Transcriptomic Response of the Ovarian Follicle Complex in Post-Vitellogenic Rainbow Trout to 17α,20β-Dihdroxy-4-pregnen-3-one In Vitro
Abstract
:1. Introduction
2. Results
2.1. Assessment of Follicle Competence
2.2. RNA-Seq Read Alignments
2.3. Differentially Expressed Genes Within and Between Treatment Comparisons
2.4. Gene Set Enrichment Analysis of DEGs
2.5. Verification of Differentially Expressed Genes
3. Discussion
3.1. Follicle Stage
3.2. Overlap of Differentially Expressed Genes Among Treatments
3.3. Gene Ontology Functional Analysis
3.4. KEGG Pathway Analysis
3.4.1. KEGG Pathway Enrichment for the S_C Comparison
3.4.2. KEGG Pathway Enrichment for the M_C Comparison
MAPK Pathway
FoxO Pathway
TGFβ Pathway
Wnt Pathway
4. Materials and Methods
4.1. In Vitro Incubations Bioassay and Sample Selection
4.2. RNA Isolation and RNA-Sequencing
4.3. Differential Expression Analysis
4.4. Gene Ontology and KEGG Pathway Analysis
4.5. Quantitative Real-Time PCR Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zohar, Y.; Mylonas, C.C. Endocrine manipulations of spawning in cultured fish: From hormones to genes. Aquaculture 2001, 197, 99–136. [Google Scholar] [CrossRef]
- Goetz, F.W.; Garczynski, M. The ovarian regulation of ovulation in teleost fish. Fish Physiol. Biochem. 1997, 17, 33–38. [Google Scholar] [CrossRef]
- Patiño, R.; Sullivan, C.V. Ovarian follicle growth, maturation, and ovulation in teleost fish. Fish Physiol. Biochem. 2002, 26, 57–70. [Google Scholar] [CrossRef]
- Patiño, R.; Yoshizaki, G.; Thomas, P. Ovarian follicle maturation and ovulation: An integrated perspective. Fish Physiol. Biochem. 2003, 28, 305–308. [Google Scholar] [CrossRef]
- Suwa, K.; Yamashita, M. Regulatory mechanisms of oocyte maturation and ovulation. In The Fish Oocyte: From Basic Studies to Biotechnological Applications; Babin, P.J., Cerdà, J., Lubzens, E., Eds.; Springer: Dordrecht, The Netherlands, 2007; pp. 323–347. [Google Scholar]
- Nagahama, Y.; Yamashita, M. Regulation of oocyte maturation in fish. Dev. Growth Differ. 2008, 50, S195–S219. [Google Scholar] [CrossRef] [PubMed]
- Lubzens, E.; Young, G.; Bobe, J.; Cerdà, J. Oogenesis in teleosts: How fish eggs are formed. Gen. Comp. Endocrinol. 2010, 165, 367–389. [Google Scholar] [CrossRef]
- Thomas, P. Role of G-protein-coupled estrogen receptor (GPER/GPR30) in maintenance of meiotic arrest in fish oocytes. J. Steroid Biochem. 2017, 167, 153–161. [Google Scholar] [CrossRef] [PubMed]
- Jalabert, B. Modulation par différents stéroides non maturants de l’efficacite de la 17α-hydroxy-20β-dihydroprogesterone ou d’un extrait gonadotrope sur la maturation intrafolliculaire in vitro des ovocytes de la Truite arc-en-ciel Salmo gairdnerii. Comptes Rendus Hebd. Séances L’académie Sci. Série D Sci. Nat. 1975, 281, 811–814. [Google Scholar]
- Jalabert, B.; Fostier, A. The follicular sensitivity in vitro to maturation inducing hormones in rainbow trout, Salmo gairdneri role of oestradiol-17β. Aquaculture 1984, 143, 1–11. [Google Scholar] [CrossRef]
- Jalabert, B.; Fostier, A. The modulatory effect in vitro of oestradiol-17β, testosterone or cortisol on the output of 17α-hydroxy-20β dihydroprogesterone by rainbow trout (Salmo gairdneri) ovarian follicles stimulated by the maturational gonadotropin s-GtH. Reprod. Nutr. Develop. 1984, 24, 127–136. [Google Scholar] [CrossRef]
- Nagahama, Y. 17 alpha,20 beta-dihydroxy-4-pregnen-3-one, a maturation-inducing hormone in fish oocytes: Mechanisms of synthesis and action. Steroids 1997, 62, 190–196. [Google Scholar] [CrossRef] [PubMed]
- Patiño, R.; Yoshizaki, G.; Thomas, P.; Kagawa, H. Gonadotropic control of ovarian follicle maturation: The two-stage concept and its mechanisms. Comp. Biochem. Physiol. B 2001, 129, 427–439. [Google Scholar] [CrossRef] [PubMed]
- Bobe, J.; Maugars, G.; Nguyen, T.; Rime, H.; Jalabert, B. Rainbow trout follicular maturational competence acquisition is associated with an increased expression of follicle stimulating hormone receptor and insulin-like growth factor 2 messenger RNAs. Mol. Reprod. Dev. 2003, 66, 46–53. [Google Scholar] [CrossRef] [PubMed]
- Bobe, J.; Nguyen, T.; Jalabert, B. Targeted gene expression profiling in the rainbow trout (Oncorhynchus mykiss) ovary during maturational competence acquisition and oocyte maturation. Biol. Reprod. 2004, 71, 73–82. [Google Scholar] [CrossRef]
- Crespo, D.; Goetz, F.W.; Planas, J.V. Luteinizing hormone induces ovulation via tumor necrosis factor alpha-dependent increases in prostaglandin F-2 alpha in a nonmammalian vertebrate. Sci. Rep. 2015, 5, 14210. [Google Scholar] [CrossRef] [PubMed]
- Planas, J.V.; Athos, J.; Goetz, F.W.; Swanson, P. Regulation of ovarian steroidogenesis in vitro by follicle-stimulating hormone and luteinizing hormone during sexual maturation in salmonid fish. Bio. Reprod. 2000, 62, 1262–1269. [Google Scholar] [CrossRef]
- Jalabert, B. Production of fertilizable oocytes from follicles of rainbow-trout (Salmo-gairdnerii) following in vitro maturation and ovulation. Ann. Biol. Anim. Biochim. 1978, 18, 461–470. [Google Scholar] [CrossRef]
- Jalabert, B.; Breton, B.; Fostier, A. Precocious induction of oocyte maturation and ovulation in rainbow trout (Salmo gairdneri): Problems when using 17α-hydroxy-20β-dihydroprogesterone. Ann. Biol. Anim. Biochim. Biophys. 1978, 18, 977–984. [Google Scholar] [CrossRef]
- Fostier, A.; Jalabert, B. Steroidogenesis in rainbow trout (Salmo gairdneri) at various preovulatory stages: Changes in plasma hormone levels and in vivo and in vitro responses of the ovary to salmon gonadotropin. Fish Physiol. Biochem. 1986, 2, 87–99. [Google Scholar] [CrossRef]
- Yan, L.; Swanson, P.; Dickhoff, W.W. A Two-Receptor Model for Salmon Gonadotropins (GTH I and GTH II). Biol. Reprod. 1992, 47, 418–427. [Google Scholar] [CrossRef]
