Next Article in Journal
Diverse Cyclization Pathways Between Nitriles with Active α-Methylene Group and Ambiphilic 2-Pyridylselenyl Reagents Enabled by Reversible Covalent Bonding
Previous Article in Journal
Fusarium sacchari CFEM Proteins Suppress Host Immunity and Differentially Contribute to Virulence
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Candidate SNP Markers Significantly Altering the Affinity of the TATA-Binding Protein for the Promoters of Human Genes Associated with Primary Open-Angle Glaucoma

by
Karina Zolotareva
1,2,
Polina A. Dotsenko
1,2,3,
Nikolay Podkolodnyy
1,2,4,
Roman Ivanov
1,
Aelita-Luiza Makarova
1,
Irina Chadaeva
1,2,
Anton Bogomolov
1,3,
Pavel S. Demenkov
1,2,
Vladimir Ivanisenko
1,2,3,
Dmitry Oshchepkov
1,2,3 and
Mikhail Ponomarenko
1,2,*
1
Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences (ICG SB RAS), Novosibirsk 630090, Russia
2
Kurchatov Genome Center at the ICG SB RAS, Novosibirsk 630090, Russia
3
Department of Natural Sciences, Novosibirsk State University, Novosibirsk 630090, Russia
4
Institute of Computational Mathematics and Mathematical Geophysics, SB RAS, Novosibirsk 630090, Russia
*
Author to whom correspondence should be addressed.
Int. J. Mol. Sci. 2024, 25(23), 12802; https://doi.org/10.3390/ijms252312802
Submission received: 30 September 2024 / Revised: 20 November 2024 / Accepted: 25 November 2024 / Published: 28 November 2024
(This article belongs to the Section Molecular Biology)

Abstract

:
Primary open-angle glaucoma (POAG) is the most common form of glaucoma. This condition leads to optic nerve degeneration and eventually to blindness. Tobacco smoking, alcohol consumption, fast-food diets, obesity, heavy weight lifting, high-intensity physical exercises, and many other bad habits are lifestyle-related risk factors for POAG. By contrast, moderate-intensity aerobic exercise and the Mediterranean diet can alleviate POAG. In this work, we for the first time estimated the phylostratigraphic age indices (PAIs) of all 153 POAG-related human genes in the NCBI Gene Database. This allowed us to separate them into two groups: POAG-related genes that appeared before and after the phylum Chordata, that is, ophthalmologically speaking, before and after the camera-type eye evolved. Next, in the POAG-related genes’ promoters, we in silico predicted all 3835 candidate SNP markers that significantly change the TATA-binding protein (TBP) affinity for these promoters and, through this molecular mechanism, the expression levels of these genes. Finally, we verified our results against five independent web services—PANTHER, DAVID, STRING, MetaScape, and GeneMANIA—as well as the ClinVar database. It was concluded that POAG is likely to be a symptom of the human self-domestication syndrome, a downside of being civilized.

1. Introduction

Primary open-angle glaucoma (POAG) is the most common form of glaucoma, which is optic nerve degeneration that slowly progresses over years and inevitably leads to blindness [1,2]. According to an editorial [3], an operational definition of glaucoma as a set of symptoms that can be attributed to this condition is still a source of dispute across international healthcare organizations due to non-uniform levels of healthcare for different communities worldwide. However, if access to healthcare were easier [4,5], optic nerve damage could be detected directly [6] rather than by reliance on high intraocular pressure (IOP), which is today’s practice [7,8]. The risk factors for POAG often named in the literature are hypertension [9], age-related diseases [10], genetic susceptibility, developmental disorders [11], tobacco smoking [12], alcohol consumption [13], fast-food diets [14], obesity [15], heavy weight lifting, and high-intensity physical exercise; meanwhile, the Mediterranean diet [16] and moderate-intensity aerobic exercise are mentioned as being protective against the development of this condition [17]. In addition, according to the WHO [18], the prevalence of anxiety (9.8%) and depression (5.8%) in POAG correlates with its severity. Consequently, past illnesses and bad habits may aggravate POAG, while a healthy lifestyle may alleviate it.
Moreover, POAG appears to be a genetically complex and intricate disease with risk factors that may contribute to its progression depending on both genetic and epigenetic backgrounds along with environmental factors rather than independently [19]. Nevertheless, high IOP is the only known modifiable risk factor for POAG [20] and the cornerstone of anti-POAG therapy [21]. Finally, the universal demand for research into POAG is so great that out of 9244 original POAG-related articles cited in the freely accessible PubMed database [22], 464 have been added in the year 2024 as on 31 October 2024.
In the post-genome era of life sciences, genome-wide experimental data on single-nucleotide polymorphisms (SNPs) [23] and the results of their scrutiny using Genome-Wide Association Studies (GWAS) [24] and Quantitative Trait Locus (QTL) analysis [25] have gained special importance. With the advent of new diagnostic tools, such as optical coherence tomography (OCT) and standard automated perimetry (SAP)—which are supposed to directly determine the amount of damage to the optic nerve [4,5,6]—in addition to the traditional method based on measuring IOP [7,8,20], the search for genetic and molecular-biological markers of POAG that can enhance the diagnostic abilities of high IOP as a traditional clinical marker of this disease has become a trend [26].
GWAS and QTL results allowed POAG-associated loci and the POAG-related genes within these loci to be identified on human chromosomes. The number of POAG-related genes varies from one source of information to the next, reported as 7 [27], 11 [28,29], 18 [30], 26 [31], 27 [32], and 39 in the OMIM database [33]; 153 in the Indian Genetic Disease Database (IGDD) [34,35]; and 153 in the NCBI Gene Database [36] (accessed on 10 July 2024). Bioinformatics-driven meta-analyses [37] allowed the list of the POAG-related genes to be expanded to 522 by adding human genes associated with ocular hypertension (OHT), juvenile open-angle glaucoma (JOAG), primary congenital glaucoma (PCG), and normal tension glaucoma (NTG) as pathologies diagnostically similar to POAG.
The ClinVar database entries related to the biomedical SNP markers of predisposition to human diseases [38] included 1155 biomedical SNP markers of predisposition to POAG as on 10 July 2024. (Hereinafter, “biomedical” should be understood as “clinical” for POAG patients and as “experimental” for laboratory POAG models using human or animal cells, tissues, and/or organs.) Most of these SNP markers modify the protein-coding regions and, consequently, protein structures and functions in an irreversible way. Regulatory region variants (regulatory SNPs) that only change the concentrations of the affected genes’ products occur much less frequently, and their effects can be compensated for by changing lifestyle or through the use of medication [39]. One of the regulatory SNP markers of predisposition to POAG is rs1143627:T in the promoter of the IL1B gene for human interleukin 1β, as a comparison of POAG patients and healthy individuals in Brazil suggests [40]. This SNP changes the affinity of this promoter to the TATA-binding protein (TBP) during the formation of the preinitiation complex [41], which is absolutely required for transcription initiation in knockout TBP-/- animals [42] and for a non-specific increase in gene expression levels proportional to the increase in TBP affinity for their promoters [43]. Consequently, an in silico prediction of candidate SNP markers that are capable of significantly changing TBP affinity for the promoters of the POAG-related genes can help identify the universal molecular mechanisms underlying processes involved in POAG pathogenesis.
We have previously developed and published SNP_TATA_Comparator, a freely available web service [44] for assessing in silico the level of significance p of the difference between TBP affinity for the ancestral and the minor variant of a given SNP in a human gene promoter. The use of this web service enabled us to predict candidate SNP markers for a broad range of disorders like age-related diseases [45], hypertension [46], and atherosclerosis [47], to name a few. SNP_TATA_Comparator was independently used by other researchers in a clinical search for SNP markers of predisposition to age-specific pulmonary tuberculosis [48]. The use of SNP_TATA_Comparator on the entire human genome resulted in Human_SNP_TATAdb [49], a knowledge base on all human genome-wide SNP markers that can either upregulate or downregulate protein-coding genes by changing TBP affinity for the promoters regulating these genes. We have also developed OrthoWeb [50,51], a freely available software package for estimating the phylostratigraphic age indices in automated mode, and ANDSystem [52], a toolbox for data mining analysis of the literature sources and databases. Here, we applied these two developments to perform a comprehensive analysis of the relationships between evolutionary origins, molecular mechanisms of function, and the whole-genome pattern for all 153 POAG-related genes in the NCBI Gene Database [36] as on 10 July 2024. The results obtained were verified against five independent web services—PANTHER [53], DAVID [54], STRING [55], MetaScape [56], and GeneMANIA [57]—as well as the ClinVar database [38].

2. Results

We explored all genes (n = 153) that, according to the NCBI Gene Database [36] as on 10 July 2024, are associated with POAG (see the top row of Figure 1). The GeneCards-related symbols [58] for each of these genes are listed in the “Human Gene” column of Table S1 (hereinafter, any digit prefixed with ”S” signifies that the corresponding figure or table is posted in Supplementary Materials [59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282,283,284,285,286,287,288,289,290,291,292,293,294,295,296,297,298,299,300,301,302,303,304,305,306,307,308,309,310,311,312,313,314,315,316,317,318,319,320,321,322,323,324,325,326,327,328,329,330,331,332,333,334,335,336,337,338,339,340,341,342,343,344,345,346,347,348,349,350,351,352,353,354,355,356,357,358,359,360,361,362,363,364,365,366,367,368,369,370,371,372,373,374,375,376,377,378,379,380,381,382,383,384,385,386,387,388,389,390,391,392,393,394,395,396,397,398,399,400,401,402,403,404,405,406,407,408,409,410,411,412,413,414,415,416,417,418,419,420,421,422,423,424,425,426,427,428,429,430,431,432,433,434,435,436,437,438,439,440,441,442,443,444,445,446,447,448,449,450,451,452,453,454,455,456,457,458,459,460,461,462,463,464,465,466,467,468,469,470,471,472,473,474,475,476,477,478,479,480,481,482,483,484,485,486,487,488,489,490,491,492,493,494,495,496,497,498,499,500,501,502,503,504,505,506,507,508,509,510,511,512,513,514,515,516,517,518,519,520,521,522,523,524,525,526,527,528,529,530,531,532,533,534,535,536,537,538,539,540,541,542,543,544,545,546,547,548,549,550,551,552,553,554,555,556,557,558,559,560,561,562,563,564,565,566,567,568,569,570,571,572,573,574,575,576,577,578,579,580,581,582,583,584,585,586,587]).

2.1. Assessment of the Phylostratigraphic Age Index (PAI) of the POAG-Related Genes

In step 1, we performed a phylostratigraphic analysis of all 153 POAG-related genes (Figure 1, the down arrow labeled “Step 1: in silico phylostratigraphic analysis”) by applying our publicly available software package OrthoWeb [50,51] (accessed on 10 July 2024) previously developed as a plug-in [588,589] to the web-based software environment Cytoscape [590] (for details, see Section 4.2).
In brief, the NCBI Gene identifier (ID) of a given human gene was used as input data for OrthoWeb [50,51], which automatically searched for all freely available DNA sequences of the corresponding orthologous animal genes according to the KEGG Orthology (KO) Database [59]. We then identified the taxonomic rank of the most recent common ancestor of these animal species as the “phylogenetic age index (PAI)”. The numerical value of this index is taken as its projection onto the taxonomic scale of molecular evolution according to the Kyoto Encyclopedia of Genes and Genomes (KEGG) [60]. Such numerical values were produced by OrthoWeb as outputs [50,51] for each human gene examined (the rightmost column “the most recent common ancestor” of Table S1).
We then performed a statistical analysis on the PAI scores obtained for all 153 POAG-related genes (for the results, see the histogram and the box-and-whisker plot in the upper half of Figure 1). As can be seen in the left-hand plot, the PAI score distribution of the 123 POAG-related genes (80%, blue) that appeared before the phylum Chordata (PAI = 4) is significantly closer to the uniform distribution (Kolmogorov–Smirnov test: K = 1.16 at p < 0.05) rather than to the normal distribution (K = 3.66 at p > 0.70). By contrast, the PAI score distribution of the remaining 30 POAG-related genes (20%, green) appears to be normal (K = 1.37 at p < 0.05) rather than uniform (K = 2.34 at p > 0.10). The uniform and normal distributions often approximate the frequencies of a biological object corresponding to the opposite extremes—(i) independent of one another [591], and (ii) interdependent on one another as integral parts of a whole—in line with the Central Limit Theorem [592]. Hence, the following question arises: do the differences between the 123 POAG-related genes that emerged before Chordata (PAI < 4) and the 30 POAG-related genes that emerged after (PAI ≥ 4) Chordata have any biological sense? We will, for brevity’s sake, call the former genes “older” rather than “more ancient” and the latter genes “younger” rather than “more recent” throughout.
The box-and-whisker plots in the upper right of Figure 1 show the differences in PAI scores between the POAG-related genes—123 older (blue) and 30 younger (green)—that were statistically significant according to the nonparametric Mann–Whitney U test (U = 18 at p < 0.05) and the parametric test Fisher’s Z (Z = 2.22 at p < 0.05) run independently of each other.
Thus, we can conclude that the significant difference between the 123 older POAG-related genes, which appeared before Chordata, and the remaining 30 younger POAG-related genes, which appeared before or after Chordata, seems to be fairly robust to various independent statistical criteria.

2.2. Data Mining Analysis of the POAG-Related Genes with ANDSystem

After completion of step 1, we performed data mining from the publicly available literature sources and databases to verify the differences found between the 123 older and the 30 younger POAG-related genes. With the use of ANDSystem [52] (accessed on 10 July 2024), we reconstructed two associative networks (see Figures S1 and S2) based on the two POAG-related gene sets (see Section 4.3).
Figures S1 and S2 graphically depict the data-mining results showing which molecular pathways can integrate the genes that appeared before or after Chordata. Figure S1 shows how the 123 older POAG-related genes contribute to the biological processes “pathogenesis” and “apoptotic process” as the two most significantly well-supported molecular pathways identified by the use of ANDSystem [52] (statistical significance levels after Bonferroni’s correction for multiple comparisons were PADJ = 10−114 and PADJ = 10−102, respectively). Briefly, once fed with the input gene sets, ANDSystem [52] automatically extracted data from PubMed articles [22] and many other publicly available databases. In this figure, the rightmost column contains 17 of the 123 older POAG-related genes; these 17 genes were not involved in either pathogenesis or apoptotic processes because we heuristically limited our analysis to as few as the two most significant pathways, allowing for the possibility that these genes may function in other pathways.
Additionally, 9 and 15 older POAG-related genes were found to correspond to pathogenesis and apoptotic processes, respectively. The remaining 82 older POAG-related genes appear between the circular arrow icons textually labeled with either “pathogenesis” or “apoptotic process”, which symbolizes their involvement in both molecular pathways at once.
As can be seen from Figure S2 (the notation being the same as above), five of the thirty younger POAG-related genes are involved in inflammatory responses; three, in immune responses; three, in neither; and each of the remaining nineteen participates in both pathways at a time.
Altogether, Figures S1 and S2 illustrate that the 123 older POAG-related genes are likely to differ from the 30 younger in at least four molecular pathways in which they function. However, this conclusion is only valid if these results are robust to variations across different independent data mining tools. For this reason, we fed the two human gene sets—the 123 older and the 30 younger POAG-related genes—to the independent web services PANTHER [53], DAVID [54], STRING [55], MetaScape [56], and GeneMANIA [57], which implement data mining. The results obtained are shown in Table 1.

2.3. Verification of ANDSystem Outputs for POAG-Related Genes Against Results Obtained with Independent Data Mining Tools

As can be seen from Table 1 [593], the results obtained using the five independent data mining tools and expressed in identifiers of either Gene Ontology terms [593] or KEGG pathways [60] were in part consistent with each other and in part not. Taking this into account, we heuristically searched the PubMed database [22] for original scientific articles in which competing Gene Ontology terms or KEGG pathways co-occurred in the same molecular genetic context (see Table 2).
For example, row #1 of Table 2 shows “pathogenesis” as ANDSystem outputs [52] (Figure S1) and “response to hypoxia” as DAVID outputs [54] (Table 2 [594,595,596,597,598,599,600,601,602,603,604,605,606,607,608,609,610,611,612,613,614,615,616,617,618]), even though the input data were identical, namely, the 123 older POAG-related genes. The rightmost column cites a biomedical review indicating that hypoxia-induced ocular injuries contribute to POAG pathogenesis, supporting the consistency of the data mining results. A row-by-row examination of Table 2 led us to the conclusion that there is no contradiction between the data mining results obtained with ANDSystem [52], on the one hand, and PANTHER [53], DAVID [54], STRING [55], MetaScape [56], and GeneMANIA [57], on the other hand. This may indicate that the 123 older and the 30 younger POAG-related genes function in different molecular pathways.

2.4. Supervised Annotation of the Effects of Changes in the POAG-Related Genes’ Expression Levels on POAG Alleviation and Aggravation

In step 2, we compiled biomedical data from PubMed [22] (accessed on 10 July 2024) on the effect of underexpression and overexpression of the 153 POAG-related genes that can alleviate or aggravate POAG (for details, see Section 4.4). A summary of POAG-related biomedical reports and reviews is provided in Table S2.

2.5. In Silico Estimation of the Effects of SNPs in the POAG-Related Genes’ Promoters on TBP Affinity for These Genes’ Promoters

With Human_SNP_TATAdb [49], we selected, within the promoters of all 153 POAG-related genes, the SNPs that—according to our previous in silico estimates—statistically significantly change the expression levels of these genes, as briefly described in Section 4.5 and in more detail in Supplementary Materials, the Section S1 named “supplementary methods for DNA sequence analysis”.
Table S3 lists all 3835 SNPs selected for analysis, each annotated with POAG-related biomedical data on how downregulation and upregulation of the 123 POAG-related genes can aggravate or alleviate POAG (Table S2).

2.6. Selective In Vitro Verification of In Silico Estimates of the Effects of SNPs in Human Gene Promoters on TBP Affinity for These Promoters

Before proceeding to statistical analysis of the effects that the POAG-induced changes in the expression levels of POAG-related genes should have on POAG progression according to our in silico estimation, we randomly verified these estimates using the corresponding experimental values. We had obtained and published these estimates previously (see Table S4). Row #1 of Table S4 presents a biomedical SNP marker of predisposition to POAG, rs1143627:T, which, according to a cohort-based study in Brazil [40], occurs in the human gene IL1B. As can be seen, this SNP marker corresponds to a C→T substitution, which leads to the formation of the canonical form of the TBP binding site, the TATA box (appears in uppercase further): “ttttgaaagcCataaaaacag” → “ttttgaaagcTATAAAAacag”. Based on our in silico estimates, this event accounts for about a 2.5-fold reduction in the equilibrium dissociation constant, KD, of the TBP–promoter complex, from 4.50 ± 0.39 to 1.76 ± 0.17 nanomoles per liter (nM) (Table S4). The ratio of these estimates, KD(min)/KD(WT) = 1.76/4.50 = 0.39, corresponds to 0.24, the value that we measured experimentally in one of our previous efforts [438].
Figure 2 is a graphical representation of Table S3, where the “→” arrow points to rs1143627:T, the biomedical SNP marker of predisposition to POAG in Brazil [40]. This figure shows a total of 11 pairs of similar in silico estimates (the x-axis) against experimental in vitro data (the y-axis), which, according to five statistical criteria, significantly correlate with each other. The area between the two dotted curves corresponds to the 95% confidence interval, into which rs1143627:T falls [40]. This observation further supports the relevance of our previously made in silico estimates of the effects of SNPs on TBP affinity for human gene promoters, and reinforces the need for further in silico exploration of the effects of these SNPs on the promoters of POAG-related genes relating to predisposition to POAG. These estimates were published in the form of the Human_SNP_TATAdb knowledge base [49].

2.7. Frequencies of the SNPs That Significantly Change TBP Affinity for the Promoters of the POAG-Related Genes and for the Promoters of All Human Genes

We compared the occurrence of the 3835 SNPs that downregulate or upregulate the 153 POAG-related genes under study with the occurrence of the corresponding regulatory SNPs across the human genome, according to the 1000 Genomes Project Consortium [619,620,621] (see the table in the center of Figure 1). Row #1 of this table shows that, according to the 1000 Genomes Consortium [619,620,621], each individual human genome differs from the reference human genome by having an average of some 1000 regulatory SNPs, of which about 800 and 200 are, respectively, associated with underexpression and overexpression of the human genes whose promoters carry these SNPs.
Within the framework of Haldane’s dilemma [622] and Kimura’s theory of neutral evolution [623], this four-fold prevalence of the deleterious over beneficial regulatory SNPs corresponds to neutral drift in humans as a biological species on a genome-wide scale. As can be seen from the next two rows of the table, the occurrence of the SNPs that change the expression levels of the 123 older POAG-related genes and the 30 younger POAG-related genes significantly differs from the genome-wide pattern of the occurrence of regulatory SNPs under neutral drift (Figure 1: PADJ < 10−3, binomial distribution with Bonferroni’s correction).
Thus, we can conclude that all 153 POAG-related genes considered are under natural selection against their downregulation.

2.8. Assessing the Effects of SNP-Induced Increases and Decreases in the Expression Levels of the Older and Younger POAG-Related Genes on POAG Alleviation and Aggravation

In step 3, in order to understand where selection that is acting on the 153 POAG-related genes (the table in Figure 1) is directed, we statistically analyzed the annotations in this work on how often the candidate SNP markers that change the expression levels of these genes can alleviate or aggravate POAG (Table S4). The lower part of Figure 1 depicts the results obtained independently for the 123 older POAG-related genes (the left-hand (blue) box-and-whisker plot) and for the 30 younger POAG-related genes (the right-hand (green) box-and-whisker plot). As can be seen, the candidate SNP markers that significantly change the expression levels of the 123 older POAG-related genes mostly alleviate POAG, while those that have implications for the 30 younger POAG-related genes mostly aggravate it, according to the Mann–Whitney U test and Fisher’s Z.

2.9. Verification Results for the Proposed Candidate SNP Markers of POAG Using ClinVar Entries Related to Biomedical SNP Markers of Diseases

With the use of the publicly available database ClinVar [38] (accessed on 10 July 2024) containing biomedically proven SNP markers for human diseases, we checked each of the 3835 candidate SNP markers in the 153 POAG-related genes; these SNPs were taken from Human_SNP_TATAdb [49] (Table S5) as described in Section 4.7. Table S5 contains each of these 82 biomedical SNP markers associated with human diseases, these markers being known to change the expression levels of the 153 POAG-related genes, while Table 3 provides only a brief summary.
For example, row #1 of Table 3 contains two biomedical SNP markers for Tangier disease, rs886063317:C and rs886063317:G, which occur within the promoters of the human gene ABCA1. Table S5 details these as two nucleotide substitutions uppercased within their 10-base-pair flanks, namely: “agccgaatctAgcgctcggtg” → “agccgaatctCgcgctcggtg” and “agccgaatctAgcgctcggtg” → “agccgaatctGgcgctcggtg”. These substitutions may significantly downregulate this gene, thus potentially aggravating POAG through this molecular mechanism. Row #1 in the rightmost column of Table 3 references a comprehensive review [443] on the comorbidity of POAG and Tangier disease, highlighting the two biomedical SNP markers as an agreement between the examined entries of the ClinVar database [38] and Human_SNP_TATAdb knowledge base [49]. The bottom row of Table 3 summarizes that 17 out of the 18 human genes examined show similar agreements between these sources of information, with only one mismatch (the human gene CP). This level of agreement between the actual and predicted estimates of the effects of the SNP markers on POAG suggests statistical significance (PADJ < 0.05, binomial distribution criterion with Bonferroni’s correction).

2.10. RNA-Seq Data on Domestic and Wild Animals for Verification of the Proposed Candidate SNP Markers That Change the Expression Levels of the POAG-Related Genes

As can be seen in Figure 1, the 153 POAG-related genes are under natural selection (the table in step 2) on the one hand; on the other hand, this natural selection has two opposite directions (the box-and-whisker plots in step 3): one toward POAG alleviation and one toward POAG aggravation. This phenomenon is known as destabilizing (disruptive) natural selection, which characterizes, in particular, animal domestication [624].
This gave us another opportunity to independently verify the proposed candidate SNP markers that change the expression levels of the POAG-related genes against the transcriptome profiles of domestic and wild animals. To this end, we collected all relevant RNA-Seq data that we could find using the PubMed databases [22] as on 10 July 2024 (for details, see Section 4.8).
Table S6 presents 19 datasets taken from 12 original papers [45,46,566,567,568,569,570,571,572], where a total of 2912 DEGs were identified in nine tissues of seven pairs of domestic and wild animals. With the use of the “Paralogs” section of the freely available GeneCards database [58], we found, for each of the 153 POAG-related genes, its homologous animal DEGs (Table S7 and Table 4).
For example, the bottom row (#78) of Table S7 describes the human gene VDR, which encodes the vitamin D receptor. According to the left half of this row, VDR deficiency contributes to hypertension, which aggravates POAG [9], while elevated VDR protects against retinal ganglion cell loss, which alleviates POAG [429]. As is evident from the right-hand half of this row, the guinea pig has VDR deficiency in the frontal cortex, which its wild counterpart cavy does not [567]. We compared the VDR levels in both Cavia species against those in their nearest common ancestor, which is traditionally approximated by the mean value of the trait in question [625,626,627]. The comparison revealed that Vdr is deficient in the guinea pig and aggravates POAG and elevated in the cavy and alleviates POAG. Table S7 similarly describes expression changes in domestic and wild animals relative to those in their nearest common ancestors for 119 and 27 animal genes, which are homologous to the 123 older and the 30 younger POAG-related human genes, respectively (Table 4). As the entries in the bottom row of Table 4 suggest, the 123 older POAG-related genes are statistically significantly different from the 30 younger POAG-related genes in terms of the phenotypic manifestations of their animal homologs: POAG is alleviated in the wild animals and aggravated in the domestic animals (p < 0.05, binomial distribution test). That is why POAG aggravation during animal domestication provides evidence in favor of destabilizing natural selection, to which the POAG-related genes are subject (see Figure 1), within the current concept of the human self-domestication syndrome [628].

3. Discussion

3.1. Why the 153 POAG-Related Genes?

The most disputable point of this work is perhaps why we chose these 153 POAG-related genes. On the one hand, this choice led to the biological results being reported herein, while, on the other hand, the functional importance of many human gene loci that have been associated with POAG by GWAS and QTL remains unclear or unsupported by independent studies. Moreover, analysis of freely available sources revealed some reporting from 7 to 153 POAG-related genes [27,28,29,30,31,32,33,34], depending on the age and objectives of the research paper. Curiously, we found a source reporting as many as 522 for a meta-analysis of POAG and diagnostically similar diseases, namely, OHT, JOAG, PCG, and NTG [37].
A single NCBI Gene [36] query made on 10 July 2024 (for technical details, see Section 4.1) returned a 153-strong set of POAG-related genes, as did an independent source [34,35]. That encouraged us to proceed with these 153 POAG-related genes to ensure that an independent researcher will make the same choice.

3.2. POAG-Related Genes That Appeared Before and After Chordata Became Different as Lampreys Evolved the Camera-Type Eye

In this study, we for the first time found that the POAG-related genes that had appeared before and after Chordata differ from each other (see Figure 1 and Table 4). This is consistent with the current understanding of the molecular evolution of the eye [629]. Indeed, lancelets of the genus Branchiostoma, some of the older chordates have only Hesse’s eyecups [630,631], while the somewhat more evolutionarily advanced lampreys of the family Petromyzontidae have eyespot-like immature eyes beneath a non-transparent skin in their larva but their adults possess a camera-type eye [632], as do all the others in the human lineage on the Tree of Life [629]. As the only known modifiable risk factor for POAG [20] is high intraocular pressure (IOP), which is impossible without the camera-type eye, then the phylostratigraphic dilemma of having appeared before and after Chordata, in the context of POAG, comes down to the ophthalmological dilemma of having appeared before and after the camera-type eye. Thus, our finding that the POAG-related genes that appeared before and after Chordata aligns with current knowledge of both molecular evolution and POAG.

3.3. The 123 Older POAG-Related Genes Responsible for Pathogenesis and Apoptosis Play a Critical Role in How Misfolded Protein Aggregates Can Aggravate POAG

The blue-colored histogram in Figure 1 depicts the uniform distribution of the 123 older genes of all 153 POAG-related genes across three taxa—Cellular organism, Eukaryota, and Metazoa—on the evolutionary scale of Kyoto Encyclopedia of Genes and Genomes, KEGG [60]. Additionally, Figure S1 depicts the associative network of how these genes may contribute to pathogenesis and the apoptotic process based on our data mining through publicly available reports and databases. Indeed, in a cellular model of POAG [633], intracellular aggregates of misfolded proteins in the trabecular meshwork can induce apoptosis as a kind of pathogenesis, playing a key role in how misfolded protein aggregates can aggravate POAG. We can therefore state that our findings on the 123 older POAG-related genes that appeared before Chordata are consistent with what is known about the role of apoptosis in POAG pathogenesis.
Put together, these facts suggest that the uniform distribution of the 123 older POAG-related genes with respect to PAI (the blue-colored histogram in the upper left of Figure 1) may be interpreted biologically: the genes that produce misfolded proteins aggregating in intracellular complexes and thus aggravating POAG may have appeared independently in the course of evolution.

3.4. Normal Distribution of PAI Values of the 30 Younger POAG-Related Genes Involved in the Immune Response Has a Peak at Vertebrata, When Adaptive Immunity Appeared

The green-colored histogram in the upper left of Figure 1 corresponds to the normal distribution, peaking between the subphylum Vertebrata (PAI = 6525 Mya [65]) and the clade Euteleostomi (PAI = 7420 Mya [66]), according to the evolutionary scale of the Kyoto Encyclopedia of Genes and Genomes, KEGG [60]. Figure S2 shows the association gene network of these genes, where they are mainly involved in the immune response, according to our data mining through freely available publications and databases. This aligns with an original study [634] and a comprehensive review [635], both reporting on how the Transib transposon in jawed vertebrates (Gnathostomata, approximately 500 Mya) gave rise to the part of adaptive immunity that is able to recognize antigens due to V(D)J recombination in immunoglobulin genes during antibody maturation. Therefore, our results on the 30 younger POAG-related genes, which appeared after Chordata, are consistent with how immunity and POAG are viewed by the scientific community.
In summary, we propose a feasible biological interpretation of the normal distribution of the 30 younger POAG-related genes with respect to PAI (the green-colored histogram in the upper left of Figure 1): it is possible that shortly after Chordata evolved the camera-type eye, the natural selection of new POAG-related genes started to act so as to provide adaptive support to this eye’s architecture by producing the immune and inflammatory responses to POAG aggravating factors.

3.5. Differences Between Domestic and Wild Animals in How POAG-Related Genes Alleviate or Aggravate POAG Fit in with Current Views of Natural Selection in Domestic and Wild Animals

The bottom row of Table 4 shows that the pressure natural selection exerts on wild animals may alleviate POAG, while artificial selection during animal domestication may aggravate POAG, as our in silico calculations suggest. This conclusion is consistent with one made by Zhang and colleagues [636], stating that natural selection eliminates sick animal individuals in the wild, while artificial animal selection during domestication does not as it serves human needs; for example, the pig is farmed primarily for pork, no matter what the POAG status.

3.6. POAG as a Symptom of the Human Self-Domestication Syndrome Is Consistent with POAG Aggravation by Anthropogenic Factors

The above-discussed considerations suggest that POAG may be a symptom of the human self-domestication syndrome [628]. With PubMed [22], we found a medical opinion that industrialization increases POAG prevalence by facilitating the transmission of Helicobacter pylori infection [637]. In addition, a recent cohort-based study in Shanghai [638] revealed environmental pollution with fine particulate matter as a risk factor for POAG through elevation of intraocular pressure. Finally, according to a comprehensive biomedical review [639], circadian rhythm disruption aggravates POAG.
By summarizing the examples of how anthropogenic factors that never occur in the wild but can aggravate POAG nonetheless, we can conclude that this may be a symptom of the human self-domestication syndrome [628], a downside of being civilized.

3.7. Study Limitations

Admittedly, the setup of our in silico studies places limitations on the use of the 3835 candidate SNP markers that significantly alter TBP affinity for the promoters of the 153 POAG-related genes and, through this molecular mechanism, the expression levels of these genes. Because the consideration of these candidate SNP markers, for example in adjuvant therapy of POAG, may lead to health deterioration, any such uses should be preceded by cohort-based studies of these SNPs.
The results presented herein were obtained by considering TBP interactions with human gene promoters during the initiation of these genes’ transcription—specifically, at the point that these promoters that are densely packed into a transcriptionally inactive nucleosome re-assemble into the preinitiation complex as a stand-alone modulator of these genes’ expression levels, as independent experiments suggest (see for example [43]). Because the molecular mechanism operates in a step-by-step manner and so caters for the tissue-, stage-, and other types of specificity of human gene expression, our results reflect only the most general, non-specific patterns of aggravating or alleviating effects that the proposed candidate SNP markers have on POAG.
Finally, our in silico estimates of the phenotypic manifestation of the proposed candidate SNP markers of POAG are not absolute facts but are statistically significant: they are relevant only on a whole-genome scale for Homo sapiens as a biological species in the human lineage on the Tree of Life.

4. Materials and Methods

4.1. The Human Genes

For the purposes of our work, we entered the search query [“primary open-angle glaucoma” AND “Homo sapiens”] in the NCBI Gene online database search toolbox [36], with the filters “Genomic”, “Ensembl”, “Protein-coding genes”, “Annotated genes”, and “Current” set (accessed on 10 July 2024). The search returned 153 human genes (see the leftmost column “Human Gene” of Table S1).

4.2. In Silico Rating of the KEGG-Based Phylostratigraphic Age Index (PAI) of a Human Gene

We calculated the KEGG-based [59,60] PAI of a given human gene using its NCBI Entrez gene number as input data for OrthoWeb [50,51] (accessed on 10 July 2024), a plugin [588,589] within Cytoscape [590]. This yielded the most recent common ancestor of all animal species, whose DNA sequence of this gene is already sequenced and documented in the KEGG Orthology (KO) database [59]. Thus, the evolutionary rank scale used according to KEGG [60] was as follows: 1. Cellular organism as the conventional root of the phylogenetic tree of life, 4100 Mya [61]; 2. Eukaryota, 1850 Mya [62]; 3. Metazoa, 665 Mya [63]; 4. Chordata, 541 Mya [64]; 5. Craniata, 535 Mya [64]; 6. Vertebrata, 525 Mya [65]; 7. Euteleostomi, 420 Mya [66]; 8. Mammalia, 225 Mya [67]; 9. Eutheria, 160 Mya [68]; 10. Euarchontoglires, 65 Mya [69]; 11. Primates, 55 Mya [70]; 12. Haplorrhini, 50 Mya [71]; 13. Catarrhini, 44 Mya [72]; 14. Hominidae, 17 Mya [73]; 15. Homo, 2.8 Mya [74]; 16. Homo sapiens, 0.35 Mya [75].

4.3. Data Mining Analysis of Freely Available Publications and Databases Related to POAG

We performed data mining using ANDSystem [52] accessed on 10 July 2024, run in automated mode with “Human, [Human gene list], [Two most reasonable Pathways]” as input data, with all other parameters set to default. ANDSystem outputs for two variants of the [Human gene list]—(i) 123 older POAG-related genes and (ii) 30 younger POAG-related genes—are graphically represented as two associative gene networks (Figure S1 and Figure S2, respectively).
After that, we used the same 123 older and 30 younger POAG-related genes as inputs for PANTHER [53], DAVID [54], STRING [55], MetaScape [56], and GeneMANIA [57]. The outputs are given in Table 1.
Finally, we heuristically identified PubMed [22] articles that confirmed either agreement or disagreement between the ANDSystem outputs [52] and the results obtained by the above-listed data mining toolboxes (see Table 2).

