Current Status of Synthetic Mammalian Embryo Models
Abstract
:1. Introduction
2. Comparison of Embryogenesis in Mice and Other Mammals
2.1. Compaction Mechanisms
2.2. Polarization and Signaling Pathways Involved in Cell Fate Decisions
2.3. Differences in Gastrulation
3. Current Status of Stem Cell Research in Cattle and Pigs
3.1. Embryonic Stem Cells (ESCs)
3.2. Expanded Potential Stem Cells (EPSCs)
3.3. Extraembryonic Endoderm (XEN) Cells
3.4. Trophoblast Stem Cells (TSCs)
4. Update on the in Vitro Synthetic Embryology of Mammals
4.1. Mice
4.2. Humans and Monkeys
4.3. Cows and Pigs
5. Future Directions and Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
3D | three-dimensional |
EGA | embryonic genome activation |
ERK | extracellular signal-regulated kinase |
ICM | inner cell mass |
Epi | epiblast |
PrE | primitive endoderm |
TE | trophectoderm |
PSC, | pluripotent stem cell |
EPSC | expanded potential stem cells |
ESC | embryonic stem cell |
hESCs | human ESCs |
bESCs | bovine ESCs |
pESCs | porcine ESCs |
EPSCs | expanded potential stem cells |
bEPSCs | bovine EPSCs |
pEPSCM | porcine EPSC medium |
pEPSCs | porcine EPSCs |
hEPSCs | human EPSCs |
XEN cell | extraembryonic endoderm (XEN) cell |
TSC | trophoblast stem cell |
MEF | mouse embryonic fibroblast |
STO | SIM (Sandos Inbred Mice) mouse embryonic fibroblast |
bFF | bovine fetal fibroblast |
DMEM | Dulbecco’s Modified Eagle’s Medium |
KO-DMEM | knockout Dulbecco’s Modified Eagle’s Medium |
hbFGF | human bFGF |
hrbFGF | human recombinant bFGF |
hrLIF | human recombinant LIF |
Act A | Activin A |
CHIR | CHIR99021 |
SB | SB431542 |
XAV | XAV939 |
WH | WH-4-023 |
Vit C | vitamin C |
DIM | (S)-(+)-dimethindene maleate |
MIH | minocycline hydrochloride |
CEPT cocktail | Chroman, Emricasan, polyamine supplement and TransISRIB |
rhLIF | recombinant human LIF |
hLIF | human LIF |
BSA | bovine serum albumin solution |
LPA | 1-oleoyl lysophosphatidic acid sodium salt |
ITS-X | Insulin-Transferrin-Selenium-Ethanolamine |
NaPy | sodium pyruvate |
KOSR or KSR | knockout serum replacement |
YAP | Yes-associated protein |
AP | anterior–posterior |
References
- Roberto de Barros, N.; Wang, C.; Maity, S.; Peirsman, A.; Nasiri, R.; Herland, A.; Ermis, M.; Kawakita, S.; Gregatti Carvalho, B.; Hosseinzadeh Kouchehbaghi, N.; et al. Engineered organoids for biomedical applications. Adv. Drug Deliv. Rev. 2023, 203, 115142. [Google Scholar] [CrossRef]
- Shahbazi, M.N.; Zernicka-Goetz, M. Deconstructing and reconstructing the mouse and human early embryo. Nat. Cell Biol. 2018, 20, 878–887. [Google Scholar] [CrossRef] [PubMed]
- Rossant, J.; Tam, P.P.L. Early human embryonic development: Blastocyst formation to gastrulation. Dev. Cell 2022, 57, 152–165. [Google Scholar] [CrossRef] [PubMed]
- Sozen, B.; Cox, A.L.; De Jonghe, J.; Bao, M.; Hollfelder, F.; Glover, D.M.; Zernicka-Goetz, M. Self-Organization of Mouse Stem Cells into an Extended Potential Blastoid. Dev. Cell 2019, 51, 698–712.e8. [Google Scholar] [CrossRef] [PubMed]
- Dupont, C.; Schaffers, O.J.M.; Tan, B.F.; Merzouk, S.; Bindels, E.M.; Zwijsen, A.; Huylebroeck, D.; Gribnau, J. Efficient generation of ETX embryoids that recapitulate the entire window of murine egg cylinder development. Sci. Adv. 2023, 9, eadd2913. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Oura, S.; Markham, Z.; Hamilton, J.N.; Skory, R.M.; Li, L.; Sakurai, M.; Wang, L.; Pinzon-Arteaga, C.A.; Plachta, N.; et al. Modeling post-implantation stages of human development into early organogenesis with stem-cell-derived peri-gastruloids. Cell 2023, 186, 3776–3792.e16. [Google Scholar] [CrossRef]