- Andersson, E.; Nijenhuis, W.; Male, R.; Swanson, P.; Bogerd, J.; Taranger, G.L.; Schulz, R.W. Pharmacological characterization, localization and quantification of expression of gonadotropin receptors in Atlantic salmon (Salmo salar L.) ovaries. Gen. Comp. Endocrinol. 2009, 163, 329–339. [Google Scholar] [CrossRef]
- Wu, X.J.; Thomas, P.; Zhu, Y. Pgrmc1 knockout impairs oocyte maturation in zebrafish. Front. Endocrinol. 2018, 9, 560. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Liu, D.; Chen, S.; Hong, W.; Zhu, Y. Impaired oocyte maturation and ovulation in membrane progestin receptor (mPR) knockouts in zebrafish. Mol. Cell. Endocrinol. 2020, 511, 110856. [Google Scholar] [CrossRef] [PubMed]
- Pinter, J.; Thomas, P. Induction of ovulation of mature oocytes by the maturation-inducing steroid 17α,20β,21-trihydroxy-4-pregnen-3-one in the spotted seatrout. Gen. Comp. Endocrinol. 1999, 115, 200–209. [Google Scholar] [CrossRef]
- Zhu, Y.; Rice, C.D.; Pang, Y.; Pace, M.; Thomas, P. Cloning, expression, and characterization of a membrane progestin receptor and evidence it is an intermediary in meiotic maturation of fish oocytes. Proc. Natl. Acad. Sci. USA 2003, 100, 2231–2236. [Google Scholar] [CrossRef]
- Thomas, P.; Tubbs, C.; Berg, H.; Dressing, G. Sex steroid hormone receptors in fish ovaries. In The Fish Oocyte: From Basic Studies to Biotechnological Applications; Babin, P.J., Cerdà, J., Lubzens, E., Eds.; Springer: Dordrecht, The Netherlands, 2007; pp. 203–233. [Google Scholar] [CrossRef]
- Zhu, Y.; Liu, D.; Shaner, Z.C.; Chen, S.; Hong, W.; Stellwag, E.J. Nuclear progestin receptor (pgr) knockouts in zebrafish demonstrate role for pgr in ovulation but not in rapid non-genomic steroid mediated meiosis resumption. Front. Endocrinol. 2015, 6, 37. [Google Scholar] [CrossRef]
- Tang, H.; Liu, Y.; Li, J.; Yin, Y.; Li, G.; Chen, Y.; Li, S.; Zhang, Y.; Lin, H.; Liu, X.; et al. Gene knockout of nuclear progesterone receptor provides insights into the regulation of ovulation by LH signaling in zebrafish. Sci. Rep. 2016, 6, 28545. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.T.; Brewer, M.S.; Chen, S.; Hong, W.; Zhu, Y. Transcriptomic signatures for ovulation in vertebrates. Gen. Comp. Endocrinol. 2017, 247, 74–86. [Google Scholar] [CrossRef]
- Pinter, J.; Thomas, P. The ovarian progestogen receptor in the spotted seatrout, Cynoscion nebulosus, demonstrates steroid specificity different from progesterone receptors in other vertebrates. J. Steroid Biochem. Mol. Biol. 1997, 60, 113–119. [Google Scholar] [CrossRef]
- Thomas, P.; Das, S. Correlation between binding affinities of C21 steroids for the maturation-inducing steroid membrane receptor in spotted seatrout ovaries and their agonist and antagonist activities in an oocyte maturation bioassay. Biol. Reprod. 1997, 57, 999–1007. [Google Scholar] [CrossRef] [PubMed]
- Knoll-Gellida, A.; André, M.; Gattegno, T.; Forgue, J.; Admon, A.; Babin, P.J. Molecular phenotype of zebrafish ovarian follicle by serial analysis of gene expression and proteomic profiling, and comparison with the transcriptomes of other animals. BMC Genom. 2006, 7, 46. [Google Scholar] [CrossRef]
- Tingaud-Sequeira, A.; Chauvigné, F.; Lozano, J.; Agulleiro, M.J.; Asensio, E.; Cerdà, J. New insights into molecular pathways associated with flatfish ovarian development and atresia revealed by transcriptional analysis. BMC Genom. 2009, 10, 434. [Google Scholar] [CrossRef] [PubMed]
- Jiang, M.-Y.; Zhou, Y.-F.; Liu, H.; Peng, Y.-X.; Huang, Y.-Q.; Deng, S.-P.; Huang, Y.; Shi, G.; Zhu, C.-H.; Li, G.-L.; et al. Transcriptomic analysis provides new insights into the secondary follicle growth in spotted scat (Scatophagus argus). Front. Mar. Sci. 2023, 10, 1114872. [Google Scholar] [CrossRef]
- Zhu, B.; Pardeshi, L.; Chen, Y.; Ge, W. Transcriptomic analysis for differentially expressed genes in ovarian follicle activation in the zebrafish. Front. Endocrinol. (Lausanne) 2018, 9, 593. [Google Scholar] [CrossRef]
- Guzmán, J.M.; Luckenbach, J.A.; Yamamoto, Y.; Swanson, P. Expression profiles of Fsh-regulated ovarian genes during oogenesis in coho\salmon. PLoS ONE 2014, 9, e114176. [Google Scholar] [CrossRef] [PubMed]
- Ramos-Júdez, S.; Danis, T.; Angelova, N.; Tsakogiannis, A.; Giménez, I.; Tsigenopoulos, C.S.; Duncan, N.; Manousaki, T. Transcriptome analysis of flathead grey mullet (Mugil cephalus) ovarian development induced by recombinant gonadotropin hormones. Front. Physiol. 2022, 13, 1033445. [Google Scholar] [CrossRef]
- von Schalburg, K.R.; Rise, M.L.; Brown, G.D.; Davidson, W.S.; Koop, B.F. A comprehensive survey of the genes involved in maturation and development of the rainbow trout ovary. Biol Reprod. 2005, 72, 687–699. [Google Scholar] [CrossRef] [PubMed]
- Bobe, J.; Montfort, J.; Nguyen, T.; Fostier, A. Identification of new participants in the rainbow trout (Oncorhynchus mykiss) oocyte maturation and ovulation processes using cDNA microarrays. Reprod. Biol. Endocrinol. 2006, 4, 39. [Google Scholar] [CrossRef] [PubMed]
- Hook, S.E.; Nagler, J.J.; Cavileer, T.; Verducci, J.; Liu, Y.; Hayton, W.; Schultz, I.R. Relationships between the transcriptome and physiological indicators of reproduction in female rainbow trout over an annual cycle. Environ. Toxicol. Chem. 2011, 30, 309–318. [Google Scholar] [CrossRef] [PubMed]
- Nynca, J.; Slowin’ska, M.; Wis’niewska, J.; Jastrzebski, J.; Dobosz, S.; Ciereszko, A. Ovarian transcriptome analysis of diploid and triploid rainbow trout revealed new pathways related to gonadal development and fertility. Animal 2022, 16, 100594. [Google Scholar] [CrossRef]
- Allendorf, F.W.; Thorgaard, G.H. Tetra ploidy and the evolution of salmonid fishes. In Evolutionary Genetics of Fishes; Turner, B.J., Ed.; Plenum Press: New York, NY, USA, 1984; pp. 1–53. [Google Scholar]
- Palti, Y.; Gahr, S.A.; Hansen, J.D.; Rexroad III, C.E. Characterization of a new BAC library for rainbow trout: Evidence for multi-locus duplication. Anim. Genet. 2004, 35, 130–133. [Google Scholar] [CrossRef]