4.4. Biomedical Data on the Effect of Underexpression and Overexpression of the POAG-Related Genes on POAG Alleviation and Aggravation

The biomedical data used in this work on how underexpression and overexpression of the POAG-related genes aggravates or alleviates POAG were obtained from Lu’s (2011) original article found in PubMed (accessed on 10 July 2024) using its web query service (see Table S2).

4.5. In Silico Estimation of How SNPs in the POAG-Related Genes’ Promoters Change These Genes’ Expression Levels

The in silico estimates for the levels of statistical significance of the effect of SNPs in the 90-base-pair proximal regions of the promoters of the 153 POAG-related genes on their underexpression and overexpression were taken from Human_SNP_TATAdb [49].
Briefly, we have previously analyzed [49] all 5,305,816 SNPs in the proximal 90-base-pair regions before the TSSs of all 63,141 protein-coding transcriptomes from all 19,314 genes annotated in the human whole reference genome from the assembly GRCh38/hg38 according to Ensembl [39] and dbSNP [437] accessed on 1 August 2023 (for the details of the algorithm used, see Supplementary Materials: Section S1). At each elementary step, SNP_TATA_Comparator [44] run in the automated mode helped assess the level of significance of the difference between the in silico estimates of TBP affinity for a given minor and the corresponding ancestral variant of an SNP in a human gene promoter according to the formulas in Supplementary Materials: Section S1. Each minor allele was assessed separately and if the estimate suggested a significant increase or decrease in TBP-promoter affinity and eventually in the expression levels of the corresponding human gene [43] against the ancestral allele being the norm, that minor allele along with the related calculations and results was recorded in Human_SNP_TATAdb [49]. In total, this knowledge base describes 445,875 SNPs, of which each can, according to our in silico estimates, significantly change the expression level of 1 of the 63,141 protein-coding human genes as compared to the reference variant of that gene taken for the norm.
Table S3 lists all the 3835 candidate SNP markers of changes in the expression levels of all the 153 POAG-related genes that were selected from among all 445,875 such SNPs identified for all the 63,141 protein-coding human genes and freely available in our the Human_SNP_TATAdb knowledge base [49], https://www.sysbio.ru/Human_SNP_TATAdb/ (accessed on 10 July 2024).

4.6. Selective Verification of the In Silico Estimates of the Effect of SNPs in Human Gene Promoters on TBP Affinity for These Promoters Against the Norm

Selective verification of the in silico estimates of the effect of SNPs in human gene promoters on TBP affinity for these promoters against the norm was performed using our previously published affinities changed experimentally with the following 11 SNPs: rs1402972626, rs20067072, rs1393008234, rs1452787381, rs1452787381, rs183433761, rs367781716, rs750827465, rs72661131, rs563763767, and rs1143627. The last in the row is a biomedical SNP marker of predisposition to POAG in Brazil, as a cohort-based study suggests [438] (see Table S4 for numerical representation and Figure 2 for a graphical representation).

4.7. Verification Methods for the Proposed Candidate SNP Markers of POAG Using ClinVar Entries Related to Biomedical SNP Markers of Diseases

Among the 3835 candidate SNP markers associated with significant changes in the expression levels of the 153 POAG-related genes, 82 were biomedically proven SNP markers linked to specific human diseases, according to the ClinVar database [38]. The information on these 82 SNPs is given in full in Table S5 and in brief in Table 3.

4.8. Differentially Expressed Genes (DEGs) in Domesticated Animals and Their Nearest Wild Counterparts

With the use of the web query search service of the PubMed database [22] accessed on 10 July 2024, we compiled all independent experimental transcriptome profiling datasets of tissues from domestic and wild animals [45,46,566,567,568,569,570,571,572,573,574,575] (see Table S6). Next, with the use of the “Paralogs” section of the GeneCards database [58], for each of the 153 POAG-related genes, we identified the paralogous animal genes that the domestic and wild animals express differentially; see Table S7 for detailed information and Table 4 for a summary.

4.9. Statistical Analysis

We performed the Kolmogorov–Smirnov test, Mann–Whitney U test, Fisher’s Z, Pearson’s linear correlation test, Spearman’s rank correlation test, Kendall’s rank correlation test, the Goodman–Kruskal generalized correlation test, Pearson’s chi-squared test, and the binomial distribution test using appropriate options in STATISTICA (StatSoftTM, Tulsa, OK, USA).

5. Conclusions

In this work, we have for the first time estimated the phylostratigraphic age indices (PAIs) of all 153 POAG-related genes in the NCBI Gene Database [36] accessed on 10 July 2024 (Table S1). This allowed us to separate them into two sets, one with the 123 older and one with the 30 younger POAG-related genes, which appeared before and after the phylum Chordata, respectively, or, in ophthalmological terms, before and after the evolution of the camera-type eye.
Next, we have for the first time predicted in silico all 3835 candidate SNP markers in the 90-base-pair promoters of these 153 POAG-related genes. These SNP markers significantly change TBP affinity for these promoters and, through this molecular mechanism, the expression levels of these genes, according to Ensembl [39] and dbSNP [437]. The 3835 candidate SNP markers are freely available in our Human_SNP_TATAdb database [49].
Finally, with the use of the biomedically proven SNP markers for human diseases in the ClinVar database [38] and 2905 DEGs of domestic and wild animals [45,46,568,571,572], we have selectively verified 82 of the 3835 candidate SNP markers within the 90-base-pair proximal promoters of 18 out of the 153 POAG-related genes.

Supplementary Materials

The supporting information can be downloaded at: https://www.mdpi.com/article/10.3390/ijms252312802/s1.

Author Contributions

Conceptualization, D.O.; methodology, V.I.; software, N.P., R.I., A.B., and P.S.D.; validation, K.Z.; data curation, I.C., A.-L.M., and P.A.D.; writing—original draft preparation, M.P. All authors have read and agreed to the published version of the manuscript.

Funding

This study was supported by the Russian Federal Science and Technology Program for the Development of Genetic Technologies.

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Not applicable.

Data Availability Statement

The data presented in this study are publicly available in [Human_SNP_TATAdb] at [DOI: 10.18699/VJGB-23-85].

Acknowledgments

We thank the multi-access bioinformatics center for the use of computational resources as supported by Russian government project FWNR-2022-0020.

Conflicts of Interest

The authors declare no conflicts of interest.

Abbreviations

AAOAmerican Academy of Ophthalmology
APGSAsia-Pacific Glaucoma Society
DEGDifferentially Expressed Gene
DTdigital tonometry
EGSEuropean Glaucoma Society
IOPintraocular pressure
IQRinterquartile range as a height of a given box-and-whisker plot
JOAGjuvenile open-angle glaucoma
KEGGKyoto Encyclopedia of Genes and Genomes
KOKEGG Orthology
Myamillion years ago
NTGnormal tension glaucoma
OCToptical coherence tomography
OHTocular hypertension
PAIphylostratigraphic age index
PCGprimary congenital glaucoma
POAGprimary open-angle glaucoma
SAPstandard automated perimetry
SNPsingle-nucleotide polymorphism
TBPTATA-binding protein
WHOWorld Health Organization

References

  1. Weinreb, R.N.; Khaw, P.T. Primary open-angle glaucoma. Lancet 2004, 363, 1711–1720. [Google Scholar] [CrossRef] [PubMed]
  2. Umezurike, B.C.; Akhimien, M.O.; Udeala, O.; Green, U.G.; Okpechi-Agbo, U.; Ohaeri, M.U. Primary open angle glaucoma: The pathophysiolgy, mechanisms, future diagnostic and therapeutic directions. Ophthalmol. Res. Int. J. 2019, 10, 1–17. [Google Scholar] [CrossRef]
  3. Sekhar, G.C. Glaucoma definition: Implications for equitable care. Indian. J. Ophthalmol. 2021, 69, 1025–1026. [Google Scholar] [CrossRef] [PubMed]
  4. Iyer, J.V.; Boland, M.V.; Jefferys, J.; Quigley, H. Defining glaucomatous optic neuropathy using objective criteria from structural and functional testing. Br. J. Ophthalmol. 2021, 105, 789–793. [Google Scholar] [CrossRef] [PubMed]
  5. Kalyani, V.K.; Bharucha, K.M.; Goyal, N.; Deshpande, M.M. Comparison of diagnostic ability of standard automated perimetry, short wavelength automated perimetry, retinal nerve fiber layer thickness analysis and ganglion cell layer thickness analysis in early detection of glaucoma. Indian. J. Ophthalmol. 2021, 69, 1108–1112. [Google Scholar] [PubMed]
  6. Prum, B.E., Jr.; Rosenberg, L.F.; Gedde, S.J.; Mansberger, S.L.; Stein, J.D.; Moroi, S.E.; Herndon, L.W., Jr.; Lim, M.C.; Williams, R.D. Primary Open-Angle Glaucoma Preferred Practice Pattern(®) guidelines. Ophthalmology 2016, 123, P41–P111. [Google Scholar] [CrossRef] [PubMed]
  7. Lee, P.P. Understanding the new primary open-angle glaucoma preferred practice pattern. Int. Ophthalmol. Clin. 1998, 38, 93–99. [Google Scholar] [CrossRef] [PubMed]
  8. Sommer, A.; Tielsch, J.M.; Katz, J.; Quigley, H.A.; Gottsch, J.D.; Javitt, J.; Singh, K. Relationship between intraocular pressure and primary open angle glaucoma among white and black Americans. The Baltimore eye survey. Arch. Ophthalmol. 1991, 109, 1090–1095. [Google Scholar] [CrossRef] [PubMed]
  9. Erb, C.; Predel, H.G. Relevance of arterial hypertension in primary open-angle glaucoma. Klin. Monbl Augenheilkd. 2014, 231, 136–143. [Google Scholar]
  10. Kouassi Nzoughet, J.; Guehlouz, K.; Leruez, S.; Gohier, P.; Bocca, C.; Muller, J.; Blanchet, O.; Bonneau, D.; Simard, G.; Milea, D.; et al. A data mining metabolomics exploration of glaucoma. Metabolites 2020, 10, 49. [Google Scholar] [CrossRef] [PubMed]
  11. Lewis, C.J.; Hedberg-Buenz, A.; DeLuca, A.P.; Stone, E.M.; Alward, W.L.M.; Fingert, J.H. Primary congenital and developmental glaucomas. Hum. Mol. Genet. 2017, 26, R28–R36. [Google Scholar] [CrossRef] [PubMed]
  12. Jain, V.; Jain, M.; Abdull, M.M.; Bastawrous, A. The association between cigarette smoking and primary open-angle glaucoma: A systematic review. Int. Ophthalmol. 2017, 37, 291–301. [Google Scholar] [CrossRef]
  13. Mahmoudinezhad, G.; Nishida, T.; Weinreb, R.N.; Baxter, S.L.; Chang, A.C.; Nikkhoy, N.; Walker, E.; Liebmann, J.M.; Girkin, C.A.; Moghimi, S. Associations of smoking and alcohol consumption with the development of open angle glaucoma: A retrospective cohort study. BMJ Open 2023, 13, e072163. [Google Scholar] [CrossRef] [PubMed]
  14. Roddy, G.W. Metabolic syndrome and the aging retina. Curr. Opin. Ophthalmol. 2021, 32, 280–287. [Google Scholar] [CrossRef]
  15. Lee, J.Y.; Kim, J.M.; Lee, K.Y.; Kim, B.; Lee, M.Y.; Park, K.H. Relationships between obesity, nutrient supply and primary open angle glaucoma in koreans. Nutrients 2020, 12, 878. [Google Scholar] [CrossRef]
  16. Sbai, O.; Torrisi, F.; Fabrizio, F.P.; Rabbeni, G.; Perrone, L. Effect of the mediterranean diet (MeDi) on the progression of retinal disease: A narrative review. Nutrients 2024, 16, 3169. [Google Scholar] [CrossRef] [PubMed]
  17. Gildea, D.; Doyle, A.; O’Connor, J. The effect of exercise on intraocular pressure and glaucoma. J. Glaucoma 2024, 33, 381–386. [Google Scholar] [CrossRef] [PubMed]
  18. Giacometti, H.H.A.R.; Coelho, L.F.; Iankilevich, L.G.; Valentin, L.S.S.; Ferreira, L.A.; Balbino, M.; Seixas, R.C.S. Prevalence of anxiety and depression among patients with glaucoma. Front. Psychol. 2024, 15, 1410890. [Google Scholar] [CrossRef] [PubMed]
  19. D’Esposito, F.; Gagliano, C.; Bloom, P.A.; Cordeiro, M.F.; Avitabile, A.; Gagliano, G.; Costagliola, C.; Avitabile, T.; Musa, M.; Zeppieri, M. Epigenetics in glaucoma. Medicina 2024, 60, 905. [Google Scholar] [CrossRef] [PubMed]
  20. Kanso, N.; Hashimi, M.; Amin, H.A.; Day, A.C.; Drenos, F. No evidence that vitamin D levels or deficiency are associated with the risk of open-angle glaucoma in individuals of european ancestry: A mendelian randomisation analysis. Genes 2024, 15, 1084. [Google Scholar] [CrossRef]
  21. Sharif, N.A. Elevated intraocular pressure and glaucomatous optic neuropathy: Genes to disease mechanisms, therapeutic drugs, and gene therapies. Pharmaceuticals 2023, 16, 870. [Google Scholar] [CrossRef] [PubMed]
  22. Lu, Z. PubMed and beyond: A survey of web tools for searching biomedical literature. Database 2011, 2011, baq036. [Google Scholar] [CrossRef] [PubMed]
  23. Ji, X.; Zhang, Z.; Shi, J.; He, B. Clinical application of NGS-based SNP haplotyping for the preimplantation genetic diagnosis of primary open angle glaucoma. Syst. Biol. Reprod. Med. 2019, 65, 258–263. [Google Scholar] [CrossRef]
  24. Hamel, A.R.; Yan, W.; Rouhana, J.M.; Monovarfeshani, A.; Jiang, X.; Mehta, P.A.; Advani, J.; Luo, Y.; Liang, Q.; Rajasundaram, S.; et al. Integrating genetic regulation and single-cell expression with GWAS prioritizes causal genes and cell types for glaucoma. Nat. Commun. 2024, 15, 396. [Google Scholar] [CrossRef]
  25. Fang Kho, P.; Lea, R.A.; Benton, M.C.; Eccles, D.; Haupt, L.M.; Hewitt, A.W.; Sherwin, J.C.; Mackey, D.A.; Griffiths, L.R. Expression QTL analysis of glaucoma endophenotypes in the Norfolk Island isolate provides evidence that immune-related genes are associated with optic disc size. J. Hum. Genet. 2018, 63, 83–87. [Google Scholar] [CrossRef] [PubMed]
  26. Huang, Y.; Plotnikov, D.; Wang, H.; Shi, D.; Li, C.; Zhang, X.; Zhang, X.; Tang, S.; Shang, X.; Hu, Y.; et al. GWAS-by-subtraction reveals an IOP-independent component of primary open angle glaucoma. Nat. Commun. 2024, 15, 8962. [Google Scholar] [CrossRef] [PubMed]
  27. Petty, H.R. Frontiers of complex disease mechanisms: Membrane surface tension may link genotype to phenotype in glaucoma. Front. Cell Dev. Biol. 2018, 6, 32. [Google Scholar] [CrossRef] [PubMed]
  28. Wiggs, J.L.; Pasquale, L.R. Genetics of glaucoma. Hum. Mol. Genet. 2017, 26, R21–R27. [Google Scholar] [CrossRef] [PubMed]
  29. Wang, A.J.; Zhang, X. Advances in the study of POAG-related genes and central nervous system diseases. Int. Eye Sci. 2021, 12, 436–441. [Google Scholar]
  30. Liu, Y.; Garrett, M.E.; Yaspan, B.L.; Bailey, J.C.; Loomis, S.J.; Brilliant, M.; Budenz, D.L.; Christen, W.G.; Fingert, J.H.; Gaasterland, D.; et al. DNA copy number variants of known glaucoma genes in relation to primary open-angle glaucoma. Investig. Ophthalmol. Vis. Sci. 2014, 55, 8251–8258. [Google Scholar] [CrossRef]
  31. Wu, Z.; Huang, C.; Zheng, Y.; Yuan, X.L.; Chen, S.; Xu, Y.; Chen, L.J.; Pang, C.P.; Zhang, M.; Ng, T.K. Primary open-angle glaucoma risk prediction with ABCA1 and LOC102723944 variants and their genotype-phenotype correlations in southern Chinese population. Mol. Genet. Genom. 2023, 298, 1343–1352. [Google Scholar] [CrossRef]
  32. Fuse, N. Genetic bases for glaucoma. Tohoku J. Exp. Med. 2010, 221, 1–10. [Google Scholar] [CrossRef] [PubMed]
  33. Amberger, J.; Bocchini, C.; Schiettecatte, F.; Scott, A.; Hamosh, A. OMIM.org: Online Mendelian Inheritance in Man (OMIM®), an online catalog of human genes and genetic disorders. Nucleic Acids Res. 2015, 43, D789–D798. [Google Scholar] [CrossRef] [PubMed]
  34. Liu, T.; Xie, L.; Ye, J.; Liu, Y.; He, X. Screening of candidate genes for primary open angle glaucoma. Mol. Vis. 2012, 18, 2119–2126. [Google Scholar]
  35. Pradhan, S.; Sengupta, M.; Dutta, A.; Bhattacharyya, K.; Bag, S.K.; Dutta, C.; Ray, K. Indian genetic disease database. Nucleic Acids Res. 2011, 39, D933–D938. [Google Scholar] [CrossRef] [PubMed]
  36. Brown, G.R.; Hem, V.; Katz, K.S.; Ovetsky, M.; Wallin, C.; Ermolaeva, O.; Tolstoy, I.; Tatusova, T.; Pruitt, K.D.; Maglott, D.R.; et al. Gene: A gene-centered information resource at NCBI. Nucleic Acids Res. 2015, 43, D36–D42. [Google Scholar] [CrossRef] [PubMed]
  37. Danford, I.D.; Verkuil, L.D.; Choi, D.J.; Collins, D.W.; Gudiseva, H.V.; Uyhazi, K.E.; Lau, M.K.; Kanu, L.N.; Grant, G.R.; Chavali, V.R.M.; et al. Characterizing the “POAGome”: A bioinformatics-driven approach to primary open-angle glaucoma. Prog. Retin. Eye Res. 2017, 58, 89–114. [Google Scholar] [CrossRef] [PubMed]
  38. Landrum, M.J.; Lee, J.M.; Riley, G.R.; Jang, W.; Rubinstein, W.S.; Church, D.M.; Maglott, D.R. ClinVar: Public archive of relationships among sequence variation and human phenotype. Nucleic Acids Res. 2014, 42, D980–D985. [Google Scholar] [CrossRef] [PubMed]
  39. Zerbino, D.; Wilder, S.; Johnson, N.; Juettemann, T.; Flicek, P. The Ensembl regulatory build. Genom. Biol. 2015, 16, 56. [Google Scholar] [CrossRef]
  40. Oliveira, M.B.; de Vasconcellos, J.P.C.; Ananina, G.; Costa, V.P.; de Melo, M.B. Association between IL1A and IL1B polymorphisms and primary open angle glaucoma in a Brazilian population. Exp. Biol. Med. 2018, 243, 1083–1091. [Google Scholar] [CrossRef] [PubMed]
  41. Ponomarenko, M.; Mironova, V.; Gunbin, K.; Savinkova, L. Hogness Box. In Brenner’s Encyclopedia of Genetics, 2nd ed.; Maloy, S., Hughes, K., Eds.; Academic Press: San Diego, CA, USA, 2013; Volume 3, pp. 491–494. [Google Scholar] [CrossRef]
  42. Martianov, I.; Viville, S.; Davidson, I. RNA polymerase II transcription in murine cells lacking the TATA binding protein. Science 2002, 298, 1036–1039. [Google Scholar] [CrossRef] [PubMed]
  43. Mogno, I.; Vallania, F.; Mitra, R.D.; Cohen, B.A. TATA is a modular component of synthetic promoters. Genome Res. 2010, 20, 1391–1397. [Google Scholar] [CrossRef]
  44. Ponomarenko, M.; Rasskazov, D.; Arkova, O.; Ponomarenko, P.; Suslov, V.; Savinkova, L.; Kolchanov, N. How to use SNP_TATA_Comparator to find a significant change in gene expression caused by the regulatory SNP of this gene’s promoter via a change in affinity of the TATA-binding protein for this promoter. Biomed. Res. Int. 2015, 2015, 359835. [Google Scholar] [CrossRef] [PubMed]
  45. Shikhevich, S.; Chadaeva, I.; Khandaev, B.; Kozhemyakina, R.; Zolotareva, K.; Kazachek, A.; Oshchepkov, D.; Bogomolov, A.; Klimova, N.V.; Ivanisenko, V.A.; et al. Differentially expressed genes and molecular susceptibility to human age-related diseases. Int. J. Mol. Sci. 2023, 24, 3996. [Google Scholar] [CrossRef] [PubMed]
  46. Oshchepkov, D.; Chadaeva, I.; Kozhemyakina, R.; Zolotareva, K.; Khandaev, B.; Sharypova, E.; Ponomarenko, P.; Bogomolov, A.; Klimova, N.V.; Shikhevich, S.; et al. Stress reactivity, susceptibility to hypertension, and differential expression of genes in hypertensive compared to normotensive patients. Int. J. Mol. Sci. 2022, 23, 2835. [Google Scholar] [CrossRef] [PubMed]
  47. Bogomolov, A.; Filonov, S.; Chadaeva, I.; Rasskazov, D.; Khandaev, B.; Zolotareva, K.; Kazachek, A.; Oshchepkov, D.; Ivanisenko, V.A.; Demenkov, P.; et al. Candidate SNP markers significantly altering the affinity of TATA-binding protein for the promoters of human hub genes for atherogenesis, atherosclerosis and atheroprotection. Int. J. Mol. Sci. 2023, 24, 9010. [Google Scholar] [CrossRef] [PubMed]
  48. Varzari, A.; Tudor, E.; Bodrug, N.; Corloteanu, A.; Axentii, E.; Deyneko, I.V. Age-specific association of CCL5 gene polymorphism with pulmonary tuberculosis: A case-control study. Genet. Test. Mol. Biomark. 2018, 22, 281–287. [Google Scholar] [CrossRef] [PubMed]
  49. Filonov, S.V.; Podkolodnyy, N.L.; Podkolodnaya, O.A.; Tverdokhleb, N.N.; Ponomarenko, P.M.; Rasskazov, D.A.; Bogomolov, A.G.; Ponomarenko, M.P. Human_SNP_TATAdb: A database of SNPs that statistically significantly change the affinity of the TATA-binding protein to human gene promoters: Genome-wide analysis and use cases. Vavilovskii Zhurnal Genet. I Sel. (Vavilov J. Genet. Breed.) 2023, 27, 728–736. [Google Scholar] [CrossRef] [PubMed]
  50. Mustafin, Z.S.; Lashin, S.A.; Matushkin, Y.u.G. Phylostratigraphic analysis of gene networks of human diseases. Vavilovskii Zhurnal Genet. I Sel. (Vavilov J. Genet. Breed.) 2021, 25, 46–56. [Google Scholar] [CrossRef]
  51. Mustafin, Z.; Mukhin, A.; Afonnikov, D.; Matushkin, Y.; Lashin, S. OrthoWeb-web application for macroand microevolutionary analysis of genes. In Bioinformatics of Genome Regulation and Structure/Systems Biology (BGRS/SB-2020); Institute of Cytology and Genetics: Novosibirsk, Russia, 2020; pp. 228–229. [Google Scholar]
  52. Ivanisenko, V.A.; Demenkov, P.S.; Ivanisenko, T.V.; Mishchenko, E.L.; Saik, O.V. A new version of the ANDSystem tool for automatic extraction of knowledge from scientific publications with expanded functionality for reconstruction of associative gene networks by considering tissue-specific gene expression. BMC Bioinform. 2019, 20 (Suppl. 1), 34. [Google Scholar] [CrossRef] [PubMed]
  53. Mi, H.; Ebert, D.; Muruganujan, A.; Mills, C.; Albou, L.P.; Mushayamaha, T.; Thomas, P.D. PANTHER version 16: A revised family classification, tree-based classification tool, enhancer regions and extensive API. Nucleic Acids Res. 2021, 49, D394–D403. [Google Scholar] [CrossRef] [PubMed]
  54. Sherman, B.T.; Hao, M.; Qiu, J.; Jiao, X.; Baseler, M.W.; Lane, H.C.; Imamichi, T.; Chang, W. DAVID: A web server for functional enrichment analysis and functional annotation of gene lists (2021 update). Nucleic Acids Res. 2022, 50, W216–W221. [Google Scholar] [CrossRef] [PubMed]
  55. Szklarczyk, D.; Kirsch, R.; Koutrouli, M.; Nastou, K.; Mehryary, F.; Hachilif, R.; Gable, A.L.; Fang, T.; Doncheva, N.T.; Pyysalo, S.; et al. The STRING database in 2023: Protein-protein association networks and functional enrichment analyses for any sequenced genome of interest. Nucleic Acids Res. 2023, 51, D638–D646. [Google Scholar] [CrossRef] [PubMed]
  56. Zhou, Y.; Zhou, B.; Pache, L.; Chang, M.; Khodabakhshi, A.H.; Tanaseichuk, O.; Benner, C.; Chanda, S.K. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nat. Commun. 2019, 10, 1523. [Google Scholar] [CrossRef] [PubMed]
  57. Warde-Farley, D.; Donaldson, S.L.; Comes, O.; Zuberi, K.; Badrawi, R.; Chao, P.; Franz, M.; Grouios, C.; Kazi, F.; Lopes, C.T.; et al. The GeneMANIA prediction server: Biological network integration for gene prioritization and predicting gene function. Nucleic Acids Res. 2010, 38, W214–W220. [Google Scholar] [CrossRef]
  58. Stelzer, G.; Rosen, N.; Plaschkes, I.; Zimmerman, S.; Twik, M.; Fishilevich, S.; Stein, T.I.; Nudel, R.; Lieder, I.; Mazor, Y.; et al. The GeneCards suite: From gene data mining to disease genome sequence analyses. Curr. Protoc. Bioinform. 2016, 54, 1.30.1–1.30.33. [Google Scholar] [CrossRef] [PubMed]
  59. Kanehisa, M.; Furumichi, M.; Sato, Y.; Kawashima, M.; Ishiguro-Watanabe, M. KEGG for taxonomy-based analysis of pathways and genomes. Nucleic Acids Res. 2023, 51, D587–D592. [Google Scholar] [CrossRef] [PubMed]
  60. Kanehisa, M.; Goto, S. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res. 2000, 28, 27–30. [Google Scholar] [CrossRef] [PubMed]
  61. Bell, E.A.; Boehnke, P.; Harrison, T.M.; Mao, W.L. Potentially biogenic carbon preserved in a 4.1 billion-year-old zircon. Proc. Natl. Acad. Sci. USA 2015, 112, 14518–14521. [Google Scholar] [CrossRef] [PubMed]
  62. Leander, B.S. Predatory protists. Curr. Biol. 2020, 30, R510–R516. [Google Scholar] [CrossRef]
  63. Maloof, A.C.; Porter, S.M.; Moore, J.L.; Dudas, F.O.; Bowring, S.A.; Higgins, J.A.; Fike, D.A.; Eddy, M.P. The earliest Cambrian record of animals and ocean geochemical change. Geol. Soc. Am. Bull. 2010, 122, 1731–1774. [Google Scholar] [CrossRef]
  64. Maloof, A.C.; Rose, C.V.; Beach, R.; Samuels, B.M.; Calmet, C.C.; Erwin, D.H.; Poirier, G.R.; Yao, N.; Simons, F.J. Possible animal-body fossils in pre-Marinoan limestones from South Australia. Nat. Geosci. 2010, 3, 653–659. [Google Scholar] [CrossRef]
  65. Shu, D.-G.; Luo, H.-L.; Conway Morris, S.; Zhang, X.-L.; Hu, S.-X.; Chen, L.; Han, J.; Zhu, M.; Li, Y.; Chen, L.-Z. Lower Cambrian vertebrates from south China. Nature 1999, 402, 42–46. [Google Scholar] [CrossRef] [PubMed]
  66. Diogo, R. The Origin of Higher Clades: Osteology, Myology, Phylogeny and Evolution of Bony Fishes and the Rise of Tetrapods; CRC Press: New York, NY, USA, 2007. [Google Scholar]
  67. Datta, P.M. Earliest mammal with transversely expanded upper molar from the Late Triassic (Carnian) Tiki Formation, South Rewa Gondwana Basin, India. J. Vertebr. Paleontol. 2005, 25, 200–207. [Google Scholar] [CrossRef]
  68. Luo, Z.-X.; Yuan, C.-X.; Meng, Q.-J.; Ji, Q. A Jurassic eutherian mammal and divergence of marsupials and placentals. Nature 2011, 476, 442–445. [Google Scholar] [CrossRef] [PubMed]
  69. Kumar, V.; Hallstrom, B.M.; Janke, A. Coalescent-based genome analyses resolve the early branches of the euarchontoglires. PLoS ONE 2013, 8, e60019. [Google Scholar] [CrossRef] [PubMed]
  70. Chatterjee, H.J.; Ho, S.Y.; Barnes, I.; Groves, C. Estimating the phylogeny and divergence times of primates using a supermatrix approach. BMC Evol. Biol. 2009, 9, 259. [Google Scholar] [CrossRef] [PubMed]
  71. Dunn, R.H.; Rose, K.D.; Rana, R.S.; Kumar, K.; Sahni, A.; Smith, T. New euprimate postcrania from the early Eocene of Gujarat, India, and the strepsirrhine-haplorhine divergence. J. Hum. Evol. 2016, 99, 25–51. [Google Scholar] [CrossRef] [PubMed]
  72. Harrison, T. Catarrhine origins. In A Companion to Paleoanthropology; Blackwell Publ. Ltd.: New York, NY, USA, 2013; pp. 376–396. [Google Scholar]
  73. Hey, J. The ancestor’s tale: A pilgrimage to the dawn of evolution. J. Clin. Investig. 2005, 115, 1680. [Google Scholar] [CrossRef]
  74. Schrenk, F.; Kullmer, O.; Bromage, T. The earliest putative homo fossils. In Handbook of Paleoanthropology; Henke, W., Tattersall, I., Eds.; Springer: Berlin/Heidelberg, Germany, 2014; pp. 1–19. [Google Scholar]
  75. Scerri, E.M.L.; Thomas, M.G.; Manica, A.; Gunz, P.; Stock, J.T.; Stringer, C.; Grove, M.; Groucutt, H.S.; Timmermann, A.; Rightmire, G.P.; et al. Did our species evolve in subdivided populations across Africa, and why does it matter? Trends Ecol. Evol. 2018, 33, 582–594. [Google Scholar] [CrossRef] [PubMed]
  76. Ban, N.; Lee, T.J.; Sene, A.; Choudhary, M.; Lekwuwa, M.; Dong, Z.; Santeford, A.; Lin, J.B.; Malek, G.; Ory, D.S.; et al. Impaired monocyte cholesterol clearance initiates age-related retinal degeneration and vision loss. JCI Insight 2018, 3, e120824. [Google Scholar] [CrossRef] [PubMed]
  77. Hu, C.; Niu, L.; Li, L.; Song, M.; Zhang, Y.; Lei, Y.; Chen, Y.; Sun, X. ABCA1 Regulates IOP by modulating Cav1/eNOS/NO signaling pathway. Investig. Ophthalmol. Vis. Sci. 2020, 61, 33. [Google Scholar] [CrossRef]
  78. Bauer, M.; Karch, R.; Tournier, N.; Cisternino, S.; Wadsak, W.; Hacker, M.; Marhofer, P.; Zeitlinger, M.; Langer, O. Assessment of P-glycoprotein transport activity at the human blood-retina barrier with (R)-11C-verapamil PET. J. Nucl. Med. 2017, 58, 678–681. [Google Scholar] [CrossRef] [PubMed]
  79. Siegner, S.W.; Netland, P.A.; Schroeder, A.; Erickson, K.A. Effect of calcium channel blockers alone and in combination with antiglaucoma medications on intraocular pressure in the primate eye. J. Glaucoma 2000, 9, 334–339. [Google Scholar] [CrossRef] [PubMed]
  80. Schumacher, T.; Krohn, M.; Hofrichter, J.; Lange, C.; Stenzel, J.; Steffen, J.; Dunkelmann, T.; Paarmann, K.; Frohlich, C.; Uecker, A.; et al. ABC transporters B1, C1 and G2 differentially regulate neuroregeneration in mice. PLoS ONE 2012, 7, e35613. [Google Scholar] [CrossRef] [PubMed]
  81. Pattabiraman, P.P.; Pecen, P.E.; Rao, P.V. MRP4-mediated regulation of intracellular cAMP and cGMP levels in trabecular meshwork cells and homeostasis of intraocular pressure. Investig. Ophthalmol. Vis. Sci. 2013, 54, 1636–1649. [Google Scholar] [CrossRef]
  82. Nalini, V.; Segu, R.; Deepa, P.R.; Khetan, V.; Vasudevan, M.; Krishnakumar, S. Molecular insights on post-chemotherapy retinoblastoma by microarray gene expression analysis. Bioinform. Biol. Insights 2013, 7, 289–306. [Google Scholar] [CrossRef]
  83. Jiang, H.; Luo, J.; Lei, H. The roles of mouse double minute 2 (MDM2) oncoprotein in ocular diseases: A review. Exp. Eye Res. 2022, 217, 108910. [Google Scholar] [CrossRef] [PubMed]
  84. Hirooka, K.; Shiraga, F. Potential role for angiotensin-converting enzyme inhibitors in the treatment of glaucoma. Clin. Ophthalmol. 2007, 1, 217–223. [Google Scholar] [PubMed]
  85. Costagliola, C.; Di Benedetto, R.; De Caprio, L.; Verde, R.; Mastropasqua, L. Effect of oral captopril (SQ 14225) on intraocular pressure in man. Eur. J. Ophthalmol. 1995, 5, 19–25. [Google Scholar] [CrossRef] [PubMed]
  86. Kondkar, A.A.; Sultan, T.; Azad, T.A.; Osman, E.A.; Almobarak, F.A.; Al-Obeidan, S.A. Association analysis of polymorphisms rs12997 in ACVR1 and rs1043784 in BMP6 genes involved in bone morphogenic protein signaling pathway in primary angle-closure and pseudoexfoliation glaucoma patients of Saudi origin. BMC Med. Genet. 2020, 21, 145. [Google Scholar] [CrossRef] [PubMed]
  87. Borras, T. Gene expression in the trabecular meshwork and the influence of intraocular pressure. Prog. Retin. Eye Res. 2003, 22, 435–463. [Google Scholar] [CrossRef]
  88. Vasu, K.; Ramachandiran, I.; Chechi, A.; Khan, K.; Khan, D.; Kaufman, R.; Fox, P.L. Translational control of murine adiponectin expression by an upstream open reading frame element. RNA Biol. 2023, 20, 737–749. [Google Scholar] [CrossRef]
  89. Lam, S.; Lindsey, J.; Carranza Leon, B.G.; Takkouche, S. Shedding light on eye disease in obesity: A review. Clin Obes. 2024, 14, e12616. [Google Scholar] [CrossRef] [PubMed]
  90. Denis, P.; Elena, P.P. Retinal vascular beta-adrenergic receptors in man. Ophtalmologie 1989, 3, 62–64. [Google Scholar] [PubMed]
  91. Hohberger, B.; Kunze, R.; Wallukat, G.; Kara, K.; Mardin, C.Y.; Lammer, R.; Schlotzer-Schrehardt, U.; Hosari, S.; Horn, F.; Munoz, L.; et al. Autoantibodies activating the β2-adrenergic receptor characterize patients with primary and secondary glaucoma. Front. Immunol. 2019, 10, 2112. [Google Scholar] [CrossRef] [PubMed]
  92. Dorfleutner, A.; Stehlik, C.; Zhang, J.; Gallick, G.E.; Flynn, D.C. AFAP-110 is required for actin stress fiber formation and cell adhesion in MDA-MB-231 breast cancer cells. J. Cell Physiol. 2007, 213, 740–749. [Google Scholar] [CrossRef] [PubMed]
  93. Rao, V.R.; Stubbs, E.B., Jr. TGF-β2 promotes oxidative stress in human trabecular meshwork cells by selectively enhancing NADPH oxidase 4 expression. Investig. Ophthalmol. Vis. Sci. 2021, 62, 4. [Google Scholar] [CrossRef] [PubMed]
  94. Asefa, N.G.; Kamali, Z.; Pereira, S.; Vaez, A.; Jansonius, N.; Bergen, A.A.; Snieder, H. Bioinformatic prioritization and functional annotation of GWAS-based candidate genes for primary open-angle glaucoma. Genes 2022, 13, 1055. [Google Scholar] [CrossRef] [PubMed]
  95. McVicar, C.M.; Ward, M.; Colhoun, L.M.; Guduric-Fuchs, J.; Bierhaus, A.; Fleming, T.; Schlotterer, A.; Kolibabka, M.; Hammes, H.P.; Chen, M.; et al. Role of the receptor for advanced glycation endproducts (RAGE) in retinal vasodegenerative pathology during diabetes in mice. Diabetologia 2015, 58, 1129–1137. [Google Scholar] [CrossRef]
  96. Pelletier, A.L.; Rojas-Roldan, L.; Coffin, J. Vision loss in older adults. Am. Fam. Physician 2016, 94, 219–226. [Google Scholar] [PubMed]
  97. Tzeng, T.F.; Liou, S.S.; Tzeng, Y.C.; Liu, I.M. Zerumbone, a phytochemical of subtropical ginger, protects against hyperglycemia-induced retinal damage in experimental diabetic rats. Nutrients 2016, 8, 449. [Google Scholar] [CrossRef] [PubMed]
  98. Suh, J.; Moncaster, J.A.; Wang, L.; Hafeez, I.; Herz, J.; Tanzi, R.E.; Goldstein, L.E.; Guenette, S.Y. FE65 and FE65L1 amyloid precursor protein-binding protein compound null mice display adult-onset cataract and muscle weakness. FASEB J. 2015, 29, 2628–2639. [Google Scholar] [CrossRef] [PubMed]
  99. Stalhammar, G.; Damato, B.E.; Fili, M. Adenoma of the nonpigmented ciliary epithelium presenting as glaucoma. Am. J. Ophthalmol. Case Rep. 2023, 32, 101871. [Google Scholar] [CrossRef]
  100. Golanska, E.; Sieruta, M.; Gresner, S.M.; Pfeffer, A.; Chodakowska-Zebrowska, M.; Sobow, T.M.; Klich, I.; Mossakowska, M.; Szybinska, A.; Barcikowska, M.; et al. APBB2 genetic polymorphisms are associated with severe cognitive impairment in centenarians. Exp. Gerontol. 2013, 48, 391–394. [Google Scholar] [CrossRef]
  101. Jiang, A.; Gao, H.; Kelley, M.R.; Qiao, X. Inhibition of APE1/Ref-1 redox activity with APX3330 blocks retinal angiogenesis in vitro and in vivo. Vis. Res. 2011, 51, 93–100. [Google Scholar] [CrossRef] [PubMed]
  102. Hayreh, S.S.; Zimmerman, M.B. Ocular neovascularization associated with central and hemicentral retinal vein occlusion. Retina 2012, 32, 1553–1565. [Google Scholar] [CrossRef]
  103. Aqrawi, L.A.; Chen, X.; Jensen, J.L.; Morthen, M.K.; Thiede, B.; Utheim, O.A.; Palm, O.; Tashbayev, B.; Utheim, T.P.; Galtung, H.K. Severity of clinical dry eye manifestations influences protein expression in tear fluid of patients with primary Sjogren’s syndrome. PLoS ONE 2018, 13, e0205762. [Google Scholar] [CrossRef] [PubMed]
  104. Castro, C.; Marta, A.; Marques, J.H.; Ferreira, A.; Jose, D.; Sousa, P.; Neves, I.; Meneres, M.J.; Barbosa, I. Ocular surface changes in primary open-angle glaucoma patients treated with topical antihypertensive drugs. J. Glaucoma. 2023, 32, e113–e120. [Google Scholar] [CrossRef]
  105. Omodaka, K.; Nishiguchi, K.M.; Yasuda, M.; Tanaka, Y.; Sato, K.; Nakamura, O.; Maruyama, K.; Nakazawa, T. Neuroprotective effect against axonal damage-induced retinal ganglion cell death in apolipoprotein E-deficient mice through the suppression of kainate receptor signaling. Brain Res. 2014, 1586, 203–212. [Google Scholar] [CrossRef] [PubMed]
  106. Nowak, A.; Rozpędek, W.; Cuchra, M.; Wojtczak, R.; Siwak, M.; Szymanek, K.; Szaflik, M.; Szaflik, J.; Szaflik, J.; Majsterek, I. Association of the expression level of the neurodegeneration-related proteins with the risk of development and progression of primary open-angle glaucoma. Acta Ophthalmol. 2018, 96, e97–e98. [Google Scholar] [CrossRef] [PubMed]
  107. Zhang, D.; Vetrivel, L.; Verkman, A.S. Aquaporin deletion in mice reduces intraocular pressure and aqueous fluid production. J. Gen. Physiol. 2002, 119, 561–569. [Google Scholar] [CrossRef] [PubMed]
  108. Mallick, S.; Sharma, M.; Kumar, A.; Du, Y. Cell-based therapies for trabecular meshwork regeneration to treat glaucoma. Biomolecules 2021, 11, 1258. [Google Scholar] [CrossRef] [PubMed]
  109. Springelkamp, H.; Iglesias, A.I.; Cuellar-Partida, G.; Amin, N.; Burdon, K.P.; van Leeuwen, E.M.; Gharahkhani, P.; Mishra, A.; van der Lee, S.J.; Hewitt, A.W.; et al. ARHGEF12 influences the risk of glaucoma by increasing intraocular pressure. Hum. Mol. Genet. 2015, 24, 2689–2699. [Google Scholar] [CrossRef] [PubMed]
  110. Keller, K.E.; Wirtz, M.K. Working your SOCS off: The role of ASB10 and protein degradation pathways in glaucoma. Exp. Eye Res. 2017, 158, 154–160. [Google Scholar] [CrossRef] [PubMed]
  111. Keller, K.E.; Yang, Y.F.; Sun, Y.Y.; Sykes, R.; Acott, T.S.; Wirtz, M.K. Ankyrin repeat and suppressor of cytokine signaling box containing protein-10 is associated with ubiquitin-mediated degradation pathways in trabecular meshwork cells. Mol. Vis. 2013, 19, 1639–1655. [Google Scholar] [PubMed]
  112. Kasetti, R.B.; Maddineni, P.; Kiehlbauch, C.; Patil, S.; Searby, C.C.; Levine, B.; Sheffield, V.C.; Zode, G.S. Autophagy stimulation reduces ocular hypertension in a murine glaucoma model via autophagic degradation of mutant myocilin. JCI Insight 2021, 6, e143359. [Google Scholar] [CrossRef] [PubMed]
  113. Rocha-Martins, M.; de Toledo, B.C.; Santos-Franca, P.L.; Oliveira-Valenca, V.M.; Vieira-Vieira, C.H.; Matos-Rodrigues, G.E.; Linden, R.; Norden, C.; Martins, R.A.P.; Silveira, M.S. De novo genesis of retinal ganglion cells by targeted expression of Klf4 in vivo. Development 2019, 146, dev176586. [Google Scholar] [CrossRef]
  114. Sen, N.E.; Arsovic, A.; Meierhofer, D.; Brodesser, S.; Oberschmidt, C.; Canet-Pons, J.; Kaya, Z.E.; Halbach, M.V.; Gispert, S.; Sandhoff, K.; et al. In human and mouse spino-cerebellar tissue, ataxin-2 expansion affects ceramide-sphingomyelin metabolism. Int. J. Mol. Sci. 2019, 20, 5854. [Google Scholar] [CrossRef] [PubMed]
  115. Rong, S.S.; Yu, X. Phenotypic and genetic links between body fat measurements and primary open-angle glaucoma. Int. J. Mol. Sci. 2023, 24, 3925. [Google Scholar] [CrossRef] [PubMed]
  116. Arsovic, A.; Halbach, M.V.; Canet-Pons, J.; Esen-Sehir, D.; Doring, C.; Freudenberg, F.; Czechowska, N.; Seidel, K.; Baader, S.L.; Gispert, S.; et al. Mouse ataxin-2 expansion downregulates CamKII and Other calcium signaling factors, impairing granule-Purkinje neuron synaptic strength. Int. J. Mol. Sci. 2020, 21, 6673. [Google Scholar] [CrossRef] [PubMed]
  117. Voigt, A.M.; Grabitz, S.; Hoffmann, E.M.; Schuster, A.K. Systemic diseases in primary open-angle glaucoma. Klin. Monbl Augenheilkd. 2024, 241, 170–176. [Google Scholar] [PubMed]
  118. Chapman, S.A.; Bonshek, R.E.; Stoddart, R.W.; O’Donoghue, E.; Goodall, K.; McLeod, D. Glycans of the trabecular meshwork in primary open angle glaucoma. Br. J. Ophthalmol. 1996, 80, 435–444. [Google Scholar] [CrossRef] [PubMed]
  119. Bydlinski, N.; Maresch, D.; Schmieder, V.; Klanert, G.; Strasser, R.; Borth, N. The contributions of individual galactosyltransferases to protein specific N-glycan processing in Chinese hamster ovary cells. J. Biotechnol. 2018, 282, 101–110. [Google Scholar] [CrossRef]
  120. Slettedal, J.K.; Sandvik, L.; Ringvold, A. Significant lifespan difference between primary open-angle glaucoma and pseudoexfoliation glaucoma. Heliyon 2021, 7, e06421. [Google Scholar] [CrossRef] [PubMed]
  121. Sun, Y.; Yang, X.; Liu, M.; Tang, H. B4GALT3 up-regulation by miR-27a contributes to the oncogenic activity in human cervical cancer cells. Cancer Lett. 2016, 375, 284–292. [Google Scholar] [CrossRef] [PubMed]
  122. Liu, D.; Deng, Q.; Lei, X.; Lu, W.; Zhao, Q.; Shen, Y. Overexpression of BMP4 protects retinal ganglion cells in a mouse model of experimental glaucoma. Exp. Eye Res. 2021, 210, 108728. [Google Scholar] [CrossRef]
  123. Chung, D.D.; Frausto, R.F.; Lin, B.R.; Hanser, E.M.; Cohen, Z.; Aldave, A.J. Transcriptomic profiling of posterior polymorphous corneal dystrophy. Investig. Ophthalmol. Vis. Sci. 2017, 58, 3202–3214. [Google Scholar] [CrossRef] [PubMed]
  124. Skeie, J.M.; Nishimura, D.Y.; Wang, C.L.; Schmidt, G.A.; Aldrich, B.T.; Greiner, M.A. Mitophagy: An emerging target in ocular pathology. Investig. Ophthalmol. Vis. Sci. 2021, 62, 22. [Google Scholar] [CrossRef] [PubMed]
  125. Farrell, S.R.; Sargoy, A.; Brecha, N.C.; Barnes, S. Modulation of voltage-gated Ca2+ channels in rat retinal ganglion cells by gabapentin. Vis. Neurosci. 2014, 31, 47–55. [Google Scholar] [CrossRef]
  126. Chang, E.; Chen, X.; Kim, M.; Gong, N.; Bhatia, S.; Luo, Z.D. Differential effects of voltage-gated calcium channel blockers on calcium channel alpha-2-delta-1 subunit protein-mediated nociception. Eur. J. Pain. 2015, 19, 639–648. [Google Scholar] [CrossRef] [PubMed]
  127. Openkova, Y.Y.; Korobeiynikova, E.N.; Rykin, V.S.; Vinkova, G.A. The analysis of status of biochemical indicators in blood serum and lacrimal fluid in patients with primary open-angle glaucoma. Klin. Lab. Diagn. 2013, 5, 8–11. [Google Scholar]
  128. Lerner, N.; Chen, I.; Schreiber-Avissar, S.; Beit-Yannai, E. Extracellular vesicles mediate anti-oxidative response-in vitro study in the ocular drainage system. Int. J. Mol. Sci. 2020, 21, 6105. [Google Scholar] [CrossRef]
  129. Gu, X.; Fliesler, S.J.; Zhao, Y.Y.; Stallcup, W.B.; Cohen, A.W.; Elliott, M.H. Loss of caveolin-1 causes blood-retinal barrier breakdown, venous enlargement, and mural cell alteration. Am. J. Pathol. 2014, 184, 541–555. [Google Scholar] [CrossRef] [PubMed]
  130. Simard, J.R.; Meshulam, T.; Pillai, B.K.; Kirber, M.T.; Brunaldi, K.; Xu, S.; Pilch, P.F.; Hamilton, J.A. Caveolins sequester FA on the cytoplasmic leaflet of the plasma membrane, augment triglyceride formation, and protect cells from lipotoxicity. J. Lipid Res. 2010, 51, 914–922. [Google Scholar] [CrossRef] [PubMed]
  131. Lee, J.H.; Kwon, Y.J.; Lee, H.S.; Han, J.H.; Joung, B.; Kim, S.J. Fatty liver is an independent risk factor for elevated intraocular pressure. Nutrients 2022, 14, 4455. [Google Scholar] [CrossRef] [PubMed]
  132. Kim, S.; Kim, K.; Heo, D.W.; Kim, J.S.; Park, C.K.; Kim, C.S.; Kang, C. Expression-associated polymorphisms of CAV1-CAV2 affect intraocular pressure and high-tension glaucoma risk. Mol. Vis. 2015, 21, 548–554. [Google Scholar] [PubMed]
  133. Galbiati, F.; Volonte, D.; Gil, O.; Zanazzi, G.; Salzer, J.L.; Sargiacomo, M.; Scherer, P.E.; Engelman, J.A.; Schlegel, A.; Parenti, M.; et al. Expression of caveolin-1 and -2 in differentiating PC12 cells and dorsal root ganglion neurons: Caveolin-2 is up-regulated in response to cell injury. Proc. Natl. Acad. Sci. USA 1998, 95, 10257–10262. [Google Scholar] [CrossRef] [PubMed]
  134. Ma, Q.; Zhang, J.; Zhang, M.; Lan, H.; Yang, Q.; Li, C.; Zeng, L. MicroRNA-29b targeting of cell division cycle 7-related protein kinase (CDC7) regulated vascular smooth muscle cell (VSMC) proliferation and migration. Ann. Transl. Med. 2020, 8, 1496. [Google Scholar] [CrossRef] [PubMed]
  135. Omoti, A.E.; Edema, O.T. A review of the risk factors in primary open angle glaucoma. Niger. J. Clin. Pr. 2007, 10, 79–82. [Google Scholar]
  136. Cheng, A.N.; Jiang, S.S.; Fan, C.C.; Lo, Y.K.; Kuo, C.Y.; Chen, C.H.; Liu, Y.L.; Lee, C.C.; Chen, W.S.; Huang, T.S.; et al. Increased Cdc7 expression is a marker of oral squamous cell carcinoma and overexpression of Cdc7 contributes to the resistance to DNA-damaging agents. Cancer Lett. 2013, 337, 218–225. [Google Scholar] [CrossRef] [PubMed]
  137. Mohanty, K.; Dada, R.; Dada, T. Oxidative DNA damage and reduced expression of DNA repair genes: Role in primary open angle glaucoma (POAG). Ophthalmic Genet. 2017, 38, 446–450. [Google Scholar] [CrossRef]
  138. Rajic, J.; Dinic, S.; Uskokovic, A.; Arambasic Jovanovic, J.; Tolic, A.; Dordevic, M.; Dordevic, M.; Poznanovic, G.; Mihailovic, M.; Inic-Kanada, A.; et al. DNA methylation of miR-200 clusters promotes epithelial to mesenchymal transition in human conjunctival epithelial cells. Exp. Eye Res. 2020, 197, 108047. [Google Scholar] [CrossRef] [PubMed]
  139. Atencio, I.A.; Chen, Z.; Nguyen, Q.H.; Faha, B.; Maneval, D.C. p21WAF-1/Cip-1 gene therapy as an adjunct to glaucoma filtration surgery. Curr. Opin. Mol. Ther. 2004, 6, 624–628. [Google Scholar] [PubMed]
  140. Itoh, T.; Linn, S. The fate of p21CDKN1A in cells surviving UV-irradiation. DNA Repair 2005, 4, 1457–1462. [Google Scholar] [CrossRef]
  141. Eliseeva, N.V.; Ponomarenko, I.V.; Churnosov, M.I. Analysis of the functional role of polymorphism in the CDKN2B-AS1 gene GWAS-significant for primary open-angle glaucoma (an in-silico study). Vestn. Oftalmol. 2021, 137, 43–50. [Google Scholar] [CrossRef] [PubMed]
  142. He, S.; Sharpless, N.E. Senescence in health and disease. Cell 2017, 169, 1000–1011. [Google Scholar] [CrossRef] [PubMed]
  143. Liu, W.; Guo, R.; Huang, D.; Ji, J.; Gansevoort, R.T.; Snieder, H.; Jansonius, N.M. Co-occurrence of chronic kidney disease and glaucoma: Epidemiology and etiological mechanisms. Surv. Ophthalmol. 2023, 68, 1–16. [Google Scholar] [CrossRef] [PubMed]
  144. Gao, S.; Jakobs, T.C. Mice homozygous for a deletion in the glaucoma susceptibility locus INK4 show increased vulnerability of retinal ganglion cells to elevated intraocular pressure. Am. J. Pathol. 2016, 186, 985–1005. [Google Scholar] [CrossRef] [PubMed]
  145. Choi, Y.; Lim, S.Y.; Jeong, H.S.; Koo, K.A.; Sung, S.H.; Kim, Y.C. Oligonucleotide microarray analysis of apoptosis induced by 15-methoxypinusolidic acid in microglial BV2 cells. Br. J. Pharmacol. 2009, 157, 1053–1064. [Google Scholar] [CrossRef]
  146. Al Shweiki, M.R.; Oeckl, P.; Steinacker, P.; Barschke, P.; Dorner-Ciossek, C.; Hengerer, B.; Schonfeldt-Lecuona, C.; Otto, M. Proteomic analysis reveals a biosignature of decreased synaptic protein in cerebrospinal fluid of major depressive disorder. Transl. Psychiatry 2020, 10, 144. [Google Scholar] [CrossRef]
  147. Cumurcu, T.; Cumurcu, B.E.; Celikel, F.C.; Etikan, I. Depression and anxiety in patients with pseudoexfoliative glaucoma. Gen. Hosp. Psychiatry 2006, 28, 509–515. [Google Scholar] [CrossRef] [PubMed]
  148. Elkjaer, M.L.; Nawrocki, A.; Kacprowski, T.; Lassen, P.; Simonsen, A.H.; Marignier, R.; Sejbaek, T.; Nielsen, H.H.; Wermuth, L.; Rashid, A.Y.; et al. CSF proteome in multiple sclerosis subtypes related to brain lesion transcriptomes. Sci. Rep. 2021, 11, 4132. [Google Scholar] [CrossRef]
  149. Jung, J.; Yoo, J.E.; Choe, Y.H.; Park, S.C.; Lee, H.J.; Lee, H.J.; Noh, B.; Kim, S.H.; Kang, G.Y.; Lee, K.M.; et al. Cleaved cochlin sequesters Pseudomonas aeruginosa and activates innate immunity in the inner ear. Cell Host Microbe. 2019, 25, 513–525.e6. [Google Scholar] [CrossRef] [PubMed]
  150. Nguyen, V.; Schmutz, M.; Farukhi, S.; Mosaed, S. Baerveldt scleral patch graft abscess secondary to coagulase-negative staphylococcus. Case Rep. Ophthalmol. 2017, 8, 521–526. [Google Scholar] [CrossRef] [PubMed]
  151. Bhattacharya, S.K.; Peachey, N.S.; Crabb, J.W. Cochlin and glaucoma: A mini-review. Vis. Neurosci. 2005, 22, 605–613. [Google Scholar] [CrossRef] [PubMed]
  152. Chong, R.S.; Lee, Y.S.; Chu, S.W.L.; Toh, L.Z.; Wong, T.T.L. Inhibition of monocyte chemoattractant protein 1 prevents conjunctival fibrosis in an experimental model of glaucoma filtration surgery. Investig. Ophthalmol. Vis. Sci. 2017, 58, 3432–3439. [Google Scholar] [CrossRef] [PubMed]
  153. Roodnat, A.W.; Callaghan, B.; Doyle, C.; Vallabh, N.A.; Atkinson, S.D.; Willoughby, C.E. Genome-wide RNA sequencing of ocular fibroblasts from glaucomatous and normal eyes: Implications for glaucoma management. PLoS ONE 2024, 19, e0307227. [Google Scholar] [CrossRef]
  154. Hopfer, U.; Fukai, N.; Hopfer, H.; Wolf, G.; Joyce, N.; Li, E.; Olsen, B.R. Targeted disruption of Col8a1 and Col8a2 genes in mice leads to anterior segment abnormalities in the eye. FASEB J. 2005, 19, 1232–1244. [Google Scholar] [CrossRef] [PubMed]
  155. Desronvil, T.; Logan-Wyatt, D.; Abdrabou, W.; Triana, M.; Jones, R.; Taheri, S.; Del Bono, E.; Pasquale, L.R.; Olivier, M.; Haines, J.L.; et al. Distribution of COL8A2 and COL8A1 gene variants in Caucasian primary open angle glaucoma patients with thin central corneal thickness. Mol. Vis. 2010, 16, 2185–2191. [Google Scholar] [PubMed]
  156. Schmitt, L.; Marquardt, Y.; Amann, P.; Heise, R.; Huth, L.; Wagner-Schiffler, S.; Huth, S.; Baron, J.M. Comprehensive molecular characterization of microneedling therapy in a human three-dimensional skin model. PLoS ONE 2018, 13, e0204318. [Google Scholar] [CrossRef] [PubMed]
  157. Grehn, F. Surgery of primary open angle glaucoma. Klin. Monbl Augenheilkd. 2008, 225, 30–38. [Google Scholar] [CrossRef]
  158. Steinhart, M.R.; Cone, F.E.; Nguyen, C.; Nguyen, T.D.; Pease, M.E.; Puk, O.; Graw, J.; Oglesby, E.N.; Quigley, H.A. Mice with an induced mutation in collagen 8A2 develop larger eyes and are resistant to retinal ganglion cell damage in an experimental glaucoma model. Mol. Vis. 2012, 18, 1093–1106. [Google Scholar] [PubMed]
  159. Seet, L.F.; Toh, L.Z.; Chu, S.W.L.; Finger, S.N.; Chua, J.L.L.; Wong, T.T. Upregulation of distinct collagen transcripts in post-surgery scar tissue: A study of conjunctival fibrosis. Dis. Model. Mech. 2017, 10, 751–760. [Google Scholar] [CrossRef] [PubMed]
  160. Sarnat-Kucharczyk, M.; Rokicki, W.; Zalejska-Fiolka, J.; Pojda-Wilczek, D.; Mrukwa-Kominek, E. Determination of serum ceruloplasmin concentration in patients with primary open angle glaucoma with cataract and patients with cataract only: A pilot study. Med. Sci. Monit. 2016, 22, 1384–1388. [Google Scholar] [CrossRef]
  161. Farkas, R.H.; Chowers, I.; Hackam, A.S.; Kageyama, M.; Nickells, R.W.; Otteson, D.C.; Duh, E.J.; Wang, C.; Valenta, D.F.; Gunatilaka, T.L.; et al. Increased expression of iron-regulating genes in monkey and human glaucoma. Investig. Ophthalmol. Vis. Sci. 2004, 45, 1410–1417. [Google Scholar] [CrossRef]
  162. Bonet-Fernandez, J.M.; Aroca-Aguilar, J.D.; Corton, M.; Ramirez, A.I.; Alexandre-Moreno, S.; Garcia-Anton, M.T.; Salazar, J.J.; Ferre-Fernandez, J.J.; Atienzar-Aroca, R.; Villaverde, C.; et al. CPAMD8 loss-of-function underlies non-dominant congenital glaucoma with variable anterior segment dysgenesis and abnormal extracellular matrix. Hum. Genet. 2020, 139, 1209–1231. [Google Scholar] [CrossRef] [PubMed]
  163. Huang, X.; Xiao, X.; Jia, X.; Li, S.; Li, M.; Guo, X.; Liu, X.; Zhang, Q. Mutation analysis of the genes associated with anterior segment dysgenesis, microcornea and microphthalmia in 257 patients with glaucoma. Int. J. Mol. Med. 2015, 36, 1111–1117. [Google Scholar] [CrossRef] [PubMed]
  164. Li, Z.F.; Wu, X.H.; Engvall, E. Identification and characterization of CPAMD8, a novel member of the complement 3/alpha2-macroglobulin family with a C-terminal Kazal domain. Genomics 2004, 83, 1083–1093. [Google Scholar] [CrossRef] [PubMed]
  165. Bakalash, S.; Kipnis, J.; Yoles, E.; Schwartz, M. Resistance of retinal ganglion cells to an increase in intraocular pressure is immune-dependent. Investig. Ophthalmol. Vis. Sci. 2002, 43, 2648–2653. [Google Scholar]
  166. Shao, Z.; Ma, X.; Zhang, Y.; Sun, Y.; Lv, W.; He, K.; Xia, R.; Wang, P.; Gao, X. CPNE1 predicts poor prognosis and promotes tumorigenesis and radioresistance via the AKT singling pathway in triple-negative breast cancer. Mol. Carcinog. 2020, 59, 533–544. [Google Scholar] [CrossRef] [PubMed]
  167. Hager, T.; Hoffmann, S.; Seitz, B. Unusual symptoms for tamoxifen-associated maculopathy. Ophthalmologe 2010, 107, 750–752. [Google Scholar] [CrossRef] [PubMed]
  168. Zhu, S.; Li, R.; Yin, K.; Wu, L. CPNE1, a potential therapeutic target in nasopharyngeal carcinoma, affects cell growth and radiation resistance. Radiat. Res. 2024, 201, 310–316. [Google Scholar] [CrossRef] [PubMed]
  169. Hamada, N.; Azizova, T.V.; Little, M.P. Glaucomagenesis following ionizing radiation exposure. Mutat. Res. Rev. Mutat. Res. 2019, 779, 36–44. [Google Scholar] [CrossRef] [PubMed]
  170. Ha, Y.; Liu, H.; Zhu, S.; Yi, P.; Liu, W.; Nathanson, J.; Kayed, R.; Loucas, B.; Sun, J.; Frishman, L.J.; et al. Critical role of the CXCL10/C-X-C chemokine receptor 3 axis in promoting leukocyte recruitment and neuronal injury during traumatic optic neuropathy induced by optic nerve crush. Am. J. Pathol. 2017, 187, 352–365. [Google Scholar] [CrossRef] [PubMed]
  171. Siwak, M.; Maslankiewicz, M.; Nowak-Zdunczyk, A.; Rozpędek, W.; Wojtczak, R.; Szymanek, K.; Szaflik, M.; Szaflik, J.; Szaflik, J.P.; Majsterek, I. The relationship between HDAC6, CXCR3, and SIRT1 genes expression levels with progression of primary open-angle glaucoma. Ophthalmic Genet. 2018, 39, 325–331. [Google Scholar] [CrossRef]
  172. Perepechaeva, M.L.; Grishanova, A.Y.; Rudnitskaya, E.A.; Kolosova, N.G. The mitochondria-targeted antioxidant SkQ1 downregulates aryl hydrocarbon receptor-dependent genes in the retina of OXYS rats with AMD-like retinopathy. J. Ophthalmol. 2014, 2014, 530943. [Google Scholar] [CrossRef]
  173. Takeuchi, A.; Takeuchi, M.; Oikawa, K.; Sonoda, K.H.; Usui, Y.; Okunuki, Y.; Takeda, A.; Oshima, Y.; Yoshida, K.; Usui, M.; et al. Effects of dioxin on vascular endothelial growth factor (VEGF) production in the retina associated with choroidal neovascularization. Investig. Ophthalmol. Vis. Sci. 2009, 50, 3410–3416. [Google Scholar] [CrossRef]
  174. Lopez-Garrido, M.P.; Blanco-Marchite, C.; Sanchez-Sanchez, F.; Lopez-Sanchez, E.; Chaques-Alepuz, V.; Campos-Mollo, E.; Salinas-Sanchez, A.S.; Escribano, J. Functional analysis of CYP1B1 mutations and association of heterozygous hypomorphic alleles with primary open-angle glaucoma. Clin. Genet. 2010, 77, 70–78. [Google Scholar] [CrossRef]
  175. Liu, X.L.; Jia, Q.J.; Wang, L.N.; Liu, Z.M.; Liu, H.; Duan, X.C.; Lyu, X.M. Roles of CYP2C19 gene polymorphisms in susceptibility to POAG and individual differences in drug treatment response. Med. Sci. Monit. 2016, 22, 310–355. [Google Scholar] [CrossRef] [PubMed]
  176. Ishikawa, M.; Yoshitomi, T.; Zorumski, C.F.; Izumi, Y. 24(S)-Hydroxycholesterol protects the ex vivo rat retina from injury by elevated hydrostatic pressure. Sci. Rep. 2016, 6, 33886. [Google Scholar] [CrossRef]
  177. Saadane, A.; Mast, N.; Trichonas, G.; Chakraborty, D.; Hammer, S.; Busik, J.V.; Grant, M.B.; Pikuleva, I.A. Retinal vascular abnormalities and microglia activation in mice with deficiency in cytochrome P450 46A1-mediated cholesterol removal. Am. J. Pathol. 2019, 189, 405–425. [Google Scholar] [CrossRef] [PubMed]
  178. Grusha, I.O.; Ismailova, D.S.; Gankovskaia, O.A. Risk factors of corneal damage in patients with thyroid eye disease. Vestn. Oftalmol. 2010, 126, 35–38. [Google Scholar] [PubMed]
  179. Grzybowski, A. Present knowledge on the effects of smoking tobacco on the eye diseases. Przegl Lek. 2008, 65, 724–727. [Google Scholar] [PubMed]
  180. Erichev, V.P.; Gankovskaia, L.V.; Koval’chuk, L.V.; Gankovskaia, O.A.; Dugina, A.E. Expression of the antimicrobial peptide beta-defensin-2 in the conjunctival epithelial cells in primary open-angle glaucoma and over time in the postoperative period. Vestn. Oftalmol. 2010, 126, 19–22. [Google Scholar] [PubMed]
  181. Sundermeier, T.R.; Sakami, S.; Sahu, B.; Howell, S.J.; Gao, S.; Dong, Z.; Golczak, M.; Maeda, A.; Palczewski, K. MicroRNA-processing enzymes are essential for survival and function of mature retinal pigmented epithelial cells in mice. J. Biol. Chem. 2017, 292, 3366–3378. [Google Scholar] [CrossRef] [PubMed]
  182. Cuellar-Partida, G.; Craig, J.E.; Burdon, K.P.; Wang, J.J.; Vote, B.J.; Souzeau, E.; McAllister, I.L.; Isaacs, T.; Lake, S.; Mackey, D.A.; et al. Assessment of polygenic effects links primary open-angle glaucoma and age-related macular degeneration. Sci. Rep. 2016, 6, 26885. [Google Scholar] [CrossRef]
  183. Hang, Q.; Zeng, L.; Wang, L.; Nie, L.; Yao, F.; Teng, H.; Deng, Y.; Yap, S.; Sun, Y.; Frank, S.J.; et al. Non-canonical function of DGCR8 in DNA double-strand break repair signaling and tumor radioresistance. Nat. Commun. 2021, 12, 4033. [Google Scholar] [CrossRef] [PubMed]
  184. Liu, Y.; Han, B.; Li, F.; Liu, H. Endothelin-1 concentration in aqueous humor predicts postoperative late low intraocular pressure in primary open-angle glaucoma after trabeculectomy. J. Glaucoma 2019, 28, 633–636. [Google Scholar] [CrossRef]
  185. Chaphalkar, R.M.; Stankowska, D.L.; He, S.; Kodati, B.; Phillips, N.; Prah, J.; Yang, S.; Krishnamoorthy, R.R. Endothelin-1 mediated decrease in mitochondrial gene expression and bioenergetics contribute to neurodegeneration of retinal ganglion cells. Sci. Rep. 2020, 10, 3571. [Google Scholar] [CrossRef] [PubMed]
  186. Daniel, S.; Renwick, M.; Chau, V.Q.; Datta, S.; Maddineni, P.; Zode, G.; Wade, E.M.; Robertson, S.P.; Petroll, W.M.; Hulleman, J.D. Fibulin-3 knockout mice demonstrate corneal dysfunction but maintain normal retinal integrity. J. Mol. Med. 2020, 98, 1639–1656. [Google Scholar] [CrossRef] [PubMed]
  187. Sein, J.; Galor, A.; Sheth, A.; Kruh, J.; Pasquale, L.R.; Karp, C.L. Exfoliation syndrome: New genetic and pathophysiologic insights. Curr. Opin. Ophthalmol. 2013, 24, 167–174. [Google Scholar] [CrossRef] [PubMed]
  188. Tan, J.; Cai, S.; Luo, X.; Li, Q.; Chen, Y.; Chen, Z.; Mao, Y.; Liu, G.; Yang, M.; Liu, X. Stop codon variant in EFEMP1 is associated with primary open-angle glaucoma due to impaired regulation of aqueous humor outflow. Exp. Eye Res. 2024, 241, 109859. [Google Scholar] [CrossRef] [PubMed]
  189. Saint-Jean, A.; Reguart, N.; Eixarch, A.; Adan, A.; Castella, C.; Sanchez-Dalmau, B.; Sainz-de-la-Maza, M. Ocular surface adverse events of systemic epidermal growth factor receptor inhibitors (EGFRi): A prospective trial. J. Fr. Ophtalmol. 2018, 41, 955–962. [Google Scholar] [CrossRef] [PubMed]
  190. Harun-Or-Rashid, M.; Lindqvist, N.; Hallbook, F. Transactivation of EGF receptors in chicken Muller cells by α2A-adrenergic receptors stimulated by brimonidine. Investig. Ophthalmol. Vis. Sci. 2014, 55, 3385–3394. [Google Scholar] [CrossRef] [PubMed]
  191. Urban, Z.; Agapova, O.; Hucthagowder, V.; Yang, P.; Starcher, B.C.; Hernandez, M.R. Population differences in elastin maturation in optic nerve head tissue and astrocytes. Investig. Ophthalmol. Vis. Sci. 2007, 48, 3209–3215. [Google Scholar] [CrossRef] [PubMed]
  192. NikhalaShree, S.; Karthikkeyan, G.; George, R.; Shantha, B.; Vijaya, L.; Ratra, V.; Sulochana, K.N.; Coral, K. Lowered decorin with aberrant extracellular matrix remodeling in aqueous humor and tenon’s tissue from primary glaucoma patients. Investig. Ophthalmol. Vis. Sci. 2019, 60, 4661–4669. [Google Scholar] [CrossRef] [PubMed]
  193. Martinez-Hernandez, R.; Serrano-Somavilla, A.; Ramos-Levi, A.; Sampedro-Nunez, M.; Lens-Pardo, A.; Munoz De Nova, J.L.; Trivino, J.C.; Gonzalez, M.U.; Torne, L.; Casares-Arias, J.; et al. Integrated miRNA and mRNA expression profiling identifies novel targets and pathological mechanisms in autoimmune thyroid diseases. EBioMedicine 2019, 50, 329–342. [Google Scholar] [CrossRef]
  194. Lorenzo, M.M.; Devlin, J.; Saini, C.; Cho, K.S.; Paschalis, E.I.; Chen, D.F.; Nascimento ESilva, R.; Chen, S.H.; Margeta, M.A.; Ondeck, C.; et al. The prevalence of autoimmune diseases in patients with primary open-angle glaucoma undergoing ophthalmic surgeries. Ophthalmol. Glaucoma 2022, 5, 128–136. [Google Scholar] [CrossRef] [PubMed]
  195. Hines-Beard, J.; Bond, W.S.; Backstrom, J.R.; Rex, T.S. Virus-mediated EpoR76E gene therapy preserves vision in a glaucoma model by modulating neuroinflammation and decreasing oxidative stress. J. Neuroinflamm. 2016, 13, 39. [Google Scholar] [CrossRef] [PubMed]
  196. Mokbel, T.H.; Ghanem, A.A.; Kishk, H.; Arafa, L.F.; El-Baiomy, A.A. Erythropoietin and soluble CD44 levels in patients with primary open-angle glaucoma. Clin. Exp. Ophthalmol. 2010, 38, 560–565. [Google Scholar] [CrossRef] [PubMed]
  197. Xu, X.; Niu, L.; Liu, Y.; Pang, M.; Lu, W.; Xia, C.; Zhu, Y.; Yang, B.; Wang, Q. Study on the mechanism of Gegen Qinlian Decoction for treating type II diabetes mellitus by integrating network pharmacology and pharmacological evaluation. J. Ethnopharmacol. 2020, 262, 113129. [Google Scholar] [CrossRef] [PubMed]
  198. Abikoye, T.M.; Oluleye, T.S.; Aribaba, O.T.; Musa, K.O.; Idowu, O.O.; Onakoya, A.O. Is primary open-angle glaucoma a risk factor for diabetic retinopathy? Int. Ophthalmol. 2020, 40, 3233–3240. [Google Scholar] [CrossRef] [PubMed]
  199. Pietrzak, B.A.; Wnuk, A.; Przepiorska, K.; Lach, A.; Kajta, M. Posttreatment with ospemifene attenuates hypoxia- and ischemia-induced apoptosis in primary neuronal cells via selective modulation of estrogen receptors. Neurotox. Res. 2023, 41, 362–379. [Google Scholar] [CrossRef] [PubMed]
  200. Krishnan, A.; Kocab, A.J.; Zacks, D.N.; Marshak-Rothstein, A.; Gregory-Ksander, M. A small peptide antagonist of the Fas receptor inhibits neuroinflammation and prevents axon degeneration and retinal ganglion cell death in an inducible mouse model of glaucoma. J. Neuroinflamm. 2019, 16, 184. [Google Scholar] [CrossRef]
  201. Gregory, M.S.; Hackett, C.G.; Abernathy, E.F.; Lee, K.S.; Saff, R.R.; Hohlbaum, A.M.; Moody, K.S.; Hobson, M.W.; Jones, A.; Kolovou, P.; et al. Opposing roles for membrane bound and soluble Fas ligand in glaucoma-associated retinal ganglion cell death. PLoS ONE 2011, 6, e17659. [Google Scholar] [CrossRef]
  202. Zhao, M.; Ma, P.; Xie, Q.; Bui, A.D.; Yonamine, S.; Hinterwirth, A.; Zhong, L.; Chen, C.; Doan, T.; Han, Y. Biomarkers for primary open-angle glaucoma progression. Exp. Eye Res. 2022, 219, 109025. [Google Scholar] [CrossRef] [PubMed]
  203. Ito, Y.A.; Goping, I.S.; Berry, F.; Walter, M.A. Dysfunction of the stress-responsive FOXC1 transcription factor contributes to the earlier-onset glaucoma observed in Axenfeld-Rieger syndrome patients. Cell Death Dis. 2014, 5, e1069. [Google Scholar] [CrossRef] [PubMed]
  204. Wang, H.; Wang, H.; Song, Y.; Liu, C.; Qian, X.; Zhang, D.; Jiang, X.; Zhang, S. Overexpression of Foxc1 ameliorates sepsis-associated encephalopathy by inhibiting microglial migration and neuroinflammation through the IκBα/NF-κB pathway. Mol. Med. Rep. 2022, 25, 107. [Google Scholar] [CrossRef] [PubMed]
  205. Liton, P.B.; Luna, C.; Challa, P.; Epstein, D.L.; Gonzalez, P. Genome-wide expression profile of human trabecular meshwork cultured cells, nonglaucomatous and primary open angle glaucoma tissue. Mol. Vis. 2006, 12, 774–790. [Google Scholar]
  206. Ju, Y.T.; Chang, A.C.; She, B.R.; Tsaur, M.L.; Hwang, H.M.; Chao, C.C.; Cohen, S.N.; Lin-Chao, S. Gas7: A gene expressed preferentially in growth-arrested fibroblasts and terminally differentiated Purkinje neurons affects neurite formation. Proc. Natl. Acad. Sci. USA 1998, 95, 11423–11428. [Google Scholar] [CrossRef] [PubMed]
  207. Chen, P.; Hu, H.; Chen, Z.; Cai, X.; Zhang, Z.; Yang, Y.; Yu, N.; Zhang, J.; Xia, L.; Ge, J.; et al. BRCA1 silencing is associated with failure of DNA repairing in retinal neurocytes. PLoS ONE 2014, 9, e99371. [Google Scholar] [CrossRef] [PubMed]
  208. Watanabe, N.; Hiramatsu, K.; Miyamoto, R.; Yasuda, K.; Suzuki, N.; Oshima, N.; Kiyonari, H.; Shiba, D.; Nishio, S.; Mochizuki, T.; et al. A murine model of neonatal diabetes mellitus in Glis3-deficient mice. FEBS Lett. 2009, 583, 2108–2113. [Google Scholar] [CrossRef] [PubMed]
  209. Scoville, D.W.; Kang, H.S.; Jetten, A.M. Transcription factor GLIS3: Critical roles in thyroid hormone biosynthesis, hypothyroidism, pancreatic beta cells and diabetes. Pharmacol. Ther. 2020, 215, 107632. [Google Scholar] [CrossRef] [PubMed]
  210. Song, Y.; Willer, J.R.; Scherer, P.C.; Panzer, J.A.; Kugath, A.; Skordalakes, E.; Gregg, R.G.; Willer, G.B.; Balice-Gordon, R.J. Neural and synaptic defects in slytherin, a zebrafish model for human congenital disorders of glycosylation. PLoS ONE 2010, 5, e13743. [Google Scholar] [CrossRef] [PubMed]
  211. Mehta, A.; Comunale, M.A.; Rawat, S.; Casciano, J.C.; Lamontagne, J.; Herrera, H.; Ramanathan, A.; Betesh, L.; Wang, M.; Norton, P.; et al. Intrinsic hepatocyte dedifferentiation is accompanied by upregulation of mesenchymal markers, protein sialylation and core alpha 1,6 linked fucosylation. Sci. Rep. 2016, 6, 27965. [Google Scholar] [CrossRef]
  212. Ivanov, I.V.; Mappes, T.; Schaupp, P.; Lappe, C.; Wahl, S. Ultraviolet radiation oxidative stress affects eye health. J. Biophotonics 2018, 11, e201700377. [Google Scholar] [CrossRef] [PubMed]
  213. Laspas, P.; Zhutdieva, M.B.; Brochhausen, C.; Musayeva, A.; Zadeh, J.K.; Pfeiffer, N.; Xia, N.; Li, H.; Wess, J.; Gericke, A. The M1 muscarinic acetylcholine receptor subtype is important for retinal neuron survival in aging mice. Sci. Rep. 2019, 9, 5222. [Google Scholar] [CrossRef]
  214. Lubos, E.; Loscalzo, J.; Handy, D.E. Glutathione peroxidase-1 in health and disease: From molecular mechanisms to therapeutic opportunities. Antioxid. Redox Signal 2011, 15, 1957–1997. [Google Scholar] [CrossRef] [PubMed]
  215. Bell, S.; Maussion, G.; Jefri, M.; Peng, H.; Theroux, J.F.; Silveira, H.; Soubannier, V.; Wu, H.; Hu, P.; Galat, E.; et al. Disruption of GRIN2B impairs differentiation in human neurons. Stem Cell Rep. 2018, 11, 183–196. [Google Scholar] [CrossRef] [PubMed]
  216. Muller, L.; Tokay, T.; Porath, K.; Kohling, R.; Kirschstein, T. Enhanced NMDA receptor-dependent LTP in the epileptic CA1 area via upregulation of NR2B. Neurobiol. Dis. 2013, 54, 183–193. [Google Scholar] [CrossRef] [PubMed]
  217. Lyons, C.E.; Zhou, X.; Razzoli, M.; Chen, M.; Xia, W.; Ashe, K.; Zhang, B.; Bartolomucci, A. Lifelong chronic psychosocial stress induces a proteomic signature of Alzheimer’s disease in wildtype mice. Eur. J. Neurosci. 2022, 55, 2971–2985. [Google Scholar] [CrossRef] [PubMed]
  218. Huang, W.; Wang, W.; Zhou, M.; Chen, S.; Zhang, X. Association of glutathione S-transferase polymorphisms (GSTM1 and GSTT1) with primary open-angle glaucoma: An evidence-based meta-analysis. Gene 2013, 526, 80–86. [Google Scholar] [CrossRef] [PubMed]
  219. Kang, W.S.; Kim, E.; Choi, H.; Lee, K.H.; Kim, K.J.; Lim, D.; Choi, S.Y.; Kim, Y.; Son, S.A.; Kim, J.S.; et al. Therapeutic potential of Peucedanum japonicum Thunb. and its active components in a delayed corneal wound healing model following blue light irradiation-induced oxidative stress. Antioxidants 2023, 12, 1171. [Google Scholar] [CrossRef]
  220. Fernando, N.; Wooff, Y.; Aggio-Bruce, R.; Chu-Tan, J.A.; Jiao, H.; Dietrich, C.; Rutar, M.; Rooke, M.; Menon, D.; Eells, J.T.; et al. Photoreceptor survival is regulated by GSTO1-1 in the degenerating retina. Investig. Ophthalmol. Vis. Sci. 2018, 59, 4362–4374. [Google Scholar] [CrossRef]
  221. Emery, M.; Schorderet, D.F.; Roduit, R. Acute hypoglycemia induces retinal cell death in mouse. PLoS ONE 2011, 6, e21586. [Google Scholar] [CrossRef] [PubMed]
  222. Dreyer, E.B.; Grosskreutz, C.L. Excitatory mechanisms in retinal ganglion cell death in primary open angle glaucoma (POAG). Clin. Neurosci. 1997, 4, 270–273. [Google Scholar] [PubMed]
  223. Cha, S.J.; Yoon, J.H.; Han, Y.J.; Kim, K. Knockdown of glutathione S-transferase leads to mislocalization and accumulation of cabeza, a drosophila homolog of FUS, in the brain. J. Neurogenet. 2023, 37, 20–24. [Google Scholar] [CrossRef]
  224. Chan, J.W.; Chan, N.C.Y.; Sadun, A.A. Glaucoma as neurodegeneration in the brain. Eye Brain 2021, 13, 21–28. [Google Scholar] [CrossRef] [PubMed]
  225. Han, Y.J.; Kim, K. Reduced oxidative stress suppresses neurotoxicity in the Drosophila model of TAF15-associated proteinopathies. Mol. Brain 2022, 15, 93. [Google Scholar] [CrossRef]
  226. Liu, A.; Wang, L.; Feng, Q.; Zhang, D.; Chen, K.; Yiming, G.H.; Wang, Q.; Hong, Y.; Whelchel, A.; Zhang, X.; et al. Low expression of GSTP1 in the aqueous humour of patients with primary open-angle glaucoma. J. Cell Mol. Med. 2021, 25, 3063–3079. [Google Scholar] [CrossRef]
  227. Yu, H.; Wark, L.; Ji, H.; Willard, L.; Jaing, Y.; Han, J.; He, H.; Ortiz, E.; Zhang, Y.; Medeiros, D.M.; et al. Dietary wolfberry upregulates carotenoid metabolic genes and enhances mitochondrial biogenesis in the retina of db/db diabetic mice. Mol. Nutr. Food Res. 2013, 57, 1158–1169. [Google Scholar] [CrossRef] [PubMed]
  228. Chitrala, K.N.; Hernandez, D.G.; Nalls, M.A.; Mode, N.A.; Zonderman, A.B.; Ezike, N.; Evans, M.K. Race-specific alterations in DNA methylation among middle-aged African Americans and Whites with metabolic syndrome. Epigenetics 2020, 15, 462–482. [Google Scholar] [CrossRef] [PubMed]
  229. Yi, Y.H.; Cho, Y.H.; Kim, Y.J.; Lee, S.Y.; Lee, J.G.; Kong, E.H.; Cho, B.M.; Tak, Y.J.; Hwang, H.R.; Lee, S.H.; et al. Metabolic syndrome as a risk factor for high intraocular pressure: The Korea National Health and Nutrition Examination Survey 2008–2010. Diabetes Metab. Syndr. Obes 2019, 12, 131–137. [Google Scholar] [CrossRef]
  230. Chen, X.; Wang, Q.L.; Zhang, M.H. Identifying key genes in glaucoma based on a benchmarked dataset and the gene regulatory network. Exp. Ther. Med. 2017, 14, 3651–3657. [Google Scholar] [CrossRef] [PubMed]
  231. Ashok, A.; Chaudhary, S.; Kritikos, A.E.; Kang, M.H.; McDonald, D.; Rhee, D.J.; Singh, N. TGFβ2-hepcidin feed-forward loop in the trabecular meshwork implicates iron in glaucomatous pathology. Investig. Ophthalmol. Vis. Sci. 2020, 61, 24. [Google Scholar] [CrossRef] [PubMed]
  232. Sorkhabi, R.; Ghorbanihaghjo, A.; Javadzadeh, A.; Motlagh, B.F.; Ahari, S.S. Aqueous humor hepcidin prohormone levels in patients with primary open angle glaucoma. Mol. Vis. 2010, 16, 1832–1836. [Google Scholar]
  233. Yuan, H.; Li, H.; Yu, P.; Fan, Q.; Zhang, X.; Huang, W.; Shen, J.; Cui, Y.; Zhou, W. Involvement of HDAC6 in ischaemia and reperfusion-induced rat retinal injury. BMC Ophthalmol. 2018, 18, 300. [Google Scholar] [CrossRef]
  234. Zhang, L.; Sheng, S.; Qin, C. The role of HDAC6 in Alzheimer’s disease. J. Alzheimers Dis. 2013, 33, 283–295. [Google Scholar] [CrossRef] [PubMed]
  235. Xu, L.; Zhang, Y.; Guo, R.; Shen, W.; Qi, Y.; Wang, Q.; Guo, Z.; Qi, C.; Yin, H.; Wang, J. HES1 promotes extracellular matrix protein expression and inhibits proliferation and migration in human trabecular meshwork cells under oxidative stress. Oncotarget 2017, 8, 21818–21833. [Google Scholar] [CrossRef] [PubMed]
  236. Adachi, T.; Sakurai, T.; Kashida, H.; Mine, H.; Hagiwara, S.; Matsui, S.; Yoshida, K.; Nishida, N.; Watanabe, T.; Itoh, K.; et al. Involvement of heat shock protein a4/apg-2 in refractory inflammatory bowel disease. Inflamm. Bowel Dis. 2015, 21, 31–39. [Google Scholar] [CrossRef] [PubMed]
  237. Song, C.; Qi, Y.; Zhang, J.; Guo, C.; Yuan, C. CDKN2B-AS1: An indispensable long non-coding RNA in multiple diseases. Curr. Pharm. Des. 2020, 26, 5335–5346. [Google Scholar] [CrossRef]
  238. Li, C.; Liu, D.; Yuan, Y.; Huang, S.; Shi, M.; Tao, K.; Feng, W. Overexpression of Apg-2 increases cell proliferation and protects from oxidative damage in BaF3-BCR/ABL cells. Int. J. Oncol. 2010, 36, 899–904. [Google Scholar] [PubMed]
  239. Sacca, S.C.; Pascotto, A.; Camicione, P.; Capris, P.; Izzotti, A. Oxidative DNA damage in the human trabecular meshwork: Clinical correlation in patients with primary open-angle glaucoma. Arch. Ophthalmol. 2005, 123, 458–463. [Google Scholar] [CrossRef] [PubMed]
  240. Leung, Y.F.; Tam, P.O.; Lee, W.S.; Lam, D.S.; Yam, H.F.; Fan, B.J.; Tham, C.C.; Chua, J.K.; Pang, C.P. The dual role of dexamethasone on anti-inflammation and outflow resistance demonstrated in cultured human trabecular meshwork cells. Mol. Vis. 2003, 9, 425–439. [Google Scholar] [PubMed]
  241. Zhang, Z.; Tong, N.; Gong, Y.; Qiu, Q.; Yin, L.; Lv, X.; Wu, X. Valproate protects the retina from endoplasmic reticulum stress-induced apoptosis after ischemia-reperfusion injury. Neurosci. Lett. 2011, 504, 88–92. [Google Scholar] [CrossRef] [PubMed]
  242. Kong, N.; Lu, X.; Li, B. Downregulation of microRNA-100 protects apoptosis and promotes neuronal growth in retinal ganglion cells. BMC Mol. Biol. 2014, 15, 25. [Google Scholar] [CrossRef] [PubMed]
  243. Su, J.; Huang, M. Etidronate protects chronic ocular hypertension induced retinal oxidative stress and promotes retinal ganglion cells growth through IGF-1 signaling pathway. Eur. J. Pharmacol. 2018, 841, 75–81. [Google Scholar] [CrossRef]
  244. Seet, L.F.; Toh, L.Z.; Finger, S.N.; Chu, S.W.L.; Wong, T.T. Valproic acid exerts specific cellular and molecular anti-inflammatory effects in post-operative conjunctiva. J. Mol. Med. 2019, 97, 63–75. [Google Scholar] [CrossRef]
  245. Boiko, E.V.; Pozniak, A.L.; Iakushev, D.I.; Maltsev, D.S.; Suetov, A.A.; Nuralova, I.V. Latent infections as a risk factor for posttrabeculectomy bleb failure. J. Glaucoma 2016, 25, 306–311. [Google Scholar] [CrossRef]
  246. Krupa, P.; Svobodova, B.; Dubisova, J.; Kubinova, S.; Jendelova, P.; Machova Urdzikova, L. Nano-formulated curcumin (Lipodisq™) modulates the local inflammatory response, reduces glial scar and preserves the white matter after spinal cord injury in rats. Neuroinflamm. 2019, 155, 54–64. [Google Scholar] [CrossRef] [PubMed]
  247. Chang, E.E.; Goldberg, J.L. Glaucoma 2.0: Neuroprotection, neuroregeneration, neuroenhancement. Ophthalmology 2012, 119, 979–986. [Google Scholar] [CrossRef] [PubMed]
  248. Bungau, S.; Abdel-Daim, M.M.; Tit, D.M.; Ghanem, E.; Sato, S.; Maruyama-Inoue, M.; Yamane, S.; Kadonosono, K. Health benefits of polyphenols and carotenoids in age-related eye diseases. Oxid. Med. Cell Longev. 2019, 2019, 9783429. [Google Scholar] [CrossRef]
  249. Itakura, T.; Peters, D.M.; Fini, M.E. Glaucomatous MYOC mutations activate the IL-1/NF-κB inflammatory stress response and the glaucoma marker SELE in trabecular meshwork cells. Mol. Vis. 2015, 21, 1071–1084. [Google Scholar] [PubMed]
  250. Zhao, Y.; Li, X.; Gong, J.; Li, L.; Chen, L.; Zheng, L.; Chen, Z.; Shi, J.; Zhang, H. Annexin A1 nuclear translocation induces retinal ganglion cell apoptosis after ischemia-reperfusion injury through the p65/IL-1β pathway. Biochim. Biophys. Acta Mol. Basis Dis. 2017, 1863, 1350–1358. [Google Scholar] [CrossRef] [PubMed]
  251. Sugita, S.; Kawazoe, Y.; Imai, A.; Usui, Y.; Iwakura, Y.; Isoda, K.; Ito, M.; Mochizuki, M. Mature dendritic cell suppression by IL-1 receptor antagonist on retinal pigment epithelium cells. Investig. Ophthalmol. Vis. Sci. 2013, 54, 3240–3249. [Google Scholar] [CrossRef] [PubMed]
  252. Maruyama, I.; Nakazawa, M.; Ohguro, H. Autoimmune mechanisms in molecular pathology of glaucomatous optic neuropathy. Nippon Ganka Gakkai Zasshi J. Jpn. Ophthalmol. Soc. 2001, 105, 205–212. [Google Scholar] [CrossRef]
  253. Biswas, P.S.; Banerjee, K.; Kim, B.; Rouse, B.T. Mice transgenic for IL-1 receptor antagonist protein are resistant to herpetic stromal keratitis: Possible role for IL-1 in herpetic stromal keratitis pathogenesis. J. Immunol. 2004, 172, 3736–3744. [Google Scholar] [CrossRef] [PubMed]
  254. Kothari, M.T.; Mehta, B.K.; Asher, N.S.; Kothari, K.J. Recurrence of bilateral herpes simplex virus keratitis following bimatoprost use. Indian. J. Ophthalmol. 2006, 54, 47–48. [Google Scholar] [CrossRef] [PubMed]
  255. Yang, X.; Hondur, G.; Tezel, G. Antioxidant treatment limits neuroinflammation in experimental glaucoma. Investig. Ophthalmol. Vis. Sci. 2016, 57, 2344–2354. [Google Scholar] [CrossRef]
  256. Sakhnov, S.N.; Kharchenko, V.V. The diagnostic and prognostication of glaucoma. Klin. Lab. Diagn. 2018, 63, 246–249. [Google Scholar]
  257. Inoue-Mochita, M.; Inoue, T.; Kojima, S.; Futakuchi, A.; Fujimoto, T.; Sato-Ohira, S.; Tsutsumi, U.; Tanihara, H. Interleukin-6-mediated trans-signaling inhibits transforming growth factor-β signaling in trabecular meshwork cells. J. Biol. Chem. 2018, 293, 10975–10984. [Google Scholar] [CrossRef]
  258. Ulhaq, Z.S.; Soraya, G.V.; Hasan, Y.T.N.; Rachma, L.N.; Rachmawati, E.; Shodry, S.; Kusuma, M.A.S. Serum IL-6/IL-10 ratio as a biomarker for the diagnosis and severity assessment of primary-open angle glaucoma. Eur. J. Ophthalmol. 2022, 32, 2259–2264. [Google Scholar] [CrossRef] [PubMed]
  259. Paroli, M.P.; Del Giudice, E.; Giovannetti, F.; Caccavale, R.; Paroli, M. Management strategies of juvenile idiopathic arthritis-associated chronic anterior uveitis: Current perspectives. Clin. Ophthalmol. 2022, 16, 1665–1673. [Google Scholar] [CrossRef] [PubMed]
  260. Hamm, A.; Veeck, J.; Bektas, N.; Wild, P.J.; Hartmann, A.; Heindrichs, U.; Kristiansen, G.; Werbowetski-Ogilvie, T.; Del Maestro, R.; Knuechel, R.; et al. Frequent expression loss of Inter-alpha-trypsin inhibitor heavy chain (ITIH) genes in multiple human solid tumors: A systematic expression analysis. BMC Cancer 2008, 8, 25. [Google Scholar] [CrossRef]
  261. Kim, T.H.; Koo, J.H.; Heo, M.J.; Han, C.Y.; Kim, Y.I.; Park, S.Y.; Cho, I.J.; Lee, C.H.; Choi, C.S.; Lee, J.W.; et al. Overproduction of inter-α-trypsin inhibitor heavy chain 1 after loss of Gα13 in liver exacerbates systemic insulin resistance in mice. Sci. Transl. Med. 2019, 11, eaan4735. [Google Scholar] [CrossRef] [PubMed]
  262. Lee, J.H.; Kwon, Y.J.; Kim, S.J.; Joung, B. Metabolic syndrome as an independent risk factor for glaucoma: A nationally representative study. Diabetol. Metab. Syndr. 2023, 15, 177. [Google Scholar] [CrossRef] [PubMed]
  263. Blackler, G.; Akingbasote, J.; Cairns, E.; Howlett, C.; Kiser, P.; Barra, L. The effect of HLA-DRB1*04:01 on a mouse model of atherosclerosis. J. Transl. Autoimmun. 2023, 7, 100203. [Google Scholar] [CrossRef] [PubMed]
  264. Wu, M.; Wang, J.; Zhang, Q.; Wang, Y.; Niu, L.; Shao, T. Overexpression of low-density lipoprotein receptors stimulated by vascular endothelial growth factor in fibroblasts from pterygium. Biomed. Pharmacother. 2017, 93, 609–615. [Google Scholar] [CrossRef]
  265. Wang, F.; Ge, Q.M.; Shu, H.Y.; Liao, X.L.; Liang, R.B.; Li, Q.Y.; Zhang, L.J.; Gao, G.P.; Shao, Y. Decreased retinal microvasculature densities in pterygium. Int. J. Ophthalmol. 2021, 14, 1858–1867. [Google Scholar] [CrossRef] [PubMed]
  266. Schlotzer-Schrehardt, U. Molecular pathology of pseudoexfoliation syndrome/glaucoma—New insights from LOXL1 gene associations. Exp. Eye Res. 2009, 88, 776–785. [Google Scholar] [CrossRef] [PubMed]
  267. Greene, A.G.; Eivers, S.B.; McDonnell, F.; Dervan, E.W.J.; O’Brien, C.J.; Wallace, D.M. Differential lysyl oxidase like 1 expression in pseudoexfoliation glaucoma is orchestrated via DNA methylation. Exp. Eye Res. 2020, 201, 108349. [Google Scholar] [CrossRef] [PubMed]
  268. Keller, M.; Yaskolka Meir, A.; Bernhart, S.H.; Gepner, Y.; Shelef, I.; Schwarzfuchs, D.; Tsaban, G.; Zelicha, H.; Hopp, L.; Muller, L.; et al. DNA methylation signature in blood mirrors successful weight-loss during lifestyle interventions: The CENTRAL trial. Genome Med. 2020, 12, 97. [Google Scholar] [CrossRef] [PubMed]
  269. de Almeida, L.G.N.; Young, D.; Chow, L.; Nicholas, J.; Lee, A.; Poon, M.C.; Dufour, A.; Agbani, E.O. Proteomics and metabolomics profiling of platelets and plasma mediators of thrombo-inflammation in gestational hypertension and preeclampsia. Cells 2022, 11, 1256. [Google Scholar] [CrossRef] [PubMed]
  270. Malishevskaia, T.N.; Dolgova, I.G. Options for correction of endothelial dysfunction and oxidative stress in patients with primary open-angle glaucoma]. Vestn. Oftalmol. 2014, 130, 67–70, 72–73. [Google Scholar] [PubMed]
  271. Ali, M.; McKibbin, M.; Booth, A.; Parry, D.A.; Jain, P.; Riazuddin, S.A.; Hejtmancik, J.F.; Khan, S.N.; Firasat, S.; Shires, M.; et al. Null mutations in LTBP2 cause primary congenital glaucoma. Am. J. Hum. Genet. 2009, 84, 664–671. [Google Scholar] [CrossRef]
  272. Inoue, T.; Ohbayashi, T.; Fujikawa, Y.; Yoshida, H.; Akama, T.O.; Noda, K.; Horiguchi, M.; Kameyama, K.; Hata, Y.; Takahashi, K.; et al. Latent TGF-β binding protein-2 is essential for the development of ciliary zonule microfibrils. Hum. Mol. Genet. 2014, 23, 5672–5682. [Google Scholar] [CrossRef] [PubMed]
  273. Kwek, X.Y.; Hall, A.R.; Lim, W.W.; Katwadi, K.; Soong, P.L.; Grishina, E.; Lin, K.H.; Crespo-Avilan, G.; Yap, E.P.; Ismail, N.I.; et al. Role of cardiac mitofusins in cardiac conduction following simulated ischemia-reperfusion. Sci. Rep. 2022, 12, 21049. [Google Scholar] [CrossRef]
  274. Okumichi, H.; Kiuchi, Y.; Baba, T.; Kanamoto, T.; Naito, T.; Nakakura, S.; Tabuchi, H.; Nii, H.; Sueoka, C.; Sugimoto, Y. The signs of ocular-surface disorders after switching from latanoprost to tafluprost/timolol fixed combination: A prospective study. Clin. Ophthalmol. 2017, 11, 1175–1181. [Google Scholar] [CrossRef] [PubMed]
  275. Wu, A.; Zhang, W.; Zhang, G.; Ding, X.; Kang, L.; Zhou, T.; Ji, M.; Guan, H. Age-related cataract: GSTP1 ubiquitination and degradation by Parkin inhibits its anti-apoptosis in lens epithelial cells. Biochim. Biophys. Acta Mol. Cell Res. 2023, 1870, 119450. [Google Scholar] [CrossRef] [PubMed]
  276. Zhang, K.; Wang, T.; Sun, G.F.; Xiao, J.X.; Jiang, L.P.; Tou, F.F.; Qu, X.H.; Han, X.J. Metformin protects against retinal ischemia/reperfusion injury through AMPK-mediated mitochondrial fusion. Free Radic. Biol. Med. 2023, 205, 47–61. [Google Scholar] [CrossRef] [PubMed]
  277. Nivison, M.P.; Ericson, N.G.; Green, V.M.; Bielas, J.H.; Campbell, J.S.; Horner, P.J. Age-related accumulation of phosphorylated mitofusin 2 protein in retinal ganglion cells correlates with glaucoma progression. Exp. Neurol. 2017, 296, 49–61. [Google Scholar] [CrossRef] [PubMed]
  278. Cattin, M.E.; Wang, J.; Weldrick, J.J.; Roeske, C.L.; Mak, E.; Thorn, S.L.; DaSilva, J.N.; Wang, Y.; Lusis, A.J.; Burgon, P.G. Deletion of MLIP (muscle-enriched A-type lamin-interacting protein) leads to cardiac hyperactivation of Akt/mammalian target of rapamycin (mTOR) and impaired cardiac adaptation. J. Biol. Chem. 2015, 290, 26699–26714. [Google Scholar] [CrossRef] [PubMed]
  279. Zhao, L.; Zhang, D.; Li, X.; Zhang, Y.; Zhao, Y.; Xu, D.; Cheng, J.; Wang, J.; Li, W.; Lin, C.; et al. Comparative proteomics reveals genetic mechanisms of body weight in Hu sheep and Dorper sheep. J. Proteom. 2022, 267, 104699. [Google Scholar] [CrossRef] [PubMed]
  280. Helin-Toiviainen, M.; Ronkko, S.; Puustjarvi, T.; Rekonen, P.; Ollikainen, M.; Uusitalo, H. Conjunctival matrix metalloproteinases and their inhibitors in glaucoma patients. Acta Ophthalmol. 2015, 93, 165–171. [Google Scholar] [CrossRef]
  281. Markiewicz, L.; Pytel, D.; Mucha, B.; Szymanek, K.; Szaflik, J.; Szaflik, J.P.; Majsterek, I. Altered expression levels of MMP1, MMP9, MMP12, TIMP1, and IL-1β as a risk factor for the elevated IOP and optic nerve head damage in the primary open-angle glaucoma patients. Biomed. Res. Int. 2015, 2015, 812503. [Google Scholar] [CrossRef]
  282. De Groef, L.; Salinas-Navarro, M.; Van Imschoot, G.; Libert, C.; Vandenbroucke, R.E.; Moons, L. Decreased TNF levels and improved retinal ganglion cell survival in MMP-2 null mice suggest a role for MMP-2 as TNF sheddase. Mediat. Inflamm. 2015, 2015, 108617. [Google Scholar] [CrossRef] [PubMed]
  283. Ashworth Briggs, E.L.; Toh, T.; Eri, R.; Hewitt, A.W.; Cook, A.L. TIMP1, TIMP2, and TIMP4 are increased in aqueous humor from primary open angle glaucoma patients. Mol. Vis. 2015, 21, 1162–1172. [Google Scholar] [PubMed]
  284. Robertson, J.V.; Siwakoti, A.; West-Mays, J.A. Altered expression of transforming growth factor beta 1 and matrix metalloproteinase-9 results in elevated intraocular pressure in mice. Mol. Vis. 2013, 19, 684–695. [Google Scholar]
  285. Reddy, S.; Sahay, P.; Padhy, D.; Sarangi, S.; Suar, M.; Modak, R.; Rao, A. Tear biomarkers in latanoprost and bimatoprost treated eyes. PLoS ONE 2018, 13, e0201740. [Google Scholar] [CrossRef]
  286. Li, J.; Wang, J.J.; Peng, Q.; Chen, C.; Humphrey, M.B.; Heinecke, J.; Zhang, S.X. Macrophage metalloelastase (MMP-12) deficiency mitigates retinal inflammation and pathological angiogenesis in ischemic retinopathy. PLoS ONE 2012, 7, e52699. [Google Scholar] [CrossRef] [PubMed]
  287. Vishal, M.; Sharma, A.; Kaurani, L.; Alfano, G.; Mookherjee, S.; Narta, K.; Agrawal, J.; Bhattacharya, I.; Roychoudhury, S.; Ray, J.; et al. Genetic association and stress mediated down-regulation in trabecular meshwork implicates MPP7 as a novel candidate gene in primary open angle glaucoma. BMC Med. Genom. 2016, 9, 15. [Google Scholar] [CrossRef] [PubMed]
  288. New, M.; Van Acker, T.; Sakamaki, J.I.; Jiang, M.; Saunders, R.E.; Long, J.; Wang, V.M.; Behrens, A.; Cerveira, J.; Sudhakar, P.; et al. MDH1 and MPP7 Regulate Autophagy in Pancreatic Ductal Adenocarcinoma. Cancer Res. 2019, 79, 1884–1898. [Google Scholar] [CrossRef] [PubMed]
  289. Navneet, S.; Zhao, J.; Wang, J.; Mysona, B.; Barwick, S.; Ammal Kaidery, N.; Saul, A.; Kaddour-Djebbar, I.; Bollag, W.B.; Thomas, B.; et al. Hyperhomocysteinemia-induced death of retinal ganglion cells: The role of Muller glial cells and NRF2. Redox Biol. 2019, 24, 101199. [Google Scholar] [CrossRef] [PubMed]
  290. Junemann, A.; Rejdak, R.; Hohberger, B. Significance of homocysteine in glaucoma. Klin. Monbl. Augenheilkd. 2018, 235, 163–174. [Google Scholar]
  291. Borthakur, D.; Kumar, R.; Dada, R. Yoga: A natural solution to decrease disease burden in children of MTHFR deficient parents. Clin. Ter. 2023, 174, 28–32. [Google Scholar]
  292. Hsiao, T.H.; Lee, G.H.; Chang, Y.S.; Chen, B.H.; Fu, T.F. The incoherent fluctuation of folate pools and differential regulation of folate enzymes prioritize nucleotide supply in the zebrafish model displaying folate deficiency-induced microphthalmia and visual defects. Front. Cell Dev. Biol. 2021, 9, 702969. [Google Scholar] [CrossRef] [PubMed]
  293. Wang, A.L.; Lukas, T.J.; Yuan, M.; Neufeld, A.H. Age-related increase in mitochondrial DNA damage and loss of DNA repair capacity in the neural retina. Neurobiol. Aging 2010, 31, 2002–2010. [Google Scholar] [CrossRef] [PubMed]
  294. Nakatake, S.; Murakami, Y.; Ikeda, Y.; Morioka, N.; Tachibana, T.; Fujiwara, K.; Yoshida, N.; Notomi, S.; Hisatomi, T.; Yoshida, S.; et al. MUTYH promotes oxidative microglial activation and inherited retinal degeneration. JCI Insight 2016, 1, e87781. [Google Scholar] [CrossRef] [PubMed]
  295. Chintala, S.K. Tissue and urokinase plasminogen activators instigate the degeneration of retinal ganglion cells in a mouse model of glaucoma. Exp. Eye Res. 2016, 143, 17–27. [Google Scholar] [CrossRef] [PubMed]
  296. Orwig, S.D.; Chi, P.V.; Du, Y.; Hill, S.E.; Cavitt, M.A.; Suntharalingam, A.; Turnage, K.C.; Dickey, C.A.; France, S.; Fu, H.; et al. Ligands for glaucoma-associated myocilin discovered by a generic binding assay. ACS Chem. Biol. 2014, 9, 517–525. [Google Scholar] [CrossRef]
  297. Mookherjee, S.; Acharya, M.; Banerjee, D.; Bhattacharjee, A.; Ray, K. Molecular basis for involvement of CYP1B1 in MYOC upregulation and its potential implication in glaucoma pathogenesis. PLoS ONE 2012, 7, e45077. [Google Scholar] [CrossRef]
  298. Okubo, A.; Nakagawa, S.; Ogawa, S.; Ishii, K. Anterior chamber shallowing from the early stage of surgery and suprachoroidal effusion during clear corneal small-incision cataract surgery: A case report. Case Rep. Ophthalmol. 2022, 13, 483–489. [Google Scholar] [CrossRef] [PubMed]
  299. Chen, K.; Ye, C.; Gao, Z.; Hu, J.; Chen, C.; Xiao, R.; Lu, F.; Wei, K. Immune infiltration patterns and identification of new diagnostic biomarkers GDF10, NCKAP5, and RTKN2 in non-small cell lung cancer. Transl. Oncol. 2023, 29, 101618. [Google Scholar] [CrossRef]
  300. Kingston, E.J.; Zagora, S.L.; Symes, R.J.; Raman, P.; McCluskey, P.J.; Lusthaus, J.A. Infective necrotizing scleritis after XEN gel stent with mitomycin-c. J. Glaucoma 2022, 31, 129–132. [Google Scholar] [CrossRef]
  301. Wang, D.; Wei, Y.; Shi, L.; Khan, M.Z.; Fan, L.; Wang, Y.; Yu, Y. Genome-wide DNA methylation pattern in a mouse model reveals two novel genes associated with Staphylococcus aureus mastitis. Asian-Australas. J. Anim. Sci. 2020, 33, 203–211. [Google Scholar] [CrossRef] [PubMed]
  302. Avotri, S.; Eatman, D.; Russell-Randall, K. Effects of resveratrol on inflammatory biomarkers in glaucomatous human trabecular meshwork cells. Nutrients 2019, 11, 984. [Google Scholar] [CrossRef] [PubMed]
  303. Rokicki, W.; Zaba, M.; Wyględowska-Promienska, D.; Kabiesz, A.; Reichman-Warmusz, E.; Brzozowa, M.; Majewski, W.; Wojnicz, R. Inducible and endothelial nitric synthetase expression and nitrotyrosine accumulation in iris vasculature of patients with primary open-angle glaucoma: A pilot study. Med. Sci. Monit. 2015, 21, 76–81. [Google Scholar] [PubMed]
  304. Liu, K.; Chen, B.; Zeng, F.; Wang, G.; Wu, X.; Liu, Y.; Li, G.; Yan, J.; Zhang, S. ApoE/NOS3 knockout mice as a novel cardiovascular disease model of hypertension and atherosclerosis. Genes 2022, 13, 1998. [Google Scholar] [CrossRef] [PubMed]
  305. Dada, T.; Bhai, N.; Midha, N.; Shakrawal, J.; Kumar, M.; Chaurasia, P.; Gupta, S.; Angmo, D.; Yadav, R.; Dada, R.; et al. Effect of mindfulness meditation on intraocular pressure and trabecular meshwork gene expression: A randomized controlled trial. Am. J. Ophthalmol. 2021, 223, 308–321. [Google Scholar] [CrossRef] [PubMed]
  306. Britto, J.M.; Lukehurst, S.; Weller, R.; Fraser, C.; Qiu, Y.; Hertzog, P.; Busfield, S.J. Generation and characterization of neuregulin-2-deficient mice. Mol. Cell Biol. 2004, 24, 8221–8226. [Google Scholar] [CrossRef] [PubMed]
  307. Jeanes, E.C.; Oliver, J.A.C.; Ricketts, S.L.; Gould, D.J.; Mellersh, C.S. Glaucoma-causing ADAMTS17 mutations are also reproducibly associated with height in two domestic dog breeds: Selection for short stature may have contributed to increased prevalence of glaucoma. Canine Genet. Epidemiol. 2019, 6, 5. [Google Scholar] [CrossRef] [PubMed]
  308. Lee, K.H.; Lee, H.; Yang, C.H.; Ko, J.S.; Park, C.H.; Woo, R.S.; Kim, J.Y.; Sun, W.; Kim, J.H.; Ho, W.K.; et al. Bidirectional signaling of neuregulin-2 mediates formation of GABAergic synapses and maturation of glutamatergic synapses in newborn granule cells of postnatal hippocampus. J. Neurosci. 2015, 35, 16479–16493. [Google Scholar] [CrossRef]
  309. Malishevskaya, T.N.; Petrov, S.Y.; Petrov, S.A.; Vlasova, A.S.; Filippova, Y.E.; Markelova, O.I. Therapeutic possibilities of stimulating reparative neurogenesis in patients with glaucoma who have recovered from a coronavirus infection. Vestn. Oftalmol. 2023, 139, 44–51. [Google Scholar] [CrossRef] [PubMed]
  310. Rao, K.N.; Nagireddy, S.; Chakrabarti, S. Complex genetic mechanisms in glaucoma: An overview. Indian J. Ophthalmol. 2011, 59, S31–S42. [Google Scholar] [PubMed]
  311. Kowtharapu, B.S.; Murin, R.; Junemann, A.G.M.; Stachs, O. Role of corneal stromal cells on epithelial cell function during wound healing. Int. J. Mol. Sci. 2018, 19, 464. [Google Scholar] [CrossRef] [PubMed]
  312. Raghavendra Rao, V.L.; Bowen, K.K.; Dhodda, V.K.; Song, G.; Franklin, J.L.; Gavva, N.R.; Dempsey, R.J. Gene expression analysis of spontaneously hypertensive rat cerebral cortex following transient focal cerebral ischemia. J. Neurochem. 2002, 83, 1072–1086. [Google Scholar] [CrossRef] [PubMed]
  313. Chen, Y.Y.; Hu, H.Y.; Chu, D.; Chen, H.H.; Chang, C.K.; Chou, P. Patients with primary open-angle glaucoma may develop ischemic heart disease more often than those without glaucoma: An 11-year population-based cohort study. PLoS ONE 2016, 11, e0163210. [Google Scholar] [CrossRef]
  314. Krizsan-Agbas, D.; Pedchenko, T.; Smith, P.G. Neurotrimin is an estrogen-regulated determinant of peripheral sympathetic innervation. J. Neurosci. Res. 2008, 86, 3086–3095. [Google Scholar] [CrossRef] [PubMed]
  315. Fotesko, K.; Thomsen, B.S.V.; Kolko, M.; Vohra, R. Girl power in glaucoma: The role of estrogen in primary open angle glaucoma. Cell Mol. Neurobiol. 2022, 42, 41–57. [Google Scholar] [CrossRef]
  316. Kimura, A.; Namekata, K.; Guo, X.; Harada, C.; Harada, T. Neuroprotection, growth factors and Bdnf-TrkB signalling in retinal degeneration. Int. J. Mol. Sci. 2016, 17, 1584. [Google Scholar] [CrossRef] [PubMed]
  317. Harper, M.M.; Boese, E.A.; Kardon, R.H.; Ledolter, J.; Kuehn, M.H. High correlation between glaucoma treatment with topical prostaglandin analogs and BDNF immunoreactivity in human retina. Curr. Eye Res. 2021, 46, 739–745. [Google Scholar] [CrossRef] [PubMed]
  318. Brun, P.; Brun, P.; Vono, M.; Venier, P.; Tarricone, E.; Deligianni, V.; Martines, E.; Zuin, M.; Spagnolo, S.; Cavazzana, R.; et al. Disinfection of ocular cells and tissues by atmospheric-pressure cold plasma. PLoS ONE 2012, 7, e33245. [Google Scholar] [CrossRef] [PubMed]
  319. Bosley, T.M.; Hellani, A.; Spaeth, G.L.; Myers, J.; Katz, L.J.; Moster, M.R.; Milcarek, B.; Abu-Amero, K.K. Down-regulation of OPA1 in patients with primary open angle glaucoma. Mol. Vis. 2011, 17, 1074–1079. [Google Scholar] [PubMed]
  320. Hu, X.; Dai, Y.; Zhang, R.; Shang, K.; Sun, X. Overexpression of optic atrophy type 1 protects retinal ganglion cells and upregulates parkin expression in experimental glaucoma. Front. Mol. Neurosci. 2018, 11, 350. [Google Scholar] [CrossRef] [PubMed]
  321. Acharya, M.; Mookherjee, S.; Bhattacharjee, A.; Thakur, S.K.; Bandyopadhyay, A.K.; Sen, A.; Chakrabarti, S.; Ray, K. Evaluation of the OPTC gene in primary open angle glaucoma: Functional significance of a silent change. BMC Mol. Biol. 2007, 8, 21. [Google Scholar] [CrossRef] [PubMed]
  322. Le Goff, M.M.; Lu, H.; Ugarte, M.; Henry, S.; Takanosu, M.; Mayne, R.; Bishop, P.N. The vitreous glycoprotein opticin inhibits preretinal neovascularization. Investig. Ophthalmol. Vis. Sci. 2012, 53, 228–234. [Google Scholar] [CrossRef] [PubMed]
  323. Swarup, G.; Sayyad, Z. Altered functions and interactions of glaucoma-associated mutants of optineurin. Front. Immunol. 2018, 9, 1287. [Google Scholar] [CrossRef] [PubMed]
  324. Bhattacharya, S.K. Retinal deimination in aging and disease. IUBMB Life 2009, 61, 504–509. [Google Scholar] [PubMed]
  325. Cafaro, T.A.; Santo, S.; Robles, L.A.; Crim, N.; Urrets-Zavalia, J.A.; Serra, H.M. Peptidylarginine deiminase type 2 is over expressed in the glaucomatous optic nerve. Mol. Vis. 2010, 16, 1654–1658. [Google Scholar]
  326. Zanon-Moreno, V.; Garcia-Medina, J.J.; Zanon-Viguer, V.; Moreno-Nadal, M.A.; Pinazo-Duran, M.D. Smoking, an additional risk factor in elder women with primary open-angle glaucoma. Mol. Vis. 2009, 15, 2953–2959. [Google Scholar]
  327. O’Connell, G.C.; Petrone, A.B.; Treadway, M.B.; Tennant, C.S.; Lucke-Wold, N.; Chantler, P.D.; Barr, T.L. Machine-learning approach identifies a pattern of gene expression in peripheral blood that can accurately detect ischaemic stroke. npj Genom. Med. 2016, 1, 16038. [Google Scholar] [CrossRef] [PubMed]
  328. Arslan, G.D.; Olgun, A.; Ozcan, D.; Gokcal, E.; Guven, D.; Asil, T. Assessment of cerebral vasomotor reactivity in patients with primary open-angle glaucoma and ocular hypertension using the breath-holding index. J. Glaucoma 2021, 30, 157–163. [Google Scholar] [CrossRef]
  329. Witters, P.; Honzik, T.; Bauchart, E.; Altassan, R.; Pascreau, T.; Bruneel, A.; Vuillaumier, S.; Seta, N.; Borgel, D.; Matthijs, G.; et al. Long-term follow-up in PMM2-CDG: Are we ready to start treatment trials? Genet. Med. 2019, 21, 1181–1188. [Google Scholar] [CrossRef] [PubMed]
  330. Morava, E.; Wosik, H.; Karteszi, J.; Guillard, M.; Adamowicz, M.; Sykut-Cegielska, J.; Hadzsiev, K.; Wevers, R.A.; Lefeber, D.J. Congenital disorder of glycosylation type Ix: Review of clinical spectrum and diagnostic steps. J. Inherit. Metab. Dis. 2008, 31, 450–456. [Google Scholar] [CrossRef]
  331. Menniti, M.; Iuliano, R.; Amato, R.; Boito, R.; Corea, M.; Le Pera, I.; Gulletta, E.; Fuiano, G.; Perrotti, N. Serum and glucocorticoid-regulated kinase Sgk1 inhibits insulin-dependent activation of phosphomannomutase 2 in transfected COS-7 cells. Am. J. Physiol. Cell Physiol. 2005, 288, C148–C155. [Google Scholar] [CrossRef] [PubMed]
  332. Al Hussein Al Awamlh, S.; Wareham, L.K.; Risner, M.L.; Calkins, D.J. Insulin signaling as a therapeutic target in glaucomatous neurodegeneration. Int. J. Mol. Sci. 2021, 22, 4672. [Google Scholar] [CrossRef]
  333. Waugh, D.T. the contribution of fluoride to the pathogenesis of eye diseases: Molecular mechanisms and implications for public health. Int. J. Environ. Res. Public Health 2019, 16, 856. [Google Scholar] [CrossRef] [PubMed]
  334. Mumcu, U.Y.; Kocer, I.; Ates, O.; Alp, H.H. Decreased paraoxonase1 activity and increased malondialdehyde and oxidative DNA damage levels in primary open angle glaucoma. Int. J. Ophthalmol. 2016, 9, 1518–1520. [Google Scholar]
  335. Cmelo, J. Translaminar gradient and glaucoma. Cesk Slov. Oftalmol. 2017, 73, 52–56. [Google Scholar]
  336. Jang, S.Y.; Chae, M.K.; Lee, J.H.; Lee, E.J.; Yoon, J.S. MicroRNA-27 inhibits adipogenic differentiation in orbital fibroblasts from patients with Graves’ orbitopathy. PLoS ONE 2019, 14, e0221077. [Google Scholar] [CrossRef] [PubMed]
  337. Wang, N.; Yang, Y.; Liu, Y.; Huang, L.; Gu, M.; Wu, Y.; Xu, L.; Sun, H.; Guo, W. Magnolol limits NFκB-dependent inflammation by targeting PPARγ relieving retinal ischemia/reperfusion injury. Int. Immunopharmacol. 2022, 112, 109242. [Google Scholar] [CrossRef] [PubMed]
  338. Ashok, A.; Kang, M.H.; Wise, A.S.; Pattabiraman, P.; Johnson, W.M.; Lonigro, M.; Ravikumar, R.; Rhee, D.J.; Singh, N. Prion protein modulates endothelial to mesenchyme-like transition in trabecular meshwork cells: Implications for primary open angle glaucoma. Sci. Rep. 2019, 9, 13090. [Google Scholar] [CrossRef] [PubMed]
  339. Perumal, N.; Yurugi, H.; Dahm, K.; Rajalingam, K.; Grus, F.H.; Pfeiffer, N.; Manicam, C. Proteome landscape and interactome of voltage-gated potassium channel 1.6 (Kv1.6) of the murine ophthalmic artery and neuroretina. Int. J. Biol. Macromol. 2024, 257, 128464. [Google Scholar] [CrossRef] [PubMed]
  340. Cui, X.J.; Zhao, A.G.; Wang, X.L. Correlations of AFAP1, GMDS and PTGFR gene polymorphisms with intra-ocular pressure response to latanoprost in patients with primary open-angle glaucoma. J. Clin. Pharm. Ther. 2017, 42, 87–92. [Google Scholar] [CrossRef] [PubMed]
  341. Sakurai, M.; Higashide, T.; Takahashi, M.; Sugiyama, K. Association between genetic polymorphisms of the prostaglandin F2alpha receptor gene and response to latanoprost. Ophthalmology 2007, 114, 1039–1045. [Google Scholar] [CrossRef] [PubMed]
  342. Matsou, A.; Anastasopoulos, E. Investigational drugs targeting prostaglandin receptors for the treatment of glaucoma. Expert. Opin. Investig. Drugs 2018, 27, 777–785. [Google Scholar] [CrossRef] [PubMed]
  343. Cryan, L.M.; Fitzgerald, D.J.; O’Brien, C. Ocular prostaglandin production and morphology in mice lacking a single isoform of cyclooxygenase. Prostaglandins Leukot. Essent. Fat. Acids 2009, 81, 401–409. [Google Scholar] [CrossRef]
  344. Maihofner, C.; Schlotzer-Schrehardt, U.; Guhring, H.; Zeilhofer, H.U.; Naumann, G.O.; Pahl, A.; Mardin, C.; Tamm, E.R.; Brune, K. Expression of cyclooxygenase-1 and -2 in normal and glaucomatous human eyes. Investig. Ophthalmol. Vis. Sci. 2001, 42, 2616–2624. [Google Scholar]
  345. Reitmair, A.; Lambrecht, N.W.; Yakubov, I.; Nieves, A.; Old, D.; Donde, Y.; Dinh, D.; Burk, R.; Sachs, G.; Im, W.B.; et al. Prostaglandin E2 receptor subtype EP2- and EP4-regulated gene expression profiling in human ciliary smooth muscle cells. Physiol. Genom. 2010, 42, 348–360. [Google Scholar] [CrossRef] [PubMed]
  346. Tian, B.; Gabelt, B.T.; Geiger, B.; Kaufman, P.L. The role of the actomyosin system in regulating trabecular fluid outflow. Exp. Eye Res. 2009, 88, 713–717. [Google Scholar] [CrossRef] [PubMed]
  347. Cheng, C.; Webber, C.A.; Wang, J.; Xu, Y.; Martinez, J.A.; Liu, W.Q.; McDonald, D.; Guo, G.F.; Nguyen, M.D.; Zochodne, D.W. Activated RHOA and peripheral axon regeneration. Exp. Neurol. 2008, 212, 358–369. [Google Scholar] [CrossRef]
  348. Gao, Z.; Li, Q.; Zhang, Y.; Gao, X.; Li, H.; Yuan, Z. Ripasudil alleviated the inflammation of RPE cells by targeting the miR-136-5p/ROCK/NLRP3 pathway. BMC Ophthalmol. 2020, 20, 134. [Google Scholar] [CrossRef] [PubMed]
  349. Roskoski, R., Jr. Properties of FDA-approved small molecule protein kinase inhibitors: A 2021 update. Pharmacol. Res. 2021, 165, 105463. [Google Scholar] [CrossRef]
  350. Greathouse, K.M.; Henderson, B.W.; Gentry, E.G.; Herskowitz, J.H. Fasudil or genetic depletion of ROCK1 or ROCK2 induces anxiety-like behaviors. Behav. Brain Res. 2019, 373, 112083. [Google Scholar] [CrossRef] [PubMed]
  351. Kapuganti, R.S.; Hayat, B.; Padhy, B.; Mohanty, P.P.; Alone, D.P. Dickkopf-1 and ROCK2 upregulation and associated protein aggregation in pseudoexfoliation syndrome and glaucoma. Life Sci. 2023, 326, 121797. [Google Scholar] [CrossRef]
  352. Gong, B.; Guo, Y.; Ding, S.; Liu, X.; Meng, A.; Li, D.; Jia, S. A Golgi-derived vesicle potentiates PtdIns4P to PtdIns3P conversion for endosome fission. Nat. Cell Biol. 2021, 23, 782–795. [Google Scholar] [CrossRef]
  353. Want, A.; Gillespie, S.R.; Wang, Z.; Gordon, R.; Iomini, C.; Ritch, R.; Wolosin, J.M.; Bernstein, A.M. Autophagy and mitochondrial dysfunction in tenon fibroblasts from exfoliation glaucoma patients. PLoS ONE 2016, 11, e0157404. [Google Scholar] [CrossRef] [PubMed]
  354. Paul, D.; Bartenschlager, R. Hepatitis C virus’s next top models? Nat. Microbiol. 2016, 1, 15018. [Google Scholar] [CrossRef] [PubMed]
  355. Marino, P.F.; Rossi, G.C.M.; Campagna, G.; Capobianco, D.; Costagliola, C.; on behalf of Qualicos Study Group. Effects of citicoline, homotaurine, and vitamin E on contrast sensitivity and visual-related quality of life in patients with primary open-angle glaucoma: A preliminary study. Molecules 2020, 25, 5614. [Google Scholar] [CrossRef] [PubMed]
  356. Fuchshofer, R.; Stephan, D.A.; Russell, P.; Tamm, E.R. Gene expression profiling of TGFbeta2- and/or BMP7-treated trabecular meshwork cells: Identification of Smad7 as a critical inhibitor of TGF-beta2 signaling. Exp. Eye Res. 2009, 88, 1020–1032. [Google Scholar] [CrossRef] [PubMed]
  357. Zhou, G.; Liu, B. Single nucleotide polymorphisms of metabolic syndrome-related genes in primary open angle glaucoma. Int. J. Ophthalmol. 2010, 3, 36–42. [Google Scholar]
  358. Yaman, D.; Takmaz, T.; Yuksel, N.; Dincer, S.A.; Sahin, F.I. Evaluation of silent information regulator T (SIRT) 1 and Forkhead Box O (FOXO) transcription factor 1 and 3a genes in glaucoma. Mol. Biol. Rep. 2020, 47, 9337–9344. [Google Scholar] [CrossRef]
  359. Khan, R.S.; Dine, K.; Das Sarma, J.; Shindler, K.S. SIRT1 activating compounds reduce oxidative stress mediated neuronal loss in viral induced CNS demyelinating disease. Acta Neuropathol. Commun. 2014, 2, 3. [Google Scholar] [CrossRef] [PubMed]
  360. Paper, W.; Kroeber, M.; Heersink, S.; Stephan, D.A.; Fuchshofer, R.; Russell, P.; Tamm, E.R. Elevated amounts of myocilin in the aqueous humor of transgenic mice cause significant changes in ocular gene expression. Exp. Eye Res. 2008, 87, 257–267. [Google Scholar] [CrossRef] [PubMed]
  361. Meurer, L.; Ferdman, L.; Belcher, B.; Camarata, T. The SIX family of transcription factors: Common themes integrating developmental and cancer biology. Front. Cell Dev. Biol. 2021, 9, 707854. [Google Scholar] [CrossRef] [PubMed]
  362. Bormann, C.; Busch, C.; Rehak, M.; Scharenberg, C.T.; Furashova, O.; Ziemssen, F.; Unterlauft, J.D. Postoperative RNFL-changes after successful trabeculectomy: 2-year outcomes. Klin. Monbl Augenheilkd. 2023, 241, 772–779. [Google Scholar] [CrossRef]
  363. Luz-Madrigal, A.; Grajales-Esquivel, E.; McCorkle, A.; DiLorenzo, A.M.; Barbosa-Sabanero, K.; Tsonis, P.A.; Del Rio-Tsonis, K. Reprogramming of the chick retinal pigmented epithelium after retinal injury. BMC Biol. 2014, 12, 28. [Google Scholar] [CrossRef] [PubMed]
  364. Hilgen, G.; Huebner, A.K.; Tanimoto, N.; Sothilingam, V.; Seide, C.; Garcia Garrido, M.; Schmidt, K.F.; Seeliger, M.W.; Lowel, S.; Weiler, R.; et al. Lack of the sodium-driven chloride bicarbonate exchanger NCBE impairs visual function in the mouse retina. PLoS ONE 2012, 7, e46155. [Google Scholar] [CrossRef] [PubMed]
  365. Parker, M.D. Mouse models of SLC4-linked disorders of HCO3-transporter dysfunction. Am. J. Physiol. Cell Physiol. 2018, 314, C569–C588. [Google Scholar] [CrossRef]
  366. Pang, R.; Peng, J.; Cao, K.; Sun, Y.; Pei, X.T.; Yang, D.; Lu, Z.L.; Wang, N. Association between contrast sensitivity function and structural damage in primary open-angle glaucoma. Br. J. Ophthalmol. 2023, 108, 801–806. [Google Scholar] [CrossRef] [PubMed]
  367. Zanon-Moreno, V.; Asensio-Marquez, E.M.; Ciancotti-Oliver, L.; Garcia-Medina, J.J.; Sanz, P.; Ortega-Azorin, C.; Pinazo-Duran, M.D.; Ordovas, J.M.; Corella, D. Effects of polymorphisms in vitamin E-, vitamin C-, and glutathione peroxidase-related genes on serum biomarkers and associations with glaucoma. Mol. Vis. 2013, 19, 231–242. [Google Scholar]
  368. Kannan, R.; Stolz, A.; Ji, Q.; Prasad, P.D.; Ganapathy, V. Vitamin C transport in human lens epithelial cells: Evidence for the presence of SVCT2. Exp. Eye Res. 2001, 73, 159–165. [Google Scholar] [CrossRef] [PubMed]
  369. Nakanishi, T.; Sakiyama, S.; Takashima, H.; Honda, R.; Shumba, M.N.; Nakamura, Y.; Kasahara, K.; Tamai, I. Toxicological implication of prostaglandin transporter SLCO2A1 inhibition by cigarette smoke in exacerbation of lung inflammation. Toxicol. Appl. Pharmacol. 2020, 405, 115201. [Google Scholar] [CrossRef] [PubMed]
  370. Kulkarni, A.; Banait, S. Through the smoke: An in-depth review on cigarette smoking and its impact on ocular health. Cureus 2023, 15, e47779. [Google Scholar] [CrossRef] [PubMed]
  371. Kraft, M.E.; Glaeser, H.; Mandery, K.; Konig, J.; Auge, D.; Fromm, M.F.; Schlotzer-Schrehardt, U.; Welge-Lussen, U.; Kruse, F.E.; Zolk, O. The prostaglandin transporter OATP2A1 is expressed in human ocular tissues and transports the antiglaucoma prostanoid latanoprost. Investig. Ophthalmol. Vis. Sci. 2010, 51, 2504–2511. [Google Scholar] [CrossRef] [PubMed]
  372. Haddadin, R.I.; Oh, D.J.; Kang, M.H.; Filippopoulos, T.; Gupta, M.; Hart, L.; Sage, E.H.; Rhee, D.J. SPARC-null mice exhibit lower intraocular pressures. Investig. Ophthalmol. Vis. Sci. 2009, 50, 3771–3777. [Google Scholar] [CrossRef]
  373. Mathur, M.C.; Ratnam, P.V.; Saikumar, S.J.; John, M.; Ravishankar, S.; Dinesh, M.B.; Chandil, P.; Pahuja, K.; Cherlikar, V.; Wadhwani, S.; et al. Netarsudil monotherapy as the initial treatment for open-angle glaucoma and ocular hypertension in Indian patients: A real-world evaluation of efficacy and safety. Indian J. Ophthalmol. 2023, 71, 2500–2503. [Google Scholar] [CrossRef] [PubMed]
  374. Kirwan, R.P.; Wordinger, R.J.; Clark, A.F.; O’Brien, C.J. Differential global and extra-cellular matrix focused gene expression patterns between normal and glaucomatous human lamina cribrosa cells. Mol. Vis. 2009, 15, 76–88. [Google Scholar] [PubMed]
  375. Shi, H.; Yin, Z.; Koronyo, Y.; Fuchs, D.T.; Sheyn, J.; Davis, M.R.; Wilson, J.W.; Margeta, M.A.; Pitts, K.M.; Herron, S.; et al. Regulating microglial miR-155 transcriptional phenotype alleviates Alzheimer’s-induced retinal vasculopathy by limiting Clec7a/Galectin-3+ neurodegenerative microglia. Acta Neuropathol. Commun. 2022, 10, 136. [Google Scholar] [CrossRef] [PubMed]
  376. Sathiyanathan, P.; Tay, C.Y.; Stanton, L.W. Transcriptome analysis for the identification of cellular markers related to trabecular meshwork differentiation. BMC Genom. 2017, 18, 383. [Google Scholar] [CrossRef] [PubMed]
  377. Mormile, R. Primary open angle glaucoma in type 2 diabetes: Implications of the IL-10/STAT3-mediated anti-inflammatory response? Immunol. Lett. 2016, 179, 131–132. [Google Scholar] [CrossRef]
  378. Lozano, D.C.; Choe, T.E.; Cepurna, W.O.; Morrison, J.C.; Johnson, E.C. Early optic nerve head glial proliferation and Jak-Stat pathway activation in chronic experimental glaucoma. Investig. Ophthalmol. Vis. Sci. 2019, 60, 921–932. [Google Scholar] [CrossRef] [PubMed]
  379. Kurte, M.; Lopez, M.; Aguirre, A.; Escobar, A.; Aguillon, J.C.; Charo, J.; Larsen, C.G.; Kiessling, R.; Salazar-Onfray, F. A synthetic peptide homologous to functional domain of human IL-10 down-regulates expression of MHC class I and transporter associated with antigen processing 1/2 in human melanoma cells. J. Immunol. 2004, 173, 1731–1777. [Google Scholar] [CrossRef] [PubMed]
  380. Abi-Ayad, N.; Grange, J.D.; Watkin, E.; De Bats, M.; Fleury, J.; Kodjikian, L.; Gambrelle, J. Ring melanoma revealed by spontaneous hyphema. J. Fr. Ophtalmol. 2007, 30, 729–732. [Google Scholar] [CrossRef]
  381. Ge, Q.; Feng, F.; Liu, L.; Chen, L.; Lv, P.; Ma, S.; Chen, K.; Yao, Q. RNA-Seq analysis of the pathogenesis of STZ-induced male diabetic mouse liver. J. Diabetes Complicat. 2020, 34, 107444. [Google Scholar] [CrossRef] [PubMed]
  382. Cheng, B.; Liang, X.; Wen, Y.; Li, P.; Zhang, L.; Ma, M.; Cheng, S.; Du, Y.; Liu, L.; Ding, M.; et al. Integrative analysis of transcriptome-wide association study data and messenger RNA expression profiles identified candidate genes and pathways for inflammatory bowel disease. J. Cell Biochem. 2019, 120, 14831–14837. [Google Scholar] [CrossRef]
  383. Chaiwiang, N.; Poyomtip, T. Microbial dysbiosis and microbiota-gut-retina axis: The lesson from brain neurodegenerative diseases to primary open-angle glaucoma pathogenesis of autoimmunity. Acta Microbiol. Immunol. Hung. 2019, 66, 541–558. [Google Scholar] [CrossRef] [PubMed]
  384. Sears, N.C.; Boese, E.A.; Miller, M.A.; Fingert, J.H. Mendelian genes in primary open angle glaucoma. Exp. Eye Res. 2019, 186, 107702. [Google Scholar] [CrossRef] [PubMed]
  385. Wang, D.; Huo, H.; Werid, G.M.; Ibrahim, Y.M.; Tang, L.; Wang, Y.; Chen, H. TBK1 mediates innate antiviral immune response against duck enteritis virus. Viruses 2022, 14, 1008. [Google Scholar] [CrossRef] [PubMed]
  386. Namburar, S.; Pillai, M.; Varghese, G.; Thiel, C.; Robin, A.L. Waste generated during glaucoma surgery: A comparison of two global facilities. Am. J. Ophthalmol. Case Rep. 2018, 12, 87–90. [Google Scholar] [CrossRef] [PubMed]
  387. Sarkar, D.; Shariq, M.; Dwivedi, D.; Krishnan, N.; Naumann, R.; Bhalla, U.S.; Ghosh, H.S. Adult brain neurons require continual expression of the schizophrenia-risk gene Tcf4 for structural and functional integrity. Transl. Psychiatry 2021, 11, 494. [Google Scholar] [CrossRef] [PubMed]
  388. Kaurani, L.; Vishal, M.; Kumar, D.; Sharma, A.; Mehani, B.; Sharma, C.; Chakraborty, S.; Jha, P.; Ray, J.; Sen, A.; et al. Gene-rich large deletions are overrepresented in POAG patients of Indian and Caucasian origins. Investig. Ophthalmol. Vis. Sci. 2014, 55, 3258–3264. [Google Scholar] [CrossRef] [PubMed]
  389. Hu, J.; Gong, X.; Johnson, S.T.; Corey, D.R.; Mootha, V.V. The TCF4 trinucleotide repeat expansion of fuchs’ endothelial corneal dystrophy: Implications for the anterior segment of the eye. Investig. Ophthalmol. Vis. Sci. 2023, 64, 16. [Google Scholar] [CrossRef] [PubMed]
  390. Kasetti, R.B.; Maddineni, P.; Kodati, B.; Nagarajan, B.; Yacoub, S. Astragaloside IV attenuates ocular hypertension in a mouse model of TGFβ2 induced primary open angle glaucoma. Int. J. Mol. Sci. 2021, 22, 12508. [Google Scholar] [CrossRef] [PubMed]
  391. Cai, J.; Perkumas, K.M.; Qin, X.; Hauser, M.A.; Stamer, W.D.; Liu, Y. Expression profiling of human Schlemm’s canal endothelial cells from eyes with and without glaucoma. Investig. Ophthalmol. Vis. Sci. 2015, 56, 6747–6753. [Google Scholar] [CrossRef]
  392. Xie, B.; Xiong, W.; Zhang, F.; Wang, N.; Luo, Y.; Chen, Y.; Cao, J.; Chen, Z.; Ma, C.; Chen, H. The miR-103a-3p/TGFBR3 axis regulates TGF-β-induced orbital fibroblast activation and fibrosis in thyroid-eye disease. Mol. Cell Endocrinol. 2023, 559, 111780. [Google Scholar] [CrossRef]
  393. Qin, M.; Yu-Wai-Man, C. Glaucoma: Novel antifibrotic therapeutics for the trabecular meshwork. Eur. J. Pharmacol. 2023, 954, 175882. [Google Scholar] [CrossRef] [PubMed]
  394. Liu, C.J.; Huang, Y.L.; Ju, J.P.; Lu, C.L.; Chiu, A.W. Altered transcripts expression of matrix metalloproteinases and their tissue inhibitors in tenon capsule of patients with glaucoma. J. Glaucoma 2004, 13, 486–491. [Google Scholar] [CrossRef] [PubMed]
  395. Qiu, L.; Wang, Y.; Wang, Y.; Liu, F.; Deng, S.; Xue, W.; Wang, Y. Ursolic acid ameliorated neuronal damage by restoring microglia-activated MMP/TIMP imbalance in vitro. Drug Des. Devel Ther. 2023, 17, 2481–2493. [Google Scholar] [CrossRef] [PubMed]
  396. Hill, L.J.; Mead, B.; Blanch, R.J.; Ahmed, Z.; De Cogan, F.; Morgan-Warren, P.J.; Mohamed, S.; Leadbeater, W.; Scott, R.A.; Berry, M.; et al. Decorin reduces intraocular pressure and retinal ganglion cell loss in rodents through fibrolysis of the scarred trabecular meshwork. Investig. Ophthalmol. Vis. Sci. 2015, 56, 3743–3757. [Google Scholar] [CrossRef] [PubMed]
  397. Dias, M.S.; de Araujo, V.G.; Lani-Louzada, R.; Linden, R.; Ribas, V.T.; Petrs-Silva, H. Perspective on gene therapy for glaucoma In Glaucoma—Recent Advances and New Perspectives; Davey, P.G., Ed.; IntechOpen Ltd.: London, UK, 2022. [Google Scholar] [CrossRef]
  398. Stamer, W.D.; Perkumas, K.M.; Kang, M.H.; Dibas, M.; Robinson, M.R.; Rhee, D.J. Proposed mechanism of long-term intraocular pressure lowering with the bimatoprost implant. Investig. Ophthalmol. Vis. Sci. 2023, 64, 15. [Google Scholar] [CrossRef] [PubMed]
  399. Ghasemi, H.; Yaraee, R.; Faghihzadeh, S.; Ghassemi-Broumand, M.; Mahmoudi, M.; Babaei, M.; Naderi, M.; Safavi, M.; Ghazanfari, Z.; Rastin, M.; et al. Tear and serum MMP-9 and serum TIMPs levels in the severe sulfur mustard eye injured exposed patients. Int. Immunopharmacol. 2019, 77, 105812. [Google Scholar] [CrossRef] [PubMed]
  400. Fang, J.; Fang, D.; Silver, P.B.; Wen, F.; Li, B.; Ren, X.; Lin, Q.; Caspi, R.R.; Su, S.B. The role of TLR2, TRL3, TRL4, and TRL9 signaling in the pathogenesis of autoimmune disease in a retinal autoimmunity model. Investig. Ophthalmol. Vis. Sci. 2010, 51, 3092–3099. [Google Scholar] [CrossRef] [PubMed]
  401. Shamsuddin, N.; Kumar, A. TLR2 mediates the innate response of retinal Muller glia to Staphylococcus aureus. J. Immunol. 2011, 186, 7089–7097. [Google Scholar] [CrossRef] [PubMed]
  402. Niu, L.; Luo, Y.; Xu, H.; Huang, H.; Jiang, R.; Sun, X. Clinical analysis of infectious endophthalmitis following glaucoma filtration surgery. J. Ophthalmic Inflamm. Infect. 2024, 14, 11. [Google Scholar] [CrossRef] [PubMed]
  403. Roberts, A.L.; Mavlyutov, T.A.; Perlmutter, T.E.; Curry, S.M.; Harris, S.L.; Chauhan, A.K.; McDowell, C.M. Fibronectin extra domain A (FN-EDA) elevates intraocular pressure through Toll-like receptor 4 signaling. Sci. Rep. 2020, 10, 9815. [Google Scholar] [CrossRef] [PubMed]
  404. Poyomtip, T. Roles of Toll-like receptor 4 for cellular pathogenesis in primary open-angle glaucoma: A potential therapeutic strategy. J. Microbiol. Immunol. Infect. 2019, 52, 201–206. [Google Scholar] [CrossRef]
  405. Gao, L.; Ye, Z.; Liu, J.H.; Yang, J.A.; Li, Y.; Cai, J.Y.; Wang, Y.X.; Tong, S.A.; Deng, G.; Zhang, S.; et al. TMCO1 expression promotes cell proliferation and induces epithelial-mesenchymal transformation in human gliomas. Med. Oncol. 2022, 39, 90. [Google Scholar] [CrossRef] [PubMed]
  406. Drewry, M.D.; Challa, P.; Kuchtey, J.G.; Navarro, I.; Helwa, I.; Hu, Y.; Mu, H.; Stamer, W.D.; Kuchtey, R.W.; Liu, Y. Differentially expressed microRNAs in the aqueous humor of patients with exfoliation glaucoma or primary open-angle glaucoma. Hum. Mol. Genet. 2018, 27, 1263–1275. [Google Scholar] [CrossRef]
  407. Sunryd, J.C.; Cheon, B.; Graham, J.B.; Giorda, K.M.; Fissore, R.A.; Hebert, D.N. TMTC1 and TMTC2 are novel endoplasmic reticulum tetratricopeptide repeat-containing adapter proteins involved in calcium homeostasis. J. Biol. Chem. 2014, 289, 16085–16099. [Google Scholar] [CrossRef] [PubMed]
  408. Zhu, J.; Chen, H.; Wu, J.; Li, S.; Lin, W.; Wang, N.; Bai, L. Ferroptosis in glaucoma: A promising avenue for therapy. Adv. Biol. 2024, 8, e2300530. [Google Scholar] [CrossRef] [PubMed]
  409. Yang, Q.; Li, Y.; Luo, L. Effect of myricetin on primary open-angle glaucoma. Transl. Neurosci. 2018, 9, 132–141. [Google Scholar] [CrossRef]
  410. Tjandra, I.; Soeharso, P.; Artini, W.; Siregar, N.C.; Victor, A.A. Ganglion cells apoptosis in diabetic rats as early prediction of glaucoma: A study of Brn3b gene expression and association with change of quantity of NO, caspase-3, NF-κB, and TNF-α. Int. J. Ophthalmol. 2020, 13, 1872–1879. [Google Scholar] [CrossRef] [PubMed]
  411. Zhang, J.; Wang, L. Association between rs4938723 polymorphism and the risk of primary open-angle glaucoma (POAG) in a Chinese population. J. Cell Biochem. 2019, 120, 12875–12886. [Google Scholar] [CrossRef] [PubMed]
  412. Nowak, A.; Przybylowska-Sygut, K.; Szymanek, K.; Szaflik, J.; Szaflik, J.; Majsterek, I. The relationship of TP53 and GRIN2B gene polymorphisms with risk of occurrence and progression of primary open-angle glaucoma in a Polish population. Pol. J. Pathol. 2014, 65, 313–321. [Google Scholar] [CrossRef]
  413. Irnaten, M.; O’Malley, G.; Clark, A.F.; O’Brien, C.J. Transient receptor potential channels TRPC1/TRPC6 regulate lamina cribrosa cell extracellular matrix gene transcription and proliferation. Exp. Eye Res. 2020, 193, 107980. [Google Scholar] [CrossRef] [PubMed]
  414. Wang, X.; Teng, L.; Li, A.; Ge, J.; Laties, A.M.; Zhang, X. TRPC6 channel protects retinal ganglion cells in a rat model of retinal ischemia/reperfusion-induced cell death. Investig. Ophthalmol. Vis. Sci. 2010, 51, 5751–5758. [Google Scholar] [CrossRef]
  415. Perniss, A.; Liu, S.; Boonen, B.; Keshavarz, M.; Ruppert, A.L.; Timm, T.; Pfeil, U.; Soultanova, A.; Kusumakshi, S.; Delventhal, L.; et al. Chemosensory cell-derived acetylcholine drives tracheal mucociliary clearance in response to virulence-associated formyl peptides. Immunity 2020, 52, 683–699.e11. [Google Scholar] [CrossRef]
  416. Wu, H.; Cui, Y.; He, C.; Gao, P.; Li, Q.; Zhang, H.; Jiang, Y.; Hu, Y.; Wei, X.; Lu, Z.; et al. Activation of the bitter taste sensor TRPM5 prevents high salt-induced cardiovascular dysfunction. Sci. China Life Sci. 2020, 63, 1665–1677. [Google Scholar] [CrossRef]
  417. Nizankowska, M.H.; Turno-Krecicka, A. Primary open angle glaucoma, age and age-related cardiovascular disease risk factors. Klin. Ocz. 1998, 100, 107–110. [Google Scholar]
  418. Maharaj, A.; Maudhoo, A.; Chan, L.F.; Novoselova, T.; Prasad, R.; Metherell, L.A.; Guasti, L. Isolated glucocorticoid deficiency: Genetic causes and animal models. J. Steroid Biochem. Mol. Biol. 2019, 189, 73–80. [Google Scholar] [CrossRef] [PubMed]
  419. Tabak, S.; Schreiber-Avissar, S.; Beit-Yannai, E. Crosstalk between microRNA and oxidative stress in primary open-angle glaucoma. Int. J. Mol. Sci. 2021, 22, 2421. [Google Scholar] [CrossRef] [PubMed]
  420. Pickering, A.M.; Lehr, M.; Gendron, C.M.; Pletcher, S.D.; Miller, R.A. Mitochondrial thioredoxin reductase 2 is elevated in long-lived primate as well as rodent species and extends fly mean lifespan. Aging Cell 2017, 16, 683–692. [Google Scholar] [CrossRef]
  421. Zhang, X.; Xi, G.; Feng, P.; Li, C.; Kuehn, M.H.; Zhu, W. Intraocular pressure across the lifespan of Tg-MYOCY437H mice. Exp. Eye Res. 2024, 241, 109855. [Google Scholar] [CrossRef] [PubMed]
  422. Fujikawa, K.; Iwata, T.; Inoue, K.; Akahori, M.; Kadotani, H.; Fukaya, M.; Watanabe, M.; Chang, Q.; Barnett, E.M.; Swat, W. VAV2 and VAV3 as candidate disease genes for spontaneous glaucoma in mice and humans. PLoS ONE 2010, 5, e9050. [Google Scholar] [CrossRef] [PubMed]
  423. Tsou, Y.S.; Wang, C.Y.; Chang, M.Y.; Hsu, T.I.; Wu, M.T.; Wu, Y.H.; Tsai, W.L.; Chuang, J.Y.; Kao, T.J. Vav2 is required for Netrin-1 receptor-class-specific spinal motor axon guidance. Dev. Dyn. 2022, 251, 444–458. [Google Scholar] [CrossRef] [PubMed]
  424. Claes, M.; De Groef, L.; Moons, L. Target-derived neurotrophic factor deprivation puts retinal ganglion cells on death row: Cold hard evidence and caveats. Int. J. Mol. Sci. 2019, 20, 4314. [Google Scholar] [CrossRef] [PubMed]
  425. Bai, Y.; Xiang, X.; Liang, C.; Shi, L. Regulating Rac in the nervous system: Molecular function and disease implication of Rac GEFs and GAPs. Biomed. Res. Int. 2015, 2015, 632450. [Google Scholar] [CrossRef]
  426. Zhong, T.; Zhou, J.; Yan, T.; Qiu, J.; Wang, Y.; Lu, W. Pseudo-time series structural MRI revealing progressive gray matter changes with elevated intraocular pressure in primary open-angle glaucoma: A preliminary study. Acad. Radiol. 2024, 31, 3754–3763. [Google Scholar] [CrossRef] [PubMed]
  427. Jensen, N.S.; Wehland, M.; Wise, P.M.; Grimm, D. Latest knowledge on the role of vitamin D in hypertension. Int. J. Mol. Sci. 2023, 24, 4679. [Google Scholar] [CrossRef] [PubMed]
  428. Wang, L.; Hara, K.; Van Baaren, J.M.; Price, J.C.; Beecham, G.W.; Gallins, P.J.; Whitehead, P.L.; Wang, G.; Lu, C.; Slifer, M.A.; et al. Vitamin D receptor and Alzheimer’s disease: A genetic and functional study. Neurobiol. Aging 2012, 33, 1844.e1–1844.e9. [Google Scholar] [CrossRef]
  429. Korneva, A.; Schaub, J.; Jefferys, J.; Kimball, E.; Pease, M.E.; Nawathe, M.; Johnson, T.V.; Pitha, I.; Quigley, H. A method to quantify regional axonal transport blockade at the optic nerve head after short term intraocular pressure elevation in mice. Exp. Eye Res. 2020, 196, 108035. [Google Scholar] [CrossRef] [PubMed]
  430. Xu, Y.; Xie, S.C.; Ma, Y.C. Low expression of microRNA-15b promotes the proliferation of retinal capillary endothelial cells and pericytes by up-regulating VEGFA in diabetic rats. Eur. Rev. Med. Pharmacol. Sci. 2019, 23, 6018–6025. [Google Scholar] [PubMed]
  431. Ebner, L.J.A.; Samardzija, M.; Storti, F.; Todorova, V.; Karademir, D.; Behr, J.; Simpson, F.; Thiersch, M.; Grimm, C. Transcriptomic analysis of the mouse retina after acute and chronic normobaric and hypobaric hypoxia. Sci. Rep. 2021, 11, 16666. [Google Scholar] [CrossRef]
  432. Tenge, V.R.; Knowles, J.; Johnson, J.L. The ribosomal biogenesis protein Utp21 interacts with Hsp90 and has differing requirements for Hsp90-associated proteins. PLoS ONE 2014, 9, e92569. [Google Scholar] [CrossRef]
  433. Gallenberger, M.; Kroeber, M.; Marz, L.; Koch, M.; Fuchshofer, R.; Braunger, B.M.; Iwata, T.; Tamm, E.R. Heterozygote Wdr36-deficient mice do not develop glaucoma. Exp. Eye Res. 2014, 128, 83–91. [Google Scholar] [CrossRef] [PubMed]
  434. Lee, Y.; Katyal, S.; Li, Y.; El-Khamisy, S.F.; Russell, H.R.; Caldecott, K.W.; McKinnon, P.J. The genesis of cerebellar interneurons and the prevention of neural DNA damage require XRCC1. Nat. Neurosci. 2009, 12, 973–980. [Google Scholar] [CrossRef] [PubMed]
  435. Mei, P.J.; Bai, J.; Miao, F.A.; Li, Z.L.; Chen, C.; Zheng, J.N.; Fan, Y.C. Relationship between expression of XRCC1 and tumor proliferation, migration, invasion, and angiogenesis in glioma. Investig. New Drugs 2019, 37, 646–657. [Google Scholar] [CrossRef] [PubMed]
  436. Yu, N.; Zhang, Z.; Chen, P.; Zhong, Y.; Cai, X.; Hu, H.; Yang, Y.; Zhang, J.; Li, K.; Ge, J.; et al. Tetramethylpyrazine (TMP), an active ingredient of chinese herb medicine chuanxiong, attenuates the degeneration of trabecular meshwork through SDF-1/CXCR4 axis. PLoS ONE 2015, 10, e0133055. [Google Scholar] [CrossRef] [PubMed]
  437. Day, I.N. dbSNP in the detail and copy number complexities. Hum. Mutat. 2010, 31, 2–4. [Google Scholar] [CrossRef]
  438. Drachkova, I.; Savinkova, L.; Arshinova, T.; Ponomarenko, M.; Peltek, S.; Kolchanov, N. The mechanism by which TATA-box polymorphisms associated with human hereditary diseases influence interactions with the TATA-binding protein. Hum. Mutat. 2014, 35, 601–608. [Google Scholar] [CrossRef] [PubMed]
  439. Arkova, O.V.; Drachkova, I.A.; Arshinova, T.V.; Rasskazov, D.A.; Suslov, V.V.; Ponomarenko, P.M.; Ponomarenko, M.P.; Kolchanov, N.A.; Savinkova, L.K. Prediction and verification of the influence of the rs367781716 SNP on the interaction of the TATA-binding protein with the promoter of the human АВСА9 gene. Russ. J. Genet. Appl. Res. 2016, 6, 785–791. [Google Scholar] [CrossRef]
  440. Ponomarenko, M.; Kleshchev, M.; Ponomarenko, P.; Chadaeva, I.; Sharypova, E.; Rasskazov, D.; Kolmykov, S.; Drachkova, I.; Vasiliev, G.; Gutorova, N.; et al. Disruptive natural selection by male reproductive potential prevents underexpression of protein-coding genes on the human Y chromosome as a self-domestication syndrome. BMC Genet. 2020, 21 (Suppl. 1), 89. [Google Scholar] [CrossRef] [PubMed]
  441. Sharypova, E.B.; Drachkova, I.A.; Kashina, E.V.; Rasskazov, D.A.; Ponomarenko, P.M.; Ponomarenko, M.P.; Kolchanov, N.A.; Savinkova, L.K. An experimental study of the effect of rare polymorphisms of human HBB, HBD and F9 promoter TATA boxes on the kinetics of interaction with the TATA-binding protein. Vavilov. J. Genet. Breed. 2018, 22, 145–152. [Google Scholar] [CrossRef]
  442. Ponomarenko, M.; Rasskazov, D.; Chadaeva, I.; Sharypova, E.; Drachkova, I.; Oshchepkov, D.; Ponomarenko, P.; Savinkova, L.; Oshchepkova, E.; Nazarenko, M.; et al. Candidate SNP markers of atherogenesis significantly shifting the affinity of TATA-binding protein for human gene promoters show stabilizing natural selection as a sum of neutral drift accelerating atherogenesis and directional natural selection slowing it. Int. J. Mol. Sci. 2020, 21, 1045. [Google Scholar] [CrossRef] [PubMed]
  443. Betzler, B.K.; Rim, T.H.; Sabanayagam, C.; Cheung, C.M.G.; Cheng, C.Y. High-density lipoprotein cholesterol in age-related ocular diseases. Biomolecules 2020, 10, 645. [Google Scholar] [CrossRef] [PubMed]
  444. Mahmoud, A.; Abid, F.; Ksiaa, I.; Zina, S.; Messaoud, R.; Khairallah, M. Bilateral acute angle-closure glaucoma following tramadol subcutaneous administration. BMC Ophthalmol. 2018, 18, 50. [Google Scholar] [CrossRef] [PubMed]
  445. Rezende Filho, F.M.; Jurkute, N.; de Andrade, J.B.C.; Marianelli, B.F.; de Lima, F.D.; Franca, M.C., Jr.; Sallum, J.M.F.; Yu-Wai-Man, P.; Barsottini, O.G.P.; Pedroso, J.L. Optic disc and retinal architecture changes in patients with spinocerebellar ataxia type 2. Mov. Disord. 2024, 39, 203–209. [Google Scholar] [CrossRef] [PubMed]
  446. Chen, H.Y.; Lehmann, O.J.; Swaroop, A. Genetics and therapy for pediatric eye diseases. EBioMedicine 2021, 67, 103360. [Google Scholar] [CrossRef] [PubMed]
  447. Richards, S.; Aziz, N.; Bale, S.; Bick, D.; Das, S.; Gastier-Foster, J.; Grody, W.W.; Hegde, M.; Lyon, E.; Spector, E.; et al. Standards and guidelines for the interpretation of sequence variants: A joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet. Med. 2015, 17, 405–424. [Google Scholar] [CrossRef] [PubMed]
  448. Stasi, K.; Nagel, D.; Yang, X.; Ren, L.; Mittag, T.; Danias, J. Ceruloplasmin upregulation in retina of murine and human glaucomatous eyes. Investig. Ophthalmol. Vis. Sci. 2007, 48, 727–732. [Google Scholar] [CrossRef] [PubMed]
  449. Murphy-Ryan, M.; Psychogios, A.; Lindor, N.M. Hereditary disorders of connective tissue: A guide to the emerging differential diagnosis. Genet. Med. 2010, 12, 344–354. [Google Scholar] [CrossRef] [PubMed]
  450. Aldaas, K.; Challa, P.; Weber, D.J.; Fleischman, D. Infections and glaucoma. Surv. Ophthalmol. 2022, 67, 637–658. [Google Scholar] [CrossRef]
  451. Platzer, K.; Yuan, H.; Schutz, H.; Winschel, A.; Chen, W.; Hu, C.; Kusumoto, H.; Heyne, H.O.; Helbig, K.L.; Tang, S.; et al. GRIN2B encephalopathy: Novel findings on phenotype, variant clustering, functional consequences and treatment aspects. J. Med. Genet. 2017, 54, 460–470. [Google Scholar] [CrossRef]
  452. Da Silva, K.; Dowell, M.; Savatovsky, E.J.; Grosvenor, D.; Callender, D.; Campbell, M.H.; Hambleton, I.; Vanner, E.A.; Grajewski, A.L.; Chang, T.C. The burden of pediatric visual impairment and ocular diagnoses in Barbados. Int. J. Environ. Res. Public Health 2023, 20, 6554. [Google Scholar] [CrossRef] [PubMed]
  453. Campa, D.; Hashibe, M.; Zaridze, D.; Szeszenia-Dabrowska, N.; Mates, I.N.; Janout, V.; Holcatova, I.; Fabianova, E.; Gaborieau, V.; Hung, R.J.; et al. Association of common polymorphisms in inflammatory genes with risk of developing cancers of the upper aerodigestive tract. Cancer Causes Control 2007, 18, 449–455. [Google Scholar] [CrossRef] [PubMed]
  454. Lu, W.Y.; Lin, C.W.; Hsin, C.H.; Lee, C.Y.; Huang, J.Y.; Yang, S.F.; Lin, H.Y. Association of the nasopharyngeal carcinoma and the subsequent open glaucoma development: A nationwide cohort study. Int. J. Med. Sci. 2023, 20, 702–708. [Google Scholar] [CrossRef]
  455. Lozier, J.N.; Rosenberg, P.S.; Goedert, J.J.; Menashe, I. A case-control study reveals immunoregulatory gene haplotypes that influence inhibitor risk in severe haemophilia A. Haemophilia 2011, 17, 641–649. [Google Scholar] [CrossRef] [PubMed]
  456. Al-Sharif, E.; AlEnezi, S.H.; Sharif, H.A.; Osman, E.A. Ocular bleeding in an undiagnosed hemophiliac neonate causing irreversible loss of vision: A case report with review of the literature. Eur. J. Ophthalmol. 2020, 30, NP62–NP65. [Google Scholar] [CrossRef]
  457. Cho, J.H.; Choi, J.S.; Chun, S.W.; Lee, S.; Han, K.J.; Kim, H.M. The IL-1B genetic polymorphism is associated with aspirin-induced peptic ulcers in a Korean ethnic group. Gut Liver 2016, 10, 362–368. [Google Scholar] [CrossRef]
  458. Sun, H.Y.; Luo, C.W.; Chiang, Y.W.; Yeh, K.L.; Li, Y.C.; Ho, Y.C.; Lee, S.S.; Chen, W.Y.; Chen, C.J.; Kuan, Y.H. Association between PM2.5 exposure level and primary open-angle glaucoma in Taiwanese adults: A nested case-control study. Int. J. Environ. Res. Public. Health 2021, 18, 1714. [Google Scholar] [CrossRef]
  459. Sanabria-Salas, M.C.; Hernandez-Suarez, G.; Umana-Perez, A.; Rawlik, K.; Tenesa, A.; Serrano-Lopez, M.L.; Sanchez de Gomez, M.; Rojas, M.P.; Bravo, L.E.; Albis, R.; et al. IL1B-CGTC haplotype is associated with colorectal cancer in admixed individuals with increased African ancestry. Sci. Rep. 2017, 7, 41920. [Google Scholar] [CrossRef] [PubMed]
  460. Mukamel, R.E.; Handsaker, R.E.; Sherman, M.A.; Barton, A.R.; Hujoel, M.L.A.; McCarroll, S.A.; Loh, P.R. Repeat polymorphisms underlie top genetic risk loci for glaucoma and colorectal cancer. Cell 2023, 186, 3659–3673.e23. [Google Scholar] [CrossRef] [PubMed]
  461. Sa-Ngasang, A.; Ohashi, J.; Naka, I.; Anantapreecha, S.; Sawanpanyalert, P.; Patarapotikul, J. Association of IL1B-31C/T and IL1RA variable number of an 86-bp tandem repeat with dengue shock syndrome in Thailand. J. Infect. Dis. 2014, 210, 138–145. [Google Scholar] [CrossRef] [PubMed]
  462. Ahmad, F.; Deshmukh, N.; Webel, A.; Johnson, S.; Suleiman, A.; Mohan, R.R.; Fraunfelder, F.; Singh, P.K. Viral infections and pathogenesis of glaucoma: A comprehensive review. Clin. Microbiol. Rev. 2023, 36, e0005723. [Google Scholar] [CrossRef]
  463. Kim, H.; Hysi, P.G.; Pawlikowska, L.; Poon, A.; Burchard, E.G.; Zaroff, J.G.; Sidney, S.; Ko, N.U.; Achrol, A.S.; Lawton, M.T.; et al. Common variants in interleukin-1-Beta gene are associated with intracranial hemorrhage and susceptibility to brain arteriovenous malformation. Cerebrovasc. Dis. 2009, 27, 176–182. [Google Scholar] [CrossRef]
  464. Razeghinejad, M.R.; Nowroozzadeh, M.H. Optic disk hemorrhage in health and disease. Surv. Ophthalmol. 2017, 62, 784–802. [Google Scholar] [CrossRef]
  465. Occhiutto, M.L.; de Melo, M.B.; Cabral de Vasconcellos, J.P.; Rodrigues, T.A.R.; Bajano, F.F.; Costa, F.F.; Costa, V.P. Association of APOE gene polymorphisms with primary open angle glaucoma in Brazilian patients. Ophthalmic Genet. 2021, 42, 53–61. [Google Scholar] [CrossRef]
  466. Liu, C.; Yuan, Z.Y.; Yuan, H.; Wu, K.X.; Cao, B.; Ren, K.Y.; Cui, M.J.; Liu, J.H.; Chen, H.X.; Pang, Y.W. Status of gene methylation and polymorphism in different courses of ulcerative colitis and their comparison with sporadic colorectal cancer. Inflamm. Bowel Dis. 2021, 27, 522–529. [Google Scholar] [CrossRef] [PubMed]
  467. Gomes Dos Santos, A.; Watanabe, E.H.; Ferreira, D.T.; Oliveira, J.; Nakanishi, E.S.; Oliveira, C.S.; Bocchi, E.; Novaes, C.T.G.; Cruz, F.; Carvalho, N.B.; et al. A specific IL6 polymorphic genotype modulates the risk of Trypanosoma cruzi parasitemia while IL18, IL17A, and IL1B variant profiles and HIV Infection protect against cardiomyopathy in chagas disease. Front. Immunol. 2020, 11, 521409. [Google Scholar] [CrossRef]
  468. Chakravorty, M.; Ghosh, A.; Choudhury, A.; Santra, A.; Hembrum, J.; Roychoudhury, S. Interaction between IL1B gene promoter polymorphisms in determining susceptibility to Helicobacter pylori associated duodenal ulcer. Hum. Mutat. 2006, 27, 411–419. [Google Scholar] [CrossRef] [PubMed]
  469. Dada, T.; Verma, S.; Gagrani, M.; Bhartiya, S.; Chauhan, N.; Satpute, K.; Sharma, N. Ocular and systemic factors associated with glaucoma. J. Curr. Glaucoma Pract. 2022, 16, 179–191. [Google Scholar]
  470. French, D.D.; Margo, C.E.; Harman, L.E. Ocular pseudoexfoliation and cardiovascular disease: A national cross-section comparison study. N. Am. J. Med. Sci. 2012, 4, 468–473. [Google Scholar] [CrossRef]
  471. Raji, M.M.; Tasneem, A.F.; Nayak, V.I.; Jafar, F.S.; Ahmed, Z.; Indraja, Y. The association between primary open-angle glaucoma and helicobacter pylori infection. J. Clin. Res. Ophthalmol. 2021, 8, 036–042. [Google Scholar] [CrossRef]
  472. El-Omar, E.M.; Carrington, M.; Chow, W.H.; McColl, K.E.; Bream, J.H.; Young, H.A.; Herrera, J.; Lissowska, J.; Yuan, C.C.; Rothman, N.; et al. Interleukin-1 polymorphisms associated with increased risk of gastric cancer. Nature 2000, 404, 398–402. [Google Scholar] [CrossRef] [PubMed]
  473. Ezzati Amini, E.; Moradi, Y. Association between helicobacter pylori infection and primary open-angle glaucoma: A systematic review and meta-analysis. BMC Ophthalmol. 2023, 23, 374. [Google Scholar] [CrossRef] [PubMed]
  474. Hamajima, N.; Matsuo, K.; Saito, T.; Tajima, K.; Okuma, K.; Yamao, K.; Tominaga, S. Interleukin 1 polymorphisms, lifestyle factors, and Helicobacter pylori infection. Jpn. J. Cancer Res. 2001, 92, 383–389. [Google Scholar] [CrossRef]
  475. Vergroesen, J.E.; de Crom, T.O.E.; van Duijn, C.M.; Voortman, T.; Klaver, C.C.W.; Ramdas, W.D. MIND diet lowers risk of open-angle glaucoma: The Rotterdam study. Eur. J. Nutr. 2023, 62, 477–487. [Google Scholar] [CrossRef] [PubMed]
  476. Zhang, G.; Zhou, B.; Li, S.; Yue, J.; Yang, H.; Wen, Y.; Zhan, S.; Wang, W.; Liao, M.; Zhang, M.; et al. Allele-specific induction of IL-1β expression by C/EBPβ and PU.1 contributes to increased tuberculosis susceptibility. PLoS Pathog. 2014, 10, e1004426. [Google Scholar] [CrossRef]
  477. Magesan, K.; Patnaik, G.; Majumder, P.D.; Biswas, J. Clinical profile, treatment, and visual outcome of scleritis: A single ophthalmologist experience. Oman J. Ophthalmol. 2022, 15, 153–158. [Google Scholar] [CrossRef]
  478. Das, A.P.; Saini, S.; Agarwal, S.M. A comprehensive meta-analysis of non-coding polymorphisms associated with precancerous lesions and cervical cancer. Genomics 2022, 114, 110323. [Google Scholar] [CrossRef] [PubMed]
  479. Wang, B.; Yuan, F. The association between interleukin-1β gene polymorphisms and the risk of breast cancer: A systematic review and meta-analysis. Arch. Med. Sci. 2021, 18, 1–10. [Google Scholar] [CrossRef]
  480. Wu, K.S.; Zhou, X.; Zheng, F.; Xu, X.Q.; Lin, Y.H.; Yang, J. Influence of interleukin-1 beta genetic polymorphism, smoking and alcohol drinking on the risk of non-small cell lung cancer. Clin. Chim. Acta 2010, 411, 1441–1446. [Google Scholar] [CrossRef]
  481. Tak, K.H.; Yu, G.I.; Lee, M.Y.; Shin, D.H. Association between polymorphisms of interleukin 1 family genes and hepatocellular carcinoma. Med. Sci. Monit. 2018, 24, 3488–3495. [Google Scholar] [CrossRef]
  482. Zhu, P.; Wu, X.; Zhou, J.; Wu, K.; Lu, Y. Gene polymorphisms of pro-inflammatory cytokines may affect the risk of Graves’ disease: A meta-analysis. J. Endocrinol. Investig. 2021, 44, 311–319. [Google Scholar] [CrossRef] [PubMed]
  483. Amirian, E.; Liu, Y.; Scheurer, M.E.; El-Zein, R.; Gilbert, M.R.; Bondy, M.L. Genetic variants in inflammation pathway genes and asthma in glioma susceptibility. Neuro Oncol. 2010, 12, 444–452. [Google Scholar] [PubMed]
  484. Barlo, N.P.; van Moorsel, C.H.; Korthagen, N.M.; Heron, M.; Rijkers, G.T.; Ruven, H.J.; van den Bosch, J.M.; Grutters, J.C. Genetic variability in the IL1RN gene and the balance between interleukin (IL)-1 receptor agonist and IL-1β in idiopathic pulmonary fibrosis. Clin. Exp. Immunol. 2011, 166, 346–351. [Google Scholar] [CrossRef]
  485. De Iudicibus, S.; Franca, R.; Martelossi, S.; Ventura, A.; Decorti, G. Molecular mechanism of glucocorticoid resistance in inflammatory bowel disease. World J. Gastroenterol. 2011, 17, 1095–1108. [Google Scholar] [CrossRef] [PubMed]
  486. Li, J.; Sun, X.; Luo, S.; Lin, J.; Xiao, Y.; Yu, H.; Huang, G.; Li, X.; Xie, Z.; Zhou, Z. The positivity rate of IA-2A and ZnT8A in the Chinese han population with type 1 diabetes mellitus: Association with rs1143627 and rs1143643 polymorphisms in the IL1B gene. Front. Pharmacol. 2021, 12, 729890. [Google Scholar] [CrossRef]
  487. Goracy, I.; Kaczmarczyk, M.; Ciechanowicz, A.; Lewandowska, K.; Jakubiszyn, P.; Bodnar, O.; Kopijek, B.; Brodkiewicz, A.; Cyrylowski, L. Polymorphism of interleukin 1b may modulate the risk of ischemic stroke in polish patients. Medicina 2019, 55, 558. [Google Scholar] [CrossRef]
  488. Ibanez, L.; Velli, P.S.; Font, R.; Jaen, A.; Royo, J.; Irigoyen, D.; Cairo, M.; De la Sierra, A.; Arranz, M.J.; Gallardo, D.; et al. HIV-infection, atherosclerosis and the inflammatory pathway: Candidate gene study in a Spanish HIV-infected population. PLoS ONE 2014, 9, e112279. [Google Scholar] [CrossRef]
  489. Rai, H.; Sinha, N.; Kumar, S.; Sharma, A.K.; Agrawal, S. Interleukin-1 gene cluster polymorphisms and their association with coronary artery disease: Separate evidences from the largest case-control study amongst North Indians and an updated meta-analysis. PLoS ONE 2016, 11, e0153480. [Google Scholar] [CrossRef]
  490. Strandberg, L.; Mellstrom, D.; Ljunggren, O.; Grundberg, E.; Karlsson, M.K.; Holmberg, A.H.; Orwoll, E.S.; Eriksson, A.L.; Svedberg, J.; Bengtsson, M.; et al. IL6 and IL1B polymorphisms are associated with fat mass in older men: The MrOS Study Sweden. Obes. (Silver Spring) 2008, 16, 710–713. [Google Scholar] [CrossRef]
  491. Tanimine, N.; Takei, D.; Tsukiyama, N.; Yoshinaka, H.; Takemoto, Y.; Tanaka, Y.; Kobayashi, T.; Tanabe, K.; Ishikawa, N.; Kitahara, Y.; et al. Identification of aggravation-predicting gene polymorphisms in Coronavirus disease 2019 patients using a candidate gene approach associated with multiple phase pathogenesis: A study in a Japanese city of 1 million people. Crit Care Explor. 2021, 3, e0576. [Google Scholar] [CrossRef] [PubMed]
  492. Martinez-Carrillo, D.N.; Garza-Gonzalez, E.; Betancourt-Linares, R.; Monico-Manzano, T.; Antunez-Rivera, C.; Roman-Roman, A.; Flores-Alfaro, E.; Illades-Aguiar, B.; Fernandez-Tilapa, G. Association of IL1B-511C/-31T haplotype and Helicobacter pylori vacA genotypes with gastric ulcer and chronic gastritis. BMC Gastroenterol. 2010, 10, 126. [Google Scholar] [CrossRef] [PubMed]
  493. Sana, T.; Khan, M.; Jabeen, A.; Shams, S.; Hadda, T.B.; Begum, S.; Siddiqui, B.S. Urease and carbonic anhydrase inhibitory effect of xanthones from Aspergillus nidulans, an endophytic fungus of Nyctanthes arbor-tristis. Planta Med. 2023, 89, 377–384. [Google Scholar] [CrossRef]
  494. Borkowska, P.; Kucia, K.; Rzezniczek, S.; Paul-Samojedny, M.; Kowalczyk, M.; Owczarek, A.; Suchanek, R.; Medrala, T.; Kowalski, J. Interleukin-1beta promoter (-31T/C and -511C/T) polymorphisms in major recurrent depression. J. Mol. Neurosci. 2011, 44, 12–16. [Google Scholar] [CrossRef]
  495. Almonte, M.T.; Capellan, P.; Yap, T.E.; Cordeiro, M.F. Retinal correlates of psychiatric disorders. Ther. Adv. Chronic Dis. 2020, 11, 2040622320905215. [Google Scholar] [CrossRef]
  496. Kalmann, R.; Mourits, M.P. Prevalence and management of elevated intraocular pressure in patients with Graves’ orbitopathy. Br. J. Ophthalmol. 1998, 82, 754–757. [Google Scholar] [CrossRef]
  497. Ramos, B.R.; Mendes, N.D.; Tanikawa, A.A.; Amador, M.A.; dos Santos, N.P.; dos Santos, S.E.; Castelli, E.C.; Witkin, S.S.; da Silva, M.G. Ancestry informative markers and selected single nucleotide polymorphisms in immunoregulatory genes on preterm labor and preterm premature rupture of membranes: A case control study. BMC Pregnancy Childbirth 2016, 16, 30. [Google Scholar] [CrossRef]
  498. Walfisch, A.; Kessous, R.; Davidson, E.; Sergienko, R.; Beharier, O.; Sheiner, E. Increased risk for ophthalmic complications in patients with a history of preterm delivery. Am. J. Perinatol. 2016, 33, 708–714. [Google Scholar] [PubMed]
  499. Loft, N.D.; Skov, L.; Iversen, L.; Gniadecki, R.; Dam, T.N.; Brandslund, I.; Hoffmann, H.J.; Andersen, M.R.; Dessau, R.B.; Bergmann, A.C.; et al. Associations between functional polymorphisms and response to biological treatment in Danish patients with psoriasis. Pharmacogenom. J. 2018, 18, 494–500. [Google Scholar] [CrossRef]
  500. Li, S.H.; Cheng, C.Y. Risks of glaucoma among individuals with psoriasis: A population-based cohort study. Clin. Exp. Dermatol. 2024, 49, llae073. [Google Scholar] [CrossRef]
  501. Ding, X.; Mei, Y.; Mao, Z.; Long, L.; Han, Q.; You, Y.; Zhu, H. Association of immune and inflammatory gene polymorphism with the risk of IgA nephropathy: A systematic review and meta-analysis of 45 studies. Front. Immunol. 2021, 12, 683913. [Google Scholar] [CrossRef]
  502. van Dijk, E.H.C.; Soonawala, D.; Rooth, V.; Hoyng, C.B.; Meijer, O.C.; de Vries, A.P.J.; Boon, C.J.F. Spectrum of retinal abnormalities in renal transplant patients using chronic low-dose steroids. Graefes Arch. Clin. Exp. Ophthalmol. 2017, 255, 2443–2449. [Google Scholar] [CrossRef]
  503. Xie, X.; Li, J.; Gu, F.; Zhang, K.; Su, Z.; Wen, Q.; Sui, Z.; Zhou, P.; Yu, T. Genetic determinants for bacterial osteomyelitis: A focused systematic review of published literature. Front. Genet. 2021, 12, 654792. [Google Scholar] [CrossRef] [PubMed]
  504. Hu, K.S.; Khanna, S. Actinomyces orbital osteomyelitis in the setting of multiple myeloma and bisphosphonate-related osteonecrosis. J. Neuroophthalmol. 2019, 39, 120–121. [Google Scholar] [CrossRef]
  505. Meng, L.; Zhen, Z.; Jiang, Q.; Li, X.H.; Yuan, Y.; Yao, W.; Zhang, M.M.; Li, A.J.; Shi, L. Predictive model based on gene and laboratory data for intravenous immunoglobulin resistance in Kawasaki disease in a Chinese population. Pediatr. Rheumatol. Online J. 2021, 19, 95. [Google Scholar] [CrossRef]
  506. Ng, L.H.; Lung, J.C. Bilateral juvenile open angle glaucoma in two Chinese children: Case report. Clin. Exp. Optom. 2008, 91, 403–410. [Google Scholar] [CrossRef]
  507. Kim, S.H.; Mok, J.W.; Kim, H.S.; Joo, C.K. Association of -31T>C and -511C>T polymorphisms in the interleukin 1 beta (IL1B) promoter in Korean keratoconus patients. Mol. Vis. 2008, 14, 2109–2116. [Google Scholar] [PubMed]
  508. Goel, S.; Ganger, A.; Gupta, V. Bilateral juvenile onset primary open-angle glaucoma among keratoconus patients. J. Glaucoma 2015, 24, e25–e27. [Google Scholar] [CrossRef] [PubMed]
  509. Krishna Priya, E.K.; Srinivas, L.; Rajesh, S.; Sasikala, K.; Banerjee, M. Pro-inflammatory cytokine response pre-dominates immuno-genetic pathway in development of rheumatoid arthritis. Mol. Biol. Rep. 2020, 47, 8669–8677. [Google Scholar] [CrossRef] [PubMed]
  510. Kim, S.H.; Jeong, S.H.; Kim, H.; Park, E.C.; Jang, S.Y. Development of open-angle glaucoma in adults with seropositive rheumatoid arthritis in Korea. JAMA Netw. Open 2022, 5, e223345. [Google Scholar] [CrossRef] [PubMed]
  511. Okada, S.; Hata, K.; Shinagawa, T.; Noguchi, T.; Tanaka, T.; Kawai, K.; Nozawa, H.; Ishihara, S. A polymorphism in interleukin-1β gene is associated with the development of pouchitis in Japanese patients with ulcerative colitis. Digestion 2021, 102, 489–498. [Google Scholar] [CrossRef]
  512. Xie, M.S.; Zheng, Y.Z.; Huang, L.B.; Xu, G.X. Infliximab relieves blood retinal barrier breakdown through the p38 MAPK pathway in a diabetic rat model. Int. J. Ophthalmol. 2017, 10, 1824–1829. [Google Scholar]
  513. Reis, C.L.B.; Barbosa, M.C.F.; Machado, B.M.S.M.; Baratto, S.S.P.; de Lima, D.C.; Paza, A.O.; Filho, F.B.; Brancher, J.A.; Kuchler, E.C.; de Oliveira, D.S.B. Genetic polymorphisms in interleukin-6 and interleukin-1-beta were associated with dental caries and gingivitis. Acta Odontol. Scand. 2021, 79, 96–102. [Google Scholar] [CrossRef]
  514. Polla, D.; Astafurov, K.; Hawy, E.; Hyman, L.; Hou, W.; Danias, J. A pilot study to evaluate the oral microbiome and dental health in primary open-angle glaucoma. J. Glaucoma 2017, 26, 320–327. [Google Scholar] [CrossRef]
  515. He, Z.; Sun, Y.; Wu, J.; Xiong, Z.; Zhang, S.; Liu, J.; Liu, Y.; Li, H.; Jin, T.; Yang, Y.; et al. Evaluation of genetic variants in IL-1B and its interaction with the predisposition of osteoporosis in the northwestern Chinese Han population. J. Gene Med. 2020, 22, e3214. [Google Scholar] [CrossRef]
  516. Newman-Casey, P.A.; Talwar, N.; Nan, B.; Musch, D.C.; Pasquale, L.R.; Stein, J.D. The potential association between postmenopausal hormone use and primary open-angle glaucoma. JAMA Ophthalmol. 2014, 132, 298–303. [Google Scholar] [CrossRef] [PubMed]
  517. Wade, N.B.; Chang, C.M.; Conti, D.; Millstein, J.; Skibola, C.; Nieters, A.; Wang, S.S.; De Sanjose, S.; Kane, E.; Spinelli, J.J.; et al. Infectious mononucleosis, immune genotypes, and non-Hodgkin lymphoma (NHL): An InterLymph Consortium study. Cancer Causes Control 2020, 31, 451–462. [Google Scholar] [CrossRef] [PubMed]
  518. Dammacco, R.; Guerriero, S.; Alessio, G.; Dammacco, F. Natural and iatrogenic ocular manifestations of rheumatoid arthritis: A systematic review. Int. Ophthalmol. 2022, 42, 689–711. [Google Scholar] [CrossRef]
  519. Barseem, N.F.; Khattab, E.S.A.E.H.; Mahasab, M.M. IL-1β-31/IL1-RA genetic markers association with idiopathic generalized epilepsy and treatment response in a cohort of Egyptian population. Int. J. Neurosci. 2020, 130, 348–354. [Google Scholar] [CrossRef]
  520. Kulkarni, C.; Chaudhuri, U.R.; Jagathesan, A. Bilateral acute angle-closure glaucoma following treatment with topiramate for headache. Neurol. Ther. 2013, 2, 57–62. [Google Scholar] [CrossRef]
  521. Liu, Y.; Li, S.; Zhang, G.; Nie, G.; Meng, Z.; Mao, D.; Chen, C.; Chen, X.; Zhou, B.; Zeng, G. Genetic variants in IL1A and IL1B contribute to the susceptibility to 2009 pandemic H1N1 influenza A virus. BMC Immunol. 2013, 14, 37. [Google Scholar] [CrossRef]
  522. Dong, X.; Zeng, Y.; Liu, Y.; You, L.; Yin, X.; Fu, J.; Ni, J. Aloe-emodin: A review of its pharmacology, toxicity, and pharmacokinetics. Phytother. Res. 2020, 34, 270–281. [Google Scholar] [CrossRef] [PubMed]
  523. Majumder, P.; Panda, S.K.; Ghosh, S.; Dey, S.K. Interleukin gene polymorphisms in chronic periodontitis: A case-control study in the Indian population. Arch. Oral. Biol. 2019, 101, 156–164. [Google Scholar] [CrossRef]
  524. Sun, K.T.; Shen, T.C.; Chen, S.C.; Chang, C.L.; Li, C.H.; Li, X.; Palanisamy, K.; Hsia, N.Y.; Chang, W.S.; Tsai, C.W.; et al. Periodontitis and the subsequent risk of glaucoma: Results from the real-world practice. Sci. Rep. 2020, 10, 17568. [Google Scholar] [CrossRef] [PubMed]
  525. Yu, Y.; Zhang, Y.; Wu, J.; Sun, Y.; Xiong, Z.; Niu, F.; Lei, L.; Du, S.; Chen, P.; Yang, Z. Genetic polymorphisms in IL1B predict susceptibility to steroid-induced osteonecrosis of the femoral head in Chinese Han population. Osteoporos. Int. 2019, 30, 871–877. [Google Scholar] [CrossRef]
  526. Lai, H.Y.; Lai, I.C.; Fang, P.C.; Hsiao, C.C.; Hsiao, Y.T. Steroid-induced ocular hypertension in a pediatric patient with acute lymphoblastic leukemia: A case report. Children 2022, 9, 440. [Google Scholar] [CrossRef]
  527. Naranjo-Galvis, C.A.; de-la-Torre, A.; Mantilla-Muriel, L.E.; Beltran-Angarita, L.; Elcoroaristizabal-Martin, X.; McLeod, R.; Alliey-Rodriguez, N.; Begeman, I.J.; Lopez de Mesa, C.; Gomez-Marin, J.E.; et al. Genetic polymorphisms in cytokine genes in colombian patients with ocular toxoplasmosis. Infect. Immun. 2018, 86, e00597-17. [Google Scholar] [CrossRef]
  528. Suhardjo Utomo, P.T.; Agni, A.N. Clinical manifestations of ocular toxoplasmosis in Yogyakarta, Indonesia: A clinical review of 173 cases. Southeast. Asian J. Trop. Med. Public Health 2003, 34, 291–297. [Google Scholar]
  529. Wu, J.F.; Song, S.H.; Lee, C.S.; Chen, H.L.; Ni, Y.H.; Hsu, H.Y.; Wu, T.C.; Chang, M.H. Clinical predictors of liver fibrosis in patients with chronic hepatitis B virus infection from children to adults. J. Infect. Dis. 2018, 217, 1408–1416. [Google Scholar] [CrossRef] [PubMed]
  530. Gumus, K.; Yurci, A.; Mirza, E.; Arda, H.; Oner, A.; Topaktas, D.; Karakucuk, S. Evaluation of ocular surface damage and dry eye status in chronic hepatitis C at different stages of hepatic fibrosis. Cornea 2009, 28, 997–1002. [Google Scholar] [CrossRef]
  531. Byun, E.; Gay, C.L.; Portillo, C.J.; Pullinger, C.R.; Aouizerat, B.E.; Lee, K.A. Cytokine polymorphisms are associated with daytime napping in adults living with HIV. Sleep. Med. 2017, 32, 162–170. [Google Scholar] [CrossRef] [PubMed]
  532. Wild, J.M.; Searle, A.E.; Dengler-Harles, M.; O’Neill, E.C. Long-term follow-up of baseline learning and fatigue effects in the automated perimetry of glaucoma and ocular hypertensive patients. Acta Ophthalmol. 1991, 69, 210–216. [Google Scholar] [CrossRef]
  533. Hudson, Z.D.; Miller, B.J. Meta-analysis of cytokine and chemokine genes in schizophrenia. Clin. Schizophr. Relat. Psychoses 2018, 12, 121–129B. [Google Scholar] [CrossRef]
  534. Lee, W.W.; Tajunisah, I.; Sharmilla, K.; Peyman, M.; Subrayan, V. Retinal nerve fiber layer structure abnormalities in schizophrenia and its relationship to disease state: Evidence from optical coherence tomography. Investig. Ophthalmol. Vis. Sci. 2013, 54, 7785–7792. [Google Scholar] [CrossRef]
  535. Nishida, Y.; Hara, M.; Sakamoto, T.; Shinchi, K.; Kawai, S.; Naito, M.; Hamajima, N.; Kadota, A.; Suzuki, S.; Ibusuki, R.; et al. Influence of cigarette smoking and inflammatory gene polymorphisms on glycated hemoglobin in the Japanese general population. Prev. Med. Rep. 2016, 3, 288–295. [Google Scholar] [CrossRef] [PubMed]
  536. Ou, K.; Li, Y.; Liu, L.; Li, H.; Cox, K.; Wu, J.; Liu, J.; Dick, A.D. Recent developments of neuroprotective agents for degenerative retinal disorders. Neural Regen. Res. 2022, 17, 1919–1928. [Google Scholar] [PubMed]
  537. Yin, Y.; Liu, Y.; Pan, X.; Chen, R.; Li, P.; Wu, H.J.; Zhao, Z.Q.; Li, Y.P.; Huang, L.Q.; Zhuang, J.H.; et al. Interleukin-1β promoter polymorphism enhances the risk of sleep disturbance in Alzheimer’s Disease. PLoS ONE 2016, 11, e0149945. [Google Scholar] [CrossRef] [PubMed]
  538. Onen, S.H.; Mouriaux, F.; Berramdane, L.; Dascotte, J.C.; Kulik, J.F.; Rouland, J.F. High prevalence of sleep-disordered breathing in patients with primary open-angle glaucoma. Acta Ophthalmol. Scand. 2000, 78, 638–641. [Google Scholar] [CrossRef]
  539. Yencilek, F.; Yildirim, A.; Yilmaz, S.G.; Altinkilic, E.M.; Dalan, A.B.; Bastug, Y.; Isbir, T. Investigation of interleukin-1β polymorphisms in prostate cancer. Anticancer. Res. 2015, 35, 6057–6061. [Google Scholar] [PubMed]
  540. Ahn, H.K.; Lee, H.S.; Park, J.Y.; Kim, D.K.; Kim, M.; Hwang, H.S.; Kim, J.W.; Ha, J.S.; Cho, K.S. Androgen deprivation therapy may reduce the risk of primary open-angle glaucoma in patients with prostate cancer: A nationwide population-based cohort study. Prostate Int. 2021, 9, 197–202. [Google Scholar] [CrossRef]
  541. Simeon, V.; Todoerti, K.; La Rocca, F.; Caivano, A.; Trino, S.; Lionetti, M.; Agnelli, L.; De Luca, L.; Laurenzana, I.; Neri, A.; et al. Molecular classification and pharmacogenetics of primary plasma cell leukemia: An initial approach toward precision medicine. Int. J. Mol. Sci. 2015, 16, 17514–17534. [Google Scholar] [CrossRef]
  542. Akaihata, M.; Somiya, H.; Shimomura, Y.; Hori, T.; Okumura, A. Surgical management of steroid-induced glaucoma in a child with leukemia. Pediatr. Int. 2022, 64, e15259. [Google Scholar] [CrossRef]
  543. Henderson, S.T.; Poirier, J. Pharmacogenetic analysis of the effects of polymorphisms in APOE, IDE and IL1B on a ketone body based therapeutic on cognition in mild to moderate Alzheimer’s disease; a randomized, double-blind, placebo-controlled study. BMC Med. Genet. 2011, 12, 137. [Google Scholar] [CrossRef] [PubMed]
  544. Bastani Viarsagh, S.; Zhang, M.E.; Shariflou, S.; Agar, A.; Golzan, S.M. Cognitive performance on the Montreal cognitive assessment test and retinal structural and functional measures in glaucoma. J. Clin. Med. 2022, 11, 5097. [Google Scholar] [CrossRef]
  545. Benke, K.S.; Carlson, M.C.; Doan, B.Q.; Walston, J.D.; Xue, Q.L.; Reiner, A.P.; Fried, L.P.; Arking, D.E.; Chakravarti, A.; Fallin, M.D. The association of genetic variants in interleukin-1 genes with cognition: Findings from the cardiovascular health study. Exp. Gerontol. 2011, 46, 1010–1019. [Google Scholar] [CrossRef]
  546. Tielsch, J.M.; Sommer, A.; Katz, J.; Royall, R.M.; Quigley, H.A.; Javitt, J. Racial variations in the prevalence of primary open-angle glaucoma. The Baltimore Eye Survey. JAMA 1991, 266, 369–374. [Google Scholar] [CrossRef]
  547. Choi, J.A.; Lee, S.N.; Jung, S.H.; Won, H.H.; Yun, J.S. Association of glaucoma and lifestyle with incident cardiovascular disease: A longitudinal prospective study from UK Biobank. Sci. Rep. 2023, 13, 2712. [Google Scholar] [CrossRef] [PubMed]
  548. Rizzato, C.; Canzian, F.; Rudnai, P.; Gurzau, E.; Stein, A.; Koppova, K.; Hemminki, K.; Kumar, R.; Campa, D. Interaction between functional polymorphic variants in cytokine genes, established risk factors and susceptibility to basal cell carcinoma of skin. Carcinogenesis 2011, 32, 1849–1854. [Google Scholar] [CrossRef] [PubMed]
  549. Kang, J.H.; VoPham, T.; Laden, F.; Rosner, B.A.; Wirostko, B.; Ritch, R.; Wiggs, J.L.; Qureshi, A.; Nan, H.; Pasquale, L.R. Cohort study of nonmelanoma skin cancer and the risk of exfoliation glaucoma. J. Glaucoma 2020, 29, 448–455. [Google Scholar] [CrossRef]
  550. Van Dyke, A.L.; Cote, M.L.; Wenzlaff, A.S.; Land, S.; Schwartz, A.G. Cytokine SNPs: Comparison of allele frequencies by race and implications for future studies. Cytokine 2009, 46, 236–244. [Google Scholar] [CrossRef]
  551. Ohia, S.E.; Njie-Mbye, Y.F.; Opere, C.A.; Kulkarni, M.; Barett, A. Ocular Health, Vision, and a Healthy Diet. In Inflammation, Advancing Age and Nutrition; Rahman, I., Bagchi, D., Eds.; Academic Press: San Diego, CA, USA, 2014; pp. 267–277. [Google Scholar] [CrossRef]
  552. Dhanireddy, S.; Yin, H.Y.; Dosakayala, N.; Kurochkin, P.; Gupta, N.; Cheng, A.M.S.; Fechtner, R.; Alpert, S. Severe inflammation and hyphema after micropulse diode transscleral cyclophotocoagulation. J. Glaucoma 2020, 29, e50–e52. [Google Scholar] [CrossRef] [PubMed]
  553. Maksymowych, W.P.; Rahman, P.; Reeve, J.P.; Gladman, D.D.; Peddle, L.; Inman, R.D. Association of the IL1 gene cluster with susceptibility to ankylosing spondylitis: An analysis of three Canadian populations. Arthritis Rheum. 2006, 54, 974–985. [Google Scholar] [CrossRef]
  554. Li, S.; Chen, M.; Zhang, Q.; Fang, M.; Xiong, W.; Bai, L. Ankylosing spondylitis and glaucoma in European population: A Mendelian randomization study. Front. Immunol. 2023, 14, 1120742. [Google Scholar] [CrossRef] [PubMed]
  555. Jung, Y.; Han, K.; Park, H.Y.L.; Lee, S.H.; Park, C.K. Metabolic health, obesity, and the risk of developing open-angle glaucoma: Metabolically healthy obese patients versus metabolically unhealthy but normal weight patients. Diabetes Metab. J. 2020, 44, 414–425. [Google Scholar] [CrossRef]
  556. Pampalakis, G.; Mitropoulos, K.; Xiromerisiou, G.; Dardiotis, E.; Deretzi, G.; Anagnostouli, M.; Katsila, T.; Rentzos, M.; Patrinos, G.P. New molecular diagnostic trends and biomarkers for amyotrophic lateral sclerosis. Hum. Mutat. 2019, 40, 361–373. [Google Scholar] [CrossRef] [PubMed]
  557. Adduri, R.S.; Katamoni, R.; Pandilla, R.; Madana, S.N.; Paripati, A.K.; Kotapalli, V.; Bashyam, M.D. TP53 Pro72 allele is enriched in oral tongue cancer and frequently mutated in esophageal cancer in India. PLoS ONE 2014, 9, e114002. [Google Scholar] [CrossRef]
  558. Leonardi, A. Emerging drugs for ocular allergy. Expert. Opin. Emerg. Drugs 2005, 10, 505–520. [Google Scholar] [CrossRef] [PubMed]
  559. Schafer, D.P.; Stevens, B. Synapse elimination during development and disease: Immune molecules take centre stage. Biochem. Soc. Trans. 2010, 38, 476–481. [Google Scholar] [CrossRef]
  560. Peippo, M.; Ignatius, J. Pitt-Hopkins Syndrome. Mol. Syndr. 2012, 2, 171–180. [Google Scholar] [CrossRef]
  561. Bu, Q.; Zhu, H.; Cao, G.; Gong, G.; Su, Y.; Ge, Q.; Zhu, W.; Li, Z.; Pan, X. Targeting mechanics-induced trabecular meshwork dysfunction through YAP-TGFβ Ameliorates high myopia-induced ocular hypertension. Exp. Eye Res. 2024, 241, 109853. [Google Scholar] [CrossRef] [PubMed]
  562. Nagarsheth, M.; Singh, A.; Schmotzer, B.; Babineau, D.C.; Sugar, J.; Lee, W.B.; Iyengar, S.K.; Lass, J.H.; Fuchs’ Genetics Multi-Center Study Group. Relationship between Fuchs endothelial corneal dystrophy severity and glaucoma and/or ocular hypertension. Arch. Ophthalmol. 2012, 130, 1384–1388. [Google Scholar] [CrossRef] [PubMed]
  563. Shields, C.L.; Paulose, S.A.; Yaghy, A.; Dalvin, L.A.; Constantinescu, A.B.; Lally, S.E.; Shields, J.A. Ocular surface squamous neoplasia managed with primary interferon α2b: A comparative analysis of 212 tumors in smokers versus nonsmokers. Cornea 2021, 40, 1387–1394. [Google Scholar] [CrossRef] [PubMed]
  564. Rakusiewicz, K.; Kanigowska, K.; Hautz, W.; Ziolkowska, L. Choroidal thickness changes in children with chronic heart failure due to dilated cardiomyopathy. Int. Ophthalmol. 2021, 41, 2167–2177. [Google Scholar] [CrossRef] [PubMed]
  565. Betzler, B.K.; Siat, D.J.Y.; Agrawal, R.; Dorairaj, S.; Ang, B.C.H. Comparison of peripapillary choroidal thickness between primary open-angle glaucoma, normal tension glaucoma, and normal eyes: A systematic review and meta-analysis. Ophthalmol. Glaucoma 2024, 7, 359–371. [Google Scholar] [CrossRef]
  566. Yang, X.; Zhang, H.; Shang, J.; Liu, G.; Xia, T.; Zhao, C.; Sun, G.; Dou, H. Comparative analysis of the blood transcriptomes between wolves and dogs. Anim. Genet. 2018, 49, 291–302. [Google Scholar] [CrossRef] [PubMed]
  567. Albert, F.W.; Somel, M.; Carneiro, M.; Aximu-Petri, A.; Halbwax, M.; Thalmann, O.; Blanco-Aguiar, J.A.; Plyusnina, I.Z.; Trut, L.; Villafuerte, R.; et al. A comparison of brain gene expression levels in domesticated and wild animals. PLoS Genet. 2012, 8, e1002962. [Google Scholar] [CrossRef]
  568. Long, K.; Mao, K.; Che, T.; Zhang, J.; Qiu, W.; Wang, Y.; Tang, Q.; Ma, J.; Li, M.; Li, X. Transcriptome differences in frontal cortex between wild boar and domesticated pig. Anim. Sci. J. 2018, 89, 848–857. [Google Scholar] [CrossRef] [PubMed]
  569. Yang, Y.; Adeola, A.C.; Xie, H.B.; Zhang, Y.P. Genomic and transcriptomic analyses reveal selection of genes for puberty in Bama Xiang pigs. Zool. Res. 2018, 39, 424–430. [Google Scholar]
  570. Hekman, J.P.; Johnson, J.L.; Edwards, W.; Vladimirova, A.V.; Gulevich, R.G.; Ford, A.L.; Kharlamova, A.V.; Herbeck, Y.; Acland, G.M.; Raetzman, L.T.; et al. Anterior pituitary transcriptome suggests differences in ACTH release in tame and aggressive foxes. Genes. Genomes Genet. 2018, 8, 859–873. [Google Scholar] [CrossRef] [PubMed]
  571. Sato, D.X.; Rafati, N.; Ring, H.; Younis, S.; Feng, C.; Blanco-Aguiar, J.A.; Rubin, C.J.; Villafuerte, R.; Hallbook, F.; Carneiro, M.; et al. Brain transcriptomics of wild and domestic rabbits suggests that changes in dopamine signaling and ciliary function contributed to evolution of tameness. Genome Biol. Evol. 2020, 12, 1918–1928. [Google Scholar] [CrossRef]
  572. Chadaeva, I.; Ponomarenko, P.; Kozhemyakina, R.; Suslov, V.; Bogomolov, A.; Klimova, N.; Shikhevich, S.; Savinkova, L.; Oshchepkov, D.; Kolchanov, N.A.; et al. Domestication explains two-thirds of differential-gene-expression variance between domestic and wild animals; the remaining one-third reflects intraspecific and interspecific variation. Animals 2021, 11, 2667. [Google Scholar] [CrossRef]
  573. Oshchepkov, D.; Ponomarenko, M.; Klimova, N.; Chadaeva, I.; Bragin, A.; Sharypova, E.; Shikhevich, S.; Kozhemyakina, R. A rat model of human behavior provides evidence of natural selection against underexpression of aggressiveness-related genes in humans. Front. Genet. 2019, 10, 1267. [Google Scholar] [CrossRef]
  574. Oshchepkov, D.; Chadaeva, I.; Kozhemyakina, R.; Shikhevich, S.; Sharypova, E.; Savinkova, L.; Klimova, N.V.; Tsukanov, A.; Levitsky, V.G.; Markel, A.L. Transcription factors as important regulators of changes in behavior through domestication of gray rats: Quantitative data from RNA sequencing. Int. J. Mol. Sci. 2022, 23, 12269. [Google Scholar] [CrossRef] [PubMed]
  575. Fallahshahroudi, A.; Lotvedt, P.; Belteky, J.; Altimiras, J.; Jensen, P. Changes in pituitary gene expression may underlie multiple domesticated traits in chickens. Hered. Edinb. 2019, 122, 195–204. [Google Scholar] [CrossRef]
  576. Ponomarenko, P.; Savinkova, L.; Drachkova, I.; Lysova, M.; Arshinova, T.; Ponomarenko, M.; Kolchanov, N. A step-by-step model of TBP/TATA box binding allows predicting human hereditary diseases by single nucleotide polymorphism. Dokl. Biochem. Biophys. 2008, 419, 88–92. [Google Scholar] [CrossRef] [PubMed]
  577. Delgadillo, R.F.; Whittington, J.E.; Parkhurst, L.K.; Parkhurst, L.J. The TATA-binding protein core domain in solution variably bends TATA sequences via a three-step binding mechanism. Biochemistry 2009, 48, 1801–1809. [Google Scholar] [CrossRef]
  578. Hahn, S.; Buratowski, S.; Sharp, P.; Guarente, L. Yeast TATA-binding protein TFIID binds to TATA elements with both consensus and nonconsensus DNA sequences. Proc. Natl. Acad. Sci. USA 1989, 86, 5718–5722. [Google Scholar] [CrossRef]
  579. Berg, O.G.; von Hippel, P.H. Selection of DNA binding sites by regulatory proteins. Statistical-mechanical theory and application to operators and promoters. J. Mol. Biol. 1987, 193, 723–750. [Google Scholar] [CrossRef] [PubMed]
  580. Bucher, P. Weight matrix descriptions of four eukaryotic RNA polymerase II promoter elements derived from 502 unrelated promoter sequences. J. Mol. Biol. 1990, 212, 563–578. [Google Scholar] [CrossRef]
  581. Coleman, R.A.; Pugh, B.F. Evidence for functional binding and stable sliding of the TATA binding protein on nonspecific DNA. J. Biol. Chem. 1995, 270, 13850–13859. [Google Scholar] [CrossRef]
  582. Karas, H.; Knuppel, R.; Schulz, W.; Sklenar, H.; Wingender, E. Combining structural analysis of DNA with search routines for the detection of transcription regulatory elements. Comput. Appli. Biosci. 1996, 12, 441–446. [Google Scholar] [CrossRef]
  583. Ponomarenko, M.; Ponomarenko, J.; Frolov, A.; Podkolodny, N.; Savinkova, L.; Kolchanov, N.; Overton, G. Identification of sequence-dependent features correlating to activity of DNA sites interacting with proteins. Bioinformatics 1999, 15, 687–703. [Google Scholar] [CrossRef]
  584. Flatters, D.; Lavery, R. Sequence-dependent dynamics of TATA-box binding sites. Biophys. J. 1998, 75, 372–381. [Google Scholar] [CrossRef] [PubMed]
  585. Kim, J.L.; Nikolov, D.B.; Burley, S.K. Co-crystal structure of TBP recognizing the minor groove of a TATA element. Nature 1993, 365, 520–527. [Google Scholar] [CrossRef]
  586. Kim, Y.; Geiger, J.H.; Hahn, S.; Sigler, P.B. Crystal structure of a yeast TBP/TATA-box complex. Nature 1993, 365, 512–520. [Google Scholar] [CrossRef] [PubMed]
  587. Waardenberg, A.; Basset, S.; Bouveret, R.; Harvey, R. CompGO: An R package for comparing and visualizing Gene Ontology enrichment differences between DNA binding experiments. BMC Bioinform. 2015, 16, 275. [Google Scholar] [CrossRef] [PubMed]
  588. Mustafin, Z.S.; Lashin, S.A.; Matushkin, Y.G.; Gunbin, K.V.; Afonnikov, D.A. Orthoscape: A cytoscape application for grouping and visualization KEGG based gene networks by taxonomy and homology principles. BMC Bioinform. 2017, 18, 1427. [Google Scholar] [CrossRef] [PubMed]
  589. Mustafin, Z.S.; Zamyatin, V.I.; Konstantinov, D.K.; Doroshkov, A.V.; Lashin, S.A.; Afonnikov, D.A. Phylostratigraphic analysis shows the earliest origination of the abiotic stress associated genes in A. thaliana. Genes. 2019, 10, 963. [Google Scholar] [CrossRef] [PubMed]
  590. Shannon, P.; Markiel, A.; Ozier, O.; Baliga, N.S.; Wang, J.T.; Ramage, D.; Amin, N.; Schwikowski, B.; Ideker, T. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res. 2003, 13, 2498–2504. [Google Scholar] [CrossRef] [PubMed]
  591. Latka, M.; Turalska, M.; Glaubic-Latka, M.; Kolodziej, W.; Latka, D.; West, B.J. Phase dynamics in cerebral autoregulation. Am. J. Physiol. Heart Circ. Physiol. 2005, 289, H2272–H2279. [Google Scholar] [CrossRef]
  592. Kwak, S.G.; Kim, J.H. Central limit theorem: The cornerstone of modern statistics. Korean J. Anesth. 2017, 70, 144–156. [Google Scholar] [CrossRef]
  593. Gene Ontology Consortium; Aleksander, S.A.; Balhoff, J.; Carbon, S.; Cherry, J.M.; Drabkin, H.J.; Ebert, D.; Feuermann, M.; Gaudet, P.; Harris, N.L.; et al. The Gene Ontology knowledgebase in 2023. Genetics 2023, 224, iyad031. [Google Scholar] [PubMed]
  594. Husain, S.; Leveckis, R. Pharmacological regulation of HIF-1α, RGC death, and glaucoma. Curr. Opin. Pharmacol. 2024, 77, 102467. [Google Scholar] [CrossRef] [PubMed]
  595. Liang, X.; Bai, Z.; Wang, F.; Han, Y.; Sun, H.; Xiaokereti, J.; Zhang, L.; Zhou, X.; Lu, Y.; Tang, B. Full-length transcriptome sequencing: An insight into the dog model of heart failure. Front. Cardiovasc. Med. 2021, 8, 712797. [Google Scholar] [CrossRef] [PubMed]
  596. Zhang, Y.; Yang, A.; Huang, J. Identification of gene changes induced by dexamethasone in the anterior segment of the human eye using bioinformatics analysis. Med. Sci. Monit. 2019, 25, 5501–5509. [Google Scholar] [CrossRef] [PubMed]
  597. Evangelho, K.; Mogilevskaya, M.; Losada-Barragan, M.; Vargas-Sanchez, J.K. Pathophysiology of primary open-angle glaucoma from a neuroinflammatory and neurotoxicity perspective: A review of the literature. Int. Ophthalmol. 2019, 39, 259–271. [Google Scholar] [CrossRef] [PubMed]
  598. Graham, K.L.; Diefenbach, E.; McCowan, C.I.; White, A.J.R. A technique for shotgun proteomic analysis of the precorneal tear film in dogs with naturally occurring primary glaucoma. Vet. Ophthalmol. 2021, 24, 131–145. [Google Scholar] [CrossRef] [PubMed]
  599. Dammak, A.; Sanchez Naves, J.; Huete-Toral, F.; Carracedo, G. New biomarker combination related to oxidative stress and inflammation in primary open-angle glaucoma. Life 2023, 13, 1455. [Google Scholar] [CrossRef] [PubMed]
  600. Patel, P.; Harris, A.; Toris, C.; Tobe, L.; Lang, M.; Belamkar, A.; Ng, A.; Verticchio Vercellin, A.C.; Mathew, S.; Siesky, B. Effects of sex hormones on ocular blood flow and intraocular pressure in primary open-angle glaucoma: A review. J. Glaucoma 2018, 27, 1037–1041. [Google Scholar] [CrossRef] [PubMed]
  601. Blue Mountains Eye Study (BMES); Wellcome Trust Case Control Consortium 2 (WTCCC2). Genome-wide association study of intraocular pressure identifies the GLCCI1/ICA1 region as a glaucoma susceptibility locus. Hum. Mol. Genet. 2013, 22, 4653–4660. [Google Scholar] [CrossRef]
  602. Nie, Q.; Zhang, X. Transcriptional profiling analysis predicts potential biomarkers for glaucoma: HGF, AKR1B10 and AKR1C3. Exp. Ther. Med. 2018, 16, 5103–5111. [Google Scholar] [CrossRef]
  603. Song, X.; Li, P.; Li, Y.; Yan, X.; Yuan, L.; Zhao, C.; An, Y.; Chang, X. Strong association of glaucoma with atherosclerosis. Sci. Rep. 2021, 11, 8792. [Google Scholar] [CrossRef] [PubMed]
  604. Xia, Q.; Zhang, D. Apoptosis in glaucoma: A new direction for the treatment of glaucoma (Review). Mol. Med. Rep. 2024, 29, 82. [Google Scholar] [CrossRef]
  605. Pattabiraman, P.P.; Feinstein, V.; Beit-Yannai, E. Profiling the miRNA from exosomes of non-pigmented ciliary epithelium-derived identifies key gene targets relevant to primary open-angle glaucoma. Antioxidants 2023, 12, 405. [Google Scholar] [CrossRef]
  606. Pantalon, A.; Obada, O.; Constantinescu, D.; Feraru, C.; Chiselita, D. Inflammatory model in patients with primary open angle glaucoma and diabetes. Int. J. Ophthalmol. 2019, 12, 795–801. [Google Scholar]
  607. Vernazza, S.; Tirendi, S.; Bassi, A.M.; Traverso, C.E.; Sacca, S.C. Neuroinflammation in primary open-angle glaucoma. J. Clin. Med. 2020, 9, 3172. [Google Scholar] [CrossRef] [PubMed]
  608. Kaeslin, M.A.; Killer, H.E.; Fuhrer, C.A.; Zeleny, N.; Huber, A.R.; Neutzner, A. Changes to the aqueous humor proteome during glaucoma. PLoS ONE 2016, 11, e0165314. [Google Scholar] [CrossRef] [PubMed]
  609. Iomdina, E.N.; Tikhomirova, N.K.; Bessmertny, A.M.; Serebryakova, M.V.; Baksheeva, V.E.; Zalevsky, A.O.; Kotelin, V.I.; Kiseleva, O.A.; Kosakyan, S.M.; Zamyatnin, A.A., Jr.; et al. Alterations in proteome of human sclera associated with primary open-angle glaucoma involve proteins participating in regulation of the extracellular matrix. Mol. Vis. 2020, 26, 623–640. [Google Scholar]
  610. Horai, R.; Caspi, R.R. Microbiome and autoimmune uveitis. Front. Immunol. 2019, 10, 232. [Google Scholar] [CrossRef] [PubMed]
  611. Ziaastani, Z.; Kalantari-Khandani, B.; Niazi, M.J.; Kazemipour, A. Identification of critical genes and metabolic pathways in rheumatoid arthritis and osteoporosis toward drug repurposing. Comput. Biol. Med. 2024, 180, 108912. [Google Scholar] [CrossRef] [PubMed]
  612. Tezel, G. The immune response in glaucoma: A perspective on the roles of oxidative stress. Exp. Eye Res. 2011, 93, 178–186. [Google Scholar] [CrossRef] [PubMed]
  613. Hu, D.; Lin, Z.; Li, P.; Zhang, Z.; Jiang, J.; Yang, C. Investigation of potential crucial genes and key pathways in keratoconus: An analysis of gene expression Omnibus data. Biochem. Genet. 2023, 61, 2724–2740. [Google Scholar] [CrossRef] [PubMed]
  614. Schmalen, A.; Lorenz, L.; Grosche, A.; Pauly, D.; Deeg, C.A.; Hauck, S.M. Proteomic phenotyping of stimulated Muller cells uncovers profound pro-inflammatory signaling and antigen-presenting capacity. Front. Pharmacol. 2021, 12, 771571. [Google Scholar] [CrossRef] [PubMed]
  615. Maeda, Y. Pathogenesis of graft-versus-host disease: Innate immunity amplifying acute alloimmune responses. Int. J. Hematol. 2013, 98, 293–299. [Google Scholar] [CrossRef] [PubMed]
  616. Choi, J.A.; Ju, H.H.; Lee, J.; Kim, J.E.; Paik, S.Y.; Skiba, N.P.; Rao, P.V. Increased complement-associated inflammation in cytomegalovirus-positive hypertensive anterior uveitis patients based on the aqueous humor proteomics analysis. J. Clin. Med. 2022, 11, 2337. [Google Scholar] [CrossRef]
  617. Sato, K.; Ohira, M.; Imaoka, Y.; Imaoka, K.; Bekki, T.; Doskali, M.; Nakano, R.; Yano, T.; Tanaka, Y.; Ohdan, H. The aryl hydrocarbon receptor maintains antitumor activity of liver resident natural killer cells after partial hepatectomy in C57BL/6J mice. Cancer Med. 2023, 12, 19821–19837. [Google Scholar] [CrossRef]
  618. Yellen-Shaw, A.J.; Laughlin, C.E.; Metrione, R.M.; Eisenlohr, L.C. Murine transporter associated with antigen presentation (TAP) preferences influence class I-restricted T cell responses. J. Exp. Med. 1997, 186, 1655–1662. [Google Scholar] [CrossRef]
  619. Birney, E. The International Human Genome Project. Hum. Mol. Genet. 2021, 30, R161–R163. [Google Scholar] [CrossRef] [PubMed]
  620. 1000 Genomes Project Consortium; Abecasis, G.; Auton, A.; Brooks, L.; DePristo, M.; Durbin, R.; Handsaker, R.; Kang, H.; Marth, G.; McVean, G.; et al. An integrated map of genetic variation from 1092 human genomes. Nature 2012, 491, 56–65. [Google Scholar] [PubMed]
  621. Kasowski, M.; Grubert, F.; Heffelfinger, C.; Hariharan, M.; Asabere, A.; Waszak, S.; Habegger, L.; Rozowsky, J.; Shi, M.; Urban, A.; et al. Variation in transcription factor binding among humans. Science 2010, 328, 232–235. [Google Scholar] [CrossRef] [PubMed]
  622. Haldane, J.B.S. The cost of natural selection. J. Genet. 1957, 55, 511–524. [Google Scholar] [CrossRef]
  623. Kimura, M. Evolutionary rate at the molecular level. Nature. 1968, 217, 624–626. [Google Scholar] [CrossRef] [PubMed]
  624. Belyaev, D.K. The Wilhelmine E. Key 1978 invitational lecture. Destabilizing selection as a factor in domestication. J Hered 1979, 70, 301–308. [Google Scholar] [CrossRef]
  625. Samet, H. A top-down quadtree traversal algorithm. IEEE Trans. Pattern Anal. Mach. Intell. 1985, 7, 94–98. [Google Scholar] [CrossRef]
  626. Sun, G.L.; Shen, W.; Wen, J.F. Triosephosphate isomerase genes in two trophic modes of euglenoids (euglenophyceae) and their phylogenetic analysis. J. Eukaryot. Microbiol. 2008, 55, 170–177. [Google Scholar] [CrossRef]
  627. Morozova, O.V.; Alekseeva, A.E.; Sashina, T.A.; Brusnigina, N.F.; Epifanova, N.V.; Kashnikov, A.U.; Zverev, V.V.; Novikova, N.A. Phylodynamics of G4P[8] and G2P[4] strains of rotavirus A isolated in Russia in 2017 based on full-genome analyses. Virus Genes 2020, 56, 537–545. [Google Scholar] [CrossRef]
  628. Theofanopoulou, C.; Gastaldon, S.; O’Rourke, T.; Samuels, B.D.; Martins, P.T.; Delogu, F.; Alamri, S.; Boeckx, C. Self-domestication in Homo sapiens: Insights from comparative genomics. PLoS ONE 2017, 12, e0185306. [Google Scholar] [CrossRef] [PubMed]
  629. Schwab, I.R. The evolution of eyes: Major steps. The Keeler lecture 2017: Centenary of Keeler Ltd. Eye 2018, 32, 302–313. [Google Scholar] [CrossRef]
  630. Randel, N.; Jekely, G. Phototaxis and the origin of visual eyes. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2016, 371, 20150042. [Google Scholar]
  631. D’Aniello, S.; Bertrand, S. Cephalochordates. In Handbook of Marine Model Organisms in Experimental Biology; Rahman, I., Bagchi, D., Eds.; CRC Press: Boca Raton, FL, USA, 2014; pp. 341–355. [Google Scholar]
  632. Suzuki, D.G.; Grillner, S. The stepwise development of the lamprey visual system and its evolutionary implications. Biol. Rev. Camb. Philos. Soc. 2018, 93, 1461–1477. [Google Scholar] [CrossRef]
  633. Yam, G.H.; Gaplovska-Kysela, K.; Zuber, C.; Roth, J. Aggregated myocilin induces russell bodies and causes apoptosis: Implications for the pathogenesis of myocilin-caused primary open-angle glaucoma. Am. J. Pathol. 2007, 170, 100–109. [Google Scholar] [CrossRef]
  634. Kapitonov, V.V.; Jurka, J. RAG1 core and V(D)J recombination signal sequences were derived from Transib transposons. PLoS Biol. 2005, 3, e181. [Google Scholar] [CrossRef] [PubMed]
  635. Cooper, M.D.; Alder, M.N. The evolution of adaptive immune systems. Cell 2006, 124, 815–822. [Google Scholar] [CrossRef] [PubMed]
  636. Zhang, X.; Jamwal, K.; Distl, O. Tracking footprints of artificial and natural selection signatures in breeding and non-breeding cats. Sci. Rep. 2022, 12, 18061. [Google Scholar] [CrossRef]
  637. Zavos, C.; Kountouras, J.; Katsinelos, P.; Polyzos, S.A.; Deretzi, G.; Zavos, N.; Fragaki, M.; Diamantidis, M.D. Modern industrialization may increase primary open-angle glaucoma prevalence through easier transmission of Helicobacter pylori infection. Med. Hypotheses 2011, 76, 766–767. [Google Scholar] [CrossRef] [PubMed]
  638. Ma, Y.; Shao, M.; Li, S.; Lei, Y.; Cao, W.; Sun, X. The association between airborne particulate matter (PM2.5) exposure level and primary open-angle glaucoma. Ecotoxicol. Environ. Saf. 2024, 283, 116752. [Google Scholar] [CrossRef] [PubMed]
  639. Ciulla, L.; Moorthy, M.; Mathew, S.; Siesky, B.; Verticchio Vercellin, A.C.; Price, D.; Januleviciene, I.; Harris, A. Circadian rhythm and glaucoma: What do we know? J. Glaucoma 2020, 29, 127–132. [Google Scholar] [CrossRef] [PubMed]
Figure 1. Flowchart depicting our step-by-step exploration of all 153 human genes associated with primary open-angle glaucoma (hereinafter: POAG-related genes) according to the NCBI Gene Database [36] as accessed on 10 July 2024. Legend: for the box-and-whisker plots, the height is the interquartile range (IQR) between the first (bottom) quartile (25%) and the third upper quartile (75%), the middle line is the median (50%), the oblique crosses (symbol “X”) are the arithmetic mean, the error bar (symbol “I”) is the 95% confidence interval, the circles depict the dataset in question; K, U, Z, along with p and PADJ are, respectively, the scores of Kolmogorov–Smirnov, Mann–Whitney U, and Fisher’s tests along with their statistical significance without and with Bonferroni’s correction for multiple comparisons; the single asterisk (symbol “*”) and the double asterisk (symbol “**”) stand for statistical significance at p < 0.05 and p < 0.01, respectively; PAI is the phylostratigraphic age index according to Kyoto Encyclopedia of Genes and Genomes (hereinafter: KEGG-based) [59,60], the numerical in silico estimates whereof are given in Table S1 (see Supplementary Materials), namely: 1. Cellular organism as the conventional root of the phylogenetic tree of life, 4100 million years ago (Mya) [61]; 2. Eukaryota, 1850 Mya [62]; 3. Metazoa, 665 Mya [63]; 4. Chordata, 541 Mya [64]; 5. Craniata, 535 Mya [64]; 6. Vertebrata, 525 Mya [65]; 7. Euteleostomi, 420 Mya [66]; 8. Mammalia, 225 Mya [67]; 9. Eutheria, 160 Mya [68]; 10. Euarchontoglires, 65 Mya [69]; 11. Primates, 55 Mya [70]; 12. Haplorrhini, 50 Mya [71]; 13. Catarrhini, 44 Mya [72]; 14. Hominidae, 17 Mya [73]; 15. Homo, 2.8 Mya [74]; 16. Homo sapiens, 0.35 Mya [75].
Figure 1. Flowchart depicting our step-by-step exploration of all 153 human genes associated with primary open-angle glaucoma (hereinafter: POAG-related genes) according to the NCBI Gene Database [36] as accessed on 10 July 2024. Legend: for the box-and-whisker plots, the height is the interquartile range (IQR) between the first (bottom) quartile (25%) and the third upper quartile (75%), the middle line is the median (50%), the oblique crosses (symbol “X”) are the arithmetic mean, the error bar (symbol “I”) is the 95% confidence interval, the circles depict the dataset in question; K, U, Z, along with p and PADJ are, respectively, the scores of Kolmogorov–Smirnov, Mann–Whitney U, and Fisher’s tests along with their statistical significance without and with Bonferroni’s correction for multiple comparisons; the single asterisk (symbol “*”) and the double asterisk (symbol “**”) stand for statistical significance at p < 0.05 and p < 0.01, respectively; PAI is the phylostratigraphic age index according to Kyoto Encyclopedia of Genes and Genomes (hereinafter: KEGG-based) [59,60], the numerical in silico estimates whereof are given in Table S1 (see Supplementary Materials), namely: 1. Cellular organism as the conventional root of the phylogenetic tree of life, 4100 million years ago (Mya) [61]; 2. Eukaryota, 1850 Mya [62]; 3. Metazoa, 665 Mya [63]; 4. Chordata, 541 Mya [64]; 5. Craniata, 535 Mya [64]; 6. Vertebrata, 525 Mya [65]; 7. Euteleostomi, 420 Mya [66]; 8. Mammalia, 225 Mya [67]; 9. Eutheria, 160 Mya [68]; 10. Euarchontoglires, 65 Mya [69]; 11. Primates, 55 Mya [70]; 12. Haplorrhini, 50 Mya [71]; 13. Catarrhini, 44 Mya [72]; 14. Hominidae, 17 Mya [73]; 15. Homo, 2.8 Mya [74]; 16. Homo sapiens, 0.35 Mya [75].
Ijms 25 12802 g001
Figure 2. Significant correlations between the in silico—predicted (the x-axis) and in vitro—measured (the y-axis) KD values of the equilibrium dissociation constant of the TBP–promoter complex expressed as the ratio of their estimates for minor alleles (min) to their estimates for the corresponding ancestral alleles (WT) (see Table S4 for graphical representation). Legend: the (→) arrow points to rs1143627:T in the promoter of the IL1B gene for human interleukin 1β, a clinically proven SNP marker of predisposition to POAG in Brazil [40]; dashed and dotted lines are linear regression and limits of its 95% confidence interval, as calculated by STATISTICA (StatSoftTM, Tulsa, OK, USA); r, R, τ, γ χ2, and p are, respectively, the linear correlation, Spearman’s rank correlation, Kendall’s rank correlation, Goodman–Kruskal generalized correlation coefficients, Pearson’s chi-squared statistic, and their statistical significance.
Figure 2. Significant correlations between the in silico—predicted (the x-axis) and in vitro—measured (the y-axis) KD values of the equilibrium dissociation constant of the TBP–promoter complex expressed as the ratio of their estimates for minor alleles (min) to their estimates for the corresponding ancestral alleles (WT) (see Table S4 for graphical representation). Legend: the (→) arrow points to rs1143627:T in the promoter of the IL1B gene for human interleukin 1β, a clinically proven SNP marker of predisposition to POAG in Brazil [40]; dashed and dotted lines are linear regression and limits of its 95% confidence interval, as calculated by STATISTICA (StatSoftTM, Tulsa, OK, USA); r, R, τ, γ χ2, and p are, respectively, the linear correlation, Spearman’s rank correlation, Kendall’s rank correlation, Goodman–Kruskal generalized correlation coefficients, Pearson’s chi-squared statistic, and their statistical significance.
Ijms 25 12802 g002
Table 1. Annotation of the 123 older and 30 younger POAG-related genes in the Gene Ontology [593] or KEGG [60] categories using five publicly available web services, PANTHER [53], DAVID [54], STRING [55], MetaScape [56], and GeneMANIA [57].
Table 1. Annotation of the 123 older and 30 younger POAG-related genes in the Gene Ontology [593] or KEGG [60] categories using five publicly available web services, PANTHER [53], DAVID [54], STRING [55], MetaScape [56], and GeneMANIA [57].
CategoryNo123 Older POAG-Related Genes30 Younger POAG-Related Genes
IDTermPADJIDTermPADJ
PANTHER [53]
Biological Process1GO0070887cellular response to chemical stimulus10−24GO0051241negative regulation of multicellular organismal process10−5
2GO0042221response to chemical10−23GO0009617response to bacterium10−5
Molecular Function3GO0042802identical protein binding10−7GO0005102signaling receptor binding10−5
4GO0019899enzyme binding10−7GO0030545signaling receptor regulator activity10−4
Cell Component5GO0005615extracellular space10−7GO0005576extracellular region10−3
6GO0031982vesicle10−6GO0042825transporter associated with antigen presentation (TAP) complex10−2
DAVID [54]
Biological Process7GO0001666response to hypoxia10−6GO0010575positive regulation of vascular endothelial growth factor production10−2
8GO0051045negative regulation of membrane protein ectodomain proteolysis10−6GO0032755positive regulation of interleukin-6 production10−2
Molecular Function9GO0002020protease binding10−5GO0005125cytokine activity10−4
10GO0042802identical protein binding10−4GO0005149interleukin-1 receptor binding0.05
Cell Component11GO0031012extracellular matrix10−6GO0005576extracellular region10−8
12GO0005615extracellular space10−4GO0005615extracellular space10−5
KEGG Pathway13hsa05205proteoglycans in cancer10−15hsa04933AGE-RAGE signaling pathway in diabetic complications10−4
14hsa05417lipid and atherosclerosis10−11hsa05332graft-versus-host disease10−2
STRING [55]
Biological Process15GO0010033response to organic substance10−21GO0009617response to bacterium10−7
16GO1901700response to oxygen-containing compound10−21GO0006953acute-phase response10−6
Molecular Function17GO0005515protein binding10−9GO0005102signaling receptor binding10−4
18GO0042802identical protein binding10−8GO0030545signaling receptor regulator activity10−4
Cell Component19GO0005576extracellular space10−6GO0005576extracellular region10−3
20GO0031982vesicle10−5GO0005615extracellular space10−2
KEGG Pathway21hsa05205proteoglycans in cancer10−17hsa04933AGE-RAGE signaling pathway in diabetic complications10−7
22hsa05200pathways in cancer10−12hsa05332graft-versus-host disease10−4
MetaScape [56]
Biological Process23GO0009725response to hormone10−20GO0009617response to bacterium10−7
24GO0009410response to xenobiotic stimulus10−19GO0007162negative regulation of cell adhesion10−4
KEGG Pathway25hsa05205proteoglycans in cancer10−23hsa04933AGE-RAGE signaling pathway in diabetic complications10−7
26hsa05200pathways in cancer10−18hsa05163human cytomegalovirus infection10−4
GeneMANIA [57]
Biological Process27GO2001233regulation of apoptotic signaling pathway10−10GO0071219cellular response to molecule of bacterial origin10−20
28GO0008285negative regulation of cell population proliferation10−21GO0071216cellular response to biotic stimulus10−19
Note. PADJ, the significance level adjusted for multiple comparisons as estimated in the specified web services.
Table 2. Comparison of ANDSystem [52] outputs with the results from other web services for assessing the enrichment of Gene Ontology terms [593] or KEGG pathways [60] in the gene groups.
Table 2. Comparison of ANDSystem [52] outputs with the results from other web services for assessing the enrichment of Gene Ontology terms [593] or KEGG pathways [60] in the gene groups.
ANDSystem [52]#PANTHER [53], DAVID [54], STRING [55], MetaScape [56], GeneMANIA [57]: Gene Ontology Terms and KEGG PathwaysWhere ANDSystem [52] Agrees with PANTHER [53], DAVID [54], STRING [55], MetaScape [56], GeneMANIA [57] in Their Outcome Within PubMed [22]
123 older POAG-related genes studied in this work
pathogenesis1GO0001666: response to hypoxiahypoxia-caused ocular injuries speed POAG pathogenesis [594]
2GO0051045: negative regulation of membrane protein ectodomain proteolysiswithin human disease models using dogs [595]: GO0051045 is one of the seventeen best GO-terms specifying heart failure pathogenesis
3GO0002020: protease binding
GO0042802: identical protein binding
GO0005515: protein binding
GO0019899: enzyme binding
within the bioinformatics meta-analysis of POAG-related transcriptome data along with GO-annotation [596]: protease binding and protein–protein interactions were found to accelerate POAG pathogenesis
4GO0031012: extracellular matrix
GO0005615: extracellular space
according to a comprehensive biomedical review [597]: extracellular matrix and space remodeling accelerate POAG pathogenesis
5GO0010033: response to organic substance
GO0042221: response to chemical
in human disease models using dog tears [598]: haptoglobin-based response to organic substances speeds POAG pathogenesis
6GO1901700: response to oxygen-containing compoundoxidative stress can accelerate POAG pathogenesis [599]
7GO0009725: response to hormone
GO0070887: cellular response to chemical stimulus
during pregnancy and post-menopause, neuroprotective estrogen hormone therapy slows POAG pathogenesis [600]
8GO0009410: response to xenobiotic stimulusGO0009410 is a term specifying POAG pathogenesis [601]
9GO0008285: negative regulation of cell population proliferationwithin a cohort biomedical transcriptome meta-analysis [602]: GO0008285 is the best GO-term specifying POAG pathogenesis
10hsa05205: proteoglycans in cancer
hsa05200: pathways in cancer
in a cohort transcriptome meta-analysis [602]: hsa05200 is among the top five KEGG-pathways specifying POAG pathogenesis
11hsa05417: lipid and atherosclerosisin a cohort study [603]: atherosclerosis spurs POAG pathogenesis
apoptotic process12GO2001233: regulation of apoptotic signaling pathwayaccording to a comprehensive biomedical review [604]: retinal ganglion cell apoptosis contributes to POAG pathogenesis
13GO0031982: vesicleapoptotic bodies are one of the types of extracellular vesicles [605]
30 younger POAG-related genes studied in this work
inflammatory response14GO0010575: positive regulation of vascular endothelial growth factor productionaccording to cohort clinical study [606]: vascular endothelial growth factor (VEGF) excess contributes to inflammation in POAG
15GO0032755: positive regulation of IL6 productionIL6 excess contributes to inflammatory response in POAG [258]
16GO0005125: cytokine activityin a cohort study [258]: cytokine IL6 contributes to inflammation
17GO0005149: interleukin-1 receptor bindingIL1 binds to its receptor, raising the inflammatory response [607]
18GO0006953: acute-phase responseGO0006953 is a GO-term specifying inflammation in POAG [608]
immune response19GO0005576: extracellular region
GO0005615: extracellular space
within a cohort sclera sample study [609]: defects in the extracellular region and space can provoke an immune response in POAG
20GO0009617: response to bacteriumdysbiosis in the gut–retina axis triggers an immune response [610]
21GO0005102: signaling receptor binding
GO0030545: signaling receptor regulator activity
a retrospective meta-analysis [611]: GO0005102 and GO0030545 are GO-terms specifying the immune response in osteoporosis
22GO0007162: negative regulation of cell adhesionaltered cell adhesion causes an immune response in POAG [612]
23GO0071219: cellular response to molecule of bacterial originwithin meta-analysis of both KEGG and Omnibus Database [613]: bacterial origin molecules can cause a cellular immune response
24GO0071216: cellular response to biotic stimulusa biotic stimulus can provoke a cellular immune response [613]
25hsa04933: AGE-RAGE signaling pathway in diabetic complicationswithin human POAG models using pig [614]: hsa04933 is among the top ten KEGG pathways specifying the immune response
26hsa05332: graft-versus-host disease (GvHD)immune response can contribute to GvHD pathogenesis [615]
27hsa05163: human cytomegalovirus infectionimmune response to cytomegalovirus can aggravate POAG [616]
28GO0051241: negative regulation of multicellular organismal processhuman anticancer therapy models using mice [617]: GO0051241 is among the top ten GO-terms specifying the immune response
29GO0042825: TAP complexthe TAP complex can contribute to the immune response [618]
Note: hereinafter, “biomedical” should be understood as “clinical” for POAG patients and as “experimental” for laboratory POAG models using human or animal cells, tissues, and/or organs.
Table 3. Biomedical SNP markers taken from the ClinVar database [38] and their in silico estimated effects on human gene expression (Δ: “↓” reduced, “↑” increased), which can aggravate (“▼”) or alleviate (“▲”) POAG (☼), according to the Human_SNP_TATAdb database [49].
Table 3. Biomedical SNP markers taken from the ClinVar database [38] and their in silico estimated effects on human gene expression (Δ: “↓” reduced, “↑” increased), which can aggravate (“▼”) or alleviate (“▲”) POAG (☼), according to the Human_SNP_TATAdb database [49].
ClinVar Database [38]Human_SNP_TATAdb Database [49]
+
-
#NCBI Gene Symbol (Entrez Gene ID)dbSNP ID:min [437]Susceptibility to Human DiseaseΔ:

☼:

How Susceptibility to Human Disease, Biomedical Markers of Which Are the SNPs in Question, Can Aggravate or Alleviate POAG According to the Current State of the PubMed Database, as Cited Using [Refs]
1ABCA1 (19)rs886063317:C, rs886063317:GTangier diseaseTangier disease (also known as familial high-density lipoprotein deficiency) is comorbid with POAG [443]+
2ABCB1 (5243)rs1584915287:ATramadol responsea healthy man experienced glaucomatous vision impairment after injecting tramadol as a painkiller [444]+
3ATXN2 (6311)rs695871:GSpinocerebellar ataxia type 2near-threshold glaucomatous changes in the optic nerve in patients with Spinocerebellar ataxia type 2 [445]+
4BMP4 (652)rs774069849:Aorofacial cleft, microphthalmia with brain and digit anomaliesthese morpho-ontogenetic disorders of the human head development inevitably lead to developmental disorders of the eyes, as parts of the head colocalized along with all its other parts that can manifest as congenital, early-onset, pediatric, and juvenile forms of various glaucomas, including POAG [446]+
5CP (1356)rs151304828:TFerroxidase deficiencythis biomedical SNP marker is a result of screening in healthy volunteers that after an in silico analysis of both the literature and factual biomedical data was labeled “Conflicting Pathogenicity Classifications”, while database Human_SNP_TATAdb documents—an in silico estimate of this SNP—was labeled “Ferroxidase excess “ rather than “Ferroxidase deficiency”, in line with a biomedical report [448] on this excess, which can be an antioxidant protector against inevitable damage of the optic nerve head sensing light flux -
6ELN (2006)rs41410045:G, rs41410045:T, rs537200597:A, rs537200597:TSupravalvar aortic stenosis, Cutis laxa, Williams syndromethese four hereditary connective tissue disorders are capable of manifesting in morpho-ontogenetic eye defects such as a subluxation lentis leading to various congenital, early-onset, pediatric, and juvenile forms of glaucoma, including POAG [449]+
7FAS (355)rs558072404:AAutoimmune lymphoproliferative syndrome type 1this disease is a form of lymphoproliferative disorder resulting from infection-related post-traumatic and\or post-surgery complications, which can lead to various morphological changes in eyes that can elevate intraocular pressure, aggravating POAG [450]+
8GRIN2B (2904)rs797044930:TIntellectual disabilityintellectual disability can manifest with movement disorders, cortical development malformations, and cortical visual impairment [451], which are comorbid with POAG [452]+
9IL1B (3553)rs1143627:TGastric cancer at Helicobacter pylori, POAG, and 57 inflammation-related disorders all these diseases are comorbid with POAG [452,453,454,455,456,457,458,459,460,461,462,463,464,465,466,467,468,469,470,471,472,473,474,475,476,477,478,479,480,481,482,483,484,485,486,487,488,489,490,491,492,493,494,495,496,497,498,499,500,501,502,503,504,505,506,507,508,509,510,511,512,513,514,515,516,517,518,519,520,521,522,523,524,525,526,527,528,529,530,531,532,533,534,535,536,537,538,539,540,541,542,543,544,545,546,547,548,549,550,551,552,553,554], as readers can find in Table S5, namely, row #9, penultimate column on the right (see Supplementary Materials)+
10PMM2 (5373)rs751782324:APMM2-congenital glycosylation disorder PMM2-congenital glycosylation disorder can aggravate POAG [330]+
11LDLR (3949)rs1357531646:G, rs1568582310:C, rs747068848:C, rs879254501:C, rs879254502:C, rs879254503:G, rs879254505:C, rs879254506:C, rs879254507:G, rs879254511:C, rs969658891:AFamilial hypercholesterolemiaaccording to a cohort-based biomedical study [313]: familial hypercholesterolemia occurs in patients with POAG more often compared to those without POAG, which may be the aggravation of POAG+
rs121908042:A, rs193922571:A, rs201102461:A, rs2077073153:T, rs2077269298:A, rs730882080:T, rs730882081:G, rs762139262:T, rs769383881:A, rs769383881:T, rs869320648:A, rs875989899:T, rs879254486:T, rs879254502:A, ars879254506:AFamilial hypercholesterolemia and pathogenic cardiovascular phenotypeaccording to cohort biomedical studies: both familial hypercholesterolemia occurs in patients with POAG more often compared to those without POAG [313] as well as pathogenic cardiovascular phenotype, which can aggravate POAG [555]
12MFN2 (9927)rs568548916:A, rs886045216:T, rs973376897:Ahereditary motor and sensory neuropathy with optic atrophyaccording to a diseasome gene network encompassing human genes contributing simultaneously to amyotrophic lateral sclerosis and other diseases [556]: POAG along with hereditary motor and sensory neuropathy with optic atrophy is comorbid to amyotrophic lateral sclerosis+
13MUTYH (4595)rs1645057147:C, rs752665489:Ghereditary cancer predisposition syndromehereditary cancer predisposition syndrome is associated with congenital hypertrophy of retinal pigment epithelium, which can cause advanced glaucomatous damage in the optic nerve that can aggravate POAG [557]+
rs1060504202:A, rs1064795596:A, rs1338038953:A, rs1553127879:T, rs1553136984:A, rs1553137062:A, rs1570591700:A, rs1570591700:T, rs1570591736:A, rs2275602:T, rs587788237:A, rs753502884:T, rs755928199:A, rs755928199:C, rs755928199:T, rs758246147:A, rs766584437:A, rs766584437:T, rs767402084:A, rs767402084:C, rs774530388:T, rs876658588:A, rs878854188:G, rs878854188:T
14STAT3 (6774)rs780393027:A, rs902564848:Thyper-IgE recurrent infection syndromehyper-IgE recurrent infection syndrome 1 can cause both ocular allergy and allergic conjunctivitis, the treatment of which with corticosteroids has a side effect in the aggravation of POAG [558]+
15TAP1 (6890)rs1408055208:T, rs202053684:TMHC class I deficiencyMHC class I-knockout mice show a similarity to the very early stages of POAG development [559]+
16TCF4 (6925)rs1555710523:T, rs17522826:T, rs2047109965:T, rs2061383201:APitt–Hopkins syndromehigh myopia is both a symptom of Pitt–Hopkins syndrome [560] and a risk factor for POAG [561]+
17TP53 (7157)rs1457582183:T, rs1597400604:A, rs34361146:ALi–Fraumeni and cancer predisposition syndromestobacco smoking is a risk factor for POAG as well as for both Li–Fraumeni and hereditary cancer-predisposition syndromes [563]+
18TXNRD2 (10587)rs182857388:T, rs886509891:Tprimary dilated cardiomyopathychoroidal thickness in children with chronic heart failure through dilated cardiomyopathy is decreased [564] and is observed alongside POAG [565]+
Total (∑: “+” as coincidence, “-” as mismatch): 17 coincidences and 1 mismatch (p < 0.0001, PADJ < 0.05; binomial distribution).
Table 4. Verification of the results obtained by analysis of POAG-related genes using RNA-Seq data on domestic animals and their wild counterparts.
Table 4. Verification of the results obtained by analysis of POAG-related genes using RNA-Seq data on domestic animals and their wild counterparts.
(a) Animals The Number of DEGs Whose Expression Changed in the Same Direction as Their Homologous Human Genes with a Given Effect on the Alleviation and Aggravation of POAG
(b) Human 123 Older POAG-Related Genes30 Younger POAG-Related Genes
WildDomesticWildDomestic
The Effect of Changes in the Expression of the POAG-Related Genes on the Alleviation and Aggravation of POAGAlleviation6960128
Aggravation50591519
Binomial Distribution, p<0.05>0.40>0.30<0.05
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Zolotareva, K.; Dotsenko, P.A.; Podkolodnyy, N.; Ivanov, R.; Makarova, A.-L.; Chadaeva, I.; Bogomolov, A.; Demenkov, P.S.; Ivanisenko, V.; Oshchepkov, D.; et al. Candidate SNP Markers Significantly Altering the Affinity of the TATA-Binding Protein for the Promoters of Human Genes Associated with Primary Open-Angle Glaucoma. Int. J. Mol. Sci. 2024, 25, 12802. https://doi.org/10.3390/ijms252312802

AMA Style

Zolotareva K, Dotsenko PA, Podkolodnyy N, Ivanov R, Makarova A-L, Chadaeva I, Bogomolov A, Demenkov PS, Ivanisenko V, Oshchepkov D, et al. Candidate SNP Markers Significantly Altering the Affinity of the TATA-Binding Protein for the Promoters of Human Genes Associated with Primary Open-Angle Glaucoma. International Journal of Molecular Sciences. 2024; 25(23):12802. https://doi.org/10.3390/ijms252312802

Chicago/Turabian Style

Zolotareva, Karina, Polina A. Dotsenko, Nikolay Podkolodnyy, Roman Ivanov, Aelita-Luiza Makarova, Irina Chadaeva, Anton Bogomolov, Pavel S. Demenkov, Vladimir Ivanisenko, Dmitry Oshchepkov, and et al. 2024. "Candidate SNP Markers Significantly Altering the Affinity of the TATA-Binding Protein for the Promoters of Human Genes Associated with Primary Open-Angle Glaucoma" International Journal of Molecular Sciences 25, no. 23: 12802. https://doi.org/10.3390/ijms252312802

APA Style

Zolotareva, K., Dotsenko, P. A., Podkolodnyy, N., Ivanov, R., Makarova, A.-L., Chadaeva, I., Bogomolov, A., Demenkov, P. S., Ivanisenko, V., Oshchepkov, D., & Ponomarenko, M. (2024). Candidate SNP Markers Significantly Altering the Affinity of the TATA-Binding Protein for the Promoters of Human Genes Associated with Primary Open-Angle Glaucoma. International Journal of Molecular Sciences, 25(23), 12802. https://doi.org/10.3390/ijms252312802

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop