.; et al. Genome-Wide Association Analysis of Susceptibility and Clinical Phenotype in Multiple Sclerosis. Hum. Mol. Genet. 2009, 18, 767–778. [Google Scholar] [CrossRef] [PubMed]
  245. Baranzini, S.E.; Srinivasan, R.; Khankhanian, P.; Okuda, D.T.; Nelson, S.J.; Matthews, P.M.; Hauser, S.L.; Oksenberg, J.R.; Pelletier, D. Genetic Variation Influences Glutamate Concentrations in Brains of Patients with Multiple Sclerosis. Brain 2010, 133, 2603–2611. [Google Scholar] [CrossRef]
  246. Lim, C.K.; Bilgin, A.; Lovejoy, D.B.; Tan, V.; Bustamante, S.; Taylor, B.V.; Bessede, A.; Brew, B.J.; Guillemin, G.J. Kynurenine Pathway Metabolomics Predicts and Provides Mechanistic Insight into Multiple Sclerosis Progression. Sci. Rep. 2017, 7, 41473. [Google Scholar] [CrossRef]
  247. Tavares, R.G.; Tasca, C.I.; Santos, C.E.S.; Alves, L.B.; Porciúncula, L.O.; Emanuelli, T.; Souza, D.O. Quinolinic Acid Stimulates Synaptosomal Glutamate Release and Inhibits Glutamate Uptake into Astrocytes. Neurochem. Int. 2002, 40, 621–627. [Google Scholar] [CrossRef]
  248. Lloyd, A.F.; Davies, C.L.; Holloway, R.K.; Labrak, Y.; Ireland, G.; Carradori, D.; Dillenburg, A.; Borger, E.; Soong, D.; Richardson, J.C.; et al. Central Nervous System Regeneration Is Driven by Microglia Necroptosis and Repopulation. Nat. Neurosci. 2019, 22, 1046–1052. [Google Scholar] [CrossRef]
  249. Peferoen, L.A.N.; Vogel, D.Y.S.; Ummenthum, K.; Breur, M.; Heijnen, P.D.A.M.; Gerritsen, W.H.; Peferoen-Baert, R.M.B.; van der Valk, P.; Dijkstra, C.D.; Amor, S. Activation Status of Human Microglia Is Dependent on Lesion Formation Stage and Remyelination in Multiple Sclerosis. J. Neuropathol. Exp. Neurol. 2015, 74, 48–63. [Google Scholar] [CrossRef]
  250. Skripuletz, T.; Hackstette, D.; Bauer, K.; Gudi, V.; Pul, R.; Voss, E.; Berger, K.; Kipp, M.; Baumgärtner, W.; Stangel, M. Astrocytes Regulate Myelin Clearance through Recruitment of Microglia during Cuprizone-Induced Demyelination. Brain 2013, 136, 147–167. [Google Scholar] [CrossRef]
  251. Kotter, M.R.; Li, W.-W.; Zhao, C.; Franklin, R.J.M. Myelin Impairs CNS Remyelination by Inhibiting Oligodendrocyte Precursor Cell Differentiation. J. Neurosci. 2006, 26, 328–332. [Google Scholar] [CrossRef] [PubMed]
  252. Miron, V.E.; Boyd, A.; Zhao, J.-W.; Yuen, T.J.; Ruckh, J.M.; Shadrach, J.L.; van Wijngaarden, P.; Wagers, A.J.; Williams, A.; Franklin, R.J.M.; et al. M2 Microglia and Macrophages Drive Oligodendrocyte Differentiation during CNS Remyelination. Nat. Neurosci. 2013, 16, 1211–1218. [Google Scholar] [CrossRef] [PubMed]
  253. Hendrickx, D.A.E.; Schuurman, K.G.; van Draanen, M.; Hamann, J.; Huitinga, I. Enhanced Uptake of Multiple Sclerosis-Derived Myelin by THP-1 Macrophages and Primary Human Microglia. J. Neuroinflamm. 2014, 11, 64. [Google Scholar] [CrossRef] [PubMed]
  254. Lampron, A.; Larochelle, A.; Laflamme, N.; Préfontaine, P.; Plante, M.-M.; Sánchez, M.G.; Yong, V.W.; Stys, P.K.; Tremblay, M.-È.; Rivest, S. Inefficient Clearance of Myelin Debris by Microglia Impairs Remyelinating Processes. J. Exp. Med. 2015, 212, 481–495. [Google Scholar] [CrossRef]
  255. Wlodarczyk, A.; Holtman, I.R.; Krueger, M.; Yogev, N.; Bruttger, J.; Khorooshi, R.; Benmamar-Badel, A.; de Boer-Bergsma, J.J.; Martin, N.A.; Karram, K.; et al. A Novel Microglial Subset Plays a Key Role in Myelinogenesis in Developing Brain. EMBO J. 2017, 36, 3292–3308. [Google Scholar] [CrossRef]
  256. Zheng, J.; Zhang, T.; Han, S.; Liu, C.; Liu, M.; Li, S.; Li, J. Activin A Improves the Neurological Outcome after Ischemic Stroke in Mice by Promoting Oligodendroglial ACVR1B-Mediated White Matter Remyelination. Exp. Neurol. 2021, 337, 113574. [Google Scholar] [CrossRef]
  257. Boyd, A.; Zhang, H.; Williams, A. Insufficient OPC Migration into Demyelinated Lesions Is a Cause of Poor Remyelination in MS and Mouse Models. Acta Neuropathol. 2013, 125, 841–859. [Google Scholar] [CrossRef]
  258. Williams, A.; Piaton, G.; Aigrot, M.-S.; Belhadi, A.; Théaudin, M.; Petermann, F.; Thomas, J.-L.; Zalc, B.; Lubetzki, C. Semaphorin 3A and 3F: Key Players in Myelin Repair in Multiple Sclerosis? Brain 2007, 130, 2554–2565. [Google Scholar] [CrossRef]
  259. Patel, J.R.; McCandless, E.E.; Dorsey, D.; Klein, R.S. CXCR4 Promotes Differentiation of Oligodendrocyte Progenitors and Remyelination. Proc. Natl. Acad. Sci. USA 2010, 107, 11062–11067. [Google Scholar] [CrossRef]
  260. Göttle, P.; Kremer, D.; Jander, S.; Odemis, V.; Engele, J.; Hartung, H.-P.; Küry, P. Activation of CXCR7 Receptor Promotes Oligodendroglial Cell Maturation. Ann. Neurol. 2010, 68, 915–924. [Google Scholar] [CrossRef]
  261. Lieury, A.; Chanal, M.; Androdias, G.; Reynolds, R.; Cavagna, S.; Giraudon, P.; Confavreux, C.; Nataf, S. Tissue Remodeling in Periplaque Regions of Multiple Sclerosis Spinal Cord Lesions. Glia 2014, 62, 1645–1658. [Google Scholar] [CrossRef] [PubMed]
  262. Jäckle, K.; Zeis, T.; Schaeren-Wiemers, N.; Junker, A.; van der Meer, F.; Kramann, N.; Stadelmann, C.; Brück, W. Molecular Signature of Slowly Expanding Lesions in Progressive Multiple Sclerosis. Brain 2020, 143, 2073–2088. [Google Scholar] [CrossRef] [PubMed]
  263. Young, K.M.; Psachoulia, K.; Tripathi, R.B.; Dunn, S.-J.; Cossell, L.; Attwell, D.; Tohyama, K.; Richardson, W.D. Oligodendrocyte Dynamics in the Healthy Adult CNS: Evidence for Myelin Remodeling. Neuron 2013, 77, 873–885. [Google Scholar] [CrossRef] [PubMed]
  264. Benjamins, J.A. Direct Effects of Secretory Products of Immune Cells on Neurons and Glia. J. Neurol. Sci. 2013, 333, 30–36. [Google Scholar] [CrossRef] [PubMed]
  265. Ofengeim, D.; Ito, Y.; Najafov, A.; Zhang, Y.; Shan, B.; DeWitt, J.P.; Ye, J.; Zhang, X.; Chang, A.; Vakifahmetoglu-Norberg, H.; et al. Activation of Necroptosis in Multiple Sclerosis. Cell Rep. 2015, 10, 1836–1849. [Google Scholar] [CrossRef]
  266. Dulamea, A.O. Role of Oligodendrocyte Dysfunction in Demyelination, Remyelination and Neurodegeneration in Multiple Sclerosis. Adv. Exp. Med. Biol. 2017, 958, 91–127. [Google Scholar] [CrossRef]
  267. Kirby, L.; Jin, J.; Cardona, J.G.; Smith, M.D.; Martin, K.A.; Wang, J.; Strasburger, H.; Herbst, L.; Alexis, M.; Karnell, J.; et al. Oligodendrocyte Precursor Cells Present Antigen and Are Cytotoxic Targets in Inflammatory Demyelination. Nat. Commun. 2019, 10, 3887. [Google Scholar] [CrossRef]
  268. Smith, M.D.; Chamling, X.; Gill, A.J.; Martinez, H.; Li, W.; Fitzgerald, K.C.; Sotirchos, E.S.; Moroziewicz, D.; Bauer, L.; Paull, D.; et al. Reactive Astrocytes Derived From Human Induced Pluripotent Stem Cells Suppress Oligodendrocyte Precursor Cell Differentiation. Front. Mol. Neurosci. 2022, 15, 874299. [Google Scholar] [CrossRef]
  269. Cui, Q.-L.; Kuhlmann, T.; Miron, V.E.; Leong, S.Y.; Fang, J.; Gris, P.; Kennedy, T.E.; Almazan, G.; Antel, J. Oligodendrocyte Progenitor Cell Susceptibility to Injury in Multiple Sclerosis. Am. J. Pathol. 2013, 183, 516–525. [Google Scholar] [CrossRef]
  270. Jhelum, P.; Zandee, S.; Ryan, F.; Zarruk, J.G.; Michalke, B.; Venkataramani, V.; Curran, L.; Klement, W.; Prat, A.; David, S. Ferroptosis Induces Detrimental Effects in Chronic EAE and Its Implications for Progressive MS. Acta Neuropathol. Commun. 2023, 11, 121. [Google Scholar] [CrossRef]
  271. Jhelum, P.; Santos-Nogueira, E.; Teo, W.; Haumont, A.; Lenoël, I.; Stys, P.K.; David, S. Ferroptosis Mediates Cuprizone-Induced Loss of Oligodendrocytes and Demyelination. J. Neurosci. 2020, 40, 9327–9341. [Google Scholar] [CrossRef] [PubMed]
  272. Healy, S.; McMahon, J.; Owens, P.; FitzGerald, U. Significant Glial Alterations in Response to Iron Loading in a Novel Organotypic Hippocampal Slice Culture Model. Sci. Rep. 2016, 6, 36410. [Google Scholar] [CrossRef] [PubMed]
  273. Caprariello, A.V.; Rogers, J.A.; Morgan, M.L.; Hoghooghi, V.; Plemel, J.R.; Koebel, A.; Tsutsui, S.; Dunn, J.F.; Kotra, L.P.; Ousman, S.S.; et al. Biochemically Altered Myelin Triggers Autoimmune Demyelination. Proc. Natl. Acad. Sci. USA 2018, 115, 5528–5533. [Google Scholar] [CrossRef] [PubMed]
  274. Lopes Pinheiro, M.A.; Kamermans, A.; Garcia-Vallejo, J.J.; van het Hof, B.; Wierts, L.; O’Toole, T.; Boeve, D.; Verstege, M.; van der Pol, S.M.; van Kooyk, Y.; et al. Internalization and Presentation of Myelin Antigens by the Brain Endothelium Guides Antigen-Specific T Cell Migration. eLife 2016, 5, e13149. [Google Scholar] [CrossRef] [PubMed]
  275. Rone, M.B.; Cui, Q.-L.; Fang, J.; Wang, L.-C.; Zhang, J.; Khan, D.; Bedard, M.; Almazan, G.; Ludwin, S.K.; Jones, R.; et al. Oligodendrogliopathy in Multiple Sclerosis: Low Glycolytic Metabolic Rate Promotes Oligodendrocyte Survival. J. Neurosci. 2016, 36, 4698–4707. [Google Scholar] [CrossRef]
  276. Yeung, M.S.Y.; Djelloul, M.; Steiner, E.; Bernard, S.; Salehpour, M.; Possnert, G.; Brundin, L.; Frisén, J. Dynamics of Oligodendrocyte Generation in Multiple Sclerosis. Nature 2019, 566, 538–542. [Google Scholar] [CrossRef]
  277. Glezer, I.; Lapointe, A.; Rivest, S. Innate Immunity Triggers Oligodendrocyte Progenitor Reactivity and Confines Damages to Brain Injuries. FASEB J. 2006, 20, 750–752. [Google Scholar] [CrossRef]
  278. White, R.; Krämer-Albers, E.-M. Axon-Glia Interaction and Membrane Traffic in Myelin Formation. Front. Cell. Neurosci. 2014, 7, 284. [Google Scholar] [CrossRef]
  279. Cui, Q.-L.; Khan, D.; Rone, M.; Rao, V.T.S.; Johnson, R.M.; Lin, Y.H.; Bilodeau, P.-A.; Hall, J.A.; Rodriguez, M.; Kennedy, T.E.; et al. Sublethal Oligodendrocyte Injury: A Reversible Condition in Multiple Sclerosis? Ann. Neurol. 2017, 81, 811–824. [Google Scholar] [CrossRef]
  280. Crawford, D.K.; Mangiardi, M.; Xia, X.; López-Valdés, H.E.; Tiwari-Woodruff, S.K. Functional Recovery of Callosal Axons Following Demyelination: A Critical Window. Neuroscience 2009, 164, 1407–1421. [Google Scholar] [CrossRef]
  281. Prineas, J.W.; Barnard, R.O.; Kwon, E.E.; Sharer, L.R.; Cho, E.-S. Multiple Sclerosis: Remyelination of Nascent Lesions: Remyelination of Nascent Lesions. Ann. Neurol. 1993, 33, 137–151. [Google Scholar] [CrossRef] [PubMed]
  282. Goldschmidt, T.; Antel, J.; König, F.B.; Brück, W.; Kuhlmann, T. Remyelination Capacity of the MS Brain Decreases with Disease Chronicity. Neurology 2009, 72, 1914–1921. [Google Scholar] [CrossRef] [PubMed]
  283. Hampton, D.W.; Innes, N.; Merkler, D.; Zhao, C.; Franklin, R.J.M.; Chandran, S. Focal Immune-Mediated White Matter Demyelination Reveals an Age-Associated Increase in Axonal Vulnerability and Decreased Remyelination Efficiency. Am. J. Pathol. 2012, 180, 1897–1905. [Google Scholar] [CrossRef] [PubMed]
  284. Sim, F.J.; Zhao, C.; Penderis, J.; Franklin, R.J.M. The Age-Related Decrease in CNS Remyelination Efficiency Is Attributable to an Impairment of Both Oligodendrocyte Progenitor Recruitment and Differentiation. J. Neurosci. 2002, 22, 2451–2459. [Google Scholar] [CrossRef] [PubMed]
  285. Barkhof, F.; Bruck, W.; De Groot, C.J.A.; Bergers, E.; Hulshof, S.; Geurts, J.; Polman, C.H.; van der Valk, P. Remyelinated Lesions in Multiple Sclerosis: Magnetic Resonance Image Appearance. Arch. Neurol. 2003, 60, 1073–1081. [Google Scholar] [CrossRef]
  286. Coman, I.; Aigrot, M.S.; Seilhean, D.; Reynolds, R.; Girault, J.A.; Zalc, B.; Lubetzki, C. Nodal, Paranodal and Juxtaparanodal Axonal Proteins during Demyelination and Remyelination in Multiple Sclerosis. Brain 2006, 129, 3186–3195. [Google Scholar] [CrossRef]
  287. Jäkel, S.; Agirre, E.; Falcão, A.M.; van Bruggen, D.; Lee, K.W.; Knuesel, I.; Malhotra, D.; ffrench-Constant, C.; Williams, A.; Castelo-Branco, G. Altered Human Oligodendrocyte Heterogeneity in Multiple Sclerosis. Nature 2019, 566, 543–547. [Google Scholar] [CrossRef]
  288. Luchicchi, A.; Muñoz-Gonzalez, G.; Halperin, S.T.; Strijbis, E.; van Dijk, L.H.M.; Foutiadou, C.; Uriac, F.; Bouman, P.M.; Schouten, M.A.N.; Plemel, J.; et al. Micro-Diffusely Abnormal White Matter: An Early Multiple Sclerosis Lesion Phase with Intensified Myelin Blistering. Ann. Clin. Transl. Neurol. 2024, 11, 973–988. [Google Scholar] [CrossRef]
  289. Moscarello, M.A.; Pritzker, L.; Mastronardi, F.G.; Wood, D.D. Peptidylarginine Deiminase: A Candidate Factor in Demyelinating Disease. J. Neurochem. 2002, 81, 335–343. [Google Scholar] [CrossRef]
  290. Wood, D.D.; Ackerley, C.A.; van den Brand, B.; Zhang, L.; Raijmakers, R.; Mastronardi, F.G.; Moscarello, M.A. Myelin Localization of Peptidylarginine Deiminases 2 and 4: Comparison of PAD2 and PAD4 Activities. Lab. Investig. 2008, 88, 354–364. [Google Scholar] [CrossRef]
  291. Moscarello, M.A.; Wood, D.D.; Ackerley, C.; Boulias, C. Myelin in Multiple Sclerosis Is Developmentally Immature. J. Clin. Investig. 1994, 94, 146–154. [Google Scholar] [CrossRef] [PubMed]
  292. Bradford, C.M.; Ramos, I.; Cross, A.K.; Haddock, G.; McQuaid, S.; Nicholas, A.P.; Woodroofe, M.N. Localisation of Citrullinated Proteins in Normal Appearing White Matter and Lesions in the Central Nervous System in Multiple Sclerosis. J. Neuroimmunol. 2014, 273, 85–95. [Google Scholar] [CrossRef] [PubMed]
  293. Harauz, G.; Musse, A.A. A Tale of Two Citrullines—Structural and Functional Aspects of Myelin Basic Protein Deimination in Health and Disease. Neurochem. Res. 2007, 32, 137–158. [Google Scholar] [CrossRef] [PubMed]
  294. Weil, M.-T.; Möbius, W.; Winkler, A.; Ruhwedel, T.; Wrzos, C.; Romanelli, E.; Bennett, J.L.; Enz, L.; Goebels, N.; Nave, K.-A.; et al. Loss of Myelin Basic Protein Function Triggers Myelin Breakdown in Models of Demyelinating Diseases. Cell Rep. 2016, 16, 314–322. [Google Scholar] [CrossRef]
  295. Aboul-Enein, F.; Rauschka, H.; Kornek, B.; Stadelmann, C.; Stefferl, A.; Brück, W.; Lucchinetti, C.; Schmidbauer, M.; Jellinger, K.; Lassmann, H. Preferential Loss of Myelin-Associated Glycoprotein Reflects Hypoxia-Like White Matter Damage in Stroke and Inflammatory Brain Diseases. J. Neuropathol. Exp. Neurol. 2003, 62, 25–33. [Google Scholar] [CrossRef]
  296. Ludwin, S.K.; Johnson, E.S. Evidence for a “Dying-Back” Gliopathy in Demyelinating Disease. Ann. Neurol. 1981, 9, 301–305. [Google Scholar] [CrossRef]
  297. Barnett, M.H.; Prineas, J.W. Relapsing and Remitting Multiple Sclerosis: Pathology of the Newly Forming Lesion. Ann. Neurol. 2004, 55, 458–468. [Google Scholar] [CrossRef]
  298. Caprariello, A.V.; Mangla, S.; Miller, R.H.; Selkirk, S.M. Apoptosis of Oligodendrocytes in the Central Nervous System Results in Rapid Focal Demyelination. Ann. Neurol. 2012, 72, 395–405. [Google Scholar] [CrossRef]
  299. Zoupi, L.; Booker, S.A.; Eigel, D.; Werner, C.; Kind, P.C.; Spires-Jones, T.L.; Newland, B.; Williams, A.C. Selective Vulnerability of Inhibitory Networks in Multiple Sclerosis. Acta Neuropathol. 2021, 141, 415–429. [Google Scholar] [CrossRef]
  300. Clarner, T.; Diederichs, F.; Berger, K.; Denecke, B.; Gan, L.; van der Valk, P.; Beyer, C.; Amor, S.; Kipp, M. Myelin Debris Regulates Inflammatory Responses in an Experimental Demyelination Animal Model and Multiple Sclerosis Lesions. Glia 2012, 60, 1468–1480. [Google Scholar] [CrossRef]
  301. Henderson, A.P.D.; Barnett, M.H.; Parratt, J.D.E.; Prineas, J.W. Multiple Sclerosis: Distribution of Inflammatory Cells in Newly Forming Lesions. Ann. Neurol. 2009, 66, 739–753. [Google Scholar] [CrossRef] [PubMed]
  302. Ferreira, H.B.; Neves, B.; Guerra, I.M.; Moreira, A.; Melo, T.; Paiva, A.; Domingues, M.R. An Overview of Lipidomic Analysis in Different Human Matrices of Multiple Sclerosis. Mult. Scler. Relat. Disord. 2020, 44, 102189. [Google Scholar] [CrossRef] [PubMed]
  303. Poitelon, Y.; Kopec, A.M.; Belin, S. Myelin Fat Facts: An Overview of Lipids and Fatty Acid Metabolism. Cells 2020, 9, 812. [Google Scholar] [CrossRef] [PubMed]
  304. Aber, E.R.; Griffey, C.J.; Davies, T.; Li, A.M.; Yang, Y.J.; Croce, K.R.; Goldman, J.E.; Grutzendler, J.; Canman, J.C.; Yamamoto, A. Oligodendroglial Macroautophagy Is Essential for Myelin Sheath Turnover to Prevent Neurodegeneration and Death. Cell Rep. 2022, 41, 111480. [Google Scholar] [CrossRef]
  305. Barnes-Vélez, J.A.; Aksoy Yasar, F.B.; Hu, J. Myelin Lipid Metabolism and Its Role in Myelination and Myelin Maintenance. Innovation 2023, 4, 100360. [Google Scholar] [CrossRef]
  306. Lee, D.W.; Banquy, X.; Kristiansen, K.; Kaufman, Y.; Boggs, J.M.; Israelachvili, J.N. Lipid Domains Control Myelin Basic Protein Adsorption and Membrane Interactions between Model Myelin Lipid Bilayers. Proc. Natl. Acad. Sci. USA 2014, 111, E768–E775. [Google Scholar] [CrossRef]
  307. Villoslada, P.; Alonso, C.; Agirrezabal, I.; Kotelnikova, E.; Zubizarreta, I.; Pulido-Valdeolivas, I.; Saiz, A.; Comabella, M.; Montalban, X.; Villar, L.; et al. Metabolomic Signatures Associated with Disease Severity in Multiple Sclerosis. Neurol. Neuroimmunol. Neuroinflamm. 2017, 4, e321. [Google Scholar] [CrossRef]
  308. Ferreira, H.B.; Melo, T.; Monteiro, A.; Paiva, A.; Domingues, P.; Domingues, M.R. Serum Phospholipidomics Reveals Altered Lipid Profile and Promising Biomarkers in Multiple Sclerosis. Arch. Biochem. Biophys. 2021, 697, 108672. [Google Scholar] [CrossRef]
  309. Poon, K.W.C.; Brideau, C.; Klaver, R.; Schenk, G.J.; Geurts, J.J.; Stys, P.K. Lipid Biochemical Changes Detected in Normal Appearing White Matter of Chronic Multiple Sclerosis by Spectral Coherent Raman Imaging. Chem. Sci. 2018, 9, 1586–1595. [Google Scholar] [CrossRef]
  310. Dong, Y.; D’Mello, C.; Pinsky, W.; Lozinski, B.M.; Kaushik, D.K.; Ghorbani, S.; Moezzi, D.; Brown, D.; Melo, F.C.; Zandee, S.; et al. Oxidized Phosphatidylcholines Found in Multiple Sclerosis Lesions Mediate Neurodegeneration and Are Neutralized by Microglia. Nat. Neurosci. 2021, 24, 489–503. [Google Scholar] [CrossRef]
  311. Dasgupta, S.; Ray, S.K. Diverse Biological Functions of Sphingolipids in the CNS: Ceramide and Sphingosine Regulate Myelination in Developing Brain but Stimulate Demyelination during Pathogenesis of Multiple Sclerosis. J. Neurol. Psychol. 2017, 5, 7. [Google Scholar] [CrossRef]
  312. Qin, J.; Berdyshev, E.; Goya, J.; Natarajan, V.; Dawson, G. Neurons and Oligodendrocytes Recycle Sphingosine 1-Phosphate to Ceramide: Significance for Apoptosis and Multiple Sclerosis. J. Biol. Chem. 2010, 285, 14134–14143. [Google Scholar] [CrossRef] [PubMed]
  313. Singh, I.; Pahan, K.; Khan, M.; Singh, A.K. Cytokine-Mediated Induction of Ceramide Production Is Redox-Sensitive: IMPLICATIONS TO PROINFLAMMATORY CYTOKINE-MEDIATED APOPTOSIS IN DEMYELINATING DISEASES*. J. Biol. Chem. 1998, 273, 20354–20362. [Google Scholar] [CrossRef] [PubMed]
  314. Plo, I.; Ghandour, S.; Feutz, A.C.; Clanet, M.; Laurent, G.; Bettaieb, A. Involvement of de Novo Ceramide Biosynthesis in Lymphotoxin-Induced Oligodendrocyte Death. Neuroreport 1999, 10, 2373–2376. [Google Scholar] [CrossRef] [PubMed]
  315. Podbielska, M.; O’Keeffe, J.; Pokryszko-Dragan, A. New Insights into Multiple Sclerosis Mechanisms: Lipids on the Track to Control Inflammation and Neurodegeneration. Int. J. Mol. Sci. 2021, 22, 7319. [Google Scholar] [CrossRef]
  316. Nury, T.; Zarrouk, A.; Mackrill, J.J.; Samadi, M.; Durand, P.; Riedinger, J.-M.; Doria, M.; Vejux, A.; Limagne, E.; Delmas, D.; et al. Induction of Oxiapoptophagy on 158N Murine Oligodendrocytes Treated by 7-Ketocholesterol-, 7β-Hydroxycholesterol-, or 24(S)-Hydroxycholesterol: Protective Effects of α-Tocopherol and Docosahexaenoic Acid (DHA; C22:6 n-3). Steroids 2015, 99, 194–203. [Google Scholar] [CrossRef]
  317. Carlson, N.G.; Rojas, M.A.; Redd, J.W.; Tang, P.; Wood, B.; Hill, K.E.; Rose, J.W. Cyclooxygenase-2 Expression in Oligodendrocytes Increases Sensitivity to Excitotoxic Death. J. Neuroinflamm. 2010, 7, 25. [Google Scholar] [CrossRef]
  318. Carlson, N.G.; Hill, K.E.; Tsunoda, I.; Fujinami, R.S.; Rose, J.W. The Pathologic Role for COX-2 in Apoptotic Oligodendrocytes in Virus Induced Demyelinating Disease: Implications for Multiple Sclerosis. J. Neuroimmunol. 2006, 174, 21–31. [Google Scholar] [CrossRef]
  319. Xiang, Z.; Lin, T.; Reeves, S.A. 15d-PGJ2 Induces Apoptosis of Mouse Oligodendrocyte Precursor Cells. J. Neuroinflamm. 2007, 4, 18. [Google Scholar] [CrossRef]
  320. Rao, V.T.S.; Khan, D.; Cui, Q.-L.; Fuh, S.-C.; Hossain, S.; Almazan, G.; Multhaup, G.; Healy, L.M.; Kennedy, T.E.; Antel, J.P. Distinct Age and Differentiation-State Dependent Metabolic Profiles of Oligodendrocytes under Optimal and Stress Conditions. PLoS ONE 2017, 12, e0182372. [Google Scholar] [CrossRef]
  321. Ichihara, Y.; Doi, T.; Ryu, Y.; Nagao, M.; Sawada, Y.; Ogata, T. Oligodendrocyte Progenitor Cells Directly Utilize Lactate for Promoting Cell Cycling and Differentiation. J. Cell. Physiol. 2017, 232, 986–995. [Google Scholar] [CrossRef] [PubMed]
  322. Rinholm, J.E.; Hamilton, N.B.; Kessaris, N.; Richardson, W.D.; Bergersen, L.H.; Attwell, D. Regulation of Oligodendrocyte Development and Myelination by Glucose and Lactate. J. Neurosci. 2011, 31, 538–548. [Google Scholar] [CrossRef] [PubMed]
  323. Zhou, P.; Guan, T.; Jiang, Z.; Namaka, M.; Huang, Q.-J.; Kong, J.-M. Monocarboxylate Transporter 1 and the Vulnerability of Oligodendrocyte Lineage Cells to Metabolic Stresses. CNS Neurosci. Ther. 2018, 24, 126–134. [Google Scholar] [CrossRef] [PubMed]
  324. Regenold, W.T.; Phatak, P.; Makley, M.J.; Stone, R.D.; Kling, M.A. Cerebrospinal Fluid Evidence of Increased Extra-Mitochondrial Glucose Metabolism Implicates Mitochondrial Dysfunction in Multiple Sclerosis Disease Progression. J. Neurol. Sci. 2008, 275, 106–112. [Google Scholar] [CrossRef] [PubMed]
  325. Peles, E.; Salzer, J.L. Molecular Domains of Myelinated Axons. Curr. Opin. Neurobiol. 2000, 10, 558–565. [Google Scholar] [CrossRef]
  326. Smith, K.J.; Blakemore, W.F.; McDonald, W.I. Central Remyelination Restores Secure Conduction. Nature 1979, 280, 395–396. [Google Scholar] [CrossRef]
  327. Saab, A.S.; Tzvetavona, I.D.; Trevisiol, A.; Baltan, S.; Dibaj, P.; Kusch, K.; Möbius, W.; Goetze, B.; Jahn, H.M.; Huang, W.; et al. Oligodendroglial NMDA Receptors Regulate Glucose Import and Axonal Energy Metabolism. Neuron 2016, 91, 119–132. [Google Scholar] [CrossRef]
  328. Lee, Y.; Morrison, B.M.; Li, Y.; Lengacher, S.; Farah, M.H.; Hoffman, P.N.; Liu, Y.; Tsingalia, A.; Jin, L.; Zhang, P.-W.; et al. Oligodendroglia Metabolically Support Axons and Contribute to Neurodegeneration. Nature 2012, 487, 443–448. [Google Scholar] [CrossRef]
  329. Pellerin, L.; Halestrap, A.P.; Pierre, K. Cellular and Subcellular Distribution of Monocarboxylate Transporters in Cultured Brain Cells and in the Adult Brain. J. Neurosci. Res. 2005, 79, 55–64. [Google Scholar] [CrossRef]
  330. Tepavčević, V. Oligodendroglial Energy Metabolism and (Re)Myelination. Life 2021, 11, 238. [Google Scholar] [CrossRef]
  331. Nave, K.-A.; Trapp, B.D. Axon-Glial Signaling and the Glial Support of Axon Function. Annu. Rev. Neurosci. 2008, 31, 535–561. [Google Scholar] [CrossRef] [PubMed]
  332. Kornek, B.; Storch, M.K.; Weissert, R.; Wallstroem, E.; Stefferl, A.; Olsson, T.; Linington, C.; Schmidbauer, M.; Lassmann, H. Multiple Sclerosis and Chronic Autoimmune Encephalomyelitis: A Comparative Quantitative Study of Axonal Injury in Active, Inactive, and Remyelinated Lesions. Am. J. Pathol. 2000, 157, 267–276. [Google Scholar] [CrossRef] [PubMed]
  333. Kornek, B.; Storch, M.K.; Bauer, J.; Djamshidian, A.; Weissert, R.; Wallstroem, E.; Stefferl, A.; Zimprich, F.; Olsson, T.; Linington, C.; et al. Distribution of a Calcium Channel Subunit in Dystrophic Axons in Multiple Sclerosis and Experimental Autoimmune Encephalomyelitis. Brain 2001, 124, 1114–1124. [Google Scholar] [CrossRef] [PubMed]
  334. Naud, R.; Longtin, A. Linking Demyelination to Compound Action Potential Dispersion with a Spike-Diffuse-Spike Approach. J. Math. Neurosci. 2019, 9, 3. [Google Scholar] [CrossRef]
  335. López-Muguruza, E.; Matute, C. Alterations of Oligodendrocyte and Myelin Energy Metabolism in Multiple Sclerosis. Int. J. Mol. Sci. 2023, 24, 12912. [Google Scholar] [CrossRef]
  336. Locatelli, G.; Wörtge, S.; Buch, T.; Ingold, B.; Frommer, F.; Sobottka, B.; Krüger, M.; Karram, K.; Bühlmann, C.; Bechmann, I.; et al. Primary Oligodendrocyte Death Does Not Elicit Anti-CNS Immunity. Nat. Neurosci. 2012, 15, 543–550. [Google Scholar] [CrossRef]
  337. Oluich, L.-J.; Stratton, J.A.S.; Xing, Y.L.; Ng, S.W.; Cate, H.S.; Sah, P.; Windels, F.; Kilpatrick, T.J.; Merson, T.D. Targeted Ablation of Oligodendrocytes Induces Axonal Pathology Independent of Overt Demyelination. J. Neurosci. 2012, 32, 8317–8330. [Google Scholar] [CrossRef]
  338. You, Y.; Joseph, C.; Wang, C.; Gupta, V.; Liu, S.; Yiannikas, C.; Chua, B.E.; Chitranshi, N.; Shen, T.; Dheer, Y.; et al. Demyelination Precedes Axonal Loss in the Transneuronal Spread of Human Neurodegenerative Disease. Brain 2019, 142, 426–442. [Google Scholar] [CrossRef]
  339. Duncan, G.J.; Ingram, S.D.; Emberley, K.; Hill, J.; Cordano, C.; Abdelhak, A.; McCane, M.; Jabassini, N.; Ananth, K.; Ferrara, S.J.; et al. Remyelination Protects Neurons from DLK-Mediated Neurodegeneration. bioRxiv 2023. [Google Scholar] [CrossRef]
  340. Bishop, A.; Hobbs, K.G.; Eguchi, A.; Jeffrey, S.; Smallwood, L.; Pennie, C.; Anderson, J.; Estévez, A.G. Differential Sensitivity of Oligodendrocytes and Motor Neurons to Reactive Nitrogen Species: Implications for Multiple Sclerosis. J. Neurochem. 2009, 109, 93–104. [Google Scholar] [CrossRef]
  341. Liu, R.; Yang, J.; Li, Y.; Xie, J.; Wang, J. Heme Oxygenase-1: The Roles of Both Good and Evil in Neurodegenerative Diseases. J. Neurochem. 2023, 167, 347–361. [Google Scholar] [CrossRef] [PubMed]
  342. Liu, Y.; Zhu, B.; Luo, L.; Li, P.; Paty, D.W.; Cynader, M.S. Heme Oxygenase-1 Plays an Important Protective Role in Experimental Autoimmune Encephalomyelitis. NeuroReport 2001, 12, 1841. [Google Scholar] [CrossRef]
  343. Chakrabarty, A.; Emerson, M.R.; LeVine, S.M. Heme Oxygenase-1 in SJL Mice with Experimental Allergic Encephalomyelitis. Mult. Scler. 2003, 9, 372–381. [Google Scholar] [CrossRef] [PubMed]
  344. Plemel, J.R.; Manesh, S.B.; Sparling, J.S.; Tetzlaff, W. Myelin Inhibits Oligodendroglial Maturation and Regulates Oligodendrocytic Transcription Factor Expression. Glia 2013, 61, 1471–1487. [Google Scholar] [CrossRef]
  345. Cafferty, W.B.J.; Strittmatter, S.M. The Nogo–Nogo Receptor Pathway Limits a Spectrum of Adult CNS Axonal Growth. J. Neurosci. 2006, 26, 12242–12250. [Google Scholar] [CrossRef] [PubMed]
  346. Liu, B.P.; Fournier, A.; GrandPré, T.; Strittmatter, S.M. Myelin-Associated Glycoprotein as a Functional Ligand for the Nogo-66 Receptor. Science 2002, 297, 1190–1193. [Google Scholar] [CrossRef] [PubMed]
  347. Wang, K.C.; Koprivica, V.; Kim, J.A.; Sivasankaran, R.; Guo, Y.; Neve, R.L.; He, Z. Oligodendrocyte-Myelin Glycoprotein Is a Nogo Receptor Ligand That Inhibits Neurite Outgrowth. Nature 2002, 417, 941–944. [Google Scholar] [CrossRef]
  348. Grajchen, E.; Hendriks, J.J.A.; Bogie, J.F.J. The Physiology of Foamy Phagocytes in Multiple Sclerosis. Acta Neuropathol. Commun. 2018, 6, 124. [Google Scholar] [CrossRef]
  349. Rosko, L.; Smith, V.N.; Yamazaki, R.; Huang, J.K. Oligodendrocyte Bioenergetics in Health and Disease. Neuroscientist 2019, 25, 334–343. [Google Scholar] [CrossRef]
  350. Kassmann, C.M. Myelin Peroxisomes—Essential Organelles for the Maintenance of White Matter in the Nervous System. Biochimie 2014, 98, 111–118. [Google Scholar] [CrossRef]
  351. Asadollahi, E.; Trevisiol, A.; Saab, A.S.; Looser, Z.J.; Dibaj, P.; Kusch, K.; Ruhwedel, T.; Möbius, W.; Jahn, O.; Baes, M.; et al. Myelin Lipids as Nervous System Energy Reserves. bioRxiv 2022. [Google Scholar] [CrossRef]
  352. McMullen, E.; Hertenstein, H.; Strassburger, K.; Deharde, L.; Brankatschk, M.; Schirmeier, S. Glycolytically Impaired Drosophila Glial Cells Fuel Neural Metabolism via β-Oxidation. Nat. Commun. 2023, 14, 2996. [Google Scholar] [CrossRef] [PubMed]
  353. Villoria-González, A.; Zierfuss, B.; Parzer, P.; Heuböck, E.; Zujovic, V.; Waidhofer-Söllner, P.; Ponleitner, M.; Rommer, P.; Göpfert, J.; Forss-Petter, S.; et al. Efficacy of HDAC Inhibitors in Driving Peroxisomal β-Oxidation and Immune Responses in Human Macrophages: Implications for Neuroinflammatory Disorders. Biomolecules 2023, 13, 1696. [Google Scholar] [CrossRef] [PubMed]
  354. Baarine, M.; Andréoletti, P.; Athias, A.; Nury, T.; Zarrouk, A.; Ragot, K.; Vejux, A.; Riedinger, J.-M.; Kattan, Z.; Bessede, G.; et al. Evidence of Oxidative Stress in Very Long Chain Fatty Acid—Treated Oligodendrocytes and Potentialization of ROS Production Using RNA Interference-Directed Knockdown of ABCD1 and ACOX1 Peroxisomal Proteins. Neuroscience 2012, 213, 1–18. [Google Scholar] [CrossRef] [PubMed]
  355. Kassmann, C.M.; Lappe-Siefke, C.; Baes, M.; Brügger, B.; Mildner, A.; Werner, H.B.; Natt, O.; Michaelis, T.; Prinz, M.; Frahm, J.; et al. Axonal Loss and Neuroinflammation Caused by Peroxisome-Deficient Oligodendrocytes. Nat. Genet. 2007, 39, 969–976. [Google Scholar] [CrossRef]
  356. Schrader, M.; Fahimi, H.D. Peroxisomes and Oxidative Stress. Biochim. Biophys. Acta 2006, 1763, 1755–1766. [Google Scholar] [CrossRef]
  357. Roczkowsky, A.; Doan, M.A.L.; Hlavay, B.A.; Mamik, M.K.; Branton, W.G.; McKenzie, B.A.; Saito, L.B.; Schmitt, L.; Eitzen, G.; Cara, F.D.; et al. Peroxisome Injury in Multiple Sclerosis: Protective Effects of 4-Phenylbutyrate in CNS-Associated Macrophages. J. Neurosci. 2022, 42, 7152–7165. [Google Scholar] [CrossRef]
  358. Gray, E.; Rice, C.; Hares, K.; Redondo, J.; Kemp, K.; Williams, M.; Brown, A.; Scolding, N.; Wilkins, A. Reductions in Neuronal Peroxisomes in Multiple Sclerosis Grey Matter. Mult. Scler. 2014, 20, 651–659. [Google Scholar] [CrossRef]
  359. Chen, X.; Guo, C.; Kong, J. Oxidative Stress in Neurodegenerative Diseases. Neural Regen. Res. 2012, 7, 376–385. [Google Scholar] [CrossRef]
  360. Wang, Z.; Liu, D.; Wang, F.; Liu, S.; Zhao, S.; Ling, E.-A.; Hao, A. Saturated Fatty Acids Activate Microglia via Toll-like Receptor 4/NF-κB Signalling. Br. J. Nutr. 2012, 107, 229–241. [Google Scholar] [CrossRef]
  361. Lee, J.Y.; Sohn, K.H.; Rhee, S.H.; Hwang, D. Saturated Fatty Acids, but Not Unsaturated Fatty Acids, Induce the Expression of Cyclooxygenase-2 Mediated through Toll-like Receptor 4. J. Biol. Chem. 2001, 276, 16683–16689. [Google Scholar] [CrossRef] [PubMed]
  362. Button, E.B.; Mitchell, A.S.; Domingos, M.M.; Chung, J.H.-J.; Bradley, R.M.; Hashemi, A.; Marvyn, P.M.; Patterson, A.C.; Stark, K.D.; Quadrilatero, J.; et al. Microglial Cell Activation Increases Saturated and Decreases Monounsaturated Fatty Acid Content, but Both Lipid Species Are Proinflammatory. Lipids 2014, 49, 305–316. [Google Scholar] [CrossRef] [PubMed]
  363. Yang, S.; Qin, C.; Hu, Z.-W.; Zhou, L.-Q.; Yu, H.-H.; Chen, M.; Bosco, D.B.; Wang, W.; Wu, L.-J.; Tian, D.-S. Microglia Reprogram Metabolic Profiles for Phenotype and Function Changes in Central Nervous System. Neurobiol. Dis. 2021, 152, 105290. [Google Scholar] [CrossRef] [PubMed]
  364. Podbielska, M.; Szulc, Z.M.; Kurowska, E.; Hogan, E.L.; Bielawski, J.; Bielawska, A.; Bhat, N.R. Cytokine-Induced Release of Ceramide-Enriched Exosomes as a Mediator of Cell Death Signaling in an Oligodendroglioma Cell Line. J. Lipid Res. 2016, 57, 2028–2039. [Google Scholar] [CrossRef]
  365. Kim, S.; Steelman, A.J.; Zhang, Y.; Kinney, H.C.; Li, J. Aberrant Upregulation of Astroglial Ceramide Potentiates Oligodendrocyte Injury. Brain Pathol. 2012, 22, 41–57. [Google Scholar] [CrossRef]
  366. Wentling, M.; Lopez-Gomez, C.; Park, H.-J.; Amatruda, M.; Ntranos, A.; Aramini, J.; Petracca, M.; Rusielewicz, T.; Chen, E.; Tolstikov, V.; et al. A Metabolic Perspective on CSF-Mediated Neurodegeneration in Multiple Sclerosis. Brain 2019, 142, 2756–2774. [Google Scholar] [CrossRef]
  367. Vidaurre, O.G.; Haines, J.D.; Katz Sand, I.; Adula, K.P.; Huynh, J.L.; McGraw, C.A.; Zhang, F.; Varghese, M.; Sotirchos, E.; Bhargava, P.; et al. Cerebrospinal Fluid Ceramides from Patients with Multiple Sclerosis Impair Neuronal Bioenergetics. Brain 2014, 137, 2271–2286. [Google Scholar] [CrossRef]
  368. Leoni, V.; Masterman, T.; Patel, P.; Meaney, S.; Diczfalusy, U.; Björkhem, I. Side Chain Oxidized Oxysterols in Cerebrospinal Fluid and the Integrity of Blood-Brain and Blood-Cerebrospinal Fluid Barriers. J. Lipid Res. 2003, 44, 793–799. [Google Scholar] [CrossRef]
  369. Novakova, L.; Axelsson, M.; Malmeström, C.; Zetterberg, H.; Björkhem, I.; Karrenbauer, V.D.; Lycke, J. Reduced Cerebrospinal Fluid Concentrations of Oxysterols in Response to Natalizumab Treatment of Relapsing Remitting Multiple Sclerosis. J. Neurol. Sci. 2015, 358, 201–206. [Google Scholar] [CrossRef]
  370. Seo, J.H.; Maki, T.; Maeda, M.; Miyamoto, N.; Liang, A.C.; Hayakawa, K.; Pham, L.-D.D.; Suwa, F.; Taguchi, A.; Matsuyama, T.; et al. Oligodendrocyte Precursor Cells Support Blood-Brain Barrier Integrity via TGF-β Signaling. PLoS ONE 2014, 9, e103174. [Google Scholar] [CrossRef]
  371. Nakano, M.; Tamura, Y.; Yamato, M.; Kume, S.; Eguchi, A.; Takata, K.; Watanabe, Y.; Kataoka, Y. NG2 Glial Cells Regulate Neuroimmunological Responses to Maintain Neuronal Function and Survival. Sci. Rep. 2017, 7, 42041. [Google Scholar] [CrossRef] [PubMed]
  372. Zhang, S.-Z.; Wang, Q.-Q.; Yang, Q.-Q.; Gu, H.-Y.; Yin, Y.-Q.; Li, Y.-D.; Hou, J.-C.; Chen, R.; Sun, Q.-Q.; Sun, Y.-F.; et al. NG2 Glia Regulate Brain Innate Immunity via TGF-Β2/TGFBR2 Axis. BMC Med. 2019, 17, 204. [Google Scholar] [CrossRef] [PubMed]
  373. Akay, L.A.; Effenberger, A.H.; Tsai, L.-H. Cell of All Trades: Oligodendrocyte Precursor Cells in Synaptic, Vascular, and Immune Function. Genes. Dev. 2021, 35, 180–198. [Google Scholar] [CrossRef] [PubMed]
  374. Seo, J.H.; Miyamoto, N.; Hayakawa, K.; Pham, L.-D.D.; Maki, T.; Ayata, C.; Kim, K.-W.; Lo, E.H.; Arai, K. Oligodendrocyte Precursors Induce Early Blood-Brain Barrier Opening after White Matter Injury. J. Clin. Investig. 2013, 123, 782–786. [Google Scholar] [CrossRef] [PubMed]
  375. Niu, J.; Tsai, H.-H.; Hoi, K.K.; Huang, N.; Yu, G.; Kim, K.; Baranzini, S.E.; Xiao, L.; Chan, J.R.; Fancy, S.P.J. Aberrant Oligodendroglial-Vascular Interactions Disrupt the Blood-Brain Barrier, Triggering CNS Inflammation. Nat. Neurosci. 2019, 22, 709–718. [Google Scholar] [CrossRef]
  376. Ferrara, G.; Errede, M.; Girolamo, F.; Morando, S.; Ivaldi, F.; Panini, N.; Bendotti, C.; Perris, R.; Furlan, R.; Virgintino, D.; et al. NG2, a Common Denominator for Neuroinflammation, Blood–Brain Barrier Alteration, and Oligodendrocyte Precursor Response in EAE, Plays a Role in Dendritic Cell Activation. Acta Neuropathol. 2016, 132, 23–42. [Google Scholar] [CrossRef]
  377. Kucharova, K.; Chang, Y.; Boor, A.; Yong, V.W.; Stallcup, W.B. Reduced Inflammation Accompanies Diminished Myelin Damage and Repair in the NG2 Null Mouse Spinal Cord. J. Neuroinflamm. 2011, 8, 158. [Google Scholar] [CrossRef]
  378. Kitic, M.; Karram, K.; Israel, N.; Yogev, N.; Lacher, S.M.; Tang, Y.; Yigit, H.; Bauer, J.; Wanke, F.; Knezovic, A.; et al. NG2 Plays a Role in Neuroinflammation but Is Not Expressed by Immune Cells. Acta Neuropathol. 2017, 134, 325–327. [Google Scholar] [CrossRef]
  379. Falcão, A.M.; van Bruggen, D.; Marques, S.; Meijer, M.; Jäkel, S.; Agirre, E.; Samudyata; Floriddia, E.M.; Vanichkina, D.P.; ffrench-Constant, C.; et al. Disease-Specific Oligodendrocyte Lineage Cells Arise in Multiple Sclerosis. Nat. Med. 2019, 24, 1837–1844. [Google Scholar] [CrossRef]
  380. Zeis, T.; Enz, L.; Schaeren-Wiemers, N. The Immunomodulatory Oligodendrocyte. Brain Res. 2016, 1641, 139–148. [Google Scholar] [CrossRef]
  381. Traka, M.; Podojil, J.R.; McCarthy, D.P.; Miller, S.D.; Popko, B. Oligodendrocyte Death Results in Immune-Mediated CNS Demyelination. Nat. Neurosci. 2016, 19, 65–74. [Google Scholar] [CrossRef] [PubMed]
  382. Baxevanis, C.N.; Reclos, G.J.; Servis, C.; Anastasopoulos, E.; Arsenis, P.; Katsiyiannis, A.; Matikas, N.; Lambris, J.D.; Papamichail, M. Peptides of Myelin Basic Protein Stimulate T Lymphocytes from Patients with Multiple Sclerosis. J. Neuroimmunol. 1989, 22, 23–30. [Google Scholar] [CrossRef] [PubMed]
  383. Arneth, B. Early Activation of CD4+ and CD8+ T Lymphocytes by Myelin Basic Protein in Subjects with MS. J. Transl. Med. 2015, 13, 341. [Google Scholar] [CrossRef] [PubMed]
  384. Davies, S.; Nicholson, T.; Laura, M.; Giovannoni, G.; Altmann, D.M. Spread of T Lymphocyte Immune Responses to Myelin Epitopes with Duration of Multiple Sclerosis. J. Neuropathol. Exp. Neurol. 2005, 64, 371–377. [Google Scholar] [CrossRef] [PubMed]
  385. Martín Monreal, M.T.; Hansen, B.E.; Iversen, P.F.; Enevold, C.; Ødum, N.; Sellebjerg, F.; Højrup, P.; Rode von Essen, M.; Nielsen, C.H. Citrullination of Myelin Basic Protein Induces a Th17-Cell Response in Healthy Individuals and Enhances the Presentation of MBP85-99 in Patients with Multiple Sclerosis. J. Autoimmun. 2023, 139, 103092. [Google Scholar] [CrossRef]
  386. Cao, L.; Sun, D.; Whitaker, J.N. Citrullinated Myelin Basic Protein Induces Experimental Autoimmune Encephalomyelitis in Lewis Rats through a Diverse T Cell Repertoire. J. Neuroimmunol. 1998, 88, 21–29. [Google Scholar] [CrossRef]
  387. Cheli, V.T.; Correale, J.; Paez, P.M.; Pasquini, J.M. Iron Metabolism in Oligodendrocytes and Astrocytes, Implications for Myelination and Remyelination. ASN Neuro 2020, 12, 1759091420962681. [Google Scholar] [CrossRef]
  388. Schonberg, D.L.; McTigue, D.M. Iron Is Essential for Oligodendrocyte Genesis Following Intraspinal Macrophage Activation. Exp. Neurol. 2009, 218, 64–74. [Google Scholar] [CrossRef]
  389. Elkady, A.M.; Cobzas, D.; Sun, H.; Blevins, G.; Wilman, A.H. Progressive Iron Accumulation across Multiple Sclerosis Phenotypes Revealed by Sparse Classification of Deep Gray Matter. J. Magn. Reson. Imaging 2017, 46, 1464–1473. [Google Scholar] [CrossRef]
  390. Acosta-Cabronero, J.; Betts, M.J.; Cardenas-Blanco, A.; Yang, S.; Nestor, P.J. In Vivo MRI Mapping of Brain Iron Deposition across the Adult Lifespan. J. Neurosci. 2016, 36, 364–374. [Google Scholar] [CrossRef]
  391. Modica, C.M.; Zivadinov, R.; Dwyer, M.G.; Bergsland, N.; Weeks, A.R.; Benedict, R.H.B. Iron and Volume in the Deep Gray Matter: Association with Cognitive Impairment in Multiple Sclerosis. AJNR Am. J. Neuroradiol. 2015, 36, 57–62. [Google Scholar] [CrossRef] [PubMed]
  392. Reinert, A.; Morawski, M.; Seeger, J.; Arendt, T.; Reinert, T. Iron Concentrations in Neurons and Glial Cells with Estimates on Ferritin Concentrations. BMC Neurosci. 2019, 20, 25. [Google Scholar] [CrossRef] [PubMed]
  393. Arosio, P.; Levi, S. Cytosolic and Mitochondrial Ferritins in the Regulation of Cellular Iron Homeostasis and Oxidative Damage. Biochim. Biophys. Acta (BBA)—Gen. Subj. 2010, 1800, 783–792. [Google Scholar] [CrossRef] [PubMed]
  394. Li, X.; Chu, Y.; Ma, R.; Dou, M.; Li, S.; Song, Y.; Lv, Y.; Zhu, L. Ferroptosis as a Mechanism of Oligodendrocyte Loss and Demyelination in Experimental Autoimmune Encephalomyelitis. J. Neuroimmunol. 2022, 373, 577995. [Google Scholar] [CrossRef] [PubMed]
  395. Van San, E.; Debruyne, A.C.; Veeckmans, G.; Tyurina, Y.Y.; Tyurin, V.A.; Zheng, H.; Choi, S.M.; Augustyns, K.; van Loo, G.; Michalke, B.; et al. Ferroptosis Contributes to Multiple Sclerosis and Its Pharmacological Targeting Suppresses Experimental Disease Progression. Cell Death Differ. 2023, 30, 2092–2103. [Google Scholar] [CrossRef]
  396. Hametner, S.; Wimmer, I.; Haider, L.; Pfeifenbring, S.; Brück, W.; Lassmann, H. Iron and Neurodegeneration in the Multiple Sclerosis Brain. Ann. Neurol. 2013, 74, 848–861. [Google Scholar] [CrossRef]
  397. Lassmann, H.; van Horssen, J.; Mahad, D. Progressive Multiple Sclerosis: Pathology and Pathogenesis. Nat. Rev. Neurol. 2012, 8, 647–656. [Google Scholar] [CrossRef]
  398. de Dios Rodríguez-Callejas, J.; Cuervo-Zanatta, D.; Rosas-Arellano, A.; Fonta, C.; Fuchs, E.; Perez-Cruz, C. Loss of Ferritin-Positive Microglia Relates to Increased Iron, RNA Oxidation, and Dystrophic Microglia in the Brains of Aged Male Marmosets. Am. J. Primatol. 2019, 81, e22956. [Google Scholar] [CrossRef]
  399. Hofmann, A.; Krajnc, N.; Dal-Bianco, A.; Riedl, C.J.; Zrzavy, T.; Lerma-Martin, C.; Kasprian, G.; Weber, C.E.; Pezzini, F.; Leutmezer, F.; et al. Myeloid Cell Iron Uptake Pathways and Paramagnetic Rim Formation in Multiple Sclerosis. Acta Neuropathol. 2023, 146, 707–724. [Google Scholar] [CrossRef]
  400. Mehta, V.; Pei, W.; Yang, G.; Li, S.; Swamy, E.; Boster, A.; Schmalbrock, P.; Pitt, D. Iron Is a Sensitive Biomarker for Inflammation in Multiple Sclerosis Lesions. PLoS ONE 2013, 8, e57573. [Google Scholar] [CrossRef]
  401. Lansley, J.; Mataix-Cols, D.; Grau, M.; Radua, J.; Sastre-Garriga, J. Localized Grey Matter Atrophy in Multiple Sclerosis: A Meta-Analysis of Voxel-Based Morphometry Studies and Associations with Functional Disability. Neurosci. Biobehav. Rev. 2013, 37, 819–830. [Google Scholar] [CrossRef] [PubMed]
  402. Giorgio, A.; De Stefano, N. Advanced Structural and Functional Brain MRI in Multiple Sclerosis. Semin. Neurol. 2016, 36, 163–176. [Google Scholar] [CrossRef] [PubMed]
  403. Chard, D.T.; Griffin, C.M.; Parker, G.J.M.; Kapoor, R.; Thompson, A.J.; Miller, D.H. Brain Atrophy in Clinically Early Relapsing–Remitting Multiple Sclerosis. Brain 2002, 125, 327–337. [Google Scholar] [CrossRef] [PubMed]
  404. Dustin, E.; McQuiston, A.R.; Honke, K.; Palavicini, J.P.; Han, X.; Dupree, J.L. Adult-Onset Depletion of Sulfatide Leads to Axonal Degeneration with Relative Myelin Sparing. Glia 2023, 71, 2285–2303. [Google Scholar] [CrossRef] [PubMed]
  405. DeLuca, G.C.; Williams, K.; Evangelou, N.; Ebers, G.C.; Esiri, M.M. The Contribution of Demyelination to Axonal Loss in Multiple Sclerosis. Brain 2006, 129, 1507–1516. [Google Scholar] [CrossRef]
  406. Bjartmar, C.; Kidd, G.; Mörk, S.; Rudick, R.; Trapp, B.D. Neurological Disability Correlates with Spinal Cord Axonal Loss and Reduced N-Acetyl Aspartate in Chronic Multiple Sclerosis Patients. Ann. Neurol. 2000, 48, 893–901. [Google Scholar] [CrossRef]
  407. Tallantyre, E.C.; Bø, L.; Al-Rawashdeh, O.; Owens, T.; Polman, C.H.; Lowe, J.S.; Evangelou, N. Clinico-Pathological Evidence That Axonal Loss Underlies Disability in Progressive Multiple Sclerosis. Mult. Scler. 2010, 16, 406–411. [Google Scholar] [CrossRef]
  408. De Stefano, N.; Matthews, P.M.; Fu, L.; Narayanan, S.; Stanley, J.; Francis, G.S.; Antel, J.P.; Arnold, D.L. Axonal Damage Correlates with Disability in Patients with Relapsing-Remitting Multiple Sclerosis. Results of a Longitudinal Magnetic Resonance Spectroscopy Study. Brain 1998, 121 Pt 8, 1469–1477. [Google Scholar] [CrossRef]
  409. Rahmanzadeh, R.; Lu, P.-J.; Barakovic, M.; Weigel, M.; Maggi, P.; Nguyen, T.D.; Schiavi, S.; Daducci, A.; La Rosa, F.; Schaedelin, S.; et al. Myelin and Axon Pathology in Multiple Sclerosis Assessed by Myelin Water and Multi-Shell Diffusion Imaging. Brain 2021, 144, 1684–1696. [Google Scholar] [CrossRef]
  410. Scalfari, A.; Neuhaus, A.; Daumer, M.; Deluca, G.C.; Muraro, P.A.; Ebers, G.C. Early Relapses, Onset of Progression, and Late Outcome in Multiple Sclerosis. JAMA Neurol. 2013, 70, 214–222. [Google Scholar] [CrossRef]
  411. Kaufmann, M.; Schaupp, A.-L.; Sun, R.; Coscia, F.; Dendrou, C.A.; Cortes, A.; Kaur, G.; Evans, H.G.; Mollbrink, A.; Navarro, J.F.; et al. Identification of Early Neurodegenerative Pathways in Progressive Multiple Sclerosis. Nat. Neurosci. 2022, 25, 944–955. [Google Scholar] [CrossRef] [PubMed]
  412. Li, W.; Wu, M.; Li, Y.; Shen, J. Reactive Nitrogen Species as Therapeutic Targets for Autophagy/Mitophagy Modulation to Relieve Neurodegeneration in Multiple Sclerosis: Potential Application for Drug Discovery. Free. Radic. Biol. Med. 2023, 208, 37–51. [Google Scholar] [CrossRef] [PubMed]
  413. Feng, X.; Hou, H.; Zou, Y.; Guo, L. Defective Autophagy Is Associated with Neuronal Injury in a Mouse Model of Multiple Sclerosis. Bosn. J. Basic Med. Sci. 2017, 17, 95–103. [Google Scholar] [CrossRef] [PubMed]
  414. Li, W.; Feng, J.; Gao, C.; Wu, M.; Du, Q.; Tsoi, B.; Wang, Q.; Yang, D.; Shen, J. Nitration of Drp1 Provokes Mitophagy Activation Mediating Neuronal Injury in Experimental Autoimmune Encephalomyelitis. Free. Radic. Biol. Med. 2019, 143, 70–83. [Google Scholar] [CrossRef] [PubMed]
  415. Singh, S.; Dallenga, T.; Winkler, A.; Roemer, S.; Maruschak, B.; Siebert, H.; Brück, W.; Stadelmann, C. Relationship of Acute Axonal Damage, Wallerian Degeneration, and Clinical Disability in Multiple Sclerosis. J. Neuroinflamm. 2017, 14, 57. [Google Scholar] [CrossRef]
  416. Gabilondo, I.; Martínez-Lapiscina, E.H.; Martínez-Heras, E.; Fraga-Pumar, E.; Llufriu, S.; Ortiz, S.; Bullich, S.; Sepulveda, M.; Falcon, C.; Berenguer, J.; et al. Trans-Synaptic Axonal Degeneration in the Visual Pathway in Multiple Sclerosis. Ann. Neurol. 2014, 75, 98–107. [Google Scholar] [CrossRef]
  417. Murphy, O.C.; Calabresi, P.A.; Saidha, S. Trans-Synaptic Degeneration as a Mechanism of Neurodegeneration in Multiple Sclerosis. Neural Regen. Res. 2023, 18, 2682–2684. [Google Scholar] [CrossRef]
  418. Rocca, M.A.; Mesaros, S.; Preziosa, P.; Pagani, E.; Stosic-Opincal, T.; Dujmovic-Basuroski, I.; Drulovic, J.; Filippi, M. Wallerian and Trans-Synaptic Degeneration Contribute to Optic Radiation Damage in Multiple Sclerosis: A Diffusion Tensor MRI Study. Mult. Scler. 2013, 19, 1610–1617. [Google Scholar] [CrossRef]
  419. Balk, L.J.; Twisk, J.W.R.; Steenwijk, M.D.; Daams, M.; Tewarie, P.; Killestein, J.; Uitdehaag, B.M.J.; Polman, C.H.; Petzold, A. A Dam for Retrograde Axonal Degeneration in Multiple Sclerosis? J. Neurol. Neurosurg. Psychiatry 2014, 85, 782–789. [Google Scholar] [CrossRef]
  420. Wolswijk, G.; Balesar, R. Changes in the Expression and Localization of the Paranodal Protein Caspr on Axons in Chronic Multiple Sclerosis. Brain 2003, 126, 1638–1649. [Google Scholar] [CrossRef]
  421. Stys, P.K. General Mechanisms of Axonal Damage and Its Prevention. J. Neurol. Sci. 2005, 233, 3–13. [Google Scholar] [CrossRef] [PubMed]
  422. Ulshöfer, R.; Bros, H.; Hauser, A.E.; Niesner, R.A.; Paul, F.; Malla, B.; Infante-Duarte, C. Preventing Axonal Sodium Overload or Mitochondrial Calcium Uptake Protects Axonal Mitochondria from Oxidative Stress-Induced Alterations. Oxid. Med. Cell. Longev. 2022, 2022, 6125711. [Google Scholar] [CrossRef] [PubMed]
  423. Li, S.; Jiang, Q.; Stys, P.K. Important Role of Reverse Na+-Ca2+ Exchange in Spinal Cord White Matter Injury at Physiological Temperature. J. Neurophysiol. 2000, 84, 1116–1119. [Google Scholar] [CrossRef] [PubMed]
  424. Craner, M.J.; Newcombe, J.; Black, J.A.; Hartle, C.; Cuzner, M.L.; Waxman, S.G. Molecular Changes in Neurons in Multiple Sclerosis: Altered Axonal Expression of Nav1.2 and Nav1.6 Sodium Channels and Na+/Ca2+ Exchanger. Proc. Natl. Acad. Sci. USA 2004, 101, 8168–8173. [Google Scholar] [CrossRef] [PubMed]
  425. Schattling, B.; Fazeli, W.; Engeland, B.; Liu, Y.; Lerche, H.; Isbrandt, D.; Friese, M.A. Activity of NaV1.2 Promotes Neurodegeneration in an Animal Model of Multiple Sclerosis. JCI Insight 2016, 1, e89810. [Google Scholar] [CrossRef]
  426. Hardingham, G.E.; Bading, H. Synaptic versus Extrasynaptic NMDA Receptor Signalling: Implications for Neurodegenerative Disorders. Nat. Rev. Neurosci. 2010, 11, 682–696. [Google Scholar] [CrossRef]
  427. Hardingham, G.E.; Fukunaga, Y.; Bading, H. Extrasynaptic NMDARs Oppose Synaptic NMDARs by Triggering CREB Shut-off and Cell Death Pathways. Nat. Neurosci. 2002, 5, 405–414. [Google Scholar] [CrossRef]
  428. Holman, S.P.; Lobo, A.S.; Novorolsky, R.J.; Nichols, M.; Fiander, M.D.J.; Konda, P.; Kennedy, B.E.; Gujar, S.; Robertson, G.S. Neuronal Mitochondrial Calcium Uniporter Deficiency Exacerbates Axonal Injury and Suppresses Remyelination in Mice Subjected to Experimental Autoimmune Encephalomyelitis. Exp. Neurol. 2020, 333, 113430. [Google Scholar] [CrossRef]
  429. Granatiero, V.; Pacifici, M.; Raffaello, A.; De Stefani, D.; Rizzuto, R. Overexpression of Mitochondrial Calcium Uniporter Causes Neuronal Death. Oxid. Med. Cell. Longev. 2019, 2019, 1681254. [Google Scholar] [CrossRef]
  430. Nilius, B.; Prenen, J.; Tang, J.; Wang, C.; Owsianik, G.; Janssens, A.; Voets, T.; Zhu, M.X. Regulation of the Ca2+ Sensitivity of the Nonselective Cation Channel TRPM4. J. Biol. Chem. 2005, 280, 6423–6433. [Google Scholar] [CrossRef]
  431. Schattling, B.; Steinbach, K.; Thies, E.; Kruse, M.; Menigoz, A.; Ufer, F.; Flockerzi, V.; Brück, W.; Pongs, O.; Vennekens, R.; et al. TRPM4 Cation Channel Mediates Axonal and Neuronal Degeneration in Experimental Autoimmune Encephalomyelitis and Multiple Sclerosis. Nat. Med. 2012, 18, 1805–1811. [Google Scholar] [CrossRef] [PubMed]
  432. Friese, M.A.; Craner, M.J.; Etzensperger, R.; Vergo, S.; Wemmie, J.A.; Welsh, M.J.; Vincent, A.; Fugger, L. Acid-Sensing Ion Channel-1 Contributes to Axonal Degeneration in Autoimmune Inflammation of the Central Nervous System. Nat. Med. 2007, 13, 1483–1489. [Google Scholar] [CrossRef] [PubMed]
  433. Vergo, S.; Craner, M.J.; Etzensperger, R.; Attfield, K.; Friese, M.A.; Newcombe, J.; Esiri, M.; Fugger, L. Acid-Sensing Ion Channel 1 Is Involved in Both Axonal Injury and Demyelination in Multiple Sclerosis and Its Animal Model. Brain 2011, 134, 571–584. [Google Scholar] [CrossRef] [PubMed]
  434. Vosler, P.S.; Brennan, C.S.; Chen, J. Calpain-Mediated Signaling Mechanisms in Neuronal Injury and Neurodegeneration. Mol. Neurobiol. 2008, 38, 78–100. [Google Scholar] [CrossRef] [PubMed]
  435. Hoffmann, D.B.; Williams, S.K.; Bojcevski, J.; Müller, A.; Stadelmann, C.; Naidoo, V.; Bahr, B.A.; Diem, R.; Fairless, R. Calcium Influx and Calpain Activation Mediate Preclinical Retinal Neurodegeneration in Autoimmune Optic Neuritis. J. Neuropathol. Exp. Neurol. 2013, 72, 745–757. [Google Scholar] [CrossRef]
  436. Guyton, M.K.; Wingrave, J.M.; Yallapragada, A.V.; Wilford, G.G.; Sribnick, E.A.; Matzelle, D.D.; Tyor, W.R.; Ray, S.K.; Banik, N.L. Upregulation of Calpain Correlates with Increased Neurodegeneration in Acute Experimental Auto-Immune Encephalomyelitis. J. Neurosci. Res. 2005, 81, 53–61. [Google Scholar] [CrossRef]
  437. Friberg, H.; Wieloch, T. Mitochondrial Permeability Transition in Acute Neurodegeneration. Biochimie 2002, 84, 241–250. [Google Scholar] [CrossRef]
  438. Warne, J.; Pryce, G.; Hill, J.M.; Shi, X.; Lennerås, F.; Puentes, F.; Kip, M.; Hilditch, L.; Walker, P.; Simone, M.I.; et al. Selective Inhibition of the Mitochondrial Permeability Transition Pore Protects against Neurodegeneration in Experimental Multiple Sclerosis. J. Biol. Chem. 2016, 291, 4356–4373. [Google Scholar] [CrossRef]
  439. Barrientos, S.A.; Martinez, N.W.; Yoo, S.; Jara, J.S.; Zamorano, S.; Hetz, C.; Twiss, J.L.; Alvarez, J.; Court, F.A. Axonal Degeneration Is Mediated by the Mitochondrial Permeability Transition Pore. J. Neurosci. 2011, 31, 966–978. [Google Scholar] [CrossRef]
  440. Chang, A.; Tourtellotte, W.W.; Rudick, R.; Trapp, B.D. Premyelinating Oligodendrocytes in Chronic Lesions of Multiple Sclerosis. N. Engl. J. Med. 2002, 346, 165–173. [Google Scholar] [CrossRef]
  441. Coman, I.; Barbin, G.; Charles, P.; Zalc, B.; Lubetzki, C. Axonal Signals in Central Nervous System Myelination, Demyelination and Remyelination. J. Neurol. Sci. 2005, 233, 67–71. [Google Scholar] [CrossRef] [PubMed]
  442. Bergles, D.E.; Richardson, W.D. Oligodendrocyte Development and Plasticity. Cold Spring Harb. Perspect. Biol. 2016, 8, a020453. [Google Scholar] [CrossRef] [PubMed]
  443. Moura, D.M.S.; Brennan, E.J.; Brock, R.; Cocas, L.A. Neuron to Oligodendrocyte Precursor Cell Synapses: Protagonists in Oligodendrocyte Development and Myelination, and Targets for Therapeutics. Front. Neurosci. 2022, 15, 779125. [Google Scholar] [CrossRef] [PubMed]
  444. Dissing-Olesen, L.; LeDue, J.M.; Rungta, R.L.; Hefendehl, J.K.; Choi, H.B.; MacVicar, B.A. Activation of Neuronal NMDA Receptors Triggers Transient ATP-Mediated Microglial Process Outgrowth. J. Neurosci. 2014, 34, 10511–10527. [Google Scholar] [CrossRef]
  445. Marinelli, S.; Basilico, B.; Marrone, M.C.; Ragozzino, D. Microglia-Neuron Crosstalk: Signaling Mechanism and Control of Synaptic Transmission. Semin. Cell Dev. Biol. 2019, 94, 138–151. [Google Scholar] [CrossRef]
  446. Craner, M.J.; Damarjian, T.G.; Liu, S.; Hains, B.C.; Lo, A.C.; Black, J.A.; Newcombe, J.; Cuzner, M.L.; Waxman, S.G. Sodium Channels Contribute to Microglia/Macrophage Activation and Function in EAE and MS. Glia 2005, 49, 220–229. [Google Scholar] [CrossRef]
  447. Schattling, B.; Engler, J.B.; Volkmann, C.; Rothammer, N.; Woo, M.S.; Petersen, M.; Winkler, I.; Kaufmann, M.; Rosenkranz, S.C.; Fejtova, A.; et al. Bassoon Proteinopathy Drives Neurodegeneration in Multiple Sclerosis. Nat. Neurosci. 2019, 22, 887–896. [Google Scholar] [CrossRef]
  448. Franceschi, C.; Bonafè, M.; Valensin, S.; Olivieri, F.; De Luca, M.; Ottaviani, E.; De Benedictis, G. Inflamm-Aging: An Evolutionary Perspective on Immunosenescence. Ann. N. Y. Acad. Sci. 2000, 908, 244–254. [Google Scholar] [CrossRef]
  449. Erdő, F.; Denes, L.; de Lange, E. Age-Associated Physiological and Pathological Changes at the Blood–Brain Barrier: A Review. J. Cereb. Blood Flow. Metab. 2017, 37, 4–24. [Google Scholar] [CrossRef]
  450. Schuitemaker, A.; van der Doef, T.F.; Boellaard, R.; van der Flier, W.M.; Yaqub, M.; Windhorst, A.D.; Barkhof, F.; Jonker, C.; Kloet, R.W.; Lammertsma, A.A.; et al. Microglial Activation in Healthy Aging. Neurobiol. Aging 2012, 33, 1067–1072. [Google Scholar] [CrossRef]
  451. Perry, V.H.; Teeling, J. Microglia and Macrophages of the Central Nervous System: The Contribution of Microglia Priming and Systemic Inflammation to Chronic Neurodegeneration. Semin. Immunopathol. 2013, 35, 601–612. [Google Scholar] [CrossRef] [PubMed]
  452. O’Neil, S.M.; Witcher, K.G.; McKim, D.B.; Godbout, J.P. Forced Turnover of Aged Microglia Induces an Intermediate Phenotype but Does Not Rebalance CNS Environmental Cues Driving Priming to Immune Challenge. Acta Neuropathol. Commun. 2018, 6, 129. [Google Scholar] [CrossRef] [PubMed]
  453. Raj, D.D.A.; Jaarsma, D.; Holtman, I.R.; Olah, M.; Ferreira, F.M.; Schaafsma, W.; Brouwer, N.; Meijer, M.M.; de Waard, M.C.; van der Pluijm, I.; et al. Priming of Microglia in a DNA-Repair Deficient Model of Accelerated Aging. Neurobiol. Aging 2014, 35, 2147–2160. [Google Scholar] [CrossRef] [PubMed]
  454. Puvogel, S.; Alsema, A.; North, H.F.; Webster, M.J.; Weickert, C.S.; Eggen, B.J.L. Single-Nucleus RNA-Seq Characterizes the Cell Types Along the Neuronal Lineage in the Adult Human Subependymal Zone and Reveals Reduced Oligodendrocyte Progenitor Abundance with Age. eNeuro 2024, 11, ENEURO.0246-23.2024. [Google Scholar] [CrossRef]
  455. Luan, W.; Qi, X.; Liang, F.; Zhang, X.; Jin, Z.; Shi, L.; Luo, B.; Dai, X. Microglia Impede Oligodendrocyte Generation in Aged Brain. J. Inflamm. Res. 2021, 14, 6813–6831. [Google Scholar] [CrossRef]
  456. Maciel-Barón, L.Á.; Moreno-Blas, D.; Morales-Rosales, S.L.; González-Puertos, V.Y.; López-Díazguerrero, N.E.; Torres, C.; Castro-Obregón, S.; Königsberg, M. Cellular Senescence, Neurological Function, and Redox State. Antioxid. Redox Signal. 2018, 28, 1704–1723. [Google Scholar] [CrossRef]
  457. Boumezbeur, F.; Mason, G.F.; de Graaf, R.A.; Behar, K.L.; Cline, G.W.; Shulman, G.I.; Rothman, D.L.; Petersen, K.F. Altered Brain Mitochondrial Metabolism in Healthy Aging as Assessed by In Vivo Magnetic Resonance Spectroscopy. J. Cereb. Blood Flow Metab. 2010, 30, 211–221. [Google Scholar] [CrossRef]
  458. Badji, A.; Cedres, N.; Muehlboeck, J.-S.; Khan, W.; Dhollander, T.; Barroso, J.; Ferreira, D.; Westman, E. In Vivo Microstructural Heterogeneity of White Matter and Cognitive Correlates in Aging Using Tissue Compositional Analysis of Diffusion Magnetic Resonance Imaging. Hum. Brain Mapp. 2024, 45, e26618. [Google Scholar] [CrossRef]
  459. Burzynska, A.Z.; Anderson, C.; Arciniegas, D.B.; Calhoun, V.; Choi, I.-Y.; Mendez Colmenares, A.; Kramer, A.F.; Li, K.; Lee, J.; Lee, P.; et al. Correlates of Axonal Content in Healthy Adult Span: Age, Sex, Myelin, and Metabolic Health. Cereb. Circ. Cogn. Behav. 2024, 6, 100203. [Google Scholar] [CrossRef]
  460. Zhang, H.; Sachdev, P.S.; Wen, W.; Crawford, J.D.; Brodaty, H.; Baune, B.T.; Kochan, N.A.; Slavin, M.J.; Reppermund, S.; Kang, K.; et al. The Relationship between Inflammatory Markers and Voxel-Based Gray Matter Volumes in Nondemented Older Adults. Neurobiol. Aging 2016, 37, 138–146. [Google Scholar] [CrossRef]
  461. Nathan, C.; Ding, A. Nonresolving Inflammation. Cell 2010, 140, 871–882. [Google Scholar] [CrossRef] [PubMed]
  462. Luo, X.-G.; Ding, J.-Q.; Chen, S.-D. Microglia in the Aging Brain: Relevance to Neurodegeneration. Mol. Neurodegener. 2010, 5, 12. [Google Scholar] [CrossRef] [PubMed]
  463. Colonna, M.; Butovsky, O. Microglia Function in the Central Nervous System During Health and Neurodegeneration. Annu. Rev. Immunol. 2017, 35, 441–468. [Google Scholar] [CrossRef] [PubMed]
  464. Han, T.; Xu, Y.; Sun, L.; Hashimoto, M.; Wei, J. Microglial Response to Aging and Neuroinflammation in the Development of Neurodegenerative Diseases. Neural Regen. Res. 2024, 19, 1241. [Google Scholar] [CrossRef] [PubMed]
  465. Calabrese, V.; Santoro, A.; Monti, D.; Crupi, R.; Di Paola, R.; Latteri, S.; Cuzzocrea, S.; Zappia, M.; Giordano, J.; Calabrese, E.J.; et al. Aging and Parkinson’s Disease: Inflammaging, Neuroinflammation and Biological Remodeling as Key Factors in Pathogenesis. Free Radic. Biol. Med. 2018, 115, 80–91. [Google Scholar] [CrossRef]
  466. Andronie-Cioara, F.L.; Ardelean, A.I.; Nistor-Cseppento, C.D.; Jurcau, A.; Jurcau, M.C.; Pascalau, N.; Marcu, F. Molecular Mechanisms of Neuroinflammation in Aging and Alzheimer’s Disease Progression. Int. J. Mol. Sci. 2023, 24, 1869. [Google Scholar] [CrossRef]
  467. Glass, C.K.; Saijo, K.; Winner, B.; Marchetto, M.C.; Gage, F.H. Mechanisms Underlying Inflammation in Neurodegeneration. Cell 2010, 140, 918–934. [Google Scholar] [CrossRef]
  468. Halle, A.; Hornung, V.; Petzold, G.C.; Stewart, C.R.; Monks, B.G.; Reinheckel, T.; Fitzgerald, K.A.; Latz, E.; Moore, K.J.; Golenbock, D.T. The NALP3 Inflammasome Is Involved in the Innate Immune Response to Amyloid-Beta. Nat. Immunol. 2008, 9, 857–865. [Google Scholar] [CrossRef]
  469. Fixemer, S.; Ameli, C.; Hammer, G.; Salamanca, L.; Uriarte Huarte, O.; Schwartz, C.; Gérardy, J.-J.; Mechawar, N.; Skupin, A.; Mittelbronn, M.; et al. Microglia Phenotypes Are Associated with Subregional Patterns of Concomitant Tau, Amyloid-β and α-Synuclein Pathologies in the Hippocampus of Patients with Alzheimer’s Disease and Dementia with Lewy Bodies. Acta Neuropathol. Commun. 2022, 10, 36. [Google Scholar] [CrossRef]
  470. Freeman, D.; Cedillos, R.; Choyke, S.; Lukic, Z.; McGuire, K.; Marvin, S.; Burrage, A.M.; Sudholt, S.; Rana, A.; O’Connor, C.; et al. Alpha-Synuclein Induces Lysosomal Rupture and Cathepsin Dependent Reactive Oxygen Species Following Endocytosis. PLoS ONE 2013, 8, e62143. [Google Scholar] [CrossRef]
  471. Flanary, B.E.; Sammons, N.W.; Nguyen, C.; Walker, D.; Streit, W.J. Evidence That Aging and Amyloid Promote Microglial Cell Senescence. Rejuvenation Res. 2007, 10, 61–74. [Google Scholar] [CrossRef] [PubMed]
  472. Li, R.; Li, Y.; Zuo, H.; Pei, G.; Huang, S.; Hou, Y. Alzheimer’s Amyloid-β Accelerates Cell Senescence and Suppresses SIRT1 in Human Neural Stem Cells. Biomolecules 2024, 14, 189. [Google Scholar] [CrossRef] [PubMed]
  473. Shen, Q.-Q.; Jv, X.-H.; Ma, X.-Z.; Li, C.; Liu, L.; Jia, W.-T.; Qu, L.; Chen, L.-L.; Xie, J.-X. Cell Senescence Induced by Toxic Interaction between α-Synuclein and Iron Precedes Nigral Dopaminergic Neuron Loss in a Mouse Model of Parkinson’s Disease. Acta Pharmacol. Sin. 2024, 45, 268–281. [Google Scholar] [CrossRef]
  474. Gordon, R.; Albornoz, E.A.; Christie, D.C.; Langley, M.R.; Kumar, V.; Mantovani, S.; Robertson, A.A.B.; Butler, M.S.; Rowe, D.B.; O’Neill, L.A.; et al. Inflammasome Inhibition Prevents α-Synuclein Pathology and Dopaminergic Neurodegeneration in Mice. Sci. Transl. Med. 2018, 10, eaah4066. [Google Scholar] [CrossRef]
  475. Lučiūnaitė, A.; McManus, R.M.; Jankunec, M.; Rácz, I.; Dansokho, C.; Dalgėdienė, I.; Schwartz, S.; Brosseron, F.; Heneka, M.T. Soluble Aβ Oligomers and Protofibrils Induce NLRP3 Inflammasome Activation in Microglia. J. Neurochem. 2020, 155, 650–661. [Google Scholar] [CrossRef] [PubMed]
  476. Ising, C.; Venegas, C.; Zhang, S.; Scheiblich, H.; Schmidt, S.V.; Vieira-Saecker, A.; Schwartz, S.; Albasset, S.; McManus, R.M.; Tejera, D.; et al. NLRP3 Inflammasome Activation Drives Tau Pathology. Nature 2019, 575, 669–673. [Google Scholar] [CrossRef] [PubMed]
  477. Jiang, S.; Maphis, N.M.; Binder, J.; Chisholm, D.; Weston, L.; Duran, W.; Peterson, C.; Zimmerman, A.; Mandell, M.A.; Jett, S.D.; et al. Proteopathic Tau Primes and Activates Interleukin-1β via Myeloid-Cell-Specific MyD88- and NLRP3-ASC-Inflammasome Pathway. Cell Rep. 2021, 36, 109720. [Google Scholar] [CrossRef]
  478. Mawuenyega, K.G.; Sigurdson, W.; Ovod, V.; Munsell, L.; Kasten, T.; Morris, J.C.; Yarasheski, K.E.; Bateman, R.J. Decreased Clearance of CNS Beta-Amyloid in Alzheimer’s Disease. Science 2010, 330, 1774. [Google Scholar] [CrossRef]
  479. Ni, J.; Xie, Z.; Quan, Z.; Meng, J.; Qing, H. How Brain ‘Cleaners’ Fail: Mechanisms and Therapeutic Value of Microglial Phagocytosis in Alzheimer’s Disease. Glia 2024, 72, 227–244. [Google Scholar] [CrossRef]
  480. Couturier, J.; Stancu, I.-C.; Schakman, O.; Pierrot, N.; Huaux, F.; Kienlen-Campard, P.; Dewachter, I.; Octave, J.-N. Activation of Phagocytic Activity in Astrocytes by Reduced Expression of the Inflammasome Component ASC and Its Implication in a Mouse Model of Alzheimer Disease. J. Neuroinflamm. 2016, 13, 20. [Google Scholar] [CrossRef]
  481. Abramov, A.Y.; Potapova, E.V.; Dremin, V.V.; Dunaev, A.V. Interaction of Oxidative Stress and Misfolded Proteins in the Mechanism of Neurodegeneration. Life 2020, 10, 101. [Google Scholar] [CrossRef] [PubMed]
  482. Zhou, R.; Yazdi, A.S.; Menu, P.; Tschopp, J. A Role for Mitochondria in NLRP3 Inflammasome Activation. Nature 2011, 469, 221–225. [Google Scholar] [CrossRef] [PubMed]
  483. Sarkar, S.; Malovic, E.; Harishchandra, D.S.; Ghaisas, S.; Panicker, N.; Charli, A.; Palanisamy, B.N.; Rokad, D.; Jin, H.; Anantharam, V.; et al. Mitochondrial Impairment in Microglia Amplifies NLRP3 Inflammasome Proinflammatory Signaling in Cell Culture and Animal Models of Parkinson’s Disease. npj Parkinsons Dis. 2017, 3, 30. [Google Scholar] [CrossRef] [PubMed]
  484. Sbai, O.; Djelloul, M.; Auletta, A.; Ieraci, A.; Vascotto, C.; Perrone, L. RAGE-TXNIP Axis Drives Inflammation in Alzheimer’s by Targeting Aβ to Mitochondria in Microglia. Cell Death Dis. 2022, 13, 302. [Google Scholar] [CrossRef] [PubMed]
  485. van Horssen, J.; van Schaik, P.; Witte, M. Inflammation and Mitochondrial Dysfunction: A Vicious Circle in Neurodegenerative Disorders? Neurosci. Lett. 2019, 710, 132931. [Google Scholar] [CrossRef]
  486. Walker, K.A. Inflammation and Neurodegeneration: Chronicity Matters. Aging 2018, 11, 3–4. [Google Scholar] [CrossRef]
  487. Gazestani, V.; Kamath, T.; Nadaf, N.M.; Dougalis, A.; Burris, S.J.; Rooney, B.; Junkkari, A.; Vanderburg, C.; Pelkonen, A.; Gomez-Budia, M.; et al. Early Alzheimer’s Disease Pathology in Human Cortex Involves Transient Cell States. Cell 2023, 186, 4438–4453.e23. [Google Scholar] [CrossRef]
  488. Safaiyan, S.; Besson-Girard, S.; Kaya, T.; Cantuti-Castelvetri, L.; Liu, L.; Ji, H.; Schifferer, M.; Gouna, G.; Usifo, F.; Kannaiyan, N.; et al. White Matter Aging Drives Microglial Diversity. Neuron 2021, 109, 1100–1117.e10. [Google Scholar] [CrossRef]
  489. Sobue, A.; Komine, O.; Hara, Y.; Endo, F.; Mizoguchi, H.; Watanabe, S.; Murayama, S.; Saito, T.; Saido, T.C.; Sahara, N.; et al. Microglial Gene Signature Reveals Loss of Homeostatic Microglia Associated with Neurodegeneration of Alzheimer’s Disease. Acta Neuropathol. Commun. 2021, 9, 1. [Google Scholar] [CrossRef]
  490. Keren-Shaul, H.; Spinrad, A.; Weiner, A.; Matcovitch-Natan, O.; Dvir-Szternfeld, R.; Ulland, T.K.; David, E.; Baruch, K.; Lara-Astaiso, D.; Toth, B.; et al. A Unique Microglia Type Associated with Restricting Development of Alzheimer’s Disease. Cell 2017, 169, 1276–1290.e17. [Google Scholar] [CrossRef]
  491. Gerrits, E.; Brouwer, N.; Kooistra, S.M.; Woodbury, M.E.; Vermeiren, Y.; Lambourne, M.; Mulder, J.; Kummer, M.; Möller, T.; Biber, K.; et al. Distinct Amyloid-β and Tau-Associated Microglia Profiles in Alzheimer’s Disease. Acta Neuropathol. 2021, 141, 681–696. [Google Scholar] [CrossRef] [PubMed]
  492. Ulland, T.K.; Colonna, M. TREM2—A Key Player in Microglial Biology and Alzheimer Disease. Nat. Rev. Neurol. 2018, 14, 667–675. [Google Scholar] [CrossRef] [PubMed]
  493. Krasemann, S.; Madore, C.; Cialic, R.; Baufeld, C.; Calcagno, N.; El Fatimy, R.; Beckers, L.; O’Loughlin, E.; Xu, Y.; Fanek, Z.; et al. The TREM2-APOE Pathway Drives the Transcriptional Phenotype of Dysfunctional Microglia in Neurodegenerative Diseases. Immunity 2017, 47, 566–581.e9. [Google Scholar] [CrossRef] [PubMed]
  494. Zhou, Y.; Song, W.M.; Andhey, P.S.; Swain, A.; Levy, T.; Miller, K.R.; Poliani, P.L.; Cominelli, M.; Grover, S.; Gilfillan, S.; et al. Human and Mouse Single-Nucleus Transcriptomics Reveal TREM2-Dependent and TREM2-Independent Cellular Responses in Alzheimer’s Disease. Nat. Med. 2020, 26, 131–142. [Google Scholar] [CrossRef]
  495. Guerreiro, R.; Wojtas, A.; Bras, J.; Carrasquillo, M.; Rogaeva, E.; Majounie, E.; Cruchaga, C.; Sassi, C.; Kauwe, J.S.K.; Younkin, S.; et al. TREM2 Variants in Alzheimer’s Disease. N. Engl. J. Med. 2013, 368, 117–127. [Google Scholar] [CrossRef]
  496. Yuan, P.; Condello, C.; Keene, C.D.; Wang, Y.; Bird, T.D.; Paul, S.M.; Luo, W.; Colonna, M.; Baddeley, D.; Grutzendler, J. TREM2 Haplodeficiency in Mice and Humans Impairs the Microglia Barrier Function Leading to Decreased Amyloid Compaction and Severe Axonal Dystrophy. Neuron 2016, 90, 724–739. [Google Scholar] [CrossRef]
  497. Wang, Y.; Cella, M.; Mallinson, K.; Ulrich, J.D.; Young, K.L.; Robinette, M.L.; Gilfillan, S.; Krishnan, G.M.; Sudhakar, S.; Zinselmeyer, B.H.; et al. TREM2 Lipid Sensing Sustains the Microglial Response in an Alzheimer’s Disease Model. Cell 2015, 160, 1061–1071. [Google Scholar] [CrossRef]
  498. Ulland, T.K.; Song, W.M.; Huang, S.C.-C.; Ulrich, J.D.; Sergushichev, A.; Beatty, W.L.; Loboda, A.A.; Zhou, Y.; Cairns, N.J.; Kambal, A.; et al. TREM2 Maintains Microglial Metabolic Fitness in Alzheimer’s Disease. Cell 2017, 170, 649–663.e13. [Google Scholar] [CrossRef]
  499. Prakash, P.; Jethava, K.P.; Korte, N.; Izquierdo, P.; Favuzzi, E.; Rose, I.V.L.; Guttenplan, K.A.; Manchanda, P.; Dutta, S.; Rochet, J.-C.; et al. Monitoring Phagocytic Uptake of Amyloid β into Glial Cell Lysosomes in Real Time. Chem. Sci. 2021, 12, 10901–10918. [Google Scholar] [CrossRef]
  500. Tejera, D.; Mercan, D.; Sanchez-Caro, J.M.; Hanan, M.; Greenberg, D.; Soreq, H.; Latz, E.; Golenbock, D.; Heneka, M.T. Systemic Inflammation Impairs Microglial Aβ Clearance through NLRP3 Inflammasome. EMBO J. 2019, 38, e101064. [Google Scholar] [CrossRef]
  501. Bell, R.D.; Winkler, E.A.; Singh, I.; Sagare, A.P.; Deane, R.; Wu, Z.; Holtzman, D.M.; Betsholtz, C.; Armulik, A.; Sallstrom, J.; et al. Apolipoprotein E Controls Cerebrovascular Integrity via Cyclophilin A. Nature 2012, 485, 512–516. [Google Scholar] [CrossRef] [PubMed]
  502. Shi, Y.; Yamada, K.; Liddelow, S.A.; Smith, S.T.; Zhao, L.; Luo, W.; Tsai, R.M.; Spina, S.; Grinberg, L.T.; Rojas, J.C.; et al. ApoE4 Markedly Exacerbates Tau-Mediated Neurodegeneration in a Mouse Model of Tauopathy. Nature 2017, 549, 523–527. [Google Scholar] [CrossRef] [PubMed]
  503. Sadick, J.S.; O’Dea, M.R.; Hasel, P.; Dykstra, T.; Faustin, A.; Liddelow, S.A. Astrocytes and Oligodendrocytes Undergo Subtype-Specific Transcriptional Changes in Alzheimer’s Disease. Neuron 2022, 110, 1788–1805.e10. [Google Scholar] [CrossRef] [PubMed]
  504. Pelkmans, W.; Shekari, M.; Brugulat-Serrat, A.; Sánchez-Benavides, G.; Minguillón, C.; Fauria, K.; Molinuevo, J.L.; Grau-Rivera, O.; González Escalante, A.; Kollmorgen, G.; et al. Astrocyte Biomarkers GFAP and YKL-40 Mediate Early Alzheimer’s Disease Progression. Alzheimers Dement. 2024, 20, 483–493. [Google Scholar] [CrossRef] [PubMed]
  505. Varma, V.R.; An, Y.; Kac, P.R.; Bilgel, M.; Moghekar, A.; Loeffler, T.; Amschl, D.; Troncoso, J.; Blennow, K.; Zetterberg, H.; et al. Longitudinal Progression of Blood Biomarkers Reveals a Key Role of Astrocyte Reactivity in Preclinical Alzheimer’s Disease. medRxiv 2024. [Google Scholar] [CrossRef]
  506. Xilouri, M.; Brekk, O.R.; Stefanis, L. Alpha-Synuclein and Protein Degradation Systems: A Reciprocal Relationship. Mol. Neurobiol. 2013, 47, 537–551. [Google Scholar] [CrossRef]
  507. Iba, M.; McDevitt, R.A.; Kim, C.; Roy, R.; Sarantopoulou, D.; Tommer, E.; Siegars, B.; Sallin, M.; Kwon, S.; Sen, J.M.; et al. Aging Exacerbates the Brain Inflammatory Micro-Environment Contributing to α-Synuclein Pathology and Functional Deficits in a Mouse Model of DLB/PD. Mol. Neurodegener. 2022, 17, 60. [Google Scholar] [CrossRef]
  508. Smajić, S.; Prada-Medina, C.A.; Landoulsi, Z.; Ghelfi, J.; Delcambre, S.; Dietrich, C.; Jarazo, J.; Henck, J.; Balachandran, S.; Pachchek, S.; et al. Single-Cell Sequencing of Human Midbrain Reveals Glial Activation and a Parkinson-Specific Neuronal State. Brain 2022, 145, 964–978. [Google Scholar] [CrossRef]
  509. Smith, H.L.; Freeman, O.J.; Butcher, A.J.; Holmqvist, S.; Humoud, I.; Schätzl, T.; Hughes, D.T.; Verity, N.C.; Swinden, D.P.; Hayes, J.; et al. Astrocyte Unfolded Protein Response Induces a Specific Reactivity State That Causes Non-Cell-Autonomous Neuronal Degeneration. Neuron 2020, 105, 855–866.e5. [Google Scholar] [CrossRef]
  510. Ghemrawi, R.; Khair, M. Endoplasmic Reticulum Stress and Unfolded Protein Response in Neurodegenerative Diseases. Int. J. Mol. Sci. 2020, 21, 6127. [Google Scholar] [CrossRef]