- Karvas, R.M.; Zemke, J.E.; Ali, S.S.; Upton, E.; Sane, E.; Fischer, L.A.; Dong, C.; Park, K.M.; Wang, F.; Park, K.; et al. 3D-cultured blastoids model human embryogenesis from pre-implantation to early gastrulation stages. Cell Stem Cell 2023, 30, 1148–1165.e7. [Google Scholar] [CrossRef]
- Maemura, M.; Taketsuru, H.; Nakajima, Y.; Shao, R.; Kakihara, A.; Nogami, J.; Ohkawa, Y.; Tsukada, Y.I. Totipotency of mouse zygotes extends to single blastomeres of embryos at the four-cell stage. Sci. Rep. 2021, 11, 11167. [Google Scholar] [CrossRef]
- De Paepe, C.; Krivega, M.; Cauffman, G.; Geens, M.; Van de Velde, H. Totipotency and lineage segregation in the human embryo. Mol. Hum. Reprod. 2014, 20, 599–618. [Google Scholar] [CrossRef]
- Johnson, W.H.; Loskutoff, N.M.; Plante, Y.; Betteridge, K.J. Production of four identical calves by the separation of blastomeres from an in vitro derived four-cell embryo. Vet. Rec. 1995, 137, 15–16. [Google Scholar] [CrossRef]
- Saito, S.; Niemann, H. Effects of extracellular matrices and growth factors on the development of isolated porcine blastomeres. Biol. Reprod. 1991, 44, 927–936. [Google Scholar] [CrossRef] [PubMed]
- Allen, W.R.; Pashen, R.L. Production of monozygotic (identical) horse twins by embryo micromanipulation. J. Reprod. Fertil. 1984, 71, 607–613. [Google Scholar] [CrossRef] [PubMed]
- Willadsen, S.M. The development capacity of blastomeres from 4- and 8-cell sheep embryos. J. Embryol. Exp. Morphol. 1981, 65, 165–172. [Google Scholar]
- Kravchenko, P.; Tachibana, K. Rise and SINE: Roles of transcription factors and retrotransposons in zygotic genome activation. Nat. Rev. Mol. Cell Biol. 2024. [Google Scholar] [CrossRef]
- Schramm, R.D.; Paprocki, A.M.; VandeVoort, C.A. Causes of developmental failure of in-vitro matured rhesus monkey oocytes: Impairments in embryonic genome activation. Hum. Reprod. 2003, 18, 826–833. [Google Scholar] [CrossRef]
- Firmin, J.; Ecker, N.; Rivet Danon, D.; Ozguc, O.; Barraud Lange, V.; Turlier, H.; Patrat, C.; Maitre, J.L. Mechanics of human embryo compaction. Nature 2024, 629, 646–651. [Google Scholar] [CrossRef]
- Kim, J.; Kim, S.H.; Jun, J.H. Prediction of blastocyst development and implantation potential in utero based on the third cleavage and compaction times in mouse pre-implantation embryos. J. Reprod. Dev. 2017, 63, 117–125. [Google Scholar] [CrossRef]
- White, M.D.; Bissiere, S.; Alvarez, Y.D.; Plachta, N. Mouse Embryo Compaction. Curr. Top. Dev. Biol. 2016, 120, 235–258. [Google Scholar]
- Iwata, K.; Yumoto, K.; Sugishima, M.; Mizoguchi, C.; Kai, Y.; Iba, Y.; Mio, Y. Analysis of compaction initiation in human embryos by using time-lapse cinematography. J. Assist. Reprod. Genet. 2014, 31, 421–426. [Google Scholar] [CrossRef]
- Ramsey, C.; Hanna, C. In Vitro Culture of Rhesus Macaque (Macaca mulatta) Embryos. Methods Mol. Biol. 2019, 2006, 341–353. [Google Scholar]
- Enders, A.C.; Lantz, K.C.; Schlafke, S. The morula-blastocyst transition in two Old World primates: The baboon and rhesus monkey. J. Med. Primatol. 1990, 19, 725–747. [Google Scholar] [CrossRef] [PubMed]
- Koyama, H.; Suzuki, H.; Yang, X.; Jiang, S.; Foote, R.H. Analysis of polarity of bovine and rabbit embryos by scanning electron microscopy. Biol. Reprod. 1994, 50, 163–170. [Google Scholar] [CrossRef] [PubMed]
- Reima, I.; Lehtonen, E.; Virtanen, I.; Flechon, J.E. The cytoskeleton and associated proteins during cleavage, compaction and blastocyst differentiation in the pig. Differentiation 1993, 54, 35–45. [Google Scholar] [CrossRef] [PubMed]
- Maitre, J.L.; Niwayama, R.; Turlier, H.; Nedelec, F.; Hiiragi, T. Pulsatile cell-autonomous contractility drives compaction in the mouse embryo. Nat. Cell Biol. 2015, 17, 849–855. [Google Scholar] [CrossRef]
- De Vries, W.N.; Evsikov, A.V.; Haac, B.E.; Fancher, K.S.; Holbrook, A.E.; Kemler, R.; Solter, D.; Knowles, B.B. Maternal beta-catenin and E-cadherin in mouse development. Development 2004, 131, 4435–4445. [Google Scholar] [CrossRef]
- Stephenson, R.O.; Yamanaka, Y.; Rossant, J. Disorganized epithelial polarity and excess trophectoderm cell fate in preimplantation embryos lacking E-cadherin. Development 2010, 137, 3383–3391. [Google Scholar] [CrossRef]
- Zhu, M.; Cornwall-Scoones, J.; Wang, P.; Handford, C.E.; Na, J.; Thomson, M.; Zernicka-Goetz, M. Developmental clock and mechanism of de novo polarization of the mouse embryo. Science 2020, 370, eabd2703. [Google Scholar] [CrossRef]
- Chen, L.; Yabuuchi, A.; Eminli, S.; Takeuchi, A.; Lu, C.W.; Hochedlinger, K.; Daley, G.Q. Cross-regulation of the Nanog and Cdx2 promoters. Cell Res. 2009, 19, 1052–1061. [Google Scholar] [CrossRef]
- Rayon, T.; Menchero, S.; Nieto, A.; Xenopoulos, P.; Crespo, M.; Cockburn, K.; Canon, S.; Sasaki, H.; Hadjantonakis, A.K.; de la Pompa, J.L.; et al. Notch and hippo converge on Cdx2 to specify the trophectoderm lineage in the mouse blastocyst. Dev. Cell 2014, 30, 410–422. [Google Scholar] [CrossRef]
- Gerri, C.; McCarthy, A.; Alanis-Lobato, G.; Demtschenko, A.; Bruneau, A.; Loubersac, S.; Fogarty, N.M.E.; Hampshire, D.; Elder, K.; Snell, P.; et al. Initiation of a conserved trophectoderm program in human, cow and mouse embryos. Nature 2020, 587, 443–447. [Google Scholar] [CrossRef]
- Niakan, K.K.; Eggan, K. Analysis of human embryos from zygote to blastocyst reveals distinct gene expression patterns relative to the mouse. Dev. Biol. 2013, 375, 54–64. [Google Scholar] [CrossRef] [PubMed]
- Guo, G.; Stirparo, G.G.; Strawbridge, S.E.; Spindlow, D.; Yang, J.; Clarke, J.; Dattani, A.; Yanagida, A.; Li, M.A.; Myers, S.; et al. Human naive epiblast cells possess unrestricted lineage potential. Cell Stem Cell 2021, 28, 1040–1056.e6. [Google Scholar] [CrossRef] [PubMed]
- Siriwardena, D.; Munger, C.; Penfold, C.; Kohler, T.N.; Weberling, A.; Linneberg-Agerholm, M.; Slatery, E.; Ellermann, A.L.; Bergmann, S.; Clark, S.J.; et al. Marmoset and human trophoblast stem cells differ in signaling requirements and recapitulate divergent modes of trophoblast invasion. Cell Stem Cell 2024, 31, 1427–1446.e8. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Wang, D.; Wu, Z.; Ma, L.; Daley, G.Q. Molecular basis of the first cell fate determination in mouse embryogenesis. Cell Res. 2010, 20, 982–993. [Google Scholar] [CrossRef] [PubMed]
- Kuijk, E.W.; Du Puy, L.; Van Tol, H.T.; Oei, C.H.; Haagsman, H.P.; Colenbrander, B.; Roelen, B.A. Differences in early lineage segregation between mammals. Dev. Dyn. 2008, 237, 918–927. [Google Scholar] [CrossRef]
- Azami, T.; Bassalert, C.; Allegre, N.; Valverde Estrella, L.; Pouchin, P.; Ema, M.; Chazaud, C. Regulation of the ERK signalling pathway in the developing mouse blastocyst. Development 2019, 146, dev177139. [Google Scholar] [CrossRef]
- Toyooka, Y.; Aoki, K.; Usami, F.M.; Oka, S.; Kato, A.; Fujimori, T.J.S.R. Generation of pulsatile ERK activity in mouse embryonic stem cells is regulated by Raf activity. Sci. Rep. 2023, 13, 9465. [Google Scholar] [CrossRef]
- Nichols, J.; Silva, J.; Roode, M.; Smith, A.J.D. Suppression of Erk signalling promotes ground state pluripotency in the mouse embryo. Development 2009, 136, 3215–3222. [Google Scholar] [CrossRef]
- Dattani, A.; Corujo-Simon, E.; Radley, A.; Heydari, T.; Taheriabkenar, Y.; Carlisle, F.; Lin, S.; Liddle, C.; Mill, J.; Zandstra, P.W.; et al. Naive pluripotent stem cell-based models capture FGF-dependent human hypoblast lineage specification. Cell Stem Cell 2024, 31, 1058–1071.e5. [Google Scholar] [CrossRef]
- Roode, M.; Blair, K.; Snell, P.; Elder, K.; Marchant, S.; Smith, A.; Nichols, J.J.D. Human hypoblast formation is not dependent on FGF signalling. Dev. Biol. 2012, 361, 358–363. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, M.; Takada, T.; Takahashi, K.; Noda, Y.; Torii, R. BMP4 induces primitive endoderm but not trophectoderm in monkey embryonic stem cells. Cloning Stem Cells 2008, 10, 495–502. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez, A.; Allegrucci, C.; Alberio, R.J.P. Modulation of pluripotency in the porcine embryo and iPS cells. PLoS ONE 2012, 7, e49079. [Google Scholar] [CrossRef] [PubMed]
- Canizo, J.R.; Ynsaurralde Rivolta, A.E.; Vazquez Echegaray, C.; Suva, M.; Alberio, V.; Aller, J.F.; Guberman, A.S.; Salamone, D.F.; Alberio, R.H.; Alberio, R. A dose-dependent response to MEK inhibition determines hypoblast fate in bovine embryos. BMC Dev. Biol. 2019, 19, 13. [Google Scholar] [CrossRef] [PubMed]
- Boroviak, T.; Loos, R.; Lombard, P.; Okahara, J.; Behr, R.; Sasaki, E.; Nichols, J.; Smith, A.; Bertone, P.J.D. Lineage-specific profiling delineates the emergence and progression of naive pluripotency in mammalian embryogenesis. Dev. Cell 2015, 35, 366–382. [Google Scholar] [CrossRef]
- Nakamura, T.; Okamoto, I.; Sasaki, K.; Yabuta, Y.; Iwatani, C.; Tsuchiya, H.; Seita, Y.; Nakamura, S.; Yamamoto, T.; Saitou, M. A developmental coordinate of pluripotency among mice, monkeys and humans. Nature 2016, 537, 57–62. [Google Scholar] [CrossRef]
- Ramos-Ibeas, P.; Sang, F.; Zhu, Q.; Tang, W.W.C.; Withey, S.; Klisch, D.; Wood, L.; Loose, M.; Surani, M.A.; Alberio, R.J.N. Pluripotency and X chromosome dynamics revealed in pig pre-gastrulating embryos by single cell analysis. Nat. Commun. 2019, 10, 500. [Google Scholar] [CrossRef]
- Zhi, M.; Gao, D.; Yao, Y.; Zhao, Z.; Wang, Y.; He, P.; Feng, Z.; Zhang, J.; Huang, Z.; Gu, W.; et al. Elucidation of the pluripotent potential of bovine embryonic lineages facilitates the establishment of formative stem cell lines. Cell. Mol. Life Sci. 2024, 81, 427. [Google Scholar] [CrossRef]
- Serrano Najera, G.; Weijer, C.J. The evolution of gastrulation morphologies. Development 2023, 150, dev200885. [Google Scholar] [CrossRef]
- Mole, M.A.; Weberling, A.; Zernicka-Goetz, M. Comparative analysis of human and mouse development: From zygote to pre-gastrulation. Curr. Top. Dev. Biol. 2020, 136, 113–138. [Google Scholar]
- Tam, P.P.; Williams, E.A.; Chan, W.Y. Gastrulation in the mouse embryo: Ultrastructural and molecular aspects of germ layer morphogenesis. Microsc. Res. Tech. 1993, 26, 301–328. [Google Scholar] [CrossRef]
- Tarara, R.; Enders, A.C.; Hendrickx, A.G.; Gulamhusein, N.; Hodges, J.K.; Hearn, J.P.; Eley, R.B.; Else, J.G. Early implantation and embryonic development of the baboon: Stages 5, 6 and 7. Anat. Embryol. 1987, 176, 267–275. [Google Scholar] [CrossRef]
- Brennan, J.; Lu, C.C.; Norris, D.P.; Rodriguez, T.A.; Beddington, R.S.; Robertson, E.J. Nodal signalling in the epiblast patterns the early mouse embryo. Nature 2001, 411, 965–969. [Google Scholar] [CrossRef] [PubMed]
- Harrison, S.E.; Sozen, B.; Christodoulou, N.; Kyprianou, C.; Zernicka-Goetz, M. Assembly of embryonic and extraembryonic stem cells to mimic embryogenesis in vitro. Science 2017, 356, eaal1810. [Google Scholar] [CrossRef] [PubMed]
- Simpson, L.; Strange, A.; Klisch, D.; Kraunsoe, S.; Azami, T.; Goszczynski, D.; Le Minh, T.; Planells, B.; Holmes, N.; Sang, F.; et al. A single-cell atlas of pig gastrulation as a resource for comparative embryology. Nat. Commun. 2024, 15, 5210. [Google Scholar] [CrossRef]
- Pfeffer, P.L.; Smith, C.S.; Maclean, P.; Berg, D.K. Gene expression analysis of bovine embryonic disc, trophoblast and parietal hypoblast at the start of gastrulation. Zygote 2017, 25, 265–278. [Google Scholar] [CrossRef] [PubMed]
- Ciruna, B.; Rossant, J. FGF signaling regulates mesoderm cell fate specification and morphogenetic movement at the primitive streak. Dev. Cell 2001, 1, 37–49. [Google Scholar] [CrossRef]
- Arnold, S.J.; Robertson, E.J. Making a commitment: Cell lineage allocation and axis patterning in the early mouse embryo. Nat. Rev. Mol. Cell Biol. 2009, 10, 91–103. [Google Scholar] [CrossRef]
- Mitalipov, S.M.; Kuo, H.-C.; Hennebold, J.D.; Wolf, D.P. Oct-4 Expression in Pluripotent Cells of the Rhesus Monkey1. Biol. Reprod. 2003, 69, 1785–1792. [Google Scholar] [CrossRef]
- Hearn, J.P. The embryo-maternal dialogue during early pregnancy in primates. J. Reprod. Fertil. 1986, 76, 809–819. [Google Scholar] [CrossRef]
- Li, J.; Zhu, Q.; Cao, J.; Liu, Y.; Lu, Y.; Sun, Y.; Li, Q.; Huang, Y.; Shang, S.; Bian, X.; et al. Cynomolgus monkey embryo model captures gastrulation and early pregnancy. Cell Stem Cell 2023, 30, 362–377.e7. [Google Scholar] [CrossRef]
- Perez-Gomez, A.; Gonzalez-Brusi, L.; Bermejo-Alvarez, P.; Ramos-Ibeas, P. Lineage Differentiation Markers as a Proxy for Embryo Viability in Farm Ungulates. Front. Vet. Sci. 2021, 8, 680539. [Google Scholar] [CrossRef]
- Williams, K.; Johnson, M.H. Adapting the 14-day rule for embryo research to encompass evolving technologies. Reprod. Biomed. Soc. Online 2020, 10, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Oldak, B.; Wildschutz, E.; Bondarenko, V.; Comar, M.Y.; Zhao, C.; Aguilera-Castrejon, A.; Tarazi, S.; Viukov, S.; Pham, T.X.A.; Ashouokhi, S.; et al. Complete human day 14 post-implantation embryo models from naive ES cells. Nature 2023, 622, 562–573. [Google Scholar] [CrossRef] [PubMed]
- Matthews, K.R.W.; Wagner, D.S.; Warmflash, A. Stem cell-based models of embryos: The need for improved naming conventions. Stem Cell Rep. 2021, 16, 1014–1020. [Google Scholar] [CrossRef] [PubMed]
- Bogliotti, Y.S.; Wu, J.; Vilarino, M.; Okamura, D.; Soto, D.A.; Zhong, C.; Sakurai, M.; Sampaio, R.V.; Suzuki, K.; Izpisua Belmonte, J.C.; et al. Efficient derivation of stable primed pluripotent embryonic stem cells from bovine blastocysts. Proc. Natl. Acad. Sci. USA 2018, 115, 2090–2095. [Google Scholar] [CrossRef]
- Soto, D.A.; Navarro, M.; Zheng, C.; Halstead, M.M.; Zhou, C.; Guiltinan, C.; Wu, J.; Ross, P.J. Simplification of culture conditions and feeder-free expansion of bovine embryonic stem cells. Sci. Rep. 2021, 11, 11045. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Gao, X.; Zheng, Y.; Wang, Z.; Zhao, G.; Ren, J.; Zhang, J.; Wu, J.; Wu, B.; Chen, Y.J.P.; et al. Establishment of bovine expanded potential stem cells. Proc. Natl. Acad. Sci. USA 2021, 118, e2018505118. [Google Scholar] [CrossRef]
- Xiang, J.; Wang, H.; Zhang, Y.; Wang, J.; Liu, F.; Han, X.; Lu, Z.; Li, C.; Li, Z.; Gao, Y.; et al. LCDM medium supports the derivation of bovine extended pluripotent stem cells with embryonic and extraembryonic potency in bovine-mouse chimeras from iPSCs and bovine fetal fibroblasts. FEBS J. 2021, 288, 4394–4411. [Google Scholar] [CrossRef]
- Smith, M.K.; Clark, C.C.; McCoski, S.R. Technical note: Improving the efficiency of generating bovine extraembryonic endoderm cells. J. Anim. Sci. 2020, 98, skaa222. [Google Scholar] [CrossRef]
- Wang, Y.; Ming, H.; Yu, L.; Li, J.; Zhu, L.; Sun, H.X.; Pinzon-Arteaga, C.A.; Wu, J.; Jiang, Z. Establishment of bovine trophoblast stem cells. Cell Rep. 2023, 42, 112439. [Google Scholar] [CrossRef]
- Choi, K.H.; Lee, D.K.; Kim, S.W.; Woo, S.H.; Kim, D.Y.; Lee, C.K. Chemically Defined Media Can Maintain Pig Pluripotency Network In Vitro. Stem Cell Rep. 2019, 13, 221–234. [Google Scholar] [CrossRef] [PubMed]
- Choi, H.; Oh, D.; Kim, M.; Jawad, A.; Zheng, H.; Cai, L.; Lee, J.; Kim, E.; Lee, G.; Jang, H.; et al. Establishment of porcine embryonic stem cells in simplified serum free media and feeder free expansion. Stem Cell Res. Ther. 2024, 15, 245. [Google Scholar] [CrossRef] [PubMed]
- Gao, X.; Nowak-Imialek, M.; Chen, X.; Chen, D.; Herrmann, D.; Ruan, D.; Chen, A.C.H.; Eckersley-Maslin, M.A.; Ahmad, S.; Lee, Y.L.J.N.; et al. Establishment of porcine and human expanded potential stem cells. Nat. Cell Biol. 2019, 21, 687–699. [Google Scholar] [CrossRef] [PubMed]
- Shen, Q.Y.; Yu, S.; Zhang, Y.; Zhou, Z.; Zhu, Z.S.; Pan, Q.; Lv, S.; Niu, H.M.; Li, N.; Peng, S.; et al. Characterization of porcine extraembryonic endoderm cells. Cell Prolif. 2019, 52, e12591. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Wu, S.; Yu, Y.; Zhang, H.; Wei, R.; Lv, J.; Cai, M.; Yang, X.; Zhang, Y.; Liu, Z. Derivation of porcine extraembryonic endoderm-like cells from blastocysts. Cell Prolif. 2020, 53, e12782. [Google Scholar] [CrossRef]
- Park, C.H.; Jeoung, Y.H.; Uh, K.J.; Park, K.E.; Bridge, J.; Powell, A.; Li, J.; Pence, L.; Zhang, L.; Liu, T.; et al. Extraembryonic Endoderm (XEN) Cells Capable of Contributing to Embryonic Chimeras Established from Pig Embryos. Stem Cell Rep. 2021, 16, 212–223. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.L.; Jin, Y.; Zhao, L.H.; Zhang, J.; Zhou, M.; Li, M.S.; Yin, Z.B.; Wang, Z.X.; Zhao, L.X.; Li, X.H.; et al. Derivation of Porcine Extra-Embryonic Endoderm Cell Lines Reveals Distinct Signaling Pathway and Multipotency States. Int. J. Mol. Sci. 2021, 22, 12918. [Google Scholar] [CrossRef] [PubMed]
- Yu, Z.; Zhou, S.; Liu, M.; Chen, L.; Zhang, X.; Yang, X.; Cui, H.; Jiang, C.; Lv, Y.; Yan, T.; et al. Porcine Pluripotent Stem Cells Established from LCDM Medium with Characteristics Differ from Human and Mouse Extended Pluripotent Stem Cells. Stem Cells 2022, 40, 751–762. [Google Scholar] [CrossRef] [PubMed]
- Kim, E.; Cai, L.; Choi, H.; Kim, M.; Hyun, S.H. Distinct properties of putative trophoblast stem cells established from somatic cell nuclear-transferred pig blastocysts. Biol. Res. 2024, 57, 35. [Google Scholar] [CrossRef]
- Weinberger, L.; Ayyash, M.; Novershtern, N.; Hanna, J.H. Dynamic stem cell states: Naive to primed pluripotency in rodents and humans. Nat. Rev. Mol. Cell Biol. 2016, 17, 155–169. [Google Scholar] [CrossRef]
- Okamura, D.; Chikushi, M.; Chigi, Y.; Shiogai, N.; Jafar, S.; Wu, J. Stepwise conversion methods between ground states pluripotency from naive to primed. Biochem. Biophys. Res. Commun. 2021, 574, 70–77. [Google Scholar] [CrossRef] [PubMed]
- Bayerl, J.; Ayyash, M.; Shani, T.; Manor, Y.S.; Gafni, O.; Massarwa, R.; Kalma, Y.; Aguilera-Castrejon, A.; Zerbib, M.; Amir, H.; et al. Principles of signaling pathway modulation for enhancing human naive pluripotency induction. Cell Stem Cell 2021, 28, 1549–1565.e12. [Google Scholar] [CrossRef] [PubMed]
- Bi, Y.; Tu, Z.; Zhou, J.; Zhu, X.; Wang, H.; Gao, S.; Wang, Y. Cell fate roadmap of human primed-to-naive transition reveals preimplantation cell lineage signatures. Nat. Commun. 2022, 13, 3147. [Google Scholar] [CrossRef] [PubMed]
- Kinoshita, M.; Barber, M.; Mansfield, W.; Cui, Y.; Spindlow, D.; Stirparo, G.G.; Dietmann, S.; Nichols, J.; Smith, A. Capture of Mouse and Human Stem Cells with Features of Formative Pluripotency. Cell Stem Cell 2021, 28, 453–471.e8. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Wang, C.; Jiang, H.; Liu, M.; Yang, N.; Zhao, L.; Hou, D.; Jin, Y.; Chen, Q.; Chen, Y.; et al. Derivation of novel naive-like porcine embryonic stem cells by a reprogramming factor-assisted strategy. FASEB J. 2019, 33, 9350–9361. [Google Scholar] [CrossRef]
- Chen, Q.; Zhang, H.; Jiang, H.; Zhang, M.; Wang, J.; Zhao, L.; Wang, C.; Liu, M.; Li, R. Conversion between porcine naive-like and primed ESCs and specific pluripotency marker identification. Vitr. Cell Dev. Biol. Anim. 2020, 56, 412–423. [Google Scholar] [CrossRef]
- Evans, M.J.; Notarianni, E.; Laurie, S.; Moor, R.M. Derivation and Preliminary Characterization of Pluripotent Cell-Lines from Porcine and Bovine Blastocysts. Theriogenology 1990, 33, 125–128. [Google Scholar] [CrossRef]
- Haraguchi, S.; Kikuchi, K.; Nakai, M.; Tokunaga, T. Establishment of self-renewing porcine embryonic stem cell-like cells by signal inhibition. J. Reprod. Dev. 2012, 58, 707–716. [Google Scholar] [CrossRef] [PubMed]
- Choi, K.-H.; Lee, D.-K.; Oh, J.-N.; Kim, S.-H.; Lee, M.; Kim, S.W.; Lee, C.-K.J.B.R.N. Transcriptome profiling of pluripotent pig embryonic stem cells originating from uni- and biparental embryos. BMC Res. Notes 2020, 13, 144. [Google Scholar] [CrossRef]
- Liu, T.; Li, J.; Yu, L.; Sun, H.-X.; Li, J.; Dong, G.; Hu, Y.; Li, Y.; Shen, Y.; Wu, J.J.C.; et al. Cross-species single-cell transcriptomic analysis reveals pre-gastrulation developmental differences among pigs, monkeys, and humans. Cell Discov. 2021, 7, 8. [Google Scholar] [CrossRef]
- Kong, Q.; Yang, X.; Zhang, H.; Liu, S.; Zhao, J.; Zhang, J.; Weng, X.; Jin, J.; Liu, Z.J.T.F.J. Lineage specification and pluripotency revealed by transcriptome analysis from oocyte to blastocyst in pig. FASEB J. 2020, 34, 691–705. [Google Scholar] [CrossRef] [PubMed]
- Zhi, M.; Zhang, J.; Tang, Q.; Yu, D.; Gao, S.; Gao, D.; Liu, P.; Guo, J.; Hai, T.; Gao, J.J.C.R.; et al. Generation and characterization of stable pig pregastrulation epiblast stem cell lines. Cell Res. 2022, 32, 383–400. [Google Scholar] [CrossRef] [PubMed]
- Shen, H.; Yang, M.; Li, S.; Zhang, J.; Peng, B.; Wang, C.; Chang, Z.; Ong, J.; Du, P. Mouse totipotent stem cells captured and maintained through spliceosomal repression. Cell 2021, 184, 2843–2859.e20. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Zhao, J.; Ren, Y.; Wang, X.; Lyu, Y.; Xie, B.; Sun, Y.; Yuan, X.; Liu, H.; Yang, W.; et al. Derivation of totipotent-like stem cells with blastocyst-like structure forming potential. Cell Res. 2022, 32, 513–529. [Google Scholar] [CrossRef] [PubMed]
- Gatie, M.I.; Cooper, T.T.; Khazaee, R.; Lajoie, G.A.; Kelly, G.M. Lactate Enhances Mouse ES Cell Differentiation Toward XEN Cells In Vitro. Stem Cells 2022, 40, 239–259. [Google Scholar] [CrossRef]
- Ohinata, Y.; Endo, T.A.; Sugishita, H.; Watanabe, T.; Iizuka, Y.; Kawamoto, Y.; Saraya, A.; Kumon, M.; Koseki, Y.; Kondo, T.; et al. Establishment of mouse stem cells that can recapitulate the developmental potential of primitive endoderm. Science 2022, 375, 574–578. [Google Scholar] [CrossRef]
- Linneberg-Agerholm, M.; Wong, Y.F.; Romero Herrera, J.A.; Monteiro, R.S.; Anderson, K.G.V.; Brickman, J.M. Naive human pluripotent stem cells respond to Wnt, Nodal and LIF signalling to produce expandable naive extra-embryonic endoderm. Development 2019, 146, dev180620. [Google Scholar] [CrossRef]
- Piletz, J.E.; Drivon, J.; Eisenga, J.; Buck, W.; Yen, S.; McLin, M.; Meruvia, W.; Amaral, C.; Brue, K. Human Cells Grown with or without Substitutes for Fetal Bovine Serum. Cell Med. 2018, 10, 2155179018755140. [Google Scholar] [CrossRef]
- Tanaka, S.; Kunath, T.; Hadjantonakis, A.K.; Nagy, A.; Rossant, J. Promotion of trophoblast stem cell proliferation by FGF4. Science 1998, 282, 2072–2075. [Google Scholar] [CrossRef]
- Natale, B.V.; Kotadia, R.; Gustin, K.; Harihara, A.; Min, S.; Kreisman, M.J.; Breen, K.M.; Natale, D.R.C. Extracellular Matrix Influences Gene Expression and Differentiation of Mouse Trophoblast Stem Cells. Stem Cells Dev. 2023, 32, 622–637. [Google Scholar] [CrossRef]
- Dong, J.P.; Xu, Y.C.; Jiang, Y.N.; Jiang, R.Z.; Ma, L.; Li, X.Z.; Zeng, W.H.; Lin, Y. Identification of transcriptional signature change and critical transcription factors involved during the differentiation of mouse trophoblast stem cell into maternal blood vessel associated trophoblast giant cell. Cell Signal 2024, 123, 111359. [Google Scholar] [CrossRef] [PubMed]
- Hou, M.; Han, J.; Li, G.; Kwon, M.Y.; Jiang, J.; Emani, S.; Taglauer, E.S.; Park, J.A.; Choi, E.B.; Vodnala, M.; et al. Multipotency of mouse trophoblast stem cells. Stem Cell Res. Ther. 2020, 11, 55. [Google Scholar] [CrossRef] [PubMed]
- Viukov, S.; Shani, T.; Bayerl, J.; Aguilera-Castrejon, A.; Oldak, B.; Sheban, D.; Tarazi, S.; Stelzer, Y.; Hanna, J.H.; Novershtern, N. Human primed and naive PSCs are both able to differentiate into trophoblast stem cells. Stem Cell Rep. 2022, 17, 2484–2500. [Google Scholar] [CrossRef] [PubMed]
- Shimizu, T.; Oike, A.; Kobayashi, E.H.; Sekiya, A.; Kobayashi, N.; Shibata, S.; Hamada, H.; Saito, M.; Yaegashi, N.; Suyama, M.; et al. CRISPR screening in human trophoblast stem cells reveals both shared and distinct aspects of human and mouse placental development. Proc. Natl. Acad. Sci. USA 2023, 120, e2311372120. [Google Scholar] [CrossRef] [PubMed]
- Kohri, N.; Akizawa, H.; Iisaka, S.; Bai, H.; Yanagawa, Y.; Takahashi, M.; Komatsu, M.; Kawai, M.; Nagano, M.; Kawahara, M. Trophectoderm regeneration to support full-term development in the inner cell mass isolated from bovine blastocyst. J. Biol. Chem. 2019, 294, 19209–19223. [Google Scholar] [CrossRef]
- Berg, D.K.; Smith, C.S.; Pearton, D.J.; Wells, D.N.; Broadhurst, R.; Donnison, M.; Pfeffer, P.L. Trophectoderm lineage determination in cattle. Dev. Cell 2011, 20, 244–255. [Google Scholar] [CrossRef] [PubMed]
- van den Brink, S.C.; Baillie-Johnson, P.; Balayo, T.; Hadjantonakis, A.K.; Nowotschin, S.; Turner, D.A.; Martinez Arias, A. Symmetry breaking, germ layer specification and axial organisation in aggregates of mouse embryonic stem cells. Development 2014, 141, 4231–4242. [Google Scholar] [CrossRef]
- Warmflash, A.; Sorre, B.; Etoc, F.; Siggia, E.D.; Brivanlou, A.H. A method to recapitulate early embryonic spatial patterning in human embryonic stem cells. Nat. Methods 2014, 11, 847–854. [Google Scholar] [CrossRef]
- Rivron, N.C.; Frias-Aldeguer, J.; Vrij, E.J.; Boisset, J.C.; Korving, J.; Vivie, J.; Truckenmuller, R.K.; van Oudenaarden, A.; van Blitterswijk, C.A.; Geijsen, N. Blastocyst-like structures generated solely from stem cells. Nature 2018, 557, 106–111. [Google Scholar] [CrossRef]
- Yu, L.; Logsdon, D.; Pinzon-Arteaga, C.A.; Duan, J.; Ezashi, T.; Wei, Y.; Ribeiro Orsi, A.E.; Oura, S.; Liu, L.; Wang, L.; et al. Large-scale production of human blastoids amenable to modeling blastocyst development and maternal-fetal cross talk. Cell Stem Cell 2023, 30, 1246–1261.e9. [Google Scholar] [CrossRef]
- Kagawa, H.; Javali, A.; Khoei, H.H.; Sommer, T.M.; Sestini, G.; Novatchkova, M.; Scholte Op Reimer, Y.; Castel, G.; Bruneau, A.; Maenhoudt, N.; et al. Human blastoids model blastocyst development and implantation. Nature 2022, 601, 600–605. [Google Scholar] [CrossRef] [PubMed]
- Pinzon-Arteaga, C.A.; Wang, Y.; Wei, Y.; Ribeiro Orsi, A.E.; Li, L.; Scatolin, G.; Liu, L.; Sakurai, M.; Ye, J.; Hao, M.; et al. Bovine blastocyst-like structures derived from stem cell cultures. Cell Stem Cell 2023, 30, 611–616.e7. [Google Scholar] [CrossRef] [PubMed]
- Xiang, J.; Wang, H.; Shi, B.; Li, J.; Liu, D.; Wang, K.; Wang, Z.; Min, Q.; Zhao, C.; Pei, D. Pig blastocyst-like structure models from embryonic stem cells. Cell Discov. 2024, 10, 72. [Google Scholar] [CrossRef] [PubMed]
- Weatherbee, B.A.T.; Gantner, C.W.; Iwamoto-Stohl, L.K.; Daza, R.M.; Hamazaki, N.; Shendure, J.; Zernicka-Goetz, M. Pluripotent stem cell-derived model of the post-implantation human embryo. Nature 2023, 622, 584–593. [Google Scholar] [CrossRef] [PubMed]
- Sozen, B.; Amadei, G.; Cox, A.; Wang, R.; Na, E.; Czukiewska, S.; Chappell