- Lankford, S.E.; Weber, G.M. Temporal mRNA expression of transforming growth factor-beta superfamily members and inhibitors in the developing rainbow trout ovary. Gen. Comp. Endocrinol. 2010, 166, 250–258. [Google Scholar] [CrossRef]
- Rime, H.; Nguyen, T.; Bobe, J.; Fostier, A.; Monod, G. Prochloraz-induced oocyte maturation in rainbow trout (Oncorhynchus mykiss), a molecular and functional analysis. Toxicol. Sci. 2010, 118, 61–70. [Google Scholar] [CrossRef]
- Aizen, J.; Kowalsman, N.; Kobayashi, M.; Hollander, L.; Sohn, Y.C.; Yoshizaki, G.; Niv, M.Y.; Levavi-Sivan, B. Experimental and computational study of inter- and intra- species specificity of gonadotropins for various gonadotropin receptors. Mol. Cell. Endocrinol. 2012, 364, 89–100. [Google Scholar] [CrossRef]
- Jalabert, B. In vitro oocyte maturation and ovulation in rainbow trout (Salmo gairdneri), northern pike (Esox lucius), and goldfish (Carassius auratus). J. Fish. Res. Board Can. 1976, 33, 15. [Google Scholar] [CrossRef]
- Breton, B.; Govoroun, M.; Mikolajczyk, T. GTH I and GTH II secretion profiles during the reproductive cycle in female rainbow trout: Relationship with pituitary responsiveness to GnRH-A stimulation. Gen. Comp. Endor. 1998, 111, 38–50. [Google Scholar] [CrossRef] [PubMed]
- Bobe, J.; Nguyen, T.; Fostier, A. Ovarian function of the trout preovulatory ovary: New insights from recent gene expression studies. Comp. Biochem. Phys. A 2009, 153, 63–68. [Google Scholar] [CrossRef]
- Nagler, J.J.; Cavileer, T.D.; Verducci, J.S.; Schultz, I.R.; Hook, S.E.; Hayton, W.L. Estrogen receptor mRNA expression patterns in the liver and ovary of female rainbow trout over a complete reproductive cycle. Gen. Comp. Endocrinol. 2012, 178, 556–561. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, I.; Evans, J.C.; Kusakabe, M.; Nagahama, Y.; Young, G. Changes in steroidogenic enzyme and steroidogenic acute regulatory protein messenger RNAs in ovarian follicles during ovarian development of rainbow trout (Oncorhynchus mykiss). Gen. Comp. Endocrinol. 2005, 144, 224–231. [Google Scholar] [CrossRef]
- Ge, W. Intrafollicular paracrine communication in the zebrafish ovary: The state of the art of an emerging model for the study of vertebrate folliculogenesis. Mol. Cell. Endocrinol. 2005, 237, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Kohli, G.; Clelland, E.; Peng, C. Potential targets of transforming growth factorbeta1 during inhibition of oocyte maturation in zebrafish. Reprod. Biol. Endocrinol. 2005, 3, 53. [Google Scholar] [CrossRef] [PubMed]
- Zhou, R.; Yu, S.M.; Ge, W. Expression and functional characterization of intrafollicular GH-IGF system in the zebrafish ovary. Gen. Comp. Endocrinol. 2016, 232, 32–42. [Google Scholar] [CrossRef] [PubMed]
- Żarski, D.; Le Cam, A.; Frohlich, T.; Kösters, M.; Klopp, C.; Nynca, J.; Ciesielski, S.; Sarosiek, B.; Dryl, K.; Montfort, J.; et al. Neurodevelopment vs. the immune system: Complementary contributions of maternally-inherited gene transcripts and proteins to successful embryonic development in fish. Genomics 2021, 113, 3811–3826. [Google Scholar] [CrossRef] [PubMed]
- Zaniker, E.J.; Babayev, E.; Duncan, F.E. Common mechanisms of physiological and pathological rupture events in biology: Novel insights into mammalian ovulation and beyond. Biol. Rev. Camb. Philos. Soc. 2023, 5, 1648–1667. [Google Scholar] [CrossRef] [PubMed]
- Crespo, D.; Pramanick, P.; Planas, J. Cytokines as intraovarian mediators of luteinizing hormone-induced ovulation in fish. In Sexual Plasticity and Gametogenesis in Fishes; Senthilkumaran, B., Ed.; Nova Science: New York, NY, USA, 2013; pp. 31–48. [Google Scholar]
- Crespo, D.; Bonnet, E.; Roher, N.; MacKenzie, S.A.; Krasnov, A.; Goetz, F.W.; Bobe, J.; Planas, J.V. Cellular and molecular evidence for a role of tumor necrosis factor alpha in the ovulatory mechanism of trout. Reprod. Biol. Endocrinol. 2010, 8, 34. [Google Scholar] [CrossRef] [PubMed]
- Pang, Y.; Ge, W. Epidermal growth factor and TGFα promote zebrafish oocyte maturation in vitro: Potential role of the ovarian activin regulatory system. Endocrinology 2002, 143, 47–54. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Ge, W. Developmental profiles of activin βA, βB, and follistatin expression in the zebrafish ovary: Evidence for their differential roles during sexual maturation and ovulatory cycle. Biol. Reprod. 2004, 71, 2056–2064. [Google Scholar] [CrossRef]
- Van Der Kraak, G.; Lister, A.L. The inhibitory control of oocyte maturation in the zebrafish (Danio rerio): The role of the G protein-coupled estrogen receptor and epidermal growth factor. Biol. Reprod. 2011, 85, 6–8. [Google Scholar] [CrossRef]
- Yoshida, Y.; Yamashita, C.; Noshiro, M.; Fukuda, M.; Aoyama, Y. Sterol 14-demethylase P450 activity expressed in rat gonads: Contribution to the formation of mammalian meiosis-activating sterol. Biochem. Biophys. Res. Commun. 1996, 223, 534–538. [Google Scholar] [CrossRef]
- Nakamura, T.; Iwase, A.; Bayasula, B.; Nagatomo, Y.; Kondo, M.; Nakahara, T.; Takikawa, S.; Goto, M.; Kotani, T.; Kiyono, T.; et al. CYP51A1 induced by growth differentiation factor 9 and follicle-stimulating hormone in granulosa cells is a possible predictor for unfertilization. Reprod. Sci. 2015, 22, 377–384. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Xie, H.; Song, X.; Ning, G.; Yan, J.; Chen, X.; Xu, B.; Ouyang, H.; Xia, G. Lanosterol 14a-demethylase expression in the mouse ovary and its participation in cumulus-enclosed oocyte spontaneous meiotic maturation in vitro. Theriogenology 2006, 66, 1156–1164. [Google Scholar] [CrossRef]
- Guo, R.; Wang, X.; Li, Q.; Sun, X.; Zhang, J.; Hao, R. Follicular fluid meiosis-activating sterol (FF-MAS) promotes meiotic resumption via the MAPK pathway in porcine oocytes. Theriogenology 2020, 148, 186–193. [Google Scholar] [CrossRef] [PubMed]
- Kwon, S.; Lim, H.J. Small GTPases and formins in mammalian oocyte maturation: Cytoskeletal organizers. Clin. Exp. Reprod. Med. 2011, 38, 1–5. [Google Scholar] [CrossRef]
- Gampel, A.; Parker, P.J.; Mellor, H. Regulation of epidermal growth factor receptor traffic by the small GTPase RhoB. Curr. Biol. 1999, 9, 955–958. [Google Scholar] [CrossRef] [PubMed]
- Bisi, S.; Marchesi, S.; Rizvi, A.; Carra, D.; Beznoussenko, G.V.; Ferrara, I.; Deflorian, G.; Mironov, A.; Bertalot, G.; Pisati, F.; et al. IRSp53 controls plasma membrane shape and polarized transport at the nascent lumen in epithelial tubules. Nat. Commun. 2020, 11, 3516. [Google Scholar] [CrossRef] [PubMed]
- Mezu-Ndubuisi, O.J.; Maheshwari, A. The role of integrins in inflammation and angiogenesis. Pediatr. Res. 2021, 89, 1619–1626. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, Y.; Yoshizaki, G. Heterologous gap junctions between granulosa cells and oocytes in ayu (Plecoglossus altivelis): Formation and role during luteinizing hormone-dependent acquisition of oocyte maturational competence. J. Reprod. Dev. 2008, 54, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, Y.; Luckenbach, J.A.; Middleton, M.A.; Swanson, P. The spatiotemporal expression of multiple coho salmon ovarian connexin genes and their hormonal regulation in vitro during oogenesis. Reprod. Biol. Endocrinol. 2011, 9, 52. [Google Scholar] [CrossRef]
- Hagiwara, A.; Ogiwara, K.; Sugama, N.; Yamashita, M.; Takahashi, T. Inhibition of medaka ovulation by gap junction blockers due to its disrupting effect on the transcriptional process of LH-induced Mmp15 expression. Gen. Comp. Endo. 2020, 288, 113373. [Google Scholar] [CrossRef]
- Giepmans, B.N.G.; Verlaan, I.; Moolenaar, W.H. Connexin-43 Interactions with ZO-1 and α- and β-tubulin, Cell Commun. Adhes. 2001, 8, 219–223. [Google Scholar] [CrossRef]
- Yoshikuni, M.; Nagahama, Y. Involvement of an inhibitory G-protein in the signal transduction pathway of maturation-inducing hormone (17α,20β-dihydroxy-4-pregnen-3-one) action in rainbow trout (Oncorhynchus mykiss) oocytes. Dev. Biol. 1994, 166, 615–622. [Google Scholar] [CrossRef]
- Pace, M.C.; Thomas, P. Activation of a pertussis toxin-sensitive, inhibitory G-protein is necessary for steroid-mediated oocyte maturation in spotted seatrout. Dev. Biol. 2005, 285, 70–79. [Google Scholar] [CrossRef] [PubMed]
- Aizen, J.; Pang, Y.; Harris, C.; Converse, A.; Zhu, Y.; Aguirre, M.A.; Thomas, P. Roles of progesterone receptor membrane component 1 and membrane progestin receptor alpha in regulation of zebrafish oocyte maturation. Gen. Comp. Endocrinol. 2018, 263, 51–61. [Google Scholar] [CrossRef] [PubMed]
- Lampe, P.D.; Qiu, Q.; Meyer, R.A.; TenBroek, E.M.; Walseth, T.F.; Starich, T.A.; Grunenwald, H.L.; Johnson, R.G. Gap junction assembly: PTX-sensitive G proteins regulate the distribution of connexin43 within cells. Am. J. Physiol. Cell Physiol. 2001, 28, C1211–C1222. [Google Scholar] [CrossRef] [PubMed]
- Derangeon, M.; Bozon, V.; Defamie, N.; Sarrouilhe, D.; Argibay, J.A.; Hervé, J. 5-HT4 and 5-HT2 receptors antagonistically influence gap junctional coupling between rat auricular myocytes. J. Mol. Cell. Cardiol. 2010, 48, 220–229. [Google Scholar] [CrossRef] [PubMed]
- Cerdà, J.; Petrino, T.R.; Wallace, R.A. Functional heterologous gap junctions in Fundulus ovarian follicles maintain meiotic arrest and permit hydration during oocyte maturation. Dev. Biol. 1993, 160, 228–235. [Google Scholar] [CrossRef] [PubMed]
- Cerdà, J.; Reidenbach, S.; Prätzel, S.; Franke, W.W. Cadherin–catenin complexes during zebrafish oogenesis: Heterotypic junctions between oocytes and follicle cells. Biol. Reprod. 1999, 61, 692–704. [Google Scholar] [CrossRef] [PubMed]
- Young, G.; Adachi, S.; Nagahama, Y. Role of ovarian thecal and granulosa layers in gonadotropin-induced synthesis of a salmonid maturation-inducing substance (17α,20β-dihydroxy-4-pregnen-3-one). Dev. Biol. 1986, 118, 1–8. [Google Scholar] [CrossRef]
- Senthilkumaran, B.; Yoshikuni, M.; Nagahama, Y. A shift in steroidogenesis occurring in ovarian follicles prior to oocyte maturation. Mol. Cell. Endocrinol. 2004, 215, 11–18. [Google Scholar] [CrossRef] [PubMed]
- Scott, A.P.; Liley, N.R. Dynamics of excretion of 17α,20β-dihydroxy-4-pregnen-3-one-20-sulphate, and of the glucuronides of testosterone and 17β-oestradiol, by urine of reproductively mature male and female rainbow trout (Oncorhynchus mykiss). J. Fish Biol. 1994, 44, 117–129. [Google Scholar] [CrossRef]
- Liu, T.; Qu, J.; Tian, M.; Yang, R.; Song, X.; Li, R.; Yan, J.; Qiao, J. Lipid metabolic process involved in oocyte maturation during folliculogenesis. Front. Cell. Dev. Biol. 2022, 10, 806890. [Google Scholar] [CrossRef]
- Dunning, K.R.; Russell, D.L.; Robker, R.L. Lipids and oocyte developmental competence: The role of fatty acids and β-oxidation. Reproduction 2014, 148, R15–R27. [Google Scholar] [CrossRef] [PubMed]
- Wong, T.T.; Zohar, Y. Novel expression of gonadotropin subunit genes in oocytes of the gilthead seabream (Sparus aurata). Endocrinology 2004, 145, 5210–5220. [Google Scholar] [CrossRef] [PubMed]
- Cargnello, M.; Roux, P.P. Activation and function of the MAPKs and their substrates, the MAPK-activated protein kinases. Microbiol. Mol. Biol. R. 2011, 75, 50–83. [Google Scholar] [CrossRef] [PubMed]
- Fan, H.Y.; Liu, Z.; Mullany, L.K.; Richards, J.S. Consequences of RAS and MAPK activation in the ovary: The good, the bad and the ugly. Mol. Cell. Endocrinol. 2012, 356, 74–79. [Google Scholar] [CrossRef]
- Das, D.; Arur, S. Regulation of oocyte maturation: Role of conserved ERK signaling. Mol. Reprod. Dev. 2022, 89, 353–374. [Google Scholar] [CrossRef]
- Jeffrey, K.L.; Camps, M.; Rommel, C.; Mackay, C.R. Targeting dual-specificity phosphatases: Manipulating MAP kinase signalling and immune responses. Nat. Rev. Drug Discov. 2007, 6, 391–403. [Google Scholar] [CrossRef]
- Andrae, J.; Gallini, R.; Betsholtz, C. Role of platelet-derived growth factors in physiology and medicine. Genes Dev. 2008, 22, 1276–1312. [Google Scholar] [CrossRef]
- Peyton, C.; Thomas, P. Involvement of epidermal growth factor receptor signaling in estrogen inhibition of oocyte maturation mediated through the G protein-coupled estrogen receptor (Gper) in zebrafish (Danio rerio). Biol. Reprod. 2011, 85, 42–50. [Google Scholar] [CrossRef]
- Carraway, K.L.; Sliwkowski, M.X.; Akita, R.; Platko, J.V.; Guy, P.M.; Nuijens, A.; Diamonti, A.J.; Vandlen, R.L.; Cantley, L.C.; Cerione, R.A. The erbB3 gene product is a receptor for heregulin. J. Biol. Chem. 1994, 269, 14303–14306. [Google Scholar] [CrossRef]
- Carraway, K.L.; Weber, J.L.; Unger, M.J.; Ledesma, J.; Yu, N.; Gassmann, M.; Lai, C. Neuregulin-2, a new ligand of ErbB3/ErbB4-receptor tyrosine kinases. Nature 1997, 387, 512–516. [Google Scholar] [CrossRef] [PubMed]
- Brown, A.K.; Webb, A.E. Regulation of FOXO factors in mammalian cells. Curr. Top. Dev. Biol. 2018, 127, 165–192. [Google Scholar] [CrossRef] [PubMed]
- Syed, V.; Ulinski, G.; Mok, S.C.; Ho, S.M. Reproductive hormone-induced, STAT3-mediated interleukin 6 action in normal and malignant human ovarian surface epithelial cells. J. Natl. Cancer Inst. 2002, 94, 617–629. [Google Scholar] [CrossRef]
- O’Neill, B.T.; Lee, K.Y.; Klaus, K.; Softic, S.; Krumpoch, M.T.; Fentz, J.; Stanford, K.I.; Robinson, M.M.; Cai, W.; Kleinridders, A.; et al. Insulin and IGF-1 receptors regulate FoxO-mediated signaling in muscle proteostasis. J. Clin. Investig. 2016, 126, 3433–3446. [Google Scholar] [CrossRef] [PubMed]
- Weber, G.M.; Sullivan, C.V. In vitro hormone induction of final oocyte maturation in striped bass (Morone saxatilis) follicles is inhibited by blockers of phosphatidylinositol 3-kinase activity. Comp. Biochem. Physiol. B 2001, 129, 467–473. [Google Scholar] [CrossRef]
- Pace, M.C.; Thomas, P. Steroid-induced oocyte maturation in Atlantic croaker (Micropogonias undulatus) is dependent on activation of the phosphatidylinositol 3-kinase/Akt signal transduction pathway. Biol. Reprod. 2005, 73, 988–996. [Google Scholar] [CrossRef]
- Lou, Y.; Hu, M.; Mao, L.; Zheng, Y.; Jin, F. Involvement of serum glucocorticoid-regulated kinase 1 in reproductive success. FASEB J. 2017, 31, 447–456. [Google Scholar] [CrossRef] [PubMed]
- Boonyaratanakornkit, V.; McGowan, E.; Sherman, L.; Mancini, M.A.; Cheskis, B.J.; Edwards, D.P. The role of extranuclear signaling actions of progesterone receptor in mediating progesterone regulation of gene expression and the cell cycle. Mol. Endocrinol. 2007, 21, 359–375. [Google Scholar] [CrossRef] [PubMed]
- Hosoda, E.; Hiraoka, D.; Hirohashi, N.; Omi, S.; Kishimoto, T.; Chiba, K. SGK regulates pH increase and cyclin B-Cdk1 activation to resume meiosis in starfish ovarian oocytes. J. Cell. Biol. 2019, 218, 3612–3629. [Google Scholar] [CrossRef]
- Del Llano, E.; Iyyappan, R.; Aleshkina, D.; Masek, T.; Dvoran, M.; Jiang, Z.; Pospisek, M.; Kubelka, M.; Susor, A. SGK1 is essential for meiotic resumption in mammalian oocytes. Eur. J. Cell Biol. 2022, 101, 151210. [Google Scholar] [CrossRef]
- Solc, P.; Kitajima, T.S.; Yoshida, S.; Brzakova, A.; Kaido, M.; Baran, V.; Mayer, A.; Samalova, P.; Motlik, J.; Ellenberg, J. Multiple requirements of PLK1 during mouse oocyte maturation. PLoS ONE 2015, 10, e0116783. [Google Scholar] [CrossRef] [PubMed]
- Kalous, J.; Aleshkina, D. Multiple roles of PLK1 in mitosis and meiosis. Cells 2023, 12, 187. [Google Scholar] [CrossRef]
- Terenina, E.; Fabre, S.; Bonnet, A.; Monniaux, D.; Robert-Granié, C.; SanCristobal, M.; Sarry, J.; Vignoles, F.; Gondret, F.; Monget, P.; et al. Differentially expressed genes and gene networks involved in pig ovarian follicular atresia. Physiol. Genom. 2017, 49, 67–80. [Google Scholar] [CrossRef]
- Tzavlaki, K.; Moustakas, A. TGF-β Signaling. Biomolecules 2020, 10, 487. [Google Scholar] [CrossRef] [PubMed]
- Patton, B.K.; Madadi, S.; Pangas, S.A. Control of ovarian follicle development by TGFβ family signaling. Curr. Opin. Endocr. Metab. Res. 2021, 18, 102–110. [Google Scholar] [CrossRef] [PubMed]
- Lankford, S.E.; Weber, G.M. The maturation-inducing hormone 17α,20β-dihydroxy-4-pregnen-3-one regulates gene expression of inhibin βA and bambi (bone morphogenetic protein and activin-membrane-bound inhibitor) in the rainbow trout ovary. Gen. Comp. Endocrinol. 2010, 168, 369–376. [Google Scholar] [CrossRef] [PubMed]
- Pang, Y.; Ge, W. Activin stimulation of zebrafish oocyte maturation in vitro and its potential role in mediating gonadotropin-induced oocyte maturation. Biol. Reprod. 1999, 61, 987–992. [Google Scholar] [CrossRef] [PubMed]
- Kohli, G.; Hu, S.; Clelland, E.; Di Muccio, T.; Rothenstein, J.; Peng, C. Cloning of transforming growth factor-b1 (TGF-β1) and its type II receptor from zebrafish ovary and role of TGF-β1 in oocyte maturation. Endocrinology 2003, 144, 1931–1941. [Google Scholar] [CrossRef] [PubMed]
- Ge, W. Roles of the activin regulatory system in fish reproduction. Can. J. Physiol. Pharmacol. 2000, 78, 1077–1085. [Google Scholar] [CrossRef]
- Wu, T.; Patel, H.; Mukai, S.; Melino, C.; Garg, R.; Ni, X.; Chang, J.; Peng, C. Activin, inhibin, and follistatin in zebrafish ovary: Expression and role in oocyte maturation. Biol. Reprod. 2000, 62, 1585–1592. [Google Scholar] [CrossRef] [PubMed]
- Clelland, E.S.; Kelly, S.P. Exogenous GDF9 but not Activin A, BMP15 or TGFβ alters tight junction protein transcript abundance in zebrafish ovarian follicles. Gen. Comp. Endocrinol. 2011, 171, 211–217. [Google Scholar] [CrossRef] [PubMed]
- Tran, D.Q.; Andersson, J.; Wang, R.; Ramsey, H.; Unutmaz, D.; Shevach, E.M. GARP (LRRC32) is essential for the surface expression of latent TGF-β on platelets and activated FOXP3+ regulatory T cells. Proc. Natl. Acad. Sci. USA 2009, 106, 13445–13450. [Google Scholar] [CrossRef] [PubMed]
- Edwards, J.P.; Thornton, A.M.; Shevach, E.M. Release of active TGF-β1 from the latent TGF-β1/GARP complex on T regulatory cells is mediated by integrin b8. J. Immunol. 2014, 193, 2843–2849. [Google Scholar] [CrossRef] [PubMed]
- Andersson, M.L.; Eggen, R.I. Transcription of the fish Latent TGFβ-binding protein gene is controlled by estrogen receptor a. Toxicol. In Vitro 2006, 20, 417–425. [Google Scholar] [CrossRef]
- Crawford, S.E.; Stellmach, V.; Murphy-Ullrich, J.E.; Ribeiro, S.M.; Lawler, J.; Hynes, R.O.; Boivin, G.P.; Bouck, N. Thrombospondin-1 is a major activator of TGF-β1 in vivo. Cell 1998, 93, 1159–1170. [Google Scholar] [CrossRef]
- Bender, H.R.; Campbell, G.E.; Aytoda, P.; Mathiesen, A.H.; Duffy, D.M. Thrombospondin 1 (THBS1) promotes follicular angiogenesis, luteinization, and ovulation in primates. Front. Endocrinol. (Lausanne) 2019, 10, 727. [Google Scholar] [CrossRef] [PubMed]
- Farberov, S.; Basavaraja, R.; Meidan, R. Thrombospondin-1 at the crossroads of corpus luteum fate decisions. Reproduction 2019, 157, R73–R83. [Google Scholar] [CrossRef]
- Feiner, N.; Motone, F.; Meyer, A.; Kuraku, S. Asymmetric paralog evolution between the “cryptic” gene Bmp16 and its well-studied sister genes Bmp2 and Bmp4. Sci. Rep. 2019, 9, 3136. [Google Scholar] [CrossRef]
- Andriopoulos, B., Jr.; Corradini, E.; Xia, Y.; Faasse, S.A.; Chen, S.; Grgurevic, L.; Knutson, M.D.; Pietrangelo, A.; Vukicevic, S.; Lin, H.Y.; et al. BMP6 is a key endogenous regulator of hepcidin expression and iron metabolism. Nat. Genet. 2009, 41, 482–487. [Google Scholar] [CrossRef]
- Pessah, M.; Prunier, C.; Marais, J.; Ferrand, N.; Mazars, A.; Lallemand, F.; Gauthier, J.M.; Atfi, A. c-Jun interacts with the corepressor TG-interacting factor (TGIF) to suppress Smad2 transcriptional activity. Proc. Natl. Acad. Sci. USA 2001, 98, 6198–6203. [Google Scholar] [CrossRef] [PubMed]
- Itoh, F.; Divecha, N.; Brocks, L.; Oomen, L.; Janssen, H.; Calafat, J.; Itoh, S.; Dijke, P.t. The FYVE domain in Smad anchor for receptor activation (SARA) is sufficient for localization of SARA in early endosomes and regulates TGF-beta/Smad signalling. Genes Cells. 2002, 7, 321–331. [Google Scholar] [CrossRef] [PubMed]
- Wiercinska, E.; Wickert, L.; Denecke, B.; Said, H.M.; Hamzavi, J.; Gressner, A.M.; Thorikay, M.; ten Dijke, P.; Mertens, P.R.; Breitkopf, K.; et al. Id1 is a critical mediator in TGF-β-induced trans differentiation of rat hepatic stellate cells. Hepatology 2006, 43, 1032–1041. [Google Scholar] [CrossRef] [PubMed]
- Elemam, N.M.; Malek, A.I.; Mahmoud, E.E.; El-Huneidi, W.; Talaat, I.M. Insights into the role of Gremlin-1, a bone morphogenic protein antagonist, in cancer initiation and progression. Biomedicines 2022, 10, 301. [Google Scholar] [CrossRef] [PubMed]
- Fürthauer, M.; Thisse, B.; Thisse, C. Three different noggin genes antagonize the activity of bone morphogenetic proteins in the zebrafish embryo. Dev. Biol. 1999, 214, 181–196. [Google Scholar] [CrossRef] [PubMed]
- Tecalco-Cruz, A.C.; Ríos-López, D.G.; Vázquez-Victorio, G.; Rosales-Alvarez, R.E.; Macías-Silva, M. Transcriptional cofactors Ski and SnoN are major regulators of the TGF-β/Smad signaling pathway in health and disease. Signal Transduct. Target Ther. 2018, 3, 15. [Google Scholar] [CrossRef]
- Onichtchouk, D.; Chen, Y.G.; Dosch, R.; Gawantka, V.; Delius, H.; Massague, J.; Niehrs, C. Silencing of TGF-β signalling by the pseudo receptor BAMBI. Nature 1999, 401, 480–485. [Google Scholar] [CrossRef] [PubMed]
- Lin, Z.; Gao, C.; Ning, Y.; He, X.; Wu, W.; Chen, Y.G. The pseudo receptor BMP and activin membrane-bound inhibitor positively modulates Wnt/beta-catenin signaling. J. Biol. Chem. 2008, 283, 33053–33058. [Google Scholar] [CrossRef]
- Liu, J.; Xiao, Q.; Xiao, J.; Niu, C.; Li, Y.; Zhang, X.; Zhou, Z.; Shu, G.; Yin, G. Wnt/β-catenin signalling: Function, biological mechanisms, and therapeutic opportunities. Signal Transduct. Target Ther. 2022, 7, 3. [Google Scholar] [CrossRef]
- Li, L.; Shi, X.; Shi, Y.; Wang, Z. The signaling pathways involved in ovarian follicle development. Front. Physiol. 2021, 12, 730196. [Google Scholar] [CrossRef]
- Stamos, J.L.; Weis, W.I. The β-Catenin Destruction Complex. Cold Spring Harb. Perspect. Biol. 2013, 5, a007898. [Google Scholar] [CrossRef]
- Sreenivasan, R.; Jiang, J.; Wang, X.; Bártfai, R.; Kwan, H.Y.; Christoffels, A.; Orbán, L. Gonad differentiation in zebrafish is regulated by the canonical Wnt signaling pathway. Biol. Reprod. 2014, 90, 45. [Google Scholar] [CrossRef]
- Nicol, B.; Guiguen, Y. Expression profiling of Wnt signaling genes during gonadal differentiation and gametogenesis in rainbow trout. Sex Dev. 2011, 5, 318–329. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Kossack, M.E.; McFaul, M.E.; Christensen, L.N.; Siebert, S.; Wyatt, S.R.; Kamei, C.N.; Horst, S.; Arroyo, N.; Drummond, I.A.; et al. Single-cell transcriptome reveals insights into the development and function of the zebrafish ovary. eLife 2022, 11, e76014. [Google Scholar] [CrossRef] [PubMed]
- Prathibha, Y.; Senthilkumaran, B. Expression of wnt4/5 during reproductive cycle of catfish and wnt5 promoter analysis. J. Endocrinol. 2017, 232, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Glinka, A.; Dolde, C.; Kirsch, N.; Huang, Y.L.; Kazanskaya, O.; Ingelfinger, D.; Boutros, M.; Cruciat, C.M.; Niehrs, C. LGR4 and LGR5 are R-spondin receptors mediating Wnt/β-catenin and Wnt/PCP signalling. EMBO Rep. 2011, 12, 1055–1061. [Google Scholar] [CrossRef] [PubMed]
- Oshita, A.; Kishida, S.; Kobayashi, H.; Michiue, T.; Asahara, T.; Asashima, M.; Kikuchi, A. Identification and characterization of a novel Dvl-binding protein that suppresses Wnt signalling pathway. Genes Cells. 2003, 8, 1005–1017. [Google Scholar] [CrossRef] [PubMed]
- Veeman, M.T.; Slusarski, D.C.; Kaykas, A.; Louie, S.H.; Moon, R.T. Zebrafish prickle, a modulator of noncanonical Wnt/Fz signaling, regulates gastrulation movements. Curr. Biol. 2003, 13, 680–685. [Google Scholar] [CrossRef] [PubMed]
- Chan, D.W.; Chan, C.Y.; Yam, J.W.; Ching, Y.P.; Ng, I.O. Prickle-1 negatively regulates Wnt/beta-catenin pathway by promoting Dishevelled ubiquitination/degradation in liver cancer. Gastroenterology 2006, 131, 1218–1227. [Google Scholar] [CrossRef]
- Gao, Y.; Wang, H.Y. Casein kinase 2 Is activated and essential for Wnt/beta-catenin signaling. J. Biol. Chem. 2006, 281, 18394–18400. [Google Scholar] [CrossRef] [PubMed]
- Hino, S.; Tanji, C.; Nakayama, K.I.; Kikuchi, A. Phosphorylation of beta-catenin by cyclic AMP-dependent protein kinase stabilizes beta-catenin through inhibition of its ubiquitination. Mol. Cell. Biol. 2005, 25, 9063–9072. [Google Scholar] [CrossRef] [PubMed]
- Hecht, A.; Vleminckx, K.; Stemmler, M.P.; van Roy, F.; Kemler, R. The p300/CBP acetyltransferases function as transcriptional coactivators of beta-catenin in vertebrates. EMBO J. 2000, 19, 1839–1850. [Google Scholar] [CrossRef] [PubMed]
- Thyssen, G.; Li, T.H.; Lehmann, L.; Zhuo, M.; Sharma, M.; Sun, Z. LZTS2 is a novel beta-catenin-interacting protein and regulates the nuclear export of beta-catenin. Mol. Cell. Biol. 2006, 26, 8857–8867. [Google Scholar] [CrossRef]
- Daniels, D.L.; Weis, W.I. Beta-catenin directly displaces Groucho/TLE repressors from Tcf/Lef in Wnt-mediated transcription activation. Nat. Struct. Mol. Biol. 2005, 12, 364–371. [Google Scholar] [CrossRef] [PubMed]
- Mao, B.; Niehrs, C. Kremen2 modulates Dickkopf2 activity during Wnt/LRP6 signaling. Gene 2003, 302, 179–183. [Google Scholar] [CrossRef]
- Li, X.; Zhang, Y.; Kang, H.; Liu, W.; Liu, P.; Zhang, J.; Harris, S.E.; Wu, D. Sclerostin binds to LRP5/6 and antagonizes canonical Wnt signaling. J. Biol. Chem. 2005, 280, 19883–19887. [Google Scholar] [CrossRef] [PubMed]
- Zamberlam, G.; Lapointe, E.; Abedini, A.; Rico, C.; Godin, P.; Paquet, M.; DeMayo, F.J.; Boerboom, D. SFRP4 is a negative regulator of ovarian follicle development and female fertility. Endocrinology 2019, 160, 1561–1572. [Google Scholar] [CrossRef]
- Sekiya, T.; Adachi, S.; Kohu, K.; Yamada, T.; Higuchi, O.; Furukawa, Y.; Nakamura, Y.; Nakamura, T.; Tashiro, K.; Kuhara, S.; et al. Identification of BMP and activin membrane-bound inhibitor (BAMBI), an inhibitor of transforming growth factor-beta signaling, as a target of the beta-catenin pathway in colorectal tumor cells. J. Biol. Chem. 2004, 279, 6840–6846. [Google Scholar] [CrossRef]
- Dobin, A.; Davis, C.A.; Schlesinger, F.; Drenkow, J.; Zaleski, C.; Jha, S. STAR: Ultrafast universal RNA-seq aligner. Bioinformatics 2013, 29, 15–21. [Google Scholar] [CrossRef]
- Pearse, D.E.; Barson, N.J.; Nome, T.; Gao, G.; Campbell, M.A.; Abadía-Cardoso, A.; Anderson, E.C.; Rundio, D.E.; Williams, T.H.; Naish, K.A.; et al. Sex-dependent dominance maintains migration supergene in rainbow trout. Nat. Ecol. Evol. 2019, 3, 1731–1742. [Google Scholar] [CrossRef]
- Anders, S.; Pyl, P.T.; Huber, W. HTSeq—A Python framework to work with high-throughput sequencing data. Bioinformatics 2015, 31, 166–169. [Google Scholar] [CrossRef] [PubMed]
- Love, M.I.; Huber, W.; Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014, 15, 550. [Google Scholar] [CrossRef] [PubMed]
- Robinson, M.D.; McCarthy, D.J.; Smyth, G.K. 2010 edgeR: A bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 2010, 26, 139–140. [Google Scholar] [CrossRef] [PubMed]
- Benjamini, Y.; Hochberg, Y. Controlling the false discovery rate: A practical and powerful approach to multiple testing. J. R. Stat. Soc. 1995, 57, 289–300. [Google Scholar] [CrossRef]
- Sherman, B.T.; Hao, M.; Qiu, J.; Jiao, X.; Baseler, M.W.; Lane, H.C.; Imamichi, T.; Chang, W. DAVID: A web server for functional enrichment analysis and functional annotation of gene lists (2021 update). Nucleic Acids Res. 2022, 50, W216–W221. [Google Scholar] [CrossRef]
- Gao, G.; Magadan, S.; Waldbieser, G.C.; Youngblood, R.C.; Wheeler, P.A.; Scheffler, B.E.; Thorgaard, G.H.; Palti, Y. A long reads-based de-novo assembly of the genome of the Arlee homozygous line reveals chromosomal rearrangements in rainbow trout. G3 Genes|Genomes|Genetics 2021, 11, jkab052. [Google Scholar] [CrossRef]
17,20βP | SPH | Control | ||||
---|---|---|---|---|---|---|
Fish | n | Germinal Vesicle Break Down (%) | n | Germinal Vesicle Break Down (%) | n | Germinal Vesicle Break Down (%) |
Fish 1 | 80 | 97 | 80 | 19 | 78 | 0 |
Fish 2 | 80 | 46 | 80 | 0 | 73 | 0 |
Fish 3 | 80 | 0 | 70 | 0 | 75 | 0 |
Fish 4 | 86 | 49 | 90 | 0 | 70 | 0 |
Fish 5 | 91 | 80 | 94 | 7 | 73 | 0 |
Fish 6 | 88 | 100 | 92 | 8 | 83 | 0 |
Fish 7 | 92 | 0 | 92 | 0 | 62 | 0 |
Fish 8 | 92 | 100 | 92 | 97 | 57 | 0 |
Fish 9 | 92 | 85 | 92 | 0 | 79 | 0 |
Sample | Raw Reads | Uniquely Mapped Reads | Multiple Mapped Reads | Unmapped Reads |
---|---|---|---|---|
Fish 1 Control | 25,658,354 | 18,810,404 | 4,498,966 | 2,348,984 |
Fish 1 Fresh | 36,409,248 | 27,646,680 | 5,520,008 | 3,242,560 |
Fish 1 MIH | 23,046,303 | 16,829,377 | 4,015,458 | 2,201,468 |
Fish 1 SPH | 24,242,785 | 18,596,416 | 3,566,571 | 2,079,798 |
Fish 5 Control | 23,601,043 | 17,763,451 | 3,689,144 | 2,148,448 |
Fish 5 Fresh | 23,851,239 | 17,702,404 | 3,967,678 | 2,181,157 |
Fish 5 MIH | 34,136,174 | 25,172,087 | 5,599,459 | 3,364,628 |
Fish 5 SPH | 25,614,409 | 19,756,515 | 3,700,793 | 2,157,101 |
Fish 6 Control | 18,293,468 | 13,333,335 | 3,256,496 | 1,703,637 |
Fish 6 Fresh | 24,027,278 | 17,554,537 | 4,242,701 | 2,230,040 |
Fish 6 MIH | 22,423,964 | 16,178,584 | 4,097,088 | 2,148,292 |
Fish 6 SPH | 26,161,388 | 19,384,938 | 4,254,896 | 2,521,554 |
Biological Process | |||
---|---|---|---|
17,20βP versus Control (M_C) | Count | p-Value | Level |
Biological regulation | 129 | 0.002 | 1 |
Regulation of biological process | 114 | 0.009 | 2 |
Negative regulation of biological process | 32 | 0.002 | 3 |
Cellular process | NS | 1 | |
Cellular response to organic substance | 15 | 0.007 | 4 |
Cell-cell signaling | 14 | 0.005 | 3 |
Signal transduction | NS | 3 | |
Enzyme-linked receptor protein signaling pathway | 10 | 0.006 | 6 |
Transmembrane receptor protein tyrosine kinase signaling pathway | 8 | 0.010 | 7 |
Regulation of cellular process | 100 | 0.009 | 2 |
Negative regulation of cellular process | 28 | <0.001 | 3 |
Negative regulation of cellular metabolic process | 13 | 0.005 | 4 |
Localization | NS | 1 | |
Regulation of peptide secretion | 4 | 0.007 | 8 |
Regulation of localization | 17 | 0.002 | 2 |
Regulation of transport | 17 | <0.001 | 3 |
Response to stimulus | 98 | 0.005 | 1 |
Response to chemical | 35 | <0.001 | 2 |
Response to nitrogen compound | 10 | 0.005 | 3 |
Response to organic substance | 30 | <0.001 | 3 |
Response to endogenous stimulus | 19 | <0.001 | 2 |
Response to hormone | 13 | <0.001 | 3 |
Response to peptide hormone | 8 | 0.007 | 4 |
SPH versus Control (S_C) | Count | p-Value | Level |
Biological regulation | NS | 1 | |
Regulation of biological process | 30 | 0.030 | 2 |
Metabolic process | NS | 1 | |
Negative regulation of gene expression | 6 | 0.027 | 6 |
Reproductive process | NS | 1 | |
Female gamete generation | 3 | 0.007 | 4 |
Response to stimulus | 28 | 0.008 | 1 |
Response to endogenous stimulus | 4 | 0.043 | 2 |
Fresh versus Control (F_C) | Count | p-Value | Level |
Biological regulation | NS | 1 | |
Regulation of biological process | 84 | <0.001 | 2 |
Signaling | 39 | 0.028 | 3 |
Cellular process | NS | 1 | |
Cell motility | 9 | <0.001 | 2 |
Cellular metabolic process | NS | 2 | |
Regulation of phosphate metabolic process | 9 | 0.001 | 5 |
Cell proliferation | 8 | 0.001 | 2 |
Cell death | NS | 2 | |
Apoptotic process | 9 | 0.029 | 4 |
Regulation of cellular process | 66 | 0.004 | 2 |
Immune system process | NS | 1 | |
Immune response | 21 | <0.001 | 2 |
Regulation of immune system process | 10 | 0.004 | 2 |
Localization | NS | 1 | |
Establishment of localization | NS | 2 | |
Phagocytosis | 4 | 0.014 | 6 |
Regulation of localization | 14 | <0.001 | 2 |
Regulation of transport | 11 | 0.006 | 3 |
Metabolic process | NS | 1 | |
Regulation of metabolic process | 33 | 0.004 | 2 |
Biosynthetic process | NS | 2 | |
Regulation of gene expression | 27 | 0.008 | 5 |
Response to stimulus | 78 | <0.001 | 1 |
Response to chemical | 24 | <0.001 | 2 |
Response to stress | 27 | 0.004 | 2 |
Defense response | 19 | <0.001 | 3 |
Inflammatory response | 10 | <0.001 | 4 |
Regulation of response to stimulus | 19 | 0.003 | 2 |
Molecular Function | |||
---|---|---|---|
17,20βP versus Control (M_C) | Count | p-Value | Level |
Binding | NS | 1 | |
Protein binding | 86 | 0.005 | 2 |
Receptor binding | 36 | 0.025 | 3 |
Growth factor receptor binding | 7 | 0.015 | 4 |
Insulin-like growth factor binding | 7 | 0.012 | 4 |
Hormone binding | 6 | 0.033 | 2 |
Sulfur compound binding | 5 | 0.047 | 2 |
Carbohydrate binding | NS | 2 | |
Monosaccharide binding | 6 | 0.020 | 3 |
Catalytic activity | NS | 1 | |
Oxidoreductase activity | 32 | 0.032 | 2 |
Oxidoreductase activity, acting on the CH-OH group of donors, NAD or NADP as acceptor | 8 | 0.015 | 3 |
Phosphotransferase activity, alcohol group as acceptor | 24 | 0.020 | 4 |
Kinase activity | 27 | 0.049 | 4 |
Carbohydrate kinase activity | 4 | 0.024 | 5 |
Carbohydrate phosphatase activity | 3 | 0.047 | 6 |
Molecular function regulator activity | NS | 1 | |
Growth factor activity | 14 | 0.002 | 5 |
SPH versus Control (S_C) | Count | p-Value | Level |
Binding | NS | 1 | |
Protein binding | 22 | 0.044 | 2 |
Receptor binding | 11 | 0.047 | 3 |
Molecular function regulatory activity | NS | 1 | |
Cytokine activity | 6 | 0.023 | 5 |
Fresh versus Control (F_C) | Count | p-Value | Level |
ATP-dependent activity | NS | 1 | |
RNA helicase activity | 5 | 0.031 | 3 |
Binding | 173 | 0.030 | 1 |
Protein binding | 67 | <0.001 | 2 |
Receptor binding | 36 | <0.001 | 3 |
Cytokine receptor binding | 17 | <0.001 | 4 |
Insulin-like growth factor binding | 9 | <0.001 | 4 |
Carbohydrate derivative binding | NS | 2 | |
Lipopolysaccharide binding | 3 | 0.036 | 3 |
Catalytic activity | NS | 1 | |
Disulfide oxidoreductase activity | 4 | 0.015 | 3 |
Molecular function regulator activity | NS | 1 | |
Molecular function activator activity | NS | 2 | |
Cytokine activity | 14 | <0.001 | 5 |
Growth factor activity | 12 | <0.001 | 6 |
Hormone activity | 10 | 0.041 | 6 |
Enzyme regulator activity | NS | 2 | |
Metalloendopeptidase inhibitor activity | 3 | 0.027 | 6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, H.; Gao, G.; Palti, Y.; Tripathi, V.; Birkett, J.E.; Weber, G.M. Transcriptomic Response of the Ovarian Follicle Complex in Post-Vitellogenic Rainbow Trout to 17α,20β-Dihdroxy-4-pregnen-3-one In Vitro. Int. J. Mol. Sci. 2024, 25, 12683. https://doi.org/10.3390/ijms252312683
Ma H, Gao G, Palti Y, Tripathi V, Birkett JE, Weber GM. Transcriptomic Response of the Ovarian Follicle Complex in Post-Vitellogenic Rainbow Trout to 17α,20β-Dihdroxy-4-pregnen-3-one In Vitro. International Journal of Molecular Sciences. 2024; 25(23):12683. https://doi.org/10.3390/ijms252312683
Chicago/Turabian StyleMa, Hao, Guangtu Gao, Yniv Palti, Vibha Tripathi, Jill E. Birkett, and Gregory M. Weber. 2024. "Transcriptomic Response of the Ovarian Follicle Complex in Post-Vitellogenic Rainbow Trout to 17α,20β-Dihdroxy-4-pregnen-3-one In Vitro" International Journal of Molecular Sciences 25, no. 23: 12683. https://doi.org/10.3390/ijms252312683
APA StyleMa, H., Gao, G., Palti, Y., Tripathi, V., Birkett, J. E., & Weber, G. M. (2024). Transcriptomic Response of the Ovarian Follicle Complex in Post-Vitellogenic Rainbow Trout to 17α,20β-Dihdroxy-4-pregnen-3-one In Vitro. International Journal of Molecular Sciences, 25(23), 12683. https://doi.org/10.3390/ijms252312683