  511. Galiano-Landeira, J.; Torra, A.; Vila, M.; Bové, J. CD8 T Cell Nigral Infiltration Precedes Synucleinopathy in Early Stages of Parkinson’s Disease. Brain 2020, 143, 3717–3733. [Google Scholar] [CrossRef] [PubMed]
  512. Ciesielska, A.; Joniec, I.; Kurkowska-Jastrzebska, I.; Przybyłkowski, A.; Gromadzka, G.; Członkowska, A.; Członkowski, A. Influence of Age and Gender on Cytokine Expression in a Murine Model of Parkinson’s Disease. Neuroimmunomodulation 2007, 14, 255–265. [Google Scholar] [CrossRef] [PubMed]
  513. Cebrián, C.; Zucca, F.A.; Mauri, P.; Steinbeck, J.A.; Studer, L.; Scherzer, C.R.; Kanter, E.; Budhu, S.; Mandelbaum, J.; Vonsattel, J.P.; et al. MHC-I Expression Renders Catecholaminergic Neurons Susceptible to T-Cell-Mediated Degeneration. Nat. Commun. 2014, 5, 3633. [Google Scholar] [CrossRef]
  514. Qin, H.; Buckley, J.A.; Li, X.; Liu, Y.; Fox, T.H.; Meares, G.P.; Yu, H.; Yan, Z.; Harms, A.S.; Li, Y.; et al. Inhibition of the JAK/STAT Pathway Protects Against α-Synuclein-Induced Neuroinflammation and Dopaminergic Neurodegeneration. J. Neurosci. 2016, 36, 5144–5159. [Google Scholar] [CrossRef]
  515. Gate, D.; Saligrama, N.; Leventhal, O.; Yang, A.C.; Unger, M.S.; Middeldorp, J.; Chen, K.; Lehallier, B.; Channappa, D.; De Los Santos, M.B.; et al. Clonally Expanded CD8 T Cells Patrol the Cerebrospinal Fluid in Alzheimer’s Disease. Nature 2020, 577, 399–404. [Google Scholar] [CrossRef] [PubMed]
  516. Wang, P.; Yao, L.; Luo, M.; Zhou, W.; Jin, X.; Xu, Z.; Yan, S.; Li, Y.; Xu, C.; Cheng, R.; et al. Single-Cell Transcriptome and TCR Profiling Reveal Activated and Expanded T Cell Populations in Parkinson’s Disease. Cell Discov. 2021, 7, 52. [Google Scholar] [CrossRef]
  517. King, E.; O’Brien, J.T.; Donaghy, P.; Morris, C.; Barnett, N.; Olsen, K.; Martin-Ruiz, C.; Taylor, J.-P.; Thomas, A.J. Peripheral Inflammation in Prodromal Alzheimer’s and Lewy Body Dementias. J. Neurol. Neurosurg. Psychiatry 2018, 89, 339–345. [Google Scholar] [CrossRef]
  518. Liao, Y.-F.; Wang, B.-J.; Cheng, H.-T.; Kuo, L.-H.; Wolfe, M.S. Tumor Necrosis Factor-α, Interleukin-1β, and Interferon-γ Stimulate γ-Secretase-Mediated Cleavage of Amyloid Precursor Protein through a JNK-Dependent MAPK Pathway. J. Biol. Chem. 2004, 279, 49523–49532. [Google Scholar] [CrossRef]
  519. Rietdijk, C.D.; Perez-Pardo, P.; Garssen, J.; van Wezel, R.J.A.; Kraneveld, A.D. Exploring Braak’s Hypothesis of Parkinson’s Disease. Front. Neurol. 2017, 8, 37. [Google Scholar] [CrossRef]
  520. Del Tredici, K.; Braak, H. Review: Sporadic Parkinson’s Disease: Development and Distribution of α-Synuclein Pathology. Neuropathol. Appl. Neurobiol. 2016, 42, 33–50. [Google Scholar] [CrossRef]
  521. Lauritsen, J.; Romero-Ramos, M. The Systemic Immune Response in Parkinson’s Disease: Focus on the Peripheral Immune Component. Trends Neurosci. 2023, 46, 863–878. [Google Scholar] [CrossRef] [PubMed]
  522. Lindestam Arlehamn, C.S.; Dhanwani, R.; Pham, J.; Kuan, R.; Frazier, A.; Rezende Dutra, J.; Phillips, E.; Mallal, S.; Roederer, M.; Marder, K.S.; et al. α-Synuclein-Specific T Cell Reactivity Is Associated with Preclinical and Early Parkinson’s Disease. Nat. Commun. 2020, 11, 1875. [Google Scholar] [CrossRef] [PubMed]
  523. García-Domínguez, I.; Veselá, K.; García-Revilla, J.; Carrillo-Jiménez, A.; Roca-Ceballos, M.A.; Santiago, M.; de Pablos, R.M.; Venero, J.L. Peripheral Inflammation Enhances Microglia Response and Nigral Dopaminergic Cell Death in an in Vivo MPTP Model of Parkinson’s Disease. Front. Cell. Neurosci. 2018, 12, 398. [Google Scholar] [CrossRef] [PubMed]
  524. Machado, A.; Herrera, A.J.; Venero, J.L.; Santiago, M.; De Pablos, R.M.; Villarán, R.F.; Espinosa-Oliva, A.M.; Argüelles, S.; Sarmiento, M.; Delgado-Cortés, M.J.; et al. Peripheral Inflammation Increases the Damage in Animal Models of Nigrostriatal Dopaminergic Neurodegeneration: Possible Implication in Parkinson’s Disease Incidence. Parkinsons Dis. 2011, 2011, 393769. [Google Scholar] [CrossRef] [PubMed]
  525. Rite, I.; Machado, A.; Cano, J.; Venero, J.L. Blood-Brain Barrier Disruption Induces In Vivo Degeneration of Nigral Dopaminergic Neurons. J. Neurochem. 2007, 101, 1567–1582. [Google Scholar] [CrossRef]
  526. Li, H.; Song, S.; Wang, Y.; Huang, C.; Zhang, F.; Liu, J.; Hong, J.-S. Low-Grade Inflammation Aggravates Rotenone Neurotoxicity and Disrupts Circadian Clock Gene Expression in Rats. Neurotox. Res. 2019, 35, 421–431. [Google Scholar] [CrossRef]
  527. Wang, X.; Zhu, Z.; Sun, J.; Jia, L.; Cai, L.; Chen, Q.; Yang, W.; Wang, Y.; Zhang, Y.; Guo, S.; et al. Changes in Iron Load in Specific Brain Areas Lead to Neurodegenerative Diseases of the Central Nervous System. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2024, 129, 110903. [Google Scholar] [CrossRef]
  528. Tao, Y.; Wang, Y.; Rogers, J.T.; Wang, F. Perturbed Iron Distribution in Alzheimer’s Disease Serum, Cerebrospinal Fluid, and Selected Brain Regions: A Systematic Review and Meta-Analysis. J. Alzheimers Dis. 2014, 42, 679–690. [Google Scholar] [CrossRef]
  529. Martin-Bastida, A.; Tilley, B.S.; Bansal, S.; Gentleman, S.M.; Dexter, D.T.; Ward, R.J. Iron and Inflammation: In Vivo and Post-Mortem Studies in Parkinson’s Disease. J. Neural Transm. 2021, 128, 15–25. [Google Scholar] [CrossRef]
  530. Ward, R.J.; Dexter, D.T.; Crichton, R.R. Iron, Neuroinflammation and Neurodegeneration. Int. J. Mol. Sci. 2022, 23, 7267. [Google Scholar] [CrossRef]
  531. Silvestri, L.; Camaschella, C. A Potential Pathogenetic Role of Iron in Alzheimer’s Disease. J. Cell. Mol. Med. 2008, 12, 1548–1550. [Google Scholar] [CrossRef] [PubMed]
  532. Nasrabady, S.E.; Rizvi, B.; Goldman, J.E.; Brickman, A.M. White Matter Changes in Alzheimer’s Disease: A Focus on Myelin and Oligodendrocytes. Acta Neuropathol. Commun. 2018, 6, 22. [Google Scholar] [CrossRef] [PubMed]
  533. Yang, K.; Wu, Z.; Long, J.; Li, W.; Wang, X.; Hu, N.; Zhao, X.; Sun, T. White Matter Changes in Parkinson’s Disease. npj Parkinsons Dis. 2023, 9, 150. [Google Scholar] [CrossRef] [PubMed]
  534. Dean, D.C.; Hurley, S.A.; Kecskemeti, S.R.; O’Grady, J.P.; Canda, C.; Davenport-Sis, N.J.; Carlsson, C.M.; Zetterberg, H.; Blennow, K.; Asthana, S.; et al. Association of Amyloid Pathology with Myelin Alteration in Preclinical Alzheimer Disease. JAMA Neurol. 2017, 74, 41–49. [Google Scholar] [CrossRef] [PubMed]
  535. Braak, H.; Ghebremedhin, E.; Rüb, U.; Bratzke, H.; Del Tredici, K. Stages in the Development of Parkinson’s Disease-Related Pathology. Cell Tissue Res. 2004, 318, 121–134. [Google Scholar] [CrossRef]
  536. Stricker, N.H.; Schweinsburg, B.C.; Delano-Wood, L.; Wierenga, C.E.; Bangen, K.J.; Haaland, K.Y.; Frank, L.R.; Salmon, D.P.; Bondi, M.W. Decreased White Matter Integrity in Late-Myelinating Fiber Pathways in Alzheimer’s Disease Supports Retrogenesis. Neuroimage 2009, 45, 10–16. [Google Scholar] [CrossRef]
  537. Brickman, A.M. Contemplating Alzheimer’s Disease and the Contribution of White Matter Hyperintensities. Curr. Neurol. Neurosci. Rep. 2013, 13, 415. [Google Scholar] [CrossRef]
  538. Brickman, A.M.; Zahodne, L.B.; Guzman, V.A.; Narkhede, A.; Meier, I.B.; Griffith, E.Y.; Provenzano, F.A.; Schupf, N.; Manly, J.J.; Stern, Y.; et al. Reconsidering Harbingers of Dementia: Progression of Parietal Lobe White Matter Hyperintensities Predicts Alzheimer’s Disease Incidence. Neurobiol. Aging 2015, 36, 27–32. [Google Scholar] [CrossRef]
  539. Lee, S.; Viqar, F.; Zimmerman, M.E.; Narkhede, A.; Tosto, G.; Benzinger, T.L.S.; Marcus, D.S.; Fagan, A.M.; Goate, A.; Fox, N.C.; et al. White Matter Hyperintensities Are a Core Feature of Alzheimer’s Disease: Evidence from the Dominantly Inherited Alzheimer Network. Ann. Neurol. 2016, 79, 929–939. [Google Scholar] [CrossRef]
  540. Brickman, A.M.; Schupf, N.; Manly, J.J.; Stern, Y.; Luchsinger, J.A.; Provenzano, F.A.; Narkhede, A.; Razlighi, Q.; Collins-Praino, L.; Artero, S.; et al. APOE Ε4 and Risk for Alzheimer’s Disease: Do Regionally Distributed White Matter Hyperintensities Play a Role? Alzheimers Dement. 2014, 10, 619–629. [Google Scholar] [CrossRef]
  541. Tosto, G.; Zimmerman, M.E.; Carmichael, O.T.; Brickman, A.M. Alzheimer’s Disease Neuroimaging Initiative Predicting Aggressive Decline in Mild Cognitive Impairment: The Importance of White Matter Hyperintensities. JAMA Neurol. 2014, 71, 872–877. [Google Scholar] [CrossRef] [PubMed]
  542. Raz, N.; Yang, Y.; Dahle, C.L.; Land, S. Volume of White Matter Hyperintensities in Healthy Adults: Contribution of Age, Vascular Risk Factors, and Inflammation-Related Genetic Variants. Biochim. Biophys. Acta 2012, 1822, 361–369. [Google Scholar] [CrossRef] [PubMed]
  543. Depp, C.; Sun, T.; Sasmita, A.O.; Spieth, L.; Berghoff, S.A.; Nazarenko, T.; Overhoff, K.; Steixner-Kumar, A.A.; Subramanian, S.; Arinrad, S.; et al. Myelin Dysfunction Drives Amyloid-β Deposition in Models of Alzheimer’s Disease. Nature 2023, 618, 349–357. [Google Scholar] [CrossRef] [PubMed]
  544. Desai, M.K.; Sudol, K.L.; Janelsins, M.C.; Mastrangelo, M.A.; Frazer, M.E.; Bowers, W.J. Triple-Transgenic Alzheimer’s Disease Mice Exhibit Region-Specific Abnormalities in Brain Myelination Patterns Prior to Appearance of Amyloid and Tau Pathology. Glia 2009, 57, 54–65. [Google Scholar] [CrossRef] [PubMed]
  545. Tse, K.-H.; Herrup, K. DNA Damage in the Oligodendrocyte Lineage and Its Role in Brain Aging. Mech. Ageing Dev. 2017, 161, 37–50. [Google Scholar] [CrossRef]
  546. Collins-Praino, L.E.; Francis, Y.I.; Griffith, E.Y.; Wiegman, A.F.; Urbach, J.; Lawton, A.; Honig, L.S.; Cortes, E.; Vonsattel, J.P.G.; Canoll, P.D.; et al. Soluble Amyloid Beta Levels Are Elevated in the White Matter of Alzheimer’s Patients, Independent of Cortical Plaque Severity. Acta Neuropathol. Commun. 2014, 2, 83. [Google Scholar] [CrossRef]
  547. Desai, M.K.; Mastrangelo, M.A.; Ryan, D.A.; Sudol, K.L.; Narrow, W.C.; Bowers, W.J. Early Oligodendrocyte/Myelin Pathology in Alzheimer’s Disease Mice Constitutes a Novel Therapeutic Target. Am. J. Pathol. 2010, 177, 1422–1435. [Google Scholar] [CrossRef]
  548. Lee, J.-T.; Xu, J.; Lee, J.-M.; Ku, G.; Han, X.; Yang, D.-I.; Chen, S.; Hsu, C.Y. Amyloid-β Peptide Induces Oligodendrocyte Death by Activating the Neutral Sphingomyelinase–Ceramide Pathway. J. Cell Biol. 2004, 164, 123–131. [Google Scholar] [CrossRef]
  549. McAleese, K.E.; Firbank, M.; Dey, M.; Colloby, S.J.; Walker, L.; Johnson, M.; Beverley, J.R.; Taylor, J.P.; Thomas, A.J.; O’Brien, J.T.; et al. Cortical Tau Load Is Associated with White Matter Hyperintensities. Acta Neuropathol. Commun. 2015, 3, 60. [Google Scholar] [CrossRef]
  550. McAleese, K.E.; Walker, L.; Graham, S.; Moya, E.L.J.; Johnson, M.; Erskine, D.; Colloby, S.J.; Dey, M.; Martin-Ruiz, C.; Taylor, J.-P.; et al. Parietal White Matter Lesions in Alzheimer’s Disease Are Associated with Cortical Neurodegenerative Pathology, but Not with Small Vessel Disease. Acta Neuropathol. 2017, 134, 459–473. [Google Scholar] [CrossRef]
  551. Ikeda, K.; Akiyama, H.; Arai, T.; Nishimura, T. Glial Tau Pathology in Neurodegenerative Diseases: Their Nature and Comparison with Neuronal Tangles. Neurobiol. Aging 1998, 19, S85–S91. [Google Scholar] [CrossRef] [PubMed]
  552. Bartzokis, G.; Lu, P.H.; Mintz, J. Human Brain Myelination and Amyloid Beta Deposition in Alzheimer’s Disease. Alzheimers Dement. 2007, 3, 122–125. [Google Scholar] [CrossRef] [PubMed]
  553. Zhan, X.; Cox, C.; Ander, B.P.; Liu, D.; Stamova, B.; Jin, L.-W.; Jickling, G.C.; Sharp, F.R. Inflammation Combined with Ischemia Produces Myelin Injury and Plaque-Like Aggregates of Myelin, Amyloid-β and AβPP in Adult Rat Brain. J. Alzheimers Dis. 2015, 46, 507–523. [Google Scholar] [CrossRef] [PubMed]
  554. Back, S.A.; Han, B.H.; Luo, N.L.; Chricton, C.A.; Xanthoudakis, S.; Tam, J.; Arvin, K.L.; Holtzman, D.M. Selective Vulnerability of Late Oligodendrocyte Progenitors to Hypoxia-Ischemia. J. Neurosci. 2002, 22, 455–463. [Google Scholar] [CrossRef] [PubMed]
  555. Schuff, N.; Matsumoto, S.; Kmiecik, J.; Studholme, C.; Du, A.; Ezekiel, F.; Miller, B.L.; Kramer, J.H.; Jagust, W.J.; Chui, H.C.; et al. Cerebral Blood Flow in Ischemic Vascular Dementia and Alzheimer’s Disease, Measured by Arterial Spin-Labeling Magnetic Resonance Imaging. Alzheimers Dement. 2009, 5, 454–462. [Google Scholar] [CrossRef]
  556. Pak, K.; Chan, S.L.; Mattson, M.P. Presenilin-1 Mutation Sensitizes Oligodendrocytes to Glutamate and Amyloid Toxicities, and Exacerbates White Matter Damage and Memory Impairment in Mice. Neuromol. Med. 2003, 3, 53–64. [Google Scholar] [CrossRef]
  557. Sienski, G.; Narayan, P.; Bonner, J.M.; Kory, N.; Boland, S.; Arczewska, A.A.; Ralvenius, W.T.; Akay, L.; Lockshin, E.; He, L.; et al. APOE4 Disrupts Intracellular Lipid Homeostasis in Human iPSC-Derived Glia. Sci. Transl. Med. 2021, 13, eaaz4564. [Google Scholar] [CrossRef]
  558. French, H.M.; Reid, M.; Mamontov, P.; Simmons, R.A.; Grinspan, J.B. Oxidative Stress Disrupts Oligodendrocyte Maturation. J. Neurosci. Res. 2009, 87, 3076–3087. [Google Scholar] [CrossRef]
  559. Zhang, P.; Kishimoto, Y.; Grammatikakis, I.; Gottimukkala, K.; Cutler, R.G.; Zhang, S.; Abdelmohsen, K.; Bohr, V.A.; Misra Sen, J.; Gorospe, M.; et al. Senolytic Therapy Alleviates Aβ-Associated Oligodendrocyte Progenitor Cell Senescence and Cognitive Deficits in an Alzheimer’s Disease Model. Nat. Neurosci. 2019, 22, 719–728. [Google Scholar] [CrossRef]
  560. Zhang, X.; Wang, R.; Hu, D.; Sun, X.; Fujioka, H.; Lundberg, K.; Chan, E.R.; Wang, Q.; Xu, R.; Flanagan, M.E.; et al. Oligodendroglial Glycolytic Stress Triggers Inflammasome Activation and Neuropathology in Alzheimer’s Disease. Sci. Adv. 2020, 6, eabb8680. [Google Scholar] [CrossRef]
  561. Haddad, D.; Nakamura, K. Understanding the Susceptibility of Dopamine Neurons to Mitochondrial Stressors in Parkinson’s Disease. FEBS Lett. 2015, 589, 3702–3713. [Google Scholar] [CrossRef] [PubMed]
  562. Lee, Y.; Ko, J.; Choi, Y.E.; Oh, J.S.; Kim, J.S.; Sunwoo, M.K.; Yoon, J.H.; Kang, S.Y.; Hong, J.Y. Areas of White Matter Hyperintensities and Motor Symptoms of Parkinson Disease. Neurology 2020, 95, e291–e298. [Google Scholar] [CrossRef] [PubMed]
  563. Fu, Y.; Zhou, L.; Li, H.; Hsiao, J.-H.T.; Li, B.; Tanglay, O.; Auwyang, A.D.; Wang, E.; Feng, J.; Kim, W.S.; et al. Adaptive Structural Changes in the Motor Cortex and White Matter in Parkinson’s Disease. Acta Neuropathol. 2022, 144, 861–879. [Google Scholar] [CrossRef] [PubMed]
  564. Azevedo, C.; Teku, G.; Pomeshchik, Y.; Reyes, J.F.; Chumarina, M.; Russ, K.; Savchenko, E.; Hammarberg, A.; Lamas, N.J.; Collin, A.; et al. Parkinson’s Disease and Multiple System Atrophy Patient iPSC-Derived Oligodendrocytes Exhibit Alpha-Synuclein–Induced Changes in Maturation and Immune Reactive Properties. Proc. Natl. Acad. Sci. USA 2022, 119, e2111405119. [Google Scholar] [CrossRef] [PubMed]
  565. Xie, S.; Yang, J.; Huang, S.; Fan, Y.; Xu, T.; He, J.; Guo, J.; Ji, X.; Wang, Z.; Li, P.; et al. Disrupted Myelination Network in the Cingulate Cortex of Parkinson’s Disease. IET Syst. Biol. 2022, 16, 98–119. [Google Scholar] [CrossRef]
  566. Agarwal, D.; Sandor, C.; Volpato, V.; Caffrey, T.M.; Monzón-Sandoval, J.; Bowden, R.; Alegre-Abarrategui, J.; Wade-Martins, R.; Webber, C. A Single-Cell Atlas of the Human Substantia Nigra Reveals Cell-Specific Pathways Associated with Neurological Disorders. Nat. Commun. 2020, 11, 4183. [Google Scholar] [CrossRef]
  567. Kamagata, K.; Motoi, Y.; Abe, O.; Shimoji, K.; Hori, M.; Nakanishi, A.; Sano, T.; Kuwatsuru, R.; Aoki, S.; Hattori, N. White Matter Alteration of the Cingulum in Parkinson Disease with and without Dementia: Evaluation by Diffusion Tensor Tract-Specific Analysis. AJNR Am. J. Neuroradiol. 2012, 33, 890–895. [Google Scholar] [CrossRef]
  568. Agosta, F.; Canu, E.; Stefanova, E.; Sarro, L.; Tomić, A.; Špica, V.; Comi, G.; Kostić, V.S.; Filippi, M. Mild Cognitive Impairment in Parkinson’s Disease Is Associated with a Distributed Pattern of Brain White Matter Damage. Hum. Brain Mapp. 2014, 35, 1921–1929. [Google Scholar] [CrossRef]
  569. Kamagata, K.; Motoi, Y.; Tomiyama, H.; Abe, O.; Ito, K.; Shimoji, K.; Suzuki, M.; Hori, M.; Nakanishi, A.; Sano, T.; et al. Relationship between Cognitive Impairment and White-Matter Alteration in Parkinson’s Disease with Dementia: Tract-Based Spatial Statistics and Tract-Specific Analysis. Eur. Radiol. 2013, 23, 1946–1955. [Google Scholar] [CrossRef]
  570. Grigoletto, J.; Pukaß, K.; Gamliel, A.; Davidi, D.; Katz-Brull, R.; Richter-Landsberg, C.; Sharon, R. Higher Levels of Myelin Phospholipids in Brains of Neuronal α-Synuclein Transgenic Mice Precede Myelin Loss. Acta Neuropathol. Commun. 2017, 5, 37. [Google Scholar] [CrossRef]
  571. Han, F.; Perrin, R.J.; Wang, Q.; Wang, Y.; Perlmutter, J.S.; Morris, J.C.; Benzinger, T.L.S.; Xu, J. Neuroinflammation and Myelin Status in Alzheimer’s Disease, Parkinson’s Disease, and Normal Aging Brains: A Small Sample Study. Parkinsons Dis. 2019, 2019, 7975407. [Google Scholar] [CrossRef] [PubMed]
  572. Kaya, I.; Jennische, E.; Lange, S.; Tarik Baykal, A.; Malmberg, P.; Fletcher, J.S. Brain Region-Specific Amyloid Plaque-Associated Myelin Lipid Loss, APOE Deposition and Disruption of the Myelin Sheath in Familial Alzheimer’s Disease Mice. J. Neurochem. 2020, 154, 84–98. [Google Scholar] [CrossRef] [PubMed]
  573. Kaya, I.; Nilsson, A.; Luptáková, D.; He, Y.; Vallianatou, T.; Bjärterot, P.; Svenningsson, P.; Bezard, E.; Andrén, P.E. Spatial Lipidomics Reveals Brain Region-Specific Changes of Sulfatides in an Experimental MPTP Parkinson’s Disease Primate Model. npj Parkinsons Dis. 2023, 9, 118. [Google Scholar] [CrossRef] [PubMed]
  574. Qiu, S.; Palavicini, J.P.; Wang, J.; Gonzalez, N.S.; He, S.; Dustin, E.; Zou, C.; Ding, L.; Bhattacharjee, A.; Van Skike, C.E.; et al. Adult-Onset CNS Myelin Sulfatide Deficiency Is Sufficient to Cause Alzheimer’s Disease-like Neuroinflammation and Cognitive Impairment. Mol. Neurodegener. 2021, 16, 64. [Google Scholar] [CrossRef] [PubMed]
  575. Blanchard, J.W.; Akay, L.A.; Davila-Velderrain, J.; von Maydell, D.; Mathys, H.; Davidson, S.M.; Effenberger, A.; Chen, C.-Y.; Maner-Smith, K.; Hajjar, I.; et al. APOE4 Impairs Myelination via Cholesterol Dysregulation in Oligodendrocytes. Nature 2022, 611, 769–779. [Google Scholar] [CrossRef] [PubMed]
  576. Danzer, K.M.; Haasen, D.; Karow, A.R.; Moussaud, S.; Habeck, M.; Giese, A.; Kretzschmar, H.; Hengerer, B.; Kostka, M. Different Species of Alpha-Synuclein Oligomers Induce Calcium Influx and Seeding. J. Neurosci. 2007, 27, 9220–9232. [Google Scholar] [CrossRef]
  577. Quist, A.; Doudevski, I.; Lin, H.; Azimova, R.; Ng, D.; Frangione, B.; Kagan, B.; Ghiso, J.; Lal, R. Amyloid Ion Channels: A Common Structural Link for Protein-Misfolding Disease. Proc. Natl. Acad. Sci. USA 2005, 102, 10427–10432. [Google Scholar] [CrossRef]
  578. Vander Zanden, C.M.; Wampler, L.; Bowers, I.; Watkins, E.B.; Majewski, J.; Chi, E.Y. Fibrillar and Nonfibrillar Amyloid Beta Structures Drive Two Modes of Membrane-Mediated Toxicity. Langmuir 2019, 35, 16024–16036. [Google Scholar] [CrossRef]
  579. van Rooijen, B.D.; Claessens, M.M.A.E.; Subramaniam, V. Membrane Permeabilization by Oligomeric α-Synuclein: In Search of the Mechanism. PLoS ONE 2010, 5, e14292. [Google Scholar] [CrossRef]
  580. Crews, L.; Masliah, E. Molecular Mechanisms of Neurodegeneration in Alzheimer’s Disease. Hum. Mol. Genet. 2010, 19, R12–R20. [Google Scholar] [CrossRef]
  581. Tremblay, C.; Rahayel, S.; Vo, A.; Morys, F.; Shafiei, G.; Abbasi, N.; Markello, R.D.; Gan-Or, Z.; Misic, B.; Dagher, A. Brain Atrophy Progression in Parkinson’s Disease Is Shaped by Connectivity and Local Vulnerability. Brain Commun. 2021, 3, fcab269. [Google Scholar] [CrossRef] [PubMed]
  582. Schiemann, J.; Schlaudraff, F.; Klose, V.; Bingmer, M.; Seino, S.; Magill, P.J.; Zaghloul, K.A.; Schneider, G.; Liss, B.; Roeper, J. K-ATP Channels in Dopamine Substantia Nigra Neurons Control Bursting and Novelty-Induced Exploration. Nat. Neurosci. 2012, 15, 1272–1280. [Google Scholar] [CrossRef] [PubMed]
  583. Rademacher, K.; Nakamura, K. Role of Dopamine Neuron Activity in Parkinson’s Disease Pathophysiology. Exp. Neurol. 2024, 373, 114645. [Google Scholar] [CrossRef] [PubMed]
  584. Chen, L.; Zhang, Q.J.; Liu, J.; Wang, S.; Ali, U.; Gui, Z.H.; Wang, Y. Chronic, Systemic Treatment with a Metabotropic Glutamate Receptor 5 Antagonist in 6-Hydroxydopamine Partially Lesioned Rats Reverses Abnormal Firing of Dopaminergic Neurons. Brain Res. 2009, 1286, 192–200. [Google Scholar] [CrossRef] [PubMed]
  585. Bilbao, G.; Ruiz-Ortega, J.A.; Miguens, N.; Ulibarri, I.; Linazasoro, G.; Gómez-Urquijo, S.; Garibi, J.; Ugedo, L. Electrophysiological Characterization of Substantia Nigra Dopaminergic Neurons in Partially Lesioned Rats: Effects of Subthalamotomy and Levodopa Treatment. Brain Res. 2006, 1084, 175–184. [Google Scholar] [CrossRef]
  586. Chung, E.K.Y.; Chen, L.W.; Chan, Y.S.; Yung, K.K.L. Downregulation of Glial Glutamate Transporters after Dopamine Denervation in the Striatum of 6-Hydroxydopamine-Lesioned Rats. J. Comp. Neurol. 2008, 511, 421–437. [Google Scholar] [CrossRef]
  587. Ambrosi, G.; Cerri, S.; Blandini, F. A Further Update on the Role of Excitotoxicity in the Pathogenesis of Parkinson’s Disease. J. Neural Transm. 2014, 121, 849–859. [Google Scholar] [CrossRef]
  588. Chan, C.S.; Guzman, J.N.; Ilijic, E.; Mercer, J.N.; Rick, C.; Tkatch, T.; Meredith, G.E.; Surmeier, D.J. ‘Rejuvenation’ Protects Neurons in Mouse Models of Parkinson’s Disease. Nature 2007, 447, 1081–1086. [Google Scholar] [CrossRef]
  589. Grünewald, A.; Rygiel, K.A.; Hepplewhite, P.D.; Morris, C.M.; Picard, M.; Turnbull, D.M. Mitochondrial DNA Depletion in Respiratory Chain–Deficient Parkinson Disease Neurons. Ann. Neurol. 2016, 79, 366–378. [Google Scholar] [CrossRef]
  590. Guzman, J.N.; Sanchez-Padilla, J.; Wokosin, D.; Kondapalli, J.; Ilijic, E.; Schumacker, P.T.; Surmeier, D.J. Oxidant Stress Evoked by Pacemaking in Dopaminergic Neurons Is Attenuated by DJ-1. Nature 2010, 468, 696–700. [Google Scholar] [CrossRef]
  591. Dervan, A.G.; Meshul, C.K.; Beales, M.; McBean, G.J.; Moore, C.; Totterdell, S.; Snyder, A.K.; Meredith, G.E. Astroglial Plasticity and Glutamate Function in a Chronic Mouse Model of Parkinson’s Disease. Exp. Neurol. 2004, 190, 145–156. [Google Scholar] [CrossRef] [PubMed]
  592. Yamada, K.; Iwatsubo, T. Extracellular α-Synuclein Levels Are Regulated by Neuronal Activity. Mol. Neurodegener. 2018, 13, 9. [Google Scholar] [CrossRef] [PubMed]
  593. Wu, Q.; Shaikh, M.A.; Meymand, E.S.; Zhang, B.; Luk, K.C.; Trojanowski, J.Q.; Lee, V.M.-Y. Neuronal Activity Modulates Alpha-Synuclein Aggregation and Spreading in Organotypic Brain Slice Cultures and in Vivo. Acta Neuropathol. 2020, 140, 831–849. [Google Scholar] [CrossRef] [PubMed]
  594. Helwig, M.; Ulusoy, A.; Rollar, A.; O’Sullivan, S.A.; Lee, S.S.L.; Aboutalebi, H.; Pinto-Costa, R.; Jevans, B.; Klinkenberg, M.; Di Monte, D.A. Neuronal Hyperactivity–Induced Oxidant Stress Promotes in Vivo α-Synuclein Brain Spreading. Sci. Adv. 2022, 8, eabn0356. [Google Scholar] [CrossRef] [PubMed]
  595. Burbulla, L.F.; Song, P.; Mazzulli, J.R.; Zampese, E.; Wong, Y.C.; Jeon, S.; Santos, D.P.; Blanz, J.; Obermaier, C.D.; Strojny, C.; et al. Dopamine Oxidation Mediates Mitochondrial and Lysosomal Dysfunction in Parkinson’s Disease. Science 2017, 357, 1255–1261. [Google Scholar] [CrossRef]
  596. Chen, L.; Ding, Y.; Cagniard, B.; Laar, A.D.V.; Mortimer, A.; Chi, W.; Hastings, T.G.; Kang, U.J.; Zhuang, X. Unregulated Cytosolic Dopamine Causes Neurodegeneration Associated with Oxidative Stress in Mice. J. Neurosci. 2008, 28, 425–433. [Google Scholar] [CrossRef]
  597. Collier, T.J.; Kanaan, N.M.; Kordower, J.H. Aging and Parkinson’s Disease: Different Sides of the Same Coin? Mov. Disord. 2017, 32, 983–990. [Google Scholar] [CrossRef]
  598. González-Rodríguez, P.; Zampese, E.; Stout, K.A.; Guzman, J.N.; Ilijic, E.; Yang, B.; Tkatch, T.; Stavarache, M.A.; Wokosin, D.L.; Gao, L.; et al. Disruption of Mitochondrial Complex I Induces Progressive Parkinsonism. Nature 2021, 599, 650–656. [Google Scholar] [CrossRef]
  599. Li, T.; Yang, Z.; Li, S.; Cheng, C.; Shen, B.; Le, W. Alterations of NURR1 and Cytokines in the Peripheral Blood Mononuclear Cells: Combined Biomarkers for Parkinson’s Disease. Front. Aging Neurosci. 2018, 10, 392. [Google Scholar] [CrossRef]
  600. Kaushal, V.; Dye, R.; Pakavathkumar, P.; Foveau, B.; Flores, J.; Hyman, B.; Ghetti, B.; Koller, B.H.; LeBlanc, A.C. Neuronal NLRP1 Inflammasome Activation of Caspase-1 Coordinately Regulates Inflammatory Interleukin-1-Beta Production and Axonal Degeneration-Associated Caspase-6 Activation. Cell Death Differ. 2015, 22, 1676–1686. [Google Scholar] [CrossRef]
  601. Tan, M.-S.; Tan, L.; Jiang, T.; Zhu, X.-C.; Wang, H.-F.; Jia, C.-D.; Yu, J.-T. Amyloid-β Induces NLRP1-Dependent Neuronal Pyroptosis in Models of Alzheimer’s Disease. Cell Death Dis. 2014, 5, e1382. [Google Scholar] [CrossRef] [PubMed]
  602. Wang, W.; Nguyen, L.T.T.; Burlak, C.; Chegini, F.; Guo, F.; Chataway, T.; Ju, S.; Fisher, O.S.; Miller, D.W.; Datta, D.; et al. Caspase-1 Causes Truncation and Aggregation of the Parkinson’s Disease-Associated Protein α-Synuclein. Proc. Natl. Acad. Sci. USA 2016, 113, 9587–9592. [Google Scholar] [CrossRef] [PubMed]
  603. Kassi, E.; Pervanidou, P.; Kaltsas, G.; Chrousos, G. Metabolic Syndrome: Definitions and Controversies. BMC Med. 2011, 9, 48. [Google Scholar] [CrossRef] [PubMed]
  604. Lionetti, L.; Mollica, M.P.; Lombardi, A.; Cavaliere, G.; Gifuni, G.; Barletta, A. From Chronic Overnutrition to Insulin Resistance: The Role of Fat-Storing Capacity and Inflammation. Nutr. Metab. Cardiovasc. Dis. 2009, 19, 146–152. [Google Scholar] [CrossRef] [PubMed]
  605. Ozcan, U.; Cao, Q.; Yilmaz, E.; Lee, A.-H.; Iwakoshi, N.N.; Ozdelen, E.; Tuncman, G.; Görgün, C.; Glimcher, L.H.; Hotamisligil, G.S. Endoplasmic Reticulum Stress Links Obesity, Insulin Action, and Type 2 Diabetes. Science 2004, 306, 457–461. [Google Scholar] [CrossRef]
  606. He, Q.; Gao, Z.; Yin, J.; Zhang, J.; Yun, Z.; Ye, J. Regulation of HIF-1{alpha} Activity in Adipose Tissue by Obesity-Associated Factors: Adipogenesis, Insulin, and Hypoxia. Am. J. Physiol. Endocrinol. Metab. 2011, 300, E877–E885. [Google Scholar] [CrossRef]
  607. Sethi, J.K.; Vidal-Puig, A.J. Thematic Review Series: Adipocyte Biology. Adipose Tissue Function and Plasticity Orchestrate Nutritional Adaptation. J. Lipid Res. 2007, 48, 1253–1262. [Google Scholar] [CrossRef]
  608. Gariballa, S.; Alkaabi, J.; Yasin, J.; Al Essa, A. Total Adiponectin in Overweight and Obese Subjects and Its Response to Visceral Fat Loss. BMC Endocr. Disord. 2019, 19, 55. [Google Scholar] [CrossRef]
  609. Cai, D.; Yuan, M.; Frantz, D.F.; Melendez, P.A.; Hansen, L.; Lee, J.; Shoelson, S.E. Local and Systemic Insulin Resistance Resulting from Hepatic Activation of IKK-Beta and NF-kappaB. Nat. Med. 2005, 11, 183–190. [Google Scholar] [CrossRef]
  610. Manna, P.; Jain, S.K. Obesity, Oxidative Stress, Adipose Tissue Dysfunction, and the Associated Health Risks: Causes and Therapeutic Strategies. Metab. Syndr. Relat. Disord. 2015, 13, 423–444. [Google Scholar] [CrossRef]
  611. Lee, T.H.; Cheng, K.K.; Hoo, R.L.; Siu, P.M.; Yau, S. The Novel Perspectives of Adipokines on Brain Health. Int. J. Mol. Sci. 2019, 20, 5638. [Google Scholar] [CrossRef] [PubMed]
  612. Suyama, S.; Maekawa, F.; Maejima, Y.; Kubota, N.; Kadowaki, T.; Yada, T. Glucose Level Determines Excitatory or Inhibitory Effects of Adiponectin on Arcuate POMC Neuron Activity and Feeding. Sci. Rep. 2016, 6, 30796. [Google Scholar] [CrossRef] [PubMed]
  613. Brunner, L.; Nick, H.P.; Cumin, F.; Chiesi, M.; Baum, H.P.; Whitebread, S.; Stricker-Krongrad, A.; Levens, N. Leptin Is a Physiologically Important Regulator of Food Intake. Int. J. Obes. Relat. Metab. Disord. 1997, 21, 1152–1160. [Google Scholar] [CrossRef] [PubMed]
  614. Profenno, L.A.; Porsteinsson, A.P.; Faraone, S.V. Meta-Analysis of Alzheimer’s Disease Risk with Obesity, Diabetes, and Related Disorders. Biol. Psychiatry 2010, 67, 505–512. [Google Scholar] [CrossRef] [PubMed]
  615. Kim, R.; Jun, J.-S. Impact of Overweight and Obesity on Functional and Clinical Outcomes of Early Parkinson’s Disease. J. Am. Med. Dir. Assoc. 2020, 21, 697–700. [Google Scholar] [CrossRef]
  616. Chen, J.; Guan, Z.; Wang, L.; Song, G.; Ma, B.; Wang, Y. Meta-Analysis: Overweight, Obesity, and Parkinson’s Disease. Int. J. Endocrinol. 2014, 2014, 203930. [Google Scholar] [CrossRef]
  617. Huang, W.; Xiao, Y.; Zhang, L.; Liu, H. Association between a Body Shape Index and Parkinson’s Disease: A Large Cross-Sectional Study from NHANES. Heliyon 2024, 10, e26557. [Google Scholar] [CrossRef]
  618. Lutfullin, I.; Eveslage, M.; Bittner, S.; Antony, G.; Flaskamp, M.; Luessi, F.; Salmen, A.; Gisevius, B.; Klotz, L.; Korsukewitz, C.; et al. Association of Obesity with Disease Outcome in Multiple Sclerosis. J. Neurol. Neurosurg. Psychiatry 2023, 94, 57–61. [Google Scholar] [CrossRef]
  619. Hedström, A.K.; Hillert, J.; Olsson, T.; Alfredsson, L. Factors Affecting the Risk of Relapsing-Onset and Progressive-Onset Multiple Sclerosis. J. Neurol. Neurosurg. Psychiatry 2021, 92, 1096–1102. [Google Scholar] [CrossRef]
  620. Kueck, P.J.; Morris, J.K.; Stanford, J.A. Current Perspectives: Obesity and Neurodegeneration—Links and Risks. Degener. Neurol. Neuromuscul. Dis. 2023, 13, 111–129. [Google Scholar] [CrossRef]
  621. Buckman, L.B.; Hasty, A.H.; Flaherty, D.K.; Buckman, C.T.; Thompson, M.M.; Matlock, B.K.; Weller, K.; Ellacott, K.L.J. Obesity Induced by a High-Fat Diet Is Associated with Increased Immune Cell Entry into the Central Nervous System. Brain Behav. Immun. 2014, 35, 33–42. [Google Scholar] [CrossRef] [PubMed]
  622. Price, T.O.; Eranki, V.; Banks, W.A.; Ercal, N.; Shah, G.N. Topiramate Treatment Protects Blood-Brain Barrier Pericytes from Hyperglycemia-Induced Oxidative Damage in Diabetic Mice. Endocrinology 2012, 153, 362–372. [Google Scholar] [CrossRef] [PubMed]
  623. Evans, A.K.; Saw, N.L.; Woods, C.E.; Vidano, L.M.; Blumenfeld, S.; Lam, R.K.; Chu, E.K.; Reading, C.; Shamloo, M. Impact of High-Fat Diet on Cognitive Behavior and Central and Systemic Inflammation with Aging and Sex Differences in Mice. Brain Behav. Immun. 2024, 118, 334–354. [Google Scholar] [CrossRef] [PubMed]
  624. Salas-Venegas, V.; Santín-Márquez, R.; Ramírez-Carreto, R.J.; Rodríguez-Cortés, Y.M.; Cano-Martínez, A.; Luna-López, A.; Chavarría, A.; Konigsberg, M.; López-Díazguerrero, N.E. Chronic Consumption of a Hypercaloric Diet Increases Neuroinflammation and Brain Senescence, Promoting Cognitive Decline in Middle-Aged Female Wistar Rats. Front. Aging Neurosci. 2023, 15, 1162747. [Google Scholar] [CrossRef] [PubMed]
  625. Thaler, J.P.; Yi, C.-X.; Schur, E.A.; Guyenet, S.J.; Hwang, B.H.; Dietrich, M.O.; Zhao, X.; Sarruf, D.A.; Izgur, V.; Maravilla, K.R.; et al. Obesity Is Associated with Hypothalamic Injury in Rodents and Humans. J. Clin. Investig. 2012, 122, 153–162. [Google Scholar] [CrossRef]
  626. Baynat, L.; Yamamoto, T.; Tourdias, T.; Zhang, B.; Prevost, V.; Infante, A.; Klein, A.; Caid, J.; Cadart, O.; Dousset, V.; et al. Quantitative MRI Biomarkers Measure Changes in Targeted Brain Areas in Patients with Obesity. J. Clin. Endocrinol. Metab. 2024, 109, 1850–1857. [Google Scholar] [CrossRef]
  627. Lafrance, V.; Inoue, W.; Kan, B.; Luheshi, G.N. Leptin Modulates Cell Morphology and Cytokine Release in Microglia. Brain Behav. Immun. 2010, 24, 358–365. [Google Scholar] [CrossRef]
  628. Alexaki, V.I. The Impact of Obesity on Microglial Function: Immune, Metabolic and Endocrine Perspectives. Cells 2021, 10, 1584. [Google Scholar] [CrossRef]
  629. Aguilar-Valles, A.; Inoue, W.; Rummel, C.; Luheshi, G.N. Obesity, Adipokines and Neuroinflammation. Neuropharmacology 2015, 96, 124–134. [Google Scholar] [CrossRef]
  630. Valdearcos, M.; Douglass, J.D.; Robblee, M.M.; Dorfman, M.D.; Stifler, D.R.; Bennett, M.L.; Gerritse, I.; Fasnacht, R.; Barres, B.A.; Thaler, J.P.; et al. Microglial Inflammatory Signaling Orchestrates the Hypothalamic Immune Response to Dietary Excess and Mediates Obesity Susceptibility. Cell Metab. 2017, 26, 185–197.e3. [Google Scholar] [CrossRef]
  631. Yamaguchi, N.; Argueta, J.G.M.; Masuhiro, Y.; Kagishita, M.; Nonaka, K.; Saito, T.; Hanazawa, S.; Yamashita, Y. Adiponectin Inhibits Toll-like Receptor Family-Induced Signaling. FEBS Lett. 2005, 579, 6821–6826. [Google Scholar] [CrossRef] [PubMed]
  632. Nicolas, S.; Cazareth, J.; Zarif, H.; Guyon, A.; Heurteaux, C.; Chabry, J.; Petit-Paitel, A. Globular Adiponectin Limits Microglia Pro-Inflammatory Phenotype through an AdipoR1/NF-κB Signaling Pathway. Front. Cell Neurosci. 2017, 11, 352. [Google Scholar] [CrossRef] [PubMed]
  633. Chabry, J.; Nicolas, S.; Cazareth, J.; Murris, E.; Guyon, A.; Glaichenhaus, N.; Heurteaux, C.; Petit-Paitel, A. Enriched Environment Decreases Microglia and Brain Macrophages Inflammatory Phenotypes through Adiponectin-Dependent Mechanisms: Relevance to Depressive-like Behavior. Brain Behav. Immun. 2015, 50, 275–287. [Google Scholar] [CrossRef] [PubMed]
  634. Abdel-Haq, R.; Schlachetzki, J.C.M.; Glass, C.K.; Mazmanian, S.K. Microbiome–Microglia Connections via the Gut–Brain Axis. J. Exp. Med. 2019, 216, 41–59. [Google Scholar] [CrossRef]
  635. Diaz Heijtz, R.; Wang, S.; Anuar, F.; Qian, Y.; Björkholm, B.; Samuelsson, A.; Hibberd, M.L.; Forssberg, H.; Pettersson, S. Normal Gut Microbiota Modulates Brain Development and Behavior. Proc. Natl. Acad. Sci. USA 2011, 108, 3047–3052. [Google Scholar] [CrossRef]
  636. Erny, D.; Hrabě de Angelis, A.L.; Jaitin, D.; Wieghofer, P.; Staszewski, O.; David, E.; Keren-Shaul, H.; Mahlakoiv, T.; Jakobshagen, K.; Buch, T.; et al. Host Microbiota Constantly Control Maturation and Function of Microglia in the CNS. Nat. Neurosci. 2015, 18, 965–977. [Google Scholar] [CrossRef]
  637. Braniste, V.; Al-Asmakh, M.; Kowal, C.; Anuar, F.; Abbaspour, A.; Tóth, M.; Korecka, A.; Bakocevic, N.; Ng, L.G.; Kundu, P.; et al. The Gut Microbiota Influences Blood-Brain Barrier Permeability in Mice. Sci. Transl. Med. 2014, 6, 263ra158. [Google Scholar] [CrossRef]
  638. Deng, W.; Yi, P.; Xiong, Y.; Ying, J.; Lin, Y.; Dong, Y.; Wei, G.; Wang, X.; Hua, F. Gut Metabolites Acting on the Gut-Brain Axis: Regulating the Functional State of Microglia. Aging Dis. 2024, 15, 480–502. [Google Scholar] [CrossRef]
  639. Chunchai, T.; Thunapong, W.; Yasom, S.; Wanchai, K.; Eaimworawuthikul, S.; Metzler, G.; Lungkaphin, A.; Pongchaidecha, A.; Sirilun, S.; Chaiyasut, C.; et al. Decreased Microglial Activation through Gut-Brain Axis by Prebiotics, Probiotics, or Synbiotics Effectively Restored Cognitive Function in Obese-Insulin Resistant Rats. J. Neuroinflamm. 2018, 15, 11. [Google Scholar] [CrossRef]
  640. Wang, Y.; Rong, X.; Guan, H.; Ouyang, F.; Zhou, X.; Li, F.; Tan, X.; Li, D. The Potential Effects of Isoleucine Restricted Diet on Cognitive Impairment in High-Fat-Induced Obese Mice via Gut Microbiota-Brain Axis. Mol. Nutr. Food Res. 2023, 67, e2200767. [Google Scholar] [CrossRef]
  641. Chen, B.; de Launoit, E.; Renier, N.; Schneeberger, M. Central Myelin Dysfunction Bridges Obesity and Neurological Diseases. Trends Endocrinol. Metab. 2024, 35, 7–10. [Google Scholar] [CrossRef] [PubMed]
  642. O’Grady, J.P.; Dean III, D.C.; Yang, K.L.; Canda, C.-M.; Hoscheidt, S.M.; Starks, E.J.; Merluzzi, A.; Hurley, S.; Davenport, N.J.; Okonkwo, O.C.; et al. Elevated Insulin and Insulin Resistance Are Associated with Altered Myelin in Cognitively Unimpaired Middle-Aged Adults. Obesity 2019, 27, 1464–1471. [Google Scholar] [CrossRef] [PubMed]
  643. Buller, S.; Kohnke, S.; Hansford, R.; Shimizu, T.; Richardson, W.D.; Blouet, C. Median Eminence Myelin Continuously Turns over in Adult Mice. Mol. Metab. 2023, 69, 101690. [Google Scholar] [CrossRef] [PubMed]
  644. Kohnke, S.; Buller, S.; Nuzzaci, D.; Ridley, K.; Lam, B.; Pivonkova, H.; Bentsen, M.A.; Alonge, K.M.; Zhao, C.; Tadross, J.; et al. Nutritional Regulation of Oligodendrocyte Differentiation Regulates Perineuronal Net Remodeling in the Median Eminence. Cell Rep. 2021, 36, 109362. [Google Scholar] [CrossRef] [PubMed]
  645. Langley, M.R.; Yoon, H.; Kim, H.N.; Choi, C.-I.; Simon, W.; Kleppe, L.; Lanza, I.R.; LeBrasseur, N.K.; Matveyenko, A.; Scarisbrick, I.A. High Fat Diet Consumption Results in Mitochondrial Dysfunction, Oxidative Stress, and Oligodendrocyte Loss in the Central Nervous System. Biochim. Biophys. Acta Mol. Basis Dis. 2020, 1866, 165630. [Google Scholar] [CrossRef]
  646. Huang, H.-T.; Tsai, S.-F.; Wu, H.-T.; Huang, H.-Y.; Hsieh, H.-H.; Kuo, Y.-M.; Chen, P.-S.; Yang, C.-S.; Tzeng, S.-F. Chronic Exposure to High Fat Diet Triggers Myelin Disruption and Interleukin-33 Upregulation in Hypothalamus. BMC Neurosci. 2019, 20, 33. [Google Scholar] [CrossRef]
  647. Burzynska, A.Z.; Anderson, C.; Arciniegas, D.B.; Calhoun, V.; Choi, I.-Y.; Colmenares, A.M.; Hiner, G.; Kramer, A.F.; Li, K.; Lee, J.; et al. Metabolic Syndrome and Adiposity: Risk Factors for Decreased Myelin in Cognitively Healthy Adults. Cereb. Circ. Cogn. Behav. 2023, 5, 100180. [Google Scholar] [CrossRef]
  648. Bouhrara, M.; Khattar, N.; Elango, P.; Resnick, S.M.; Ferrucci, L.; Spencer, R.G. Evidence of Association between Obesity and Lower Cerebral Myelin Content in Cognitively Unimpaired Adults. Int. J. Obes. 2021, 45, 850–859. [Google Scholar] [CrossRef]
  649. Papageorgiou, I.; Astrakas, L.G.; Xydis, V.; Alexiou, G.A.; Bargiotas, P.; Tzarouchi, L.; Zikou, A.K.; Kiortsis, D.N.; Argyropoulou, M.I. Abnormalities of Brain Neural Circuits Related to Obesity: A Diffusion Tensor Imaging Study. Magn. Reson. Imaging 2017, 37, 116–121. [Google Scholar] [CrossRef]
  650. Repple, J.; Opel, N.; Meinert, S.; Redlich, R.; Hahn, T.; Winter, N.R.; Kaehler, C.; Emden, D.; Leenings, R.; Grotegerd, D.; et al. Elevated Body-Mass Index Is Associated with Reduced White Matter Integrity in Two Large Independent Cohorts. Psychoneuroendocrinology 2018, 91, 179–185. [Google Scholar] [CrossRef]
  651. Herrmann, M.J.; Tesar, A.-K.; Beier, J.; Berg, M.; Warrings, B. Grey Matter Alterations in Obesity: A Meta-Analysis of Whole-Brain Studies. Obes. Rev. 2019, 20, 464–471. [Google Scholar] [CrossRef] [PubMed]
  652. Raji, C.A.; Ho, A.J.; Parikshak, N.N.; Becker, J.T.; Lopez, O.L.; Kuller, L.H.; Hua, X.; Leow, A.D.; Toga, A.W.; Thompson, P.M. Brain Structure and Obesity. Hum. Brain Mapp. 2010, 31, 353–364. [Google Scholar] [CrossRef] [PubMed]
  653. Gustafson, D.; Lissner, L.; Bengtsson, C.; Björkelund, C.; Skoog, I. A 24-Year Follow-up of Body Mass Index and Cerebral Atrophy. Neurology 2004, 63, 1876–1881. [Google Scholar] [CrossRef] [PubMed]
  654. Ward, M.A.; Carlsson, C.M.; Trivedi, M.A.; Sager, M.A.; Johnson, S.C. The Effect of Body Mass Index on Global Brain Volume in Middle-Aged Adults: A Cross Sectional Study. BMC Neurol. 2005, 5, 23. [Google Scholar] [CrossRef] [PubMed]
  655. Veit, R.; Kullmann, S.; Heni, M.; Machann, J.; Häring, H.-U.; Fritsche, A.; Preissl, H. Reduced Cortical Thickness Associated with Visceral Fat and BMI. Neuroimage Clin. 2014, 6, 307–311. [Google Scholar] [CrossRef]
  656. Knight, S.P.; Laird, E.; Williamson, W.; O’Connor, J.; Newman, L.; Carey, D.; De Looze, C.; Fagan, A.J.; Chappell, M.A.; Meaney, J.F.; et al. Obesity Is Associated with Reduced Cerebral Blood Flow—Modified by Physical Activity. Neurobiol. Aging 2021, 105, 35–47. [Google Scholar] [CrossRef]
  657. Képes, Z.; Nagy, F.; Budai, Á.; Barna, S.; Esze, R.; Somodi, S.; Káplár, M.; Garai, I.; Varga, J. Age, BMI and Diabetes as Independent Predictors of Brain Hypoperfusion. Nucl. Med. Rev. Cent. East. Eur. 2021, 24, 11–15. [Google Scholar] [CrossRef]
  658. Ishibashi, K.; Onishi, A.; Fujiwara, Y.; Ishiwata, K.; Ishii, K. Relationship between Alzheimer Disease-like Pattern of 18F-FDG and Fasting Plasma Glucose Levels in Cognitively Normal Volunteers. J. Nucl. Med. 2015, 56, 229–233. [Google Scholar] [CrossRef]
  659. Hou, W.; Xian, Y.; Zhang, L.; Lai, H.; Hou, X.; Xu, Y.; Yu, T.; Xu, F.; Song, J.; Fu, C.; et al. Influence of Blood Glucose on the Expression of Glucose Transporter Proteins 1 and 3 in the Brain of Diabetic Rats. Chin. Med. J. 2007, 120, 1704. [Google Scholar] [CrossRef]
  660. Leão, L.L.; Tangen, G.; Barca, M.L.; Engedal, K.; Santos, S.H.S.; Machado, F.S.M.; de Paula, A.M.B.; Monteiro-Junior, R.S. Does Hyperglycemia Downregulate Glucose Transporters in the Brain? Med. Hypotheses 2020, 139, 109614. [Google Scholar] [CrossRef]
  661. Rebelos, E.; Bucci, M.; Karjalainen, T.; Oikonen, V.; Bertoldo, A.; Hannukainen, J.C.; Virtanen, K.A.; Latva-Rasku, A.; Hirvonen, J.; Heinonen, I.; et al. Insulin Resistance Is Associated with Enhanced Brain Glucose Uptake During Euglycemic Hyperinsulinemia: A Large-Scale PET Cohort. Diabetes Care 2021, 44, 788–794. [Google Scholar] [CrossRef] [PubMed]
  662. Boersma, G.J.; Johansson, E.; Pereira, M.J.; Heurling, K.; Skrtic, S.; Lau, J.; Katsogiannos, P.; Panagiotou, G.; Lubberink, M.; Kullberg, J.; et al. Altered Glucose Uptake in Muscle, Visceral Adipose Tissue, and Brain Predict Whole-Body Insulin Resistance and May Contribute to the Development of Type 2 Diabetes: A Combined PET/MR Study. Horm. Metab. Res. 2018, 50, 627–639. [Google Scholar] [CrossRef] [PubMed]
  663. García-Cáceres, C.; Quarta, C.; Varela, L.; Gao, Y.; Gruber, T.; Legutko, B.; Jastroch, M.; Johansson, P.; Ninkovic, J.; Yi, C.-X.; et al. Astrocytic Insulin Signaling Couples Brain Glucose Uptake with Nutrient Availability. Cell 2016, 166, 867–880. [Google Scholar] [CrossRef] [PubMed]
  664. Unger, J.; McNeill, T.H.; Moxley, R.T.; White, M.; Moss, A.; Livingston, J.N. Distribution of Insulin Receptor-like Immunoreactivity in the Rat Forebrain. Neuroscience 1989, 31, 143–157. [Google Scholar] [CrossRef] [PubMed]
  665. Havrankova, J.; Roth, J.; Brownstein, M. Insulin Receptors Are Widely Distributed in the Central Nervous System of the Rat. Nature 1978, 272, 827–829. [Google Scholar] [CrossRef]
  666. Banks, W.A.; DiPalma, C.R.; Farrell, C.L. Impaired Transport of Leptin across the Blood-Brain Barrier in Obesity. Peptides 1999, 20, 1341–1345. [Google Scholar] [CrossRef]
  667. Banks, W.A.; Owen, J.B.; Erickson, M.A. Insulin in the Brain: There and Back Again. Pharmacol. Ther. 2012, 136, 82–93. [Google Scholar] [CrossRef]
  668. Banks, W.A.; Farrell, C.L. Impaired Transport of Leptin across the Blood-Brain Barrier in Obesity Is Acquired and Reversible. Am. J. Physiol. Endocrinol. Metab. 2003, 285, E10–E15. [Google Scholar] [CrossRef]
  669. Heni, M.; Schöpfer, P.; Peter, A.; Sartorius, T.; Fritsche, A.; Synofzik, M.; Häring, H.-U.; Maetzler, W.; Hennige, A.M. Evidence for Altered Transport of Insulin across the Blood-Brain Barrier in Insulin-Resistant Humans. Acta Diabetol. 2014, 51, 679–681. [Google Scholar] [CrossRef]
  670. Kanakalatha, R.S.; Thekkuveettil, A. Insulin Signaling in Dopaminergic Neurons Regulates Extended Memory Formation in Caenorhabditis Elegans. J. Neurosci. Res. 2024, 102, e25260. [Google Scholar] [CrossRef]
  671. Kamal, A.; Ramakers, G.M.J.; Gispen, W.H.; Biessels, G.J. Hyperinsulinemia in Rats Causes Impairment of Spatial Memory and Learning with Defects in Hippocampal Synaptic Plasticity by Involvement of Postsynaptic Mechanisms. Exp. Brain Res. 2013, 226, 45–51. [Google Scholar] [CrossRef] [PubMed]
  672. Spinelli, M.; Fusco, S.; Grassi, C. Brain Insulin Resistance Impairs Hippocampal Plasticity. Vitam. Horm. 2020, 114, 281–306. [Google Scholar] [CrossRef] [PubMed]
  673. Morris, J.K.; Vidoni, E.D.; Perea, R.D.; Rada, R.; Johnson, D.K.; Lyons, K.; Pahwa, R.; Burns, J.M.; Honea, R.A. Insulin Resistance and Gray Matter Volume in Neurodegenerative Disease. Neuroscience 2014, 270, 139–147. [Google Scholar] [CrossRef] [PubMed]
  674. Zhang, D.; Guo, M.; Zhang, W.; Lu, X.-Y. Adiponectin Stimulates Proliferation of Adult Hippocampal Neural Stem/Progenitor Cells through Activation of P38 Mitogen-Activated Protein Kinase (p38MAPK)/Glycogen Synthase Kinase 3β (GSK-3β)/β-Catenin Signaling Cascade *. J. Biol. Chem. 2011, 286, 44913–44920. [Google Scholar] [CrossRef]
  675. Guo, Z.; Jiang, H.; Xu, X.; Duan, W.; Mattson, M.P. Leptin-Mediated Cell Survival Signaling in Hippocampal Neurons Mediated by JAK STAT3 and Mitochondrial Stabilization. J. Biol. Chem. 2008, 283, 1754–1763. [Google Scholar] [CrossRef]
  676. Li, X.-L.; Aou, S.; Oomura, Y.; Hori, N.; Fukunaga, K.; Hori, T. Impairment of Long-Term Potentiation and Spatial Memory in Leptin Receptor-Deficient Rodents. Neuroscience 2002, 113, 607–615. [Google Scholar] [CrossRef]
  677. Wang, M.; Jo, J.; Song, J. Adiponectin Improves Long-Term Potentiation in the 5XFAD Mouse Brain. Sci. Rep. 2019, 9, 8918. [Google Scholar] [CrossRef]
  678. Garza, J.C.; Guo, M.; Zhang, W.; Lu, X.-Y. Leptin Increases Adult Hippocampal Neurogenesis in Vivo and in Vitro. J. Biol. Chem. 2008, 283, 18238–18247. [Google Scholar] [CrossRef]
  679. Burguera, B.; Couce, M.E.; Long, J.; Lamsam, J.; Laakso, K.; Jensen, M.D.; Parisi, J.E.; Lloyd, R.V. The Long Form of the Leptin Receptor (OB-Rb) Is Widely Expressed in the Human Brain. Neuroendocrinology 2000, 71, 187–195. [Google Scholar] [CrossRef]
  680. Funahashi, H.; Yada, T.; Suzuki, R.; Shioda, S. Distribution, Function, and Properties of Leptin Receptors in the Brain. Int. Rev. Cytol. 2003, 224, 1–27. [Google Scholar] [CrossRef]
  681. Zhou, Y.; Rui, L. Leptin Signaling and Leptin Resistance. Front. Med. 2013, 7, 207–222. [Google Scholar] [CrossRef] [PubMed]
  682. Knight, Z.A.; Hannan, K.S.; Greenberg, M.L.; Friedman, J.M. Hyperleptinemia Is Required for the Development of Leptin Resistance. PLoS ONE 2010, 5, e11376. [Google Scholar] [CrossRef] [PubMed]
  683. Arita, Y.; Kihara, S.; Ouchi, N.; Takahashi, M.; Maeda, K.; Miyagawa, J.; Hotta, K.; Shimomura, I.; Nakamura, T.; Miyaoka, K.; et al. Paradoxical Decrease of an Adipose-Specific Protein, Adiponectin, in Obesity. Biochem. Biophys. Res. Commun. 1999, 257, 79–83. [Google Scholar] [CrossRef] [PubMed]
  684. Caro, J.F.; Kolaczynski, J.W.; Nyce, M.R.; Ohannesian, J.P.; Opentanova, I.; Goldman, W.H.; Lynn, R.B.; Zhang, P.L.; Sinha, M.K.; Considine, R.V. Decreased Cerebrospinal-Fluid/Serum Leptin Ratio in Obesity: A Possible Mechanism for Leptin Resistance. Lancet 1996, 348, 159–161. [Google Scholar] [CrossRef] [PubMed]
  685. Waragai, M.; Adame, A.; Trinh, I.; Sekiyama, K.; Takamatsu, Y.; Une, K.; Masliah, E.; Hashimoto, M. Possible Involvement of Adiponectin, the Anti-Diabetes Molecule, in the Pathogenesis of Alzheimer’s Disease. J. Alzheimers Dis. 2016, 52, 1453–1459. [Google Scholar] [CrossRef]
  686. Maioli, S.; Lodeiro, M.; Merino-Serrais, P.; Falahati, F.; Khan, W.; Puerta, E.; Codita, A.; Rimondini, R.; Ramirez, M.J.; Simmons, A.; et al. Alterations in Brain Leptin Signalling in Spite of Unchanged CSF Leptin Levels in Alzheimer’s Disease. Aging Cell 2015, 14, 122–129. [Google Scholar] [CrossRef]
  687. Forny-Germano, L.; De Felice, F.G.; Vieira, M.N. do N. The Role of Leptin and Adiponectin in Obesity-Associated Cognitive Decline and Alzheimer’s Disease. Front. Neurosci. 2019, 12, 1027. [Google Scholar] [CrossRef]
  688. Tasnim, N.; Khan, N.; Gupta, A.; Neupane, P.; Mehta, A.; Shah, S.A.; Dey, R.C. Exploring the Effects of Adiponectin and Leptin in Correlating Obesity with Cognitive Decline: A Systematic Review. Ann. Med. Surg. 2023, 85, 2906–2915. [Google Scholar] [CrossRef]
  689. Wennberg, A.M.V.; Gustafson, D.; Hagen, C.E.; Roberts, R.O.; Knopman, D.; Jack, C.; Petersen, R.C.; Mielke, M.M. Serum Adiponectin Levels, Neuroimaging, and Cognition in the Mayo Clinic Study of Aging. J. Alzheimers Dis. 2016, 53, 573–581. [Google Scholar] [CrossRef]
  690. Cavaliere, G.; Trinchese, G.; Penna, E.; Cimmino, F.; Pirozzi, C.; Lama, A.; Annunziata, C.; Catapano, A.; Mattace Raso, G.; Meli, R.; et al. High-Fat Diet Induces Neuroinflammation and Mitochondrial Impairment in Mice Cerebral Cortex and Synaptic Fraction. Front. Cell. Neurosci. 2019, 13, 509. [Google Scholar] [CrossRef]
  691. Liu, Z.; Patil, I.Y.; Jiang, T.; Sancheti, H.; Walsh, J.P.; Stiles, B.L.; Yin, F.; Cadenas, E. High-Fat Diet Induces Hepatic Insulin Resistance and Impairment of Synaptic Plasticity. PLoS ONE 2015, 10, e0128274. [Google Scholar] [CrossRef] [PubMed]
  692. Hedström, A.K.; Olsson, T.; Alfredsson, L. Body Mass Index during Adolescence, Rather than Childhood, Is Critical in Determining MS Risk. Mult. Scler. 2016, 22, 878–883. [Google Scholar] [CrossRef] [PubMed]
  693. Hedström, A.K.; Brenner, N.; Butt, J.; Hillert, J.; Waterboer, T.; Olsson, T.; Alfredsson, L. Overweight/Obesity in Young Adulthood Interacts with Aspects of EBV Infection in MS Etiology. Neurol. Neuroimmunol. Neuroinflamm. 2021, 8, e912. [Google Scholar] [CrossRef] [PubMed]
  694. Høglund, R.A.A.; Meyer, H.E.; Stigum, H.; Torkildsen, Ø.; Grytten, N.; Holmøy, T.; Nakken, O. Association of Body Mass Index in Adolescence and Young Adulthood and Long-Term Risk of Multiple Sclerosis: A Population-Based Study. Neurology 2021, 97, e2253–e2261. [Google Scholar] [CrossRef] [PubMed]
  695. Van Hijfte, L.; Loret, G.; Bachmann, H.; Reynders, T.; Breuls, M.; Deschepper, E.; Kuhle, J.; Willekens, B.; Laureys, G. Lifestyle Factors in Multiple Sclerosis Disability Progression and Silent Brain Damage: A Cross-Sectional Study. Mult. Scler. Relat. Disord. 2022, 65, 104016. [Google Scholar] [CrossRef]
  696. Owji, M.; Ashraf-Ganjouei, A.; Sahraian, M.A.; Bidadian, M.; Ghadiri, F.; Naser Moghadasi, A. The Relationship between Cognitive Function and Body Mass Index in Multiple Sclerosis Patients. Mult. Scler. Relat. Disord. 2019, 32, 37–40. [Google Scholar] [CrossRef]
  697. Mowry, E.M.; Azevedo, C.J.; McCulloch, C.E.; Okuda, D.T.; Lincoln, R.R.; Waubant, E.; Hauser, S.L.; Pelletier, D. Body Mass Index, but Not Vitamin D Status, Is Associated with Brain Volume Change in MS. Neurology 2018, 91, e2256–e2264. [Google Scholar] [CrossRef]
  698. Manuel Escobar, J.; Cortese, M.; Edan, G.; Freedman, M.S.; Hartung, H.-P.; Montalbán, X.; Sandbrink, R.; Radü, E.-W.; Barkhof, F.; Wicklein, E.-M.; et al. Body Mass Index as a Predictor of MS Activity and Progression among Participants in BENEFIT. Mult. Scler. 2022, 28, 1277–1285. [Google Scholar] [CrossRef]
  699. Huppke, B.; Ellenberger, D.; Hummel, H.; Stark, W.; Röbl, M.; Gärtner, J.; Huppke, P. Association of Obesity with Multiple Sclerosis Risk and Response to First-Line Disease Modifying Drugs in Children. JAMA Neurol. 2019, 76, 1157–1165. [Google Scholar] [CrossRef]
  700. Fitzgerald, K.C.; Salter, A.; Tyry, T.; Fox, R.J.; Cutter, G.; Marrie, R.A. Measures of General and Abdominal Obesity and Disability Severity in a Large Population of People with Multiple Sclerosis. Mult. Scler. 2020, 26, 976–986. [Google Scholar] [CrossRef]
  701. Tettey, P.; Simpson, S.; Taylor, B.; Ponsonby, A.-L.; Lucas, R.M.; Dwyer, T.; Kostner, K.; AUSLONG investigators group; van der Mei, I.A. An Adverse Lipid Profile and Increased Levels of Adiposity Significantly Predict Clinical Course after a First Demyelinating Event. J. Neurol. Neurosurg. Psychiatry 2017, 88, 395–401. [Google Scholar] [CrossRef] [PubMed]
  702. Aljehani, M.N.; Alshehri, Z.I.; Alharbi, F.A.; Balbaid, Y.T.; Wali, A.M.; Alotaibi, A.A. Association Between Body Mass Index and Response to Disease-Modifying Therapies in Patients with Relapsing-Remitting Multiple Sclerosis at King Abdulaziz University Hospital: A Retrospective Study. Cureus 2022, 14, e32695. [Google Scholar] [CrossRef] [PubMed]
  703. Hedström, A.K.; Stenberg, E.; Spelman, T.; Forsberg, L.; Näslund, E.; Hillert, J. The Impact of Bariatric Surgery on Disease Activity and Progression of Multiple Sclerosis: A Nationwide Matched Cohort Study. Mult. Scler. 2022, 28, 2099–2105. [Google Scholar] [CrossRef] [PubMed]
  704. Wu, J.; Olsson, T.; Hillert, J.; Alfredsson, L.; Hedström, A.K. MSMilan2023—Oral Presentations: O110/1452—Obesity Negatively Affects Disease Progression, Cognitive Functioning, and Quality of Life in People with Multiple Sclerosis. Mult. Scler. 2023, 29, 4–136. [Google Scholar] [CrossRef]
  705. Jakimovski, D.; Gandhi, S.; Paunkoski, I.; Bergsland, N.; Hagemeier, J.; Ramasamy, D.P.; Hojnacki, D.; Kolb, C.; Benedict, R.H.B.; Weinstock-Guttman, B.; et al. Hypertension and Heart Disease Are Associated with Development of Brain Atrophy in Multiple Sclerosis: A 5-Year Longitudinal Study. Eur. J. Neurol. 2019, 26, 87-e8. [Google Scholar] [CrossRef]
  706. Galioto, R.; Berenholz, O.; Wang, Z.; Conway, D.S.; Planchon, S.M.; Rao, S.M. Does Obesity Exacerbate Brain Lesion Volume and Atrophy in Patients with Multiple Sclerosis? Mult. Scler. Relat. Disord. 2020, 46, 102502. [Google Scholar] [CrossRef]
  707. Koch, M.W.; Mostert, J.; Repovic, P.; Bowen, J.D.; Strijbis, E.; Uitdehaag, B.; Cutter, G. Smoking, Obesity, and Disability Worsening in PPMS: An Analysis of the INFORMS Original Trial Dataset. J. Neurol. 2022, 269, 1663–1669. [Google Scholar] [CrossRef]
  708. Stampanoni Bassi, M.; Iezzi, E.; Buttari, F.; Gilio, L.; Simonelli, I.; Carbone, F.; Micillo, T.; De Rosa, V.; Sica, F.; Furlan, R.; et al. Obesity Worsens Central Inflammation and Disability in Multiple Sclerosis. Mult. Scler. 2020, 26, 1237–1246. [Google Scholar] [CrossRef]
  709. Davanzo, G.G.; Castro, G.; de Brito Monteiro, L.; Castelucci, B.G.; Jaccomo, V.H.; da Silva, F.C.; Marques, A.M.; Francelin, C.; de Campos, B.B.; de Aguiar, C.F.; et al. Obesity Increases Blood-Brain Barrier Permeability and Aggravates the Mouse Model of Multiple Sclerosis. Mult. Scler. Relat. Disord. 2023, 72, 104605. [Google Scholar] [CrossRef]
  710. Timmermans, S.; Bogie, J.F.J.; Vanmierlo, T.; Lütjohann, D.; Stinissen, P.; Hellings, N.; Hendriks, J.J.A. High Fat Diet Exacerbates Neuroinflammation in an Animal Model of Multiple Sclerosis by Activation of the Renin Angiotensin System. J. Neuroimmune Pharmacol. 2014, 9, 209–217. [Google Scholar] [CrossRef]
  711. Oliveira, S.R.; Simão, A.N.C.; Kallaur, A.P.; de Almeida, E.R.D.; Morimoto, H.K.; Lopes, J.; Dichi, I.; Kaimen-Maciel, D.R.; Reiche, E.M.V. Disability in Patients with Multiple Sclerosis: Influence of Insulin Resistance, Adiposity, and Oxidative Stress. Nutrition 2014, 30, 268–273. [Google Scholar] [CrossRef] [PubMed]
  712. Shahi, S.K.; Ghimire, S.; Lehman, P.; Mangalam, A.K. Obesity Induced Gut Dysbiosis Contributes to Disease Severity in an Animal Model of Multiple Sclerosis. Front. Immunol. 2022, 13, 966417. [Google Scholar] [CrossRef] [PubMed]
  713. Ji, Z.; Wu, S.; Xu, Y.; Qi, J.; Su, X.; Shen, L. Obesity Promotes EAE Through IL-6 and CCL-2-Mediated T Cells Infiltration. Front. Immunol. 2019, 10, 1881. [Google Scholar] [CrossRef] [PubMed]
  714. Zarini, D.; Pasbakhsh, P.; Nekoonam, S.; Mojaverrostami, S.; Ghasemi, S.; Shabani, M.; Kashani, I.R. Protective Features of Calorie Restriction on Cuprizone-Induced Demyelination via Modulating Microglial Phenotype. J. Chem. Neuroanat. 2021, 116, 102013. [Google Scholar] [CrossRef] [PubMed]
  715. Matarese, G.; Di Giacomo, A.; Sanna, V.; Lord, G.M.; Howard, J.K.; Di Tuoro, A.; Bloom, S.R.; Lechler, R.I.; Zappacosta, S.; Fontana, S. Requirement for Leptin in the Induction and Progression of Autoimmune Encephalomyelitis. J. Immunol. 2001, 166, 5909–5916. [Google Scholar] [CrossRef]
  716. Sanna, V.; Di Giacomo, A.; La Cava, A.; Lechler, R.I.; Fontana, S.; Zappacosta, S.; Matarese, G. Leptin Surge Precedes Onset of Autoimmune Encephalomyelitis and Correlates with Development of Pathogenic T Cell Responses. J. Clin. Investig. 2003, 111, 241–250. [Google Scholar] [CrossRef]
  717. Piccio, L.; Cantoni, C.; Henderson, J.G.; Hawiger, D.; Ramsbottom, M.; Mikesell, R.; Ryu, J.; Hsieh, C.-S.; Cremasco, V.; Haynes, W.; et al. Lack of Adiponectin Leads to Increased Lymphocyte Activation and Increased Disease Severity in a Mouse Model of Multiple Sclerosis. Eur. J. Immunol. 2013, 43, 2089–2100. [Google Scholar] [CrossRef]
  718. Frisullo, G.; Mirabella, M.; Angelucci, F.; Caggiula, M.; Morosetti, R.; Sancricca, C.; Patanella, A.K.; Nociti, V.; Iorio, R.; Bianco, A.; et al. The Effect of Disease Activity on Leptin, Leptin Receptor and Suppressor of Cytokine Signalling-3 Expression in Relapsing-Remitting Multiple Sclerosis. J. Neuroimmunol. 2007, 192, 174–183. [Google Scholar] [CrossRef]
  719. Matarese, G.; Carrieri, P.B.; La Cava, A.; Perna, F.; Sanna, V.; De Rosa, V.; Aufiero, D.; Fontana, S.; Zappacosta, S. Leptin Increase in Multiple Sclerosis Associates with Reduced Number of CD4+CD25+ Regulatory T Cells. Proc. Natl. Acad. Sci. USA 2005, 102, 5150–5155. [Google Scholar] [CrossRef]
  720. Marrodan, M.; Farez, M.F.; Balbuena Aguirre, M.E.; Correale, J. Obesity and the Risk of Multiple Sclerosis. The Role of Leptin. Ann. Clin. Transl. Neurol. 2021, 8, 406–424. [Google Scholar] [CrossRef]
  721. Lock, C.; Hermans, G.; Pedotti, R.; Brendolan, A.; Schadt, E.; Garren, H.; Langer-Gould, A.; Strober, S.; Cannella, B.; Allard, J.; et al. Gene-Microarray Analysis of Multiple Sclerosis Lesions Yields New Targets Validated in Autoimmune Encephalomyelitis. Nat. Med. 2002, 8, 500–508. [Google Scholar] [CrossRef] [PubMed]
  722. Whitmer, R.A.; Gustafson, D.R.; Barrett-Connor, E.; Haan, M.N.; Gunderson, E.P.; Yaffe, K. Central Obesity and Increased Risk of Dementia More than Three Decades Later. Neurology 2008, 71, 1057–1064. [Google Scholar] [CrossRef] [PubMed]
  723. Whitmer, R.A.; Gunderson, E.P.; Barrett-Connor, E.; Quesenberry, C.P.; Yaffe, K. Obesity in Middle Age and Future Risk of Dementia: A 27 Year Longitudinal Population Based Study. BMJ 2005, 330, 1360. [Google Scholar] [CrossRef] [PubMed]
  724. Beydoun, M.A.; Beydoun, H.; Wang, Y. Obesity and Central Obesity as Risk Factors for Incident Dementia and Its Sub-Types: A Systematic Review and Meta-Analysis. Obes. Rev. 2008, 9, 204–218. [Google Scholar] [CrossRef]
  725. Hughes, T.F.; Borenstein, A.R.; Schofield, E.; Wu, Y.; Larson, E.B. Association between Late-Life Body Mass Index and Dementia: The Kame Project. Neurology 2009, 72, 1741–1746. [Google Scholar] [CrossRef]
  726. Kim, S.; Kim, Y.; Park, S.M. Body Mass Index and Decline of Cognitive Function. PLoS ONE 2016, 11, e0148908. [Google Scholar] [CrossRef]
  727. Velazquez, R.; Tran, A.; Ishimwe, E.; Denner, L.; Dave, N.; Oddo, S.; Dineley, K.T. Central Insulin Dysregulation and Energy Dyshomeostasis in Two Mouse Models of Alzheimer’s Disease. Neurobiol. Aging 2017, 58, 1–13. [Google Scholar] [CrossRef]
  728. Sah, S.K.; Lee, C.; Jang, J.-H.; Park, G.H. Effect of High-Fat Diet on Cognitive Impairment in Triple-Transgenic Mice Model of Alzheimer’s Disease. Biochem. Biophys. Res. Commun. 2017, 493, 731–736. [Google Scholar] [CrossRef]
  729. Thériault, P.; ElAli, A.; Rivest, S. High Fat Diet Exacerbates Alzheimer’s Disease-Related Pathology in APPswe/PS1 Mice. Oncotarget 2016, 7, 67808–67827. [Google Scholar] [CrossRef]
  730. Kothari, V.; Luo, Y.; Tornabene, T.; O’Neill, A.M.; Greene, M.W.; Geetha, T.; Babu, J.R. High Fat Diet Induces Brain Insulin Resistance and Cognitive Impairment in Mice. Biochim. Biophys. Acta Mol. Basis Dis. 2017, 1863, 499–508. [Google Scholar] [CrossRef]
  731. Ledreux, A.; Wang, X.; Schultzberg, M.; Granholm, A.-C.; Freeman, L.R. Detrimental Effects of a High Fat/High Cholesterol Diet on Memory and Hippocampal Markers in Aged Rats. Behav. Brain Res. 2016, 312, 294–304. [Google Scholar] [CrossRef] [PubMed]
  732. Mengr, A.; Strnadová, V.; Strnad, Š.; Vrkoslav, V.; Pelantová, H.; Kuzma, M.; Comptdaer, T.; Železná, B.; Kuneš, J.; Galas, M.-C.; et al. Feeding High-Fat Diet Accelerates Development of Peripheral and Central Insulin Resistance and Inflammation and Worsens AD-like Pathology in APP/PS1 Mice. Nutrients 2023, 15, 3690. [Google Scholar] [CrossRef] [PubMed]
  733. Nuzzo, D.; Picone, P.; Baldassano, S.; Caruana, L.; Messina, E.; Marino Gammazza, A.; Cappello, F.; Mulè, F.; Di Carlo, M. Insulin Resistance as Common Molecular Denominator Linking Obesity to Alzheimer’s Disease. Curr. Alzheimer Res. 2015, 12, 723–735. [Google Scholar] [CrossRef] [PubMed]
  734. Knight, E.M.; Martins, I.V.A.; Gümüsgöz, S.; Allan, S.M.; Lawrence, C.B. High-Fat Diet-Induced Memory Impairment in Triple-Transgenic Alzheimer’s Disease (3xTgAD) Mice Is Independent of Changes in Amyloid and Tau Pathology. Neurobiol. Aging 2014, 35, 1821–1832. [Google Scholar] [CrossRef]
  735. Cisternas, P.; Gherardelli, C.; Gutierrez, J.; Salazar, P.; Mendez-Orellana, C.; Wong, G.W.; Inestrosa, N.C. Adiponectin and Resistin Modulate the Progression of Alzheimer’s Disease in a Metabolic Syndrome Model. Front. Endocrinol. 2023, 14, 1237796. [Google Scholar] [CrossRef]
  736. Hascup, E.R.; Broderick, S.O.; Russell, M.K.; Fang, Y.; Bartke, A.; Boger, H.A.; Hascup, K.N. Diet-Induced Insulin Resistance Elevates Hippocampal Glutamate as Well as VGLUT1 and GFAP Expression in AβPP/PS1 Mice. J. Neurochem. 2019, 148, 219–237. [Google Scholar] [CrossRef]
  737. Busquets, O.; Ettcheto, M.; Pallàs, M.; Beas-Zarate, C.; Verdaguer, E.; Auladell, C.; Folch, J.; Camins, A. Long-Term Exposition to a High Fat Diet Favors the Appearance of β-Amyloid Depositions in the Brain of C57BL/6J Mice. A Potential Model of Sporadic Alzheimer’s Disease. Mech. Ageing Dev. 2017, 162, 38–45. [Google Scholar] [CrossRef]
  738. van Gils, V.; Rizzo, M.; Côté, J.; Viechtbauer, W.; Fanelli, G.; Salas-Salvadó, J.; Wimberley, T.; Bulló, M.; Fernandez-Aranda, F.; Dalsgaard, S.; et al. The Association of Glucose Metabolism Measures and Diabetes Status with Alzheimer’s Disease Biomarkers of Amyloid and Tau: A Systematic Review and Meta-Analysis. Neurosci. Biobehav. Rev. 2024, 159, 105604. [Google Scholar] [CrossRef]
  739. Kim, B.; Kang, Y.-T.; Mendelson, F.E.; Hayes, J.M.; Savelieff, M.G.; Nagrath, S.; Feldman, E.L. Palmitate and Glucose Increase Amyloid Precursor Protein in Extracellular Vesicles: Missing Link between Metabolic Syndrome and Alzheimer’s Disease. J. Extracell. Vesicles 2023, 12, e12340. [Google Scholar] [CrossRef]
  740. Jang, Y.J.; Choi, M.G.; Yoo, B.J.; Lee, K.J.; Jung, W.B.; Kim, S.-G.; Park, S.A. Interaction Between a High-Fat Diet and Tau Pathology in Mice: Implications for Alzheimer’s Disease. J. Alzheimers Dis. 2024, 97, 485–506. [Google Scholar] [CrossRef]
  741. Willette, A.A.; Johnson, S.C.; Birdsill, A.; Sager, M.A.; Christian, B.; Baker, L.D.; Craft, S.; Oh, J.; Statz, E.; Hermann, B.P.; et al. Insulin Resistance Predicts Brain Amyloid Deposition in Late Middle-Aged Adults. Alzheimers Dement. 2015, 11, 504–510.e1. [Google Scholar] [CrossRef] [PubMed]
  742. Gasparini, L.; Gouras, G.K.; Wang, R.; Gross, R.S.; Beal, M.F.; Greengard, P.; Xu, H. Stimulation of Beta-Amyloid Precursor Protein Trafficking by Insulin Reduces Intraneuronal Beta-Amyloid and Requires Mitogen-Activated Protein Kinase Signaling. J. Neurosci. 2001, 21, 2561–2570. [Google Scholar] [CrossRef] [PubMed]
  743. Qiu, W.Q.; Walsh, D.M.; Ye, Z.; Vekrellis, K.; Zhang, J.; Podlisny, M.B.; Rosner, M.R.; Safavi, A.; Hersh, L.B.; Selkoe, D.J. Insulin-Degrading Enzyme Regulates Extracellular Levels of Amyloid Beta-Protein by Degradation. J. Biol. Chem. 1998, 273, 32730–32738. [Google Scholar] [CrossRef] [PubMed]
  744. Xie, L.; Helmerhorst, E.; Taddei, K.; Plewright, B.; Van Bronswijk, W.; Martins, R. Alzheimer’s Beta-Amyloid Peptides Compete for Insulin Binding to the Insulin Receptor. J. Neurosci. 2002, 22, RC221. [Google Scholar] [CrossRef] [PubMed]
  745. Luchsinger, J.A.; Tang, M.-X.; Shea, S.; Mayeux, R. Hyperinsulinemia and Risk of Alzheimer Disease. Neurology 2004, 63, 1187–1192. [Google Scholar] [CrossRef]
  746. Zhao, W.-Q.; De Felice, F.G.; Fernandez, S.; Chen, H.; Lambert, M.P.; Quon, M.J.; Krafft, G.A.; Klein, W.L. Amyloid Beta Oligomers Induce Impairment of Neuronal Insulin Receptors. FASEB J. 2008, 22, 246–260. [Google Scholar] [CrossRef]
  747. Talbot, K.; Wang, H.-Y.; Kazi, H.; Han, L.-Y.; Bakshi, K.P.; Stucky, A.; Fuino, R.L.; Kawaguchi, K.R.; Samoyedny, A.J.; Wilson, R.S.; et al. Demonstrated Brain Insulin Resistance in Alzheimer’s Disease Patients Is Associated with IGF-1 Resistance, IRS-1 Dysregulation, and Cognitive Decline. J. Clin. Investig. 2012, 122, 1316–1338. [Google Scholar] [CrossRef]
  748. Qu, Z.-S.; Li, L.; Sun, X.-J.; Zhao, Y.-W.; Zhang, J.; Geng, Z.; Fu, J.-L.; Ren, Q.-G. Glycogen Synthase Kinase-3 Regulates Production of Amyloid-β Peptides and Tau Phosphorylation in Diabetic Rat Brain. Sci. World J. 2014, 2014, 878123. [Google Scholar] [CrossRef]
  749. Salkovic-Petrisic, M.; Tribl, F.; Schmidt, M.; Hoyer, S.; Riederer, P. Alzheimer-like Changes in Protein Kinase B and Glycogen Synthase Kinase-3 in Rat Frontal Cortex and Hippocampus after Damage to the Insulin Signalling Pathway. J. Neurochem. 2006, 96, 1005–1015. [Google Scholar] [CrossRef]
  750. Gupta, S.; Singh, V.; Ganesh, S.; Singhal, N.K.; Sandhir, R. siRNA Mediated GSK3β Knockdown Targets Insulin Signaling Pathway and Rescues Alzheimer’s Disease Pathology: Evidence from In Vitro and In Vivo Studies. ACS Appl. Mater. Interfaces 2022, 14, 69–93. [Google Scholar] [CrossRef]
  751. Hong, M.; Lee, V.M. Insulin and Insulin-like Growth Factor-1 Regulate Tau Phosphorylation in Cultured Human Neurons. J. Biol. Chem. 1997, 272, 19547–19553. [Google Scholar] [CrossRef] [PubMed]
  752. Steen, E.; Terry, B.M.; Rivera, E.J.; Cannon, J.L.; Neely, T.R.; Tavares, R.; Xu, X.J.; Wands, J.R.; de la Monte, S.M. Impaired Insulin and Insulin-like Growth Factor Expression and Signaling Mechanisms in Alzheimer’s Disease—Is This Type 3 Diabetes? J. Alzheimers Dis. 2005, 7, 63–80. [Google Scholar] [CrossRef] [PubMed]
  753. Deng, Y.; Li, B.; Liu, Y.; Iqbal, K.; Grundke-Iqbal, I.; Gong, C.-X. Dysregulation of Insulin Signaling, Glucose Transporters, O-GlcNAcylation, and Phosphorylation of Tau and Neurofilaments in the Brain: Implication for Alzheimer’s Disease. Am. J. Pathol. 2009, 175, 2089–2098. [Google Scholar] [CrossRef] [PubMed]
  754. Baker, L.D.; Cross, D.J.; Minoshima, S.; Belongia, D.; Watson, G.S.; Craft, S. Insulin Resistance and Alzheimer-like Reductions in Regional Cerebral Glucose Metabolism for Cognitively Normal Adults with Prediabetes or Early Type 2 Diabetes. Arch. Neurol. 2011, 68, 51–57. [Google Scholar] [CrossRef] [PubMed]
  755. Emmanuel, Y.; Cochlin, L.E.; Tyler, D.J.; de Jager, C.A.; Smith, A.D.; Clarke, K. Human Hippocampal Energy Metabolism Is Impaired during Cognitive Activity in a Lipid Infusion Model of Insulin Resistance. Brain Behav. 2013, 3, 134–144. [Google Scholar] [CrossRef]
  756. Simpson, I.A.; Chundu, K.R.; Davies-Hill, T.; Honer, W.G.; Davies, P. Decreased Concentrations of GLUT1 and GLUT3 Glucose Transporters in the Brains of Patients with Alzheimer’s Disease. Ann. Neurol. 1994, 35, 546–551. [Google Scholar] [CrossRef]
  757. Grillo, C.A.; Piroli, G.G.; Hendry, R.M.; Reagan, L.P. Insulin-Stimulated Translocation of GLUT4 to the Plasma Membrane in Rat Hippocampus Is PI3-Kinase Dependent. Brain Res. 2009, 1296, 35–45. [Google Scholar] [CrossRef]
  758. Watson, G.S.; Craft, S. Modulation of Memory by Insulin and Glucose: Neuropsychological Observations in Alzheimer’s Disease. Eur. J. Pharmacol. 2004, 490, 97–113. [Google Scholar] [CrossRef]
  759. Koepsell, H. Glucose Transporters in Brain in Health and Disease. Pflugers Arch. 2020, 472, 1299–1343. [Google Scholar] [CrossRef]
  760. Ehehalt, R.; Keller, P.; Haass, C.; Thiele, C.; Simons, K. Amyloidogenic Processing of the Alzheimer Beta-Amyloid Precursor Protein Depends on Lipid Rafts. J. Cell Biol. 2003, 160, 113–123. [Google Scholar] [CrossRef]
  761. Kojro, E.; Gimpl, G.; Lammich, S.; Marz, W.; Fahrenholz, F. Low Cholesterol Stimulates the Nonamyloidogenic Pathway by Its Effect on the Alpha -Secretase ADAM 10. Proc. Natl. Acad. Sci. USA 2001, 98, 5815–5820. [Google Scholar] [CrossRef] [PubMed]
  762. Vetrivel, K.S.; Cheng, H.; Lin, W.; Sakurai, T.; Li, T.; Nukina, N.; Wong, P.C.; Xu, H.; Thinakaran, G. Association of Gamma-Secretase with Lipid Rafts in Post-Golgi and Endosome Membranes. J. Biol. Chem. 2004, 279, 44945–44954. [Google Scholar] [CrossRef] [PubMed]
  763. Cordy, J.M.; Hussain, I.; Dingwall, C.; Hooper, N.M.; Turner, A.J. Exclusively Targeting Beta-Secretase to Lipid Rafts by GPI-Anchor Addition up-Regulates Beta-Site Processing of the Amyloid Precursor Protein. Proc. Natl. Acad. Sci. USA 2003, 100, 11735–11740. [Google Scholar] [CrossRef] [PubMed]
  764. Marwarha, G.; Dasari, B.; Prasanthi, J.R.P.; Schommer, J.; Ghribi, O. Leptin Reduces the Accumulation of Aβ and Phosphorylated Tau Induced by 27-Hydroxycholesterol in Rabbit Organotypic Slices. J. Alzheimers Dis. 2010, 19, 1007–1019. [Google Scholar] [CrossRef] [PubMed]
  765. Fewlass, D.C.; Noboa, K.; Pi-Sunyer, F.X.; Johnston, J.M.; Yan, S.D.; Tezapsidis, N. Obesity-Related Leptin Regulates Alzheimer’s Abeta. FASEB J. 2004, 18, 1870–1878. [Google Scholar] [CrossRef]
  766. Narita, K.; Kosaka, H.; Okazawa, H.; Murata, T.; Wada, Y. Relationship between Plasma Leptin Level and Brain Structure in Elderly: A Voxel-Based Morphometric Study. Biol. Psychiatry 2009, 65, 992–994. [Google Scholar] [CrossRef]
  767. Bonda, D.J.; Stone, J.G.; Torres, S.L.; Siedlak, S.L.; Perry, G.; Kryscio, R.; Jicha, G.; Casadesus, G.; Smith, M.A.; Zhu, X.; et al. Dysregulation of Leptin Signaling in Alzheimer Disease: Evidence for Neuronal Leptin Resistance. J. Neurochem. 2014, 128, 162–172. [Google Scholar] [CrossRef]
  768. Ma, J.; Zhang, W.; Wang, H.-F.; Wang, Z.-X.; Jiang, T.; Tan, M.-S.; Yu, J.-T.; Tan, L. Peripheral Blood Adipokines and Insulin Levels in Patients with Alzheimer’s Disease: A Replication Study and Meta-Analysis. Curr. Alzheimer Res. 2016, 13, 223–233. [Google Scholar] [CrossRef]
  769. Valladolid-Acebes, I.; Fole, A.; Martín, M.; Morales, L.; Cano, M.V.; Ruiz-Gayo, M.; Del Olmo, N. Spatial Memory Impairment and Changes in Hippocampal Morphology Are Triggered by High-Fat Diets in Adolescent Mice. Is There a Role of Leptin? Neurobiol. Learn. Mem. 2013, 106, 18–25. [Google Scholar] [CrossRef]
  770. Chan, K.-H.; Lam, K.S.-L.; Cheng, O.-Y.; Kwan, J.S.-C.; Ho, P.W.-L.; Cheng, K.K.-Y.; Chung, S.K.; Ho, J.W.-M.; Guo, V.Y.; Xu, A. Adiponectin Is Protective against Oxidative Stress Induced Cytotoxicity in Amyloid-Beta Neurotoxicity. PLoS ONE 2012, 7, e52354. [Google Scholar] [CrossRef]
  771. Ng, R.C.-L.; Cheng, O.-Y.; Jian, M.; Kwan, J.S.-C.; Ho, P.W.-L.; Cheng, K.K.-Y.; Yeung, P.K.K.; Zhou, L.L.; Hoo, R.L.-C.; Chung, S.K.; et al. Chronic Adiponectin Deficiency Leads to Alzheimer’s Disease-like Cognitive Impairments and Pathologies through AMPK Inactivation and Cerebral Insulin Resistance in Aged Mice. Mol. Neurodegener. 2016, 11, 71. [Google Scholar] [CrossRef] [PubMed]
  772. Toda, N.; Ayajiki, K.; Okamura, T. Obesity-Induced Cerebral Hypoperfusion Derived from Endothelial Dysfunction: One of the Risk Factors for Alzheimer’s Disease. Curr. Alzheimer Res. 2014, 11, 733–744. [Google Scholar] [CrossRef] [PubMed]
  773. Palacios, N.; Gao, X.; McCullough, M.L.; Jacobs, E.J.; Patel, A.V.; Mayo, T.; Schwarzschild, M.A.; Ascherio, A. Obesity, Diabetes, and Risk of Parkinson’s Disease. Mov. Disord. 2011, 26, 2253–2259. [Google Scholar] [CrossRef] [PubMed]
  774. Pagano, G.; Polychronis, S.; Wilson, H.; Giordano, B.; Ferrara, N.; Niccolini, F.; Politis, M. Diabetes Mellitus and Parkinson Disease. Neurology 2018, 90, e1654–e1662. [Google Scholar] [CrossRef] [PubMed]
  775. Bosco, D.; Plastino, M.; Cristiano, D.; Colica, C.; Ermio, C.; De Bartolo, M.; Mungari, P.; Fonte, G.; Consoli, D.; Consoli, A.; et al. Dementia Is Associated with Insulin Resistance in Patients with Parkinson’s Disease. J. Neurol. Sci. 2012, 315, 39–43. [Google Scholar] [CrossRef]
  776. Morris, J.K.; Bomhoff, G.L.; Stanford, J.A.; Geiger, P.C. Neurodegeneration in an Animal Model of Parkinson’s Disease Is Exacerbated by a High-Fat Diet. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2010, 299, R1082–R1090. [Google Scholar] [CrossRef]
  777. Choi, J.-Y.; Jang, E.-H.; Park, C.-S.; Kang, J.-H. Enhanced Susceptibility to 1-Methyl-4-Phenyl-1,2,3,6-Tetrahydropyridine Neurotoxicity in High-Fat Diet-Induced Obesity. Free Radic. Biol. Med. 2005, 38, 806–816. [Google Scholar] [CrossRef]
  778. Rotermund, C.; Truckenmüller, F.M.; Schell, H.; Kahle, P.J. Diet-Induced Obesity Accelerates the Onset of Terminal Phenotypes in α-Synuclein Transgenic Mice. J. Neurochem. 2014, 131, 848–858. [Google Scholar] [CrossRef]
  779. Sharma, S.; Taliyan, R. High Fat Diet Feeding Induced Insulin Resistance Exacerbates 6-OHDA Mediated Neurotoxicity and Behavioral Abnormalities in Rats. Behav. Brain Res. 2018, 351, 17–23. [Google Scholar] [CrossRef]
  780. Kao, Y.-C.; Wei, W.-Y.; Tsai, K.-J.; Wang, L.-C. High Fat Diet Suppresses Peroxisome Proliferator-Activated Receptors and Reduces Dopaminergic Neurons in the Substantia Nigra. Int. J. Mol. Sci. 2019, 21, 207. [Google Scholar] [CrossRef]
  781. Bittencourt, A.; Brum, P.O.; Ribeiro, C.T.; Gasparotto, J.; Bortolin, R.C.; de Vargas, A.R.; Heimfarth, L.; de Almeida, R.F.; Moreira, J.C.F.; de Oliveira, J.; et al. High Fat Diet-Induced Obesity Causes a Reduction in Brain Tyrosine Hydroxylase Levels and Non-Motor Features in Rats through Metabolic Dysfunction, Neuroinflammation and Oxidative Stress. Nutr. Neurosci. 2022, 25, 1026–1040. [Google Scholar] [CrossRef] [PubMed]
  782. Morris, J.K.; Bomhoff, G.L.; Gorres, B.K.; Davis, V.A.; Kim, J.; Lee, P.-P.; Brooks, W.M.; Gerhardt, G.A.; Geiger, P.C.; Stanford, J.A. Insulin Resistance Impairs Nigrostriatal Dopamine Function. Exp. Neurol. 2011, 231, 171–180. [Google Scholar] [CrossRef] [PubMed]
  783. Jones, K.T.; Woods, C.; Zhen, J.; Antonio, T.; Carr, K.; Reith, M.E.A. Effects of Diet and Insulin on Dopamine Transporter Activity and Expression in Rat Caudate-Putamen, Nucleus Accumbens, and Midbrain. J. Neurochem. 2017, 140, 728–740. [Google Scholar] [CrossRef] [PubMed]
  784. Takahashi, M.; Yamada, T.; Tooyama, I.; Moroo, I.; Kimura, H.; Yamamoto, T.; Okada, H. Insulin Receptor mRNA in the Substantia Nigra in Parkinson’s Disease. Neurosci. Lett. 1996, 204, 201–204. [Google Scholar] [CrossRef]
  785. Chisari, C.G.; Bianco, A.; Morra, V.B.; Calabrese, M.; Capone, F.; Cavalla, P.; Chiavazza, C.; Comi, C.; Danni, M.; Filippi, M.; et al. Effectiveness of Ocrelizumab in Primary Progressive Multiple Sclerosis: A Multicenter, Retrospective, Real-World Study (OPPORTUNITY). Neurotherapeutics 2023, 20, 1696. [Google Scholar] [CrossRef]
  786. Hua, L.H.; Bar-Or, A.; Cohan, S.L.; Lublin, F.D.; Coyle, P.K.; Cree, B.A.; Meng, X.; Su, W.; Cox, G.M.; Fox, R.J. Effects of Baseline Age and Disease Duration on the Efficacy and Safety of Siponimod in Patients with Active SPMS: Post Hoc Analyses from the EXPAND Study. Mult. Scler. Relat. Disord. 2023, 75, 104766. [Google Scholar] [CrossRef]
  787. Bierhansl, L.; Hartung, H.-P.; Aktas, O.; Ruck, T.; Roden, M.; Meuth, S.G. Thinking Outside the Box: Non-Canonical Targets in Multiple Sclerosis. Nat. Rev. Drug Discov. 2022, 21, 578–600. [Google Scholar] [CrossRef]
  788. Krämer, J.; Bar-Or, A.; Turner, T.J.; Wiendl, H. Bruton Tyrosine Kinase Inhibitors for Multiple Sclerosis. Nat. Rev. Neurol. 2023, 19, 289–304. [Google Scholar] [CrossRef]
  789. Middendorp, S.; Dingjan, G.M.; Hendriks, R.W. Impaired Precursor B Cell Differentiation in Bruton’s Tyrosine Kinase-Deficient Mice. J. Immunol. 2002, 168, 2695–2703. [Google Scholar] [CrossRef]
  790. Torke, S.; Pretzsch, R.; Häusler, D.; Haselmayer, P.; Grenningloh, R.; Boschert, U.; Brück, W.; Weber, M.S. Inhibition of Bruton’s Tyrosine Kinase Interferes with Pathogenic B-Cell Development in Inflammatory CNS Demyelinating Disease. Acta Neuropathol. 2020, 140, 535–548. [Google Scholar] [CrossRef]
  791. Cariappa, A.; Tang, M.; Parng, C.; Nebelitskiy, E.; Carroll, M.; Georgopoulos, K.; Pillai, S. The Follicular versus Marginal Zone B Lymphocyte Cell Fate Decision Is Regulated by Aiolos, Btk, and CD21. Immunity 2001, 14, 603–615. [Google Scholar] [CrossRef] [PubMed]
  792. Gruber, R.C.; Chretien, N.; Dufault, M.R.; Proto, J.; Zhang, M.; LaMorte, M.; Havari, E.; Samad, T.A.; Turner, T.; Chomyk, A.; et al. Central Effects of BTK Inhibition in Neuroinflammation (808). Neurology 2020, 94, 808. [Google Scholar] [CrossRef]
  793. Elkjaer, M.L.; Waede, M.R.; Kingo, C.; Damsbo, K.; Illes, Z. Expression of Bruton’s Tyrosine Kinase in Different Type of Brain Lesions of Multiple Sclerosis Patients and during Experimental Demyelination. Front. Immunol. 2023, 14, 1264128. [Google Scholar] [CrossRef] [PubMed]
  794. Martin, E.; Aigrot, M.-S.; Grenningloh, R.; Stankoff, B.; Lubetzki, C.; Boschert, U.; Zalc, B. Bruton’s Tyrosine Kinase Inhibition Promotes Myelin Repair. Brain Plast. 2020, 5, 123–133. [Google Scholar] [CrossRef]
  795. Evonuk, K.S.; Wang, S.; Mattie, J.; Cracchiolo, C.J.; Mager, R.; Ferenčić, Ž.; Sprague, E.; Carrier, B.; Schofield, K.; Martinez, E.; et al. Bruton’s Tyrosine Kinase Inhibition Reduces Disease Severity in a Model of Secondary Progressive Autoimmune Demyelination. Acta Neuropathol. Commun. 2023, 11, 115. [Google Scholar] [CrossRef]
  796. Sanofi. Press Release: Tolebrutinib Meets Primary Endpoint in HERCULES Phase 3 Study, the First and Only to Show Reduction in Disability Accumulation in Non-Relapsing Secondary Progressive Multiple Sclerosis. 2024. Available online: https://www.sanofi.com/en/media-room/press-releases/2024/2024-09-02-05-00-00-2938875 (accessed on 28 October 2024).
  797. Gharibani, P.; Abramson, E.; Shanmukha, S.; Smith, M.D.; Godfrey, W.H.; Lee, J.J.; Hu, J.; Baydyuk, M.; Dorion, M.-F.; Deng, X.; et al. PKC Modulator Bryostatin-1 Therapeutically Targets CNS Innate Immunity to Attenuate Neuroinflammation and Promote Remyelination. bioRxiv 2023. [Google Scholar] [CrossRef]
  798. Johnson, G.A.; Krishnamoorthy, R.R.; Stankowska, D.L. Modulating Mitochondrial Calcium Channels (TRPM2/MCU/NCX) as a Therapeutic Strategy for Neurodegenerative Disorders. Front. Neurosci. 2023, 17, 1202167. [Google Scholar] [CrossRef]
  799. Picone, P.; Nuzzo, D. Promising Treatment for Multiple Sclerosis: Mitochondrial Transplantation. Int. J. Mol. Sci. 2022, 23, 2245. [Google Scholar] [CrossRef]
  800. Pacak, C.A.; Preble, J.M.; Kondo, H.; Seibel, P.; Levitsky, S.; Del Nido, P.J.; Cowan, D.B.; McCully, J.D. Actin-Dependent Mitochondrial Internalization in Cardiomyocytes: Evidence for Rescue of Mitochondrial Function. Biol. Open 2015, 4, 622–626. [Google Scholar] [CrossRef]
  801. Espino De la Fuente-Muñoz, C.; Arias, C. The Therapeutic Potential of Mitochondrial Transplantation for the Treatment of Neurodegenerative Disorders. Rev. Neurosci. 2021, 32, 203–217. [Google Scholar] [CrossRef]
  802. McCully, J.D.; Levitsky, S.; Del Nido, P.J.; Cowan, D.B. Mitochondrial Transplantation for Therapeutic Use. Clin. Transl. Med. 2016, 5, 16. [Google Scholar] [CrossRef] [PubMed]
  803. Chang, J.-C.; Wu, S.-L.; Liu, K.-H.; Chen, Y.-H.; Chuang, C.-S.; Cheng, F.-C.; Su, H.-L.; Wei, Y.-H.; Kuo, S.-J.; Liu, C.-S. Allogeneic/Xenogeneic Transplantation of Peptide-Labeled Mitochondria in Parkinson’s Disease: Restoration of Mitochondria Functions and Attenuation of 6-Hydroxydopamine-Induced Neurotoxicity. Transl. Res. 2016, 170, 40–56.e3. [Google Scholar] [CrossRef] [PubMed]
  804. Shi, X.; Zhao, M.; Fu, C.; Fu, A. Intravenous Administration of Mitochondria for Treating Experimental Parkinson’s Disease. Mitochondrion 2017, 34, 91–100. [Google Scholar] [CrossRef] [PubMed]
  805. Emani, S.M.; Piekarski, B.L.; Harrild, D.; del Nido, P.J.; McCully, J.D. Autologous Mitochondrial Transplantation for Dysfunction after Ischemia-Reperfusion Injury. J. Thorac. Cardiovasc. Surg. 2017, 154, 286–289. [Google Scholar] [CrossRef] [PubMed]
  806. Peruzzotti-Jametti, L.; Bernstock, J.D.; Willis, C.M.; Manferrari, G.; Rogall, R.; Fernandez-Vizarra, E.; Williamson, J.C.; Braga, A.; van den Bosch, A.; Leonardi, T.; et al. Neural Stem Cells Traffic Functional Mitochondria via Extracellular Vesicles. PLoS Biol. 2021, 19, e3001166. [Google Scholar] [CrossRef]
  807. Rosenkranz, S.C.; Shaposhnykov, A.A.; Träger, S.; Engler, J.B.; Witte, M.E.; Roth, V.; Vieira, V.; Paauw, N.; Bauer, S.; Schwencke-Westphal, C.; et al. Enhancing Mitochondrial Activity in Neurons Protects against Neurodegeneration in a Mouse Model of Multiple Sclerosis. eLife 2021, 10, e61798. [Google Scholar] [CrossRef]
  808. Licht-Mayer, S.; Campbell, G.R.; Canizares, M.; Mehta, A.R.; Gane, A.B.; McGill, K.; Ghosh, A.; Fullerton, A.; Menezes, N.; Dean, J.; et al. Enhanced Axonal Response of Mitochondria to Demyelination Offers Neuroprotection: Implications for Multiple Sclerosis. Acta Neuropathol. 2020, 140, 143–167. [Google Scholar] [CrossRef]
  809. Wang, J.; Cao, Y.; Lu, Y.; Zhu, H.; Zhang, J.; Che, J.; Zhuang, R.; Shao, J. Recent Progress and Applications of Small Molecule Inhibitors of Keap1–Nrf2 Axis for Neurodegenerative Diseases. Eur. J. Med. Chem. 2024, 264, 115998. [Google Scholar] [CrossRef]
  810. Gingele, S.; Stangel, M. Emerging Myelin Repair Agents in Preclinical and Early Clinical Development for the Treatment of Multiple Sclerosis. Expert Opin. Investig. Drugs 2020, 29, 583–594. [Google Scholar] [CrossRef]
  811. Ibrahim, S.M.; Kamel, A.S.; Ahmed, K.A.; Mohammed, R.A.; Essam, R.M. The Preferential Effect of Clemastine on F3/Contactin-1/Notch-1 Compared to Jagged-1/Notch-1 Justifies Its Remyelinating Effect in an Experimental Model of Multiple Sclerosis in Rats. Int. Immunopharmacol. 2024, 128, 111481. [Google Scholar] [CrossRef]
  812. Motawi, T.K.; El-Maraghy, S.A.; Kamel, A.S.; Said, S.E.; Kortam, M.A. Modulation of P38 MAPK and Nrf2/HO-1/NLRP3 Inflammasome Signaling and Pyroptosis Outline the Anti-Neuroinflammatory and Remyelinating Characters of Clemastine in EAE Rat Model. Biochem. Pharmacol. 2023, 209, 115435. [Google Scholar] [CrossRef] [PubMed]
  813. Mei, F.; Lehmann-Horn, K.; Shen, Y.-A.A.; Rankin, K.A.; Stebbins, K.J.; Lorrain, D.S.; Pekarek, K.; A Sagan, S.; Xiao, L.; Teuscher, C.; et al. Accelerated Remyelination during Inflammatory Demyelination Prevents Axonal Loss and Improves Functional Recovery. eLife 2016, 5, e18246. [Google Scholar] [CrossRef] [PubMed]
  814. Hof, S.; van Rijn, L.J.; Uitdehaag, B.M.J.; Nij Bijvank, J.A.; Petzold, A. Measuring and Predicting the Effect of Remyelinating Therapy in Multiple Sclerosis: A Randomised Controlled Trial Protocol (RESTORE). BMJ Open 2024, 14, e076651. [Google Scholar] [CrossRef] [PubMed]
  815. Green, A.J.; Gelfand, J.M.; Cree, B.A.; Bevan, C.; Boscardin, W.J.; Mei, F.; Inman, J.; Arnow, S.; Devereux, M.; Abounasr, A.; et al. Clemastine Fumarate as a Remyelinating Therapy for Multiple Sclerosis (ReBUILD): A Randomised, Controlled, Double-Blind, Crossover Trial. Lancet 2017, 390, 2481–2489. [Google Scholar] [CrossRef] [PubMed]
  816. Caverzasi, E.; Papinutto, N.; Cordano, C.; Kirkish, G.; Gundel, T.J.; Zhu, A.; Akula, A.V.; Boscardin, W.J.; Neeb, H.; Henry, R.G.; et al. MWF of the Corpus Callosum Is a Robust Measure of Remyelination: Results from the ReBUILD Trial. Proc. Natl. Acad. Sci. USA 2023, 120, e2217635120. [Google Scholar] [CrossRef]
  817. Xie, Y.-Y.; Pan, T.-T.; Xu, D.-E.; Huang, X.; Tang, Y.; Huang, W.; Chen, R.; Lu, L.; Chi, H.; Ma, Q.-H. Clemastine Ameliorates Myelin Deficits via Preventing Senescence of Oligodendrocytes Precursor Cells in Alzheimer’s Disease Model Mouse. Front. Cell Dev. Biol. 2021, 9, 733945. [Google Scholar] [CrossRef]
  818. Mi, S.; Blake Pepinsky, R.; Cadavid, D. Blocking LINGO-1 as a Therapy to Promote CNS Repair: From Concept to the Clinic. CNS Drugs 2013, 27, 493–503. [Google Scholar] [CrossRef]
  819. Cadavid, D.; Mellion, M.; Hupperts, R.; Edwards, K.R.; Calabresi, P.A.; Drulović, J.; Giovannoni, G.; Hartung, H.-P.; Arnold, D.L.; Fisher, E.; et al. Safety and Efficacy of Opicinumab in Patients with Relapsing Multiple Sclerosis (SYNERGY): A Randomised, Placebo-Controlled, Phase 2 Trial. Lancet Neurol. 2019, 18, 845–856. [Google Scholar] [CrossRef]
  820. Rena, G.; Hardie, D.G.; Pearson, E.R. The Mechanisms of Action of Metformin. Diabetologia 2017, 60, 1577–1585. [Google Scholar] [CrossRef]
  821. Moore, E.M.; Mander, A.G.; Ames, D.; Kotowicz, M.A.; Carne, R.P.; Brodaty, H.; Woodward, M.; Boundy, K.; Ellis, K.A.; Bush, A.I.; et al. Increased Risk of Cognitive Impairment in Patients with Diabetes Is Associated with Metformin. Diabetes Care 2013, 36, 2981–2987. [Google Scholar] [CrossRef]
  822. Ng, T.P.; Feng, L.; Yap, K.B.; Lee, T.S.; Tan, C.H.; Winblad, B. Long-Term Metformin Usage and Cognitive Function among Older Adults with Diabetes. J. Alzheimers Dis. 2014, 41, 61–68. [Google Scholar] [CrossRef] [PubMed]
  823. Kuan, Y.-C.; Huang, K.-W.; Lin, C.-L.; Hu, C.-J.; Kao, C.-H. Effects of Metformin Exposure on Neurodegenerative Diseases in Elderly Patients with Type 2 Diabetes Mellitus. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2017, 79, 77–83. [Google Scholar] [CrossRef] [PubMed]
  824. Negrotto, L.; Farez, M.F.; Correale, J. Immunologic Effects of Metformin and Pioglitazone Treatment on Metabolic Syndrome and Multiple Sclerosis. JAMA Neurol. 2016, 73, 520–528. [Google Scholar] [CrossRef] [PubMed]
  825. Abdi, M.; Pasbakhsh, P.; Shabani, M.; Nekoonam, S.; Sadeghi, A.; Fathi, F.; Abouzaripour, M.; Mohamed, W.; Zibara, K.; Kashani, I.R.; et al. Metformin Therapy Attenuates Pro-Inflammatory Microglia by Inhibiting NF-κB in Cuprizone Demyelinating Mouse Model of Multiple Sclerosis. Neurotox. Res. 2021, 39, 1732–1746. [Google Scholar] [CrossRef]
  826. Sanadgol, N.; Barati, M.; Houshmand, F.; Hassani, S.; Clarner, T.; Shahlaei, M.; Golab, F. Metformin Accelerates Myelin Recovery and Ameliorates Behavioral Deficits in the Animal Model of Multiple Sclerosis via Adjustment of AMPK/Nrf2/mTOR Signaling and Maintenance of Endogenous Oligodendrogenesis during Brain Self-Repairing Period. Pharmacol. Rep. 2020, 72, 641–658. [Google Scholar] [CrossRef]
  827. Neumann, B.; Baror, R.; Zhao, C.; Segel, M.; Dietmann, S.; Rawji, K.S.; Foerster, S.; McClain, C.R.; Chalut, K.; van Wijngaarden, P.; et al. Metformin Restores CNS Remyelination Capacity by Rejuvenating Aged Stem Cells. Cell Stem Cell 2019, 25, 473–485.e8. [Google Scholar] [CrossRef]
  828. Gilbert, E.A.B.; Livingston, J.; Flores, E.G.; Khan, M.; Kandavel, H.; Morshead, C.M. Metformin Treatment Reduces Inflammation, Dysmyelination and Disease Severity in a Mouse Model of Multiple Sclerosis, Experimental Autoimmune Encephalomyelitis. Brain Res. 2024, 1822, 148648. [Google Scholar] [CrossRef]
  829. Abdelgaied, M.Y.; Rashad, M.H.; El-Tayebi, H.M.; Solayman, M.H. The Impact of Metformin Use on the Outcomes of Relapse-Remitting Multiple Sclerosis Patients Receiving Interferon Beta 1a: An Exploratory Prospective Phase II Open-Label Randomized Controlled Trial. J. Neurol. 2023, 271, 1124–1132. [Google Scholar] [CrossRef]
  830. Pomilio, C.; Pérez, N.G.; Calandri, I.; Crivelli, L.; Allegri, R.; Sevlever, G.; ADNI Alzheimer’s Disease Neuroimaging Initiative; Saravia, F. Diabetic Patients Treated with Metformin during Early Stages of Alzheimer’s Disease Show a Better Integral Performance: Data from ADNI Study. Geroscience 2022, 44, 1791–1805. [Google Scholar] [CrossRef]
  831. Ou, Z.; Kong, X.; Sun, X.; He, X.; Zhang, L.; Gong, Z.; Huang, J.; Xu, B.; Long, D.; Li, J.; et al. Metformin Treatment Prevents Amyloid Plaque Deposition and Memory Impairment in APP/PS1 Mice. Brain Behav. Immun. 2018, 69, 351–363. [Google Scholar] [CrossRef]
  832. Zhao, S.; Fan, Z.; Zhang, X.; Li, Z.; Shen, T.; Li, K.; Yan, Y.; Yuan, Y.; Pu, J.; Tian, J.; et al. Metformin Attenuates Tau Pathology in Tau-Seeded PS19 Mice. Neurotherapeutics 2023, 20, 452–463. [Google Scholar] [CrossRef] [PubMed]
  833. Kickstein, E.; Krauss, S.; Thornhill, P.; Rutschow, D.; Zeller, R.; Sharkey, J.; Williamson, R.; Fuchs, M.; Köhler, A.; Glossmann, H.; et al. Biguanide Metformin Acts on Tau Phosphorylation via mTOR/Protein Phosphatase 2A (PP2A) Signaling. Proc. Natl. Acad. Sci. USA 2010, 107, 21830–21835. [Google Scholar] [CrossRef] [PubMed]
  834. Chiang, M.-C.; Cheng, Y.-C.; Chen, S.-J.; Yen, C.-H.; Huang, R.-N. Metformin Activation of AMPK-Dependent Pathways Is Neuroprotective in Human Neural Stem Cells against Amyloid-Beta-Induced Mitochondrial Dysfunction. Exp. Cell Res. 2016, 347, 322–331. [Google Scholar] [CrossRef] [PubMed]
  835. Gupta, A.; Bisht, B.; Dey, C.S. Peripheral Insulin-Sensitizer Drug Metformin Ameliorates Neuronal Insulin Resistance and Alzheimer’s-like Changes. Neuropharmacology 2011, 60, 910–920. [Google Scholar] [CrossRef]
  836. Lu, M.; Su, C.; Qiao, C.; Bian, Y.; Ding, J.; Hu, G. Metformin Prevents Dopaminergic Neuron Death in MPTP/P-Induced Mouse Model of Parkinson’s Disease via Autophagy and Mitochondrial ROS Clearance. Int. J. Neuropsychopharmacol. 2016, 19, pyw047. [Google Scholar] [CrossRef]
  837. Katila, N.; Bhurtel, S.; Shadfar, S.; Srivastav, S.; Neupane, S.; Ojha, U.; Jeong, G.-S.; Choi, D.-Y. Metformin Lowers α-Synuclein Phosphorylation and Upregulates Neurotrophic Factor in the MPTP Mouse Model of Parkinson’s Disease. Neuropharmacology 2017, 125, 396–407. [Google Scholar] [CrossRef]
  838. Ping, F.; Jiang, N.; Li, Y. Association between Metformin and Neurodegenerative Diseases of Observational Studies: Systematic Review and Meta-Analysis. BMJ Open Diabetes Res. Care 2020, 8, e001370. [Google Scholar] [CrossRef]
  839. Qin, X.; Liu, Q. Association Between Diabetes Medications and the Risk of Parkinson’s Disease: A Systematic Review and Meta-Analysis. Front. Neurol. 2021, 12, 678649. [Google Scholar] [CrossRef]
  840. Hsu, C.-C.; Wahlqvist, M.L.; Lee, M.-S.; Tsai, H.-N. Incidence of Dementia Is Increased in Type 2 Diabetes and Reduced by the Use of Sulfonylureas and Metformin. J. Alzheimers Dis. 2011, 24, 485–493. [Google Scholar] [CrossRef]
  841. Picone, P.; Palumbo, F.S.; Federico, S.; Pitarresi, G.; Adamo, G.; Bongiovanni, A.; Chaves, A.; Cancemi, P.; Muccilli, V.; Giglio, V.; et al. Nano-Structured Myelin: New Nanovesicles for Targeted Delivery to White Matter and Microglia, from Brain-to-Brain. Mater. Today Bio 2021, 12, 100146. [Google Scholar] [CrossRef]
  842. Nuzzo, D.; Picone, P. Multiple Sclerosis: Focus on Extracellular and Artificial Vesicles, Nanoparticles as Potential Therapeutic Approaches. Int. J. Mol. Sci. 2021, 22, 8866. [Google Scholar] [CrossRef] [PubMed]
  843. Menéndez, S.G.; Manucha, W. Nanopharmacology as a New Approach to Treat Neuroinflammatory Disorders. Transl. Neurosci. 2023, 14, 20220328. [Google Scholar] [CrossRef] [PubMed]
  844. Alonso, R.; Gonzalez-Moron, D.; Garcea, O. Optical Coherence Tomography as a Biomarker of Neurodegeneration in Multiple Sclerosis: A Review. Mult. Scler. Relat. Disord. 2018, 22, 77–82. [Google Scholar] [CrossRef] [PubMed]
  845. Azevedo, C.J.; Cen, S.Y.; Khadka, S.; Liu, S.; Kornak, J.; Shi, Y.; Zheng, L.; Hauser, S.L.; Pelletier, D. Thalamic Atrophy in Multiple Sclerosis: A Magnetic Resonance Imaging Marker of Neurodegeneration throughout Disease. Ann. Neurol. 2018, 83, 223–234. [Google Scholar] [CrossRef] [PubMed]
  846. Haque, A.; Trager, N.N.M.; Butler, J.T.; Das, A.; Zaman, V.; Banik, N.L. A Novel Combination Approach to Effectively Reduce Inflammation and Neurodegeneration in Multiple Sclerosis Models. Neurochem. Int. 2024, 175, 105697. [Google Scholar] [CrossRef]
Figure 1. Disease course and phenotypes. In these plots, the disease course (pink solid line) and disability measured by the Expanded Disability Status Scale (EDSS) score (y-axis) are depicted according to disease duration (x-axis) for (A) relapsing-remitting multiple sclerosis (RRMS), (B) secondary progressive MS (SPMS), and (C) primary progressive MS (PPMS). Disease activity and its progression determine the disease course. The relapsing-remitting course, occurring in most patients, is characterized by acute inflammatory demyelinating events (blue pyramids) resulting either in (i) new lesions on MRI below the clinical threshold (grey dotted line) and/or (ii) clinical relapses with (partially) reversible disability worsening. These alternate with periods of remission. Early in the disease, patients may recover completely, but with increasing disease duration and aging, relapse-associated worsening (RAW) might occur. Disability progression independent of relapse activity (PIRA) also occurs, sometimes already early in the disease. In progressive MS, patients suffer from progressive worsening, not necessarily linked to the occurrence of inflammatory disease activity. Secondary progressive MS can occur after a relapsing/remitting course, while 10–15% of patients develop a progressive phenotype from disease onset, so-called primary progressive MS. The neuroaxonal reserve (orange dashed line) decreases over time, due to aging, neuroinflammatory, and demyelinating processes. Once the compensatory mechanisms become insufficient, disability progresses. A clinically isolated syndrome (CIS) corresponds to the first clinical demyelinating event. In a radiologically isolated syndrome (RIS), white matter lesions compatible with MS are discovered on MRI but any history of related neurological symptoms is missing.
Figure 1. Disease course and phenotypes. In these plots, the disease course (pink solid line) and disability measured by the Expanded Disability Status Scale (EDSS) score (y-axis) are depicted according to disease duration (x-axis) for (A) relapsing-remitting multiple sclerosis (RRMS), (B) secondary progressive MS (SPMS), and (C) primary progressive MS (PPMS). Disease activity and its progression determine the disease course. The relapsing-remitting course, occurring in most patients, is characterized by acute inflammatory demyelinating events (blue pyramids) resulting either in (i) new lesions on MRI below the clinical threshold (grey dotted line) and/or (ii) clinical relapses with (partially) reversible disability worsening. These alternate with periods of remission. Early in the disease, patients may recover completely, but with increasing disease duration and aging, relapse-associated worsening (RAW) might occur. Disability progression independent of relapse activity (PIRA) also occurs, sometimes already early in the disease. In progressive MS, patients suffer from progressive worsening, not necessarily linked to the occurrence of inflammatory disease activity. Secondary progressive MS can occur after a relapsing/remitting course, while 10–15% of patients develop a progressive phenotype from disease onset, so-called primary progressive MS. The neuroaxonal reserve (orange dashed line) decreases over time, due to aging, neuroinflammatory, and demyelinating processes. Once the compensatory mechanisms become insufficient, disability progresses. A clinically isolated syndrome (CIS) corresponds to the first clinical demyelinating event. In a radiologically isolated syndrome (RIS), white matter lesions compatible with MS are discovered on MRI but any history of related neurological symptoms is missing.
Ijms 25 12637 g001
Figure 2. The pathogenesis of multiple sclerosis. (A) Neuroinflammation is marked by the invasion of peripheral immune cells in the CNS through a disrupted BBB in the early inflammatory phase of MS. These cells are reactivated, secrete cytokines (e.g., IFNg by Th1, IL6/17 by Th17, GM-CSF, IL6, TNFa by B cells) and cytotoxic molecules (e.g., granzyme B by CD8+ T cells), attract more peripheral immune cells and activate macrophages, microglia and astrocytes, which produce cytokines, nitric oxide, and reactive oxygen species (ROS) (blue dots). B cells can also differentiate into autoantibody-producing plasma cells. With disease progression, infiltration of peripheral immune cells is reduced since the BBB is closed. CNS-resident cells, i.e., microglia and astrocytes, sustain the inflammation by producing cytokines (TNFa, IL6) and releasing ROS (blue dots). TNFa-mediated glutamate release from microglia and its impaired turnover by astrocytes result in excitotoxicity. Remarkably, plasmablasts and plasma B cells form tertiary follicle-like structures in the meninges that may release proinflammatory factors activating microglia (brown dots). (B) Demyelination is partly caused by this cytotoxic and proinflammatory environment that breaks down the myelin sheaths. Macrophages and microglia, attracted by astrocytes, can clear the myelin debris, allowing (partial) remyelination by surviving oligodendrocytes or by OPCs proliferating, migrating, and differentiating at the site of injury in response to cytokines, chemokines (CXCL1, CXCL12), mitogens (platelet-derived growth factor), chemoattractants (semaphorin 3F), and trophic factors (insulin-like growth factor, ciliary neurotrophic factor) (blue dots) released by microglia and astrocytes. This will reduce the harm to the axons. However, the phagocytic capacity of microglia/macrophages decreases with disease progression. Hence, myelin debris are improperly cleared, trigger an inflammatory response, and inhibit axonal growth, and OPCs are less recruited and fail to differentiate. The trophic support of oligodendrocytes to the underlying axons wanes. The ferrous iron (red dots) released from the myelin, where it accumulates with age, is oxidized to ferric iron, producing ROS and causing lipid peroxidation and ferroptosis. (C) Neurodegeneration starts early in the disease and becomes prominent with disease progression when the compensatory mechanisms safeguarding the CNS reserve are exceeded. Axons are directly harmed by the proinflammatory and oxidative environment, but also by the loss of the insulating and supporting myelin sheaths. Chronically demyelinated axons seem to be non-receptive to OPCs. Nodal and paranodal ion channels are disorganized; synapses are dysfunctional. Axons suffer a major energy debt altering axonal transport of mitochondria and synaptic vesicles. The axonopathy spreads the axonal and transsynaptic degeneration. These events are self-sustained and intermingled, further enhanced by senescent processes, resulting in a major cytokine storm and oxidative burst, mitochondrial dysfunction, mitochondrial DNA damage, energy failure, ion imbalance, cytotoxicity, excitotoxicity, lack of trophic support by the loss of oligodendrocytes, and axonal loss. BBB = blood–brain barrier; B = B cell; CNS = central nervous system; ΔE = energy deficit: MS = multiple sclerosis; OPC = oligodendrocyte progenitor cell; ROS = reactive oxygen species; T = T cell; Th = T helper cell. Created in BioRender.com.
Figure 2. The pathogenesis of multiple sclerosis. (A) Neuroinflammation is marked by the invasion of peripheral immune cells in the CNS through a disrupted BBB in the early inflammatory phase of MS. These cells are reactivated, secrete cytokines (e.g., IFNg by Th1, IL6/17 by Th17, GM-CSF, IL6, TNFa by B cells) and cytotoxic molecules (e.g., granzyme B by CD8+ T cells), attract more peripheral immune cells and activate macrophages, microglia and astrocytes, which produce cytokines, nitric oxide, and reactive oxygen species (ROS) (blue dots). B cells can also differentiate into autoantibody-producing plasma cells. With disease progression, infiltration of peripheral immune cells is reduced since the BBB is closed. CNS-resident cells, i.e., microglia and astrocytes, sustain the inflammation by producing cytokines (TNFa, IL6) and releasing ROS (blue dots). TNFa-mediated glutamate release from microglia and its impaired turnover by astrocytes result in excitotoxicity. Remarkably, plasmablasts and plasma B cells form tertiary follicle-like structures in the meninges that may release proinflammatory factors activating microglia (brown dots). (B) Demyelination is partly caused by this cytotoxic and proinflammatory environment that breaks down the myelin sheaths. Macrophages and microglia, attracted by astrocytes, can clear the myelin debris, allowing (partial) remyelination by surviving oligodendrocytes or by OPCs proliferating, migrating, and differentiating at the site of injury in response to cytokines, chemokines (CXCL1, CXCL12), mitogens (platelet-derived growth factor), chemoattractants (semaphorin 3F), and trophic factors (insulin-like growth factor, ciliary neurotrophic factor) (blue dots) released by microglia and astrocytes. This will reduce the harm to the axons. However, the phagocytic capacity of microglia/macrophages decreases with disease progression. Hence, myelin debris are improperly cleared, trigger an inflammatory response, and inhibit axonal growth, and OPCs are less recruited and fail to differentiate. The trophic support of oligodendrocytes to the underlying axons wanes. The ferrous iron (red dots) released from the myelin, where it accumulates with age, is oxidized to ferric iron, producing ROS and causing lipid peroxidation and ferroptosis. (C) Neurodegeneration starts early in the disease and becomes prominent with disease progression when the compensatory mechanisms safeguarding the CNS reserve are exceeded. Axons are directly harmed by the proinflammatory and oxidative environment, but also by the loss of the insulating and supporting myelin sheaths. Chronically demyelinated axons seem to be non-receptive to OPCs. Nodal and paranodal ion channels are disorganized; synapses are dysfunctional. Axons suffer a major energy debt altering axonal transport of mitochondria and synaptic vesicles. The axonopathy spreads the axonal and transsynaptic degeneration. These events are self-sustained and intermingled, further enhanced by senescent processes, resulting in a major cytokine storm and oxidative burst, mitochondrial dysfunction, mitochondrial DNA damage, energy failure, ion imbalance, cytotoxicity, excitotoxicity, lack of trophic support by the loss of oligodendrocytes, and axonal loss. BBB = blood–brain barrier; B = B cell; CNS = central nervous system; ΔE = energy deficit: MS = multiple sclerosis; OPC = oligodendrocyte progenitor cell; ROS = reactive oxygen species; T = T cell; Th = T helper cell. Created in BioRender.com.
Ijms 25 12637 g002
Figure 3. Triangulation of neuroinflammation, demyelination, and neurodegeneration in MS pathogenesis with key mechanisms that self-sustain these processes but also influence each other mutually. The close loops highlight underlying mechanisms that intrinsically sustain each process, i.e., neuroinflammation, demyelination, or neurodegeneration indicated in the rectangular boxes. The bubbles list pathophysiological mechanisms by which each process (with corresponding color) impacts at least one of the two other processes, while the bubble in the middle summarizes shared mechanisms occurring in all the cell types involved. BBB = blood–brain barrier, MS = multiple sclerosis, MΦ = macrophages, OPC = oligodendrocyte progenitor cell, OL = oligodendrocyte.
Figure 3. Triangulation of neuroinflammation, demyelination, and neurodegeneration in MS pathogenesis with key mechanisms that self-sustain these processes but also influence each other mutually. The close loops highlight underlying mechanisms that intrinsically sustain each process, i.e., neuroinflammation, demyelination, or neurodegeneration indicated in the rectangular boxes. The bubbles list pathophysiological mechanisms by which each process (with corresponding color) impacts at least one of the two other processes, while the bubble in the middle summarizes shared mechanisms occurring in all the cell types involved. BBB = blood–brain barrier, MS = multiple sclerosis, MΦ = macrophages, OPC = oligodendrocyte progenitor cell, OL = oligodendrocyte.
Ijms 25 12637 g003
Figure 4. Pathophysiological mechanisms involved in the triangulation of neuroinflammation (blue bubble), demyelination (green bubble), and neurodegeneration (yellow bubble) in MS. The impact of each on the other processes is indicated by arrows in the corresponding color, whereas intrinsic effects are indicated by black arrows. Neuroinflammation (blue bubble): Peripheral immune cells and CNS-resident cells attract and activate each other through the release of cytokines and chemokines (blue dots), whereby MHC type I and II play an important role in antigen presentation. Cytokines also contribute to the disruption of the BBB. CD8+ T cells, reactive microglia, and astrocytes cause cytotoxicity. Plasma B cells release antibodies of partially unknown significance, which may contribute to the pathophysiology via antibody-dependent cellular toxicity, opsonization, complement-dependent cytotoxicity, and antibody-induced demyelination. The activation of microglia (which relies on glycolysis and lactate production with extracellular acidification) and astrocytes results in the production of ROS. Microgliosis and astrogliosis also involve NLRP3 inflammasome activation. The resulting proinflammatory and oxidative environment harms OPCs, oligodendrocytes, and neurons. High levels of glutamate (orange dots) (due to TNFa/ATP-induced release from microglia and reduced turnover by astrocytes) cause axonal/neuronal and oligodendroglial damage through excitotoxicity via NMDA receptors. Meningeal inflammation mainly consists of plasmablasts and plasma B cells, which may form tertiary follicle-like structures. It is correlated with subpial demyelination and CSF protein levels of TNF, IFNg, and CXCL13. Thus, they affect neurons directly or by releasing an unknown soluble factor (purple dots) that activates microglia. The CD47 and CD200 expressed on oligodendrocytes and neurons inhibit their phagocytosis by microglia by binding to CD47L and CD200L (“Don’t eat me” signal) but the former are downregulated. Demyelination (green bubble): Subclusters of OPCs and end-state oligodendrocytes are reduced, as well as the recruitment, proliferation, and differentiation of OPCs into oligodendrocytes. Myelin defects appear to begin at the inner layer and are caused by (i) the citrullination of MBP (i.e., the conversion of positively charged arginine (Arg) into uncharged citrulline (Cit)) altering the interaction of MBP with the plasma membrane, (ii) MBP phase transition resulting from increased calcium levels and causing myelin vesiculation, and (iii) protein S-nitrosylation, especially of PLP, caused by nitric oxide (NO). Moreover, the lipid species in the plasma membrane are altered, as evidenced by an increase in saturated fatty acids, which reduces membrane fluidity, an increase in oxysterols and ceramides, and a decrease in phosphatidylcholine (PC) and phosphatidylethanolamine (PE), which have antioxidant properties. Oxysterols (by inducing oxidative stress), ceramides and the oxidized forms of PC and PE cause oligodendrocyte apoptosis, which results in the expression of COX2 that mediates the production of proinflammatory prostaglandins (e.g., PGD2), thereby sustaining apoptosis. Oligodendrocyte apoptosis further induces gliosis, saturated fatty acids can promote microglial activation, while ceramides enhance Th1 cytokine production and cause mitochondrial dysfunction in neurons. Moreover, citrullinated MBP is an immunogenic trigger, and immunocompetent oligodendrocytes express MHC-I/II and interferon-responsive genes. OPC support to the BBB is decreased, and BBB disruption is further enhanced by oxysterols. Myelin debris are initially cleared by macrophages/microglia; however, their phagocytic capacity decreases with disease progression and cellular senescence. Uncleared myelin debris induce NLRP3 inflammasome activation in microglia. They halt OPC differentiation and expose myelin-associated inhibitory factors, such as reticulon 4, previously known as neurite outgrowth inhibitory factor (NogoA), as well as myelin-associated glycoprotein (MAG) and oligodendrocyte myelin glycoprotein (OMG), which bind to the Nogo receptor 1 (NGR1) expressed on axons, thereby inhibiting axonal growth and regeneration. They are also enriched in very long-chain fatty acids (VLCFA) by impaired beta oxidation in peroxisomes, which contributes to neurotoxicity and neuroinflammation. Myelin stores iron, which increases with age, but causes ferroptosis when the storage capacity of ferritin is exceeded. The released ferrous iron (Fe(II)) is oxidized to ferric iron (Fe(III)), resulting in the production of hydroxyl radicals. Microglial uptake of iron causes their dystrophy resulting in a second release of iron. Furthermore, oligodendrocytes express heme oxygenase 1 (HO1) via the nuclear factor erythroid 2-related (NRF2) pathway in response to oxidative stress, resulting in the production of ferrous iron (Fe(II)) and bilirubin, an antioxidant, in an attempt to counter it; however, this also forms an additional source of harmful ferrous iron. Finally, oligodendrocytes safeguard the trophic support of axons by the exchange of lactate (produced by glycolysis in oligodendrocytes) through monocarboxylate transporter 1 (MCT1, expressed in oligodendrocytes) and MCT2 (expressed in neurons); however, this lactate supply is impaired, resulting in an axonal energy deficit. Neurodegeneration (yellow bubble): Axonopathy results from mitochondrial dysfunction, ion imbalance (by nodal/paranodal disruption of ion channels linked to demyelination with loss of saltatory conduction), and energy deficit. Intracellular calcium overload, entering via the sodium/calcium exchanger in reverse mode, the mitochondrial calcium uniporter, and acid-sensing ion channels (activated by inflammation-linked tissue acidosis), and enhanced by glutamate, plays a key role in inducing calpains, which are proteases that degrade the cytoskeleton and reduce axonal transport. Moreover, mitochondrial permeability transition pores are formed when intracellular calcium levels increase and cause the leakage of mitochondrial solutes resulting in mitochondrial collapse. Axonopathy causes anterograde and retrograde axonal and transsynaptic degeneration. Cortical demyelination and neuronal apoptosis can result in brain atrophy. Chronically demyelinated neurons appear to be unreceptive to myelin expansions of differentiating oligodendrocytes and to express fewer growth factors supporting oligodendrocytes. Moreover, OPCs sense axonal synaptic dysfunction within neuron-to-OPC synapses. Finally, neurons can induce microglia by the release of ATP and ion imbalance (Nav1.6 expressed on microglia). Mitochondrial dysfunction is enhanced by oxidative stress (increased ROS/RNS, reduced antioxidant NRF2 pathway), which causes mitochondrial DNA (mDNA) damage (deletions), oxidizes lipids and proteins, and alters the mitochondrial respiratory chain (also due to mitochondrial DNA deletions). There is a metabolic shift from oxidative phosphorylation (OXPHOS) to glycolysis to allow a rapid ATP production despite its relative inefficiency. This results in virtual hypoxia and energy failure. Neurons (by reduced PPARGC1A expression, regulating mitochondrial function) and OPCs/oligodendrocytes (by their iron storage and reduced antioxidant mechanisms) are particularly vulnerable. BBB = blood–brain barrier, CNS = central nervous system, CSF = cerebrospinal fluid, ΔE = energy deficit, MHC-I/II = major histocompatibility complex type I or II, MS = multiple sclerosis, OPC = oligodendrocyte progenitor cell, OL = oligodendrocyte, RNS = reactive nitrogen species, ROS = reactive oxygen species, ↑ = increased, ↓ = decreased. Created in BioRender.com.
Figure 4. Pathophysiological mechanisms involved in the triangulation of neuroinflammation (blue bubble), demyelination (green bubble), and neurodegeneration (yellow bubble) in MS. The impact of each on the other processes is indicated by arrows in the corresponding color, whereas intrinsic effects are indicated by black arrows. Neuroinflammation (blue bubble): Peripheral immune cells and CNS-resident cells attract and activate each other through the release of cytokines and chemokines (blue dots), whereby MHC type I and II play an important role in antigen presentation. Cytokines also contribute to the disruption of the BBB. CD8+ T cells, reactive microglia, and astrocytes cause cytotoxicity. Plasma B cells release antibodies of partially unknown significance, which may contribute to the pathophysiology via antibody-dependent cellular toxicity, opsonization, complement-dependent cytotoxicity, and antibody-induced demyelination. The activation of microglia (which relies on glycolysis and lactate production with extracellular acidification) and astrocytes results in the production of ROS. Microgliosis and astrogliosis also involve NLRP3 inflammasome activation. The resulting proinflammatory and oxidative environment harms OPCs, oligodendrocytes, and neurons. High levels of glutamate (orange dots) (due to TNFa/ATP-induced release from microglia and reduced turnover by astrocytes) cause axonal/neuronal and oligodendroglial damage through excitotoxicity via NMDA receptors. Meningeal inflammation mainly consists of plasmablasts and plasma B cells, which may form tertiary follicle-like structures. It is correlated with subpial demyelination and CSF protein levels of TNF, IFNg, and CXCL13. Thus, they affect neurons directly or by releasing an unknown soluble factor (purple dots) that activates microglia. The CD47 and CD200 expressed on oligodendrocytes and neurons inhibit their phagocytosis by microglia by binding to CD47L and CD200L (“Don’t eat me” signal) but the former are downregulated. Demyelination (green bubble): Subclusters of OPCs and end-state oligodendrocytes are reduced, as well as the recruitment, proliferation, and differentiation of OPCs into oligodendrocytes. Myelin defects appear to begin at the inner layer and are caused by (i) the citrullination of MBP (i.e., the conversion of positively charged arginine (Arg) into uncharged citrulline (Cit)) altering the interaction of MBP with the plasma membrane, (ii) MBP phase transition resulting from increased calcium levels and causing myelin vesiculation, and (iii) protein S-nitrosylation, especially of PLP, caused by nitric oxide (NO). Moreover, the lipid species in the plasma membrane are altered, as evidenced by an increase in saturated fatty acids, which reduces membrane fluidity, an increase in oxysterols and ceramides, and a decrease in phosphatidylcholine (PC) and phosphatidylethanolamine (PE), which have antioxidant properties. Oxysterols (by inducing oxidative stress), ceramides and the oxidized forms of PC and PE cause oligodendrocyte apoptosis, which results in the expression of COX2 that mediates the production of proinflammatory prostaglandins (e.g., PGD2), thereby sustaining apoptosis. Oligodendrocyte apoptosis further induces gliosis, saturated fatty acids can promote microglial activation, while ceramides enhance Th1 cytokine production and cause mitochondrial dysfunction in neurons. Moreover, citrullinated MBP is an immunogenic trigger, and immunocompetent oligodendrocytes express MHC-I/II and interferon-responsive genes. OPC support to the BBB is decreased, and BBB disruption is further enhanced by oxysterols. Myelin debris are initially cleared by macrophages/microglia; however, their phagocytic capacity decreases with disease progression and cellular senescence. Uncleared myelin debris induce NLRP3 inflammasome activation in microglia. They halt OPC differentiation and expose myelin-associated inhibitory factors, such as reticulon 4, previously known as neurite outgrowth inhibitory factor (NogoA), as well as myelin-associated glycoprotein (MAG) and oligodendrocyte myelin glycoprotein (OMG), which bind to the Nogo receptor 1 (NGR1) expressed on axons, thereby inhibiting axonal growth and regeneration. They are also enriched in very long-chain fatty acids (VLCFA) by impaired beta oxidation in peroxisomes, which contributes to neurotoxicity and neuroinflammation. Myelin stores iron, which increases with age, but causes ferroptosis when the storage capacity of ferritin is exceeded. The released ferrous iron (Fe(II)) is oxidized to ferric iron (Fe(III)), resulting in the production of hydroxyl radicals. Microglial uptake of iron causes their dystrophy resulting in a second release of iron. Furthermore, oligodendrocytes express heme oxygenase 1 (HO1) via the nuclear factor erythroid 2-related (NRF2) pathway in response to oxidative stress, resulting in the production of ferrous iron (Fe(II)) and bilirubin, an antioxidant, in an attempt to counter it; however, this also forms an additional source of harmful ferrous iron. Finally, oligodendrocytes safeguard the trophic support of axons by the exchange of lactate (produced by glycolysis in oligodendrocytes) through monocarboxylate transporter 1 (MCT1, expressed in oligodendrocytes) and MCT2 (expressed in neurons); however, this lactate supply is impaired, resulting in an axonal energy deficit. Neurodegeneration (yellow bubble): Axonopathy results from mitochondrial dysfunction, ion imbalance (by nodal/paranodal disruption of ion channels linked to demyelination with loss of saltatory conduction), and energy deficit. Intracellular calcium overload, entering via the sodium/calcium exchanger in reverse mode, the mitochondrial calcium uniporter, and acid-sensing ion channels (activated by inflammation-linked tissue acidosis), and enhanced by glutamate, plays a key role in inducing calpains, which are proteases that degrade the cytoskeleton and reduce axonal transport. Moreover, mitochondrial permeability transition pores are formed when intracellular calcium levels increase and cause the leakage of mitochondrial solutes resulting in mitochondrial collapse. Axonopathy causes anterograde and retrograde axonal and transsynaptic degeneration. Cortical demyelination and neuronal apoptosis can result in brain atrophy. Chronically demyelinated neurons appear to be unreceptive to myelin expansions of differentiating oligodendrocytes and to express fewer growth factors supporting oligodendrocytes. Moreover, OPCs sense axonal synaptic dysfunction within neuron-to-OPC synapses. Finally, neurons can induce microglia by the release of ATP and ion imbalance (Nav1.6 expressed on microglia). Mitochondrial dysfunction is enhanced by oxidative stress (increased ROS/RNS, reduced antioxidant NRF2 pathway), which causes mitochondrial DNA (mDNA) damage (deletions), oxidizes lipids and proteins, and alters the mitochondrial respiratory chain (also due to mitochondrial DNA deletions). There is a metabolic shift from oxidative phosphorylation (OXPHOS) to glycolysis to allow a rapid ATP production despite its relative inefficiency. This results in virtual hypoxia and energy failure. Neurons (by reduced PPARGC1A expression, regulating mitochondrial function) and OPCs/oligodendrocytes (by their iron storage and reduced antioxidant mechanisms) are particularly vulnerable. BBB = blood–brain barrier, CNS = central nervous system, CSF = cerebrospinal fluid, ΔE = energy deficit, MHC-I/II = major histocompatibility complex type I or II, MS = multiple sclerosis, OPC = oligodendrocyte progenitor cell, OL = oligodendrocyte, RNS = reactive nitrogen species, ROS = reactive oxygen species, ↑ = increased, ↓ = decreased. Created in BioRender.com.
Ijms 25 12637 g004
Figure 5. Triangulation of neuroinflammation, demyelination, and neurodegeneration in AD/PD pathogenesis with key mechanisms that self-sustain these processes but also influence each other mutually. The bubbles list pathophysiological mechanisms by which each process (with corresponding color) impacts at least one of the two other processes, while the bubble in the middle highlights peculiar pathophysiological mechanisms involved in all processes. AD = Alzheimer’s disease, PD = Parkinson’s disease, Aβ = amyloid beta, BBB = blood–brain barrier, OPC = oligodendrocyte progenitor cell, OL = oligodendrocyte, ROS = reactive oxygen species.
Figure 5. Triangulation of neuroinflammation, demyelination, and neurodegeneration in AD/PD pathogenesis with key mechanisms that self-sustain these processes but also influence each other mutually. The bubbles list pathophysiological mechanisms by which each process (with corresponding color) impacts at least one of the two other processes, while the bubble in the middle highlights peculiar pathophysiological mechanisms involved in all processes. AD = Alzheimer’s disease, PD = Parkinson’s disease, Aβ = amyloid beta, BBB = blood–brain barrier, OPC = oligodendrocyte progenitor cell, OL = oligodendrocyte, ROS = reactive oxygen species.
Ijms 25 12637 g005
Figure 6. Triangulation of neuroinflammation, demyelination, and neurodegeneration in metabolic syndrome with key mechanisms that self-sustain these processes but also influence each other mutually. The bubbles list pathophysiological mechanisms by which each process (with corresponding color) impacts at least one of the two other processes, while the bubble in the middle highlights peculiar pathophysiological mechanisms involved in all processes. BBB = blood–brain barrier, OPC = oligodendrocyte progenitor cell, OL = oligodendrocyte, ↗ = increased, ↘ = decreased.
Figure 6. Triangulation of neuroinflammation, demyelination, and neurodegeneration in metabolic syndrome with key mechanisms that self-sustain these processes but also influence each other mutually. The bubbles list pathophysiological mechanisms by which each process (with corresponding color) impacts at least one of the two other processes, while the bubble in the middle highlights peculiar pathophysiological mechanisms involved in all processes. BBB = blood–brain barrier, OPC = oligodendrocyte progenitor cell, OL = oligodendrocyte, ↗ = increased, ↘ = decreased.
Ijms 25 12637 g006
Figure 7. A few novel therapeutic strategies in MS. The well-known DMTs act mainly on the peripheral adaptive immune system by their immunomodulatory properties or by selectively depleting lymphocytes or by impeding their migration. BTK inhibitors and Bryostatin-1 finally add microglia to the panel of therapeutic targets. BTK inhibitors target B cells but could also offer additional benefits by modulating macrophages and microglia. Bryostatin-1 programs microglia/macrophages toward an anti-inflammatory phenotype. Clemastine fumarate promotes OPC differentiation. Metformin has anti-inflammatory properties by reducing microgliosis/astrogliosis and proinflammatory mediators, it reduces oxidative stress, rejuvenizes OPCs, and may enhance neurogenesis. In a yet experimental combination therapy, a calpain inhibitor acts within the 3 facets by reducing myelin loss, axonal damage, and CD4+ T cell expansion, while an altered peptide ligand of MBP alters the effector function of T cells. Finally, mitochondrial transplantation could enhance the number of functional mitochondria in all cell types but would in particular be effective in neurons. BTKi = Bruton’s tyrosine kinase inhibitor, DMT = disease-modifying therapies, MΦ = macrophages, R/ = treatment.
Figure 7. A few novel therapeutic strategies in MS. The well-known DMTs act mainly on the peripheral adaptive immune system by their immunomodulatory properties or by selectively depleting lymphocytes or by impeding their migration. BTK inhibitors and Bryostatin-1 finally add microglia to the panel of therapeutic targets. BTK inhibitors target B cells but could also offer additional benefits by modulating macrophages and microglia. Bryostatin-1 programs microglia/macrophages toward an anti-inflammatory phenotype. Clemastine fumarate promotes OPC differentiation. Metformin has anti-inflammatory properties by reducing microgliosis/astrogliosis and proinflammatory mediators, it reduces oxidative stress, rejuvenizes OPCs, and may enhance neurogenesis. In a yet experimental combination therapy, a calpain inhibitor acts within the 3 facets by reducing myelin loss, axonal damage, and CD4+ T cell expansion, while an altered peptide ligand of MBP alters the effector function of T cells. Finally, mitochondrial transplantation could enhance the number of functional mitochondria in all cell types but would in particular be effective in neurons. BTKi = Bruton’s tyrosine kinase inhibitor, DMT = disease-modifying therapies, MΦ = macrophages, R/ = treatment.
Ijms 25 12637 g007
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Perdaens, O.; van Pesch, V. Should We Consider Neurodegeneration by Itself or in a Triangulation with Neuroinflammation and Demyelination? The Example of Multiple Sclerosis and Beyond. Int. J. Mol. Sci. 2024, 25, 12637. https://doi.org/10.3390/ijms252312637

AMA Style

Perdaens O, van Pesch V. Should We Consider Neurodegeneration by Itself or in a Triangulation with Neuroinflammation and Demyelination? The Example of Multiple Sclerosis and Beyond. International Journal of Molecular Sciences. 2024; 25(23):12637. https://doi.org/10.3390/ijms252312637

Chicago/Turabian Style

Perdaens, Océane, and Vincent van Pesch. 2024. "Should We Consider Neurodegeneration by Itself or in a Triangulation with Neuroinflammation and Demyelination? The Example of Multiple Sclerosis and Beyond" International Journal of Molecular Sciences 25, no. 23: 12637. https://doi.org/10.3390/ijms252312637

APA Style

Perdaens, O., & van Pesch, V. (2024). Should We Consider Neurodegeneration by Itself or in a Triangulation with Neuroinflammation and Demyelination? The Example of Multiple Sclerosis and Beyond. International Journal of Molecular Sciences, 25(23), 12637. https://doi.org/10.3390/ijms252312637

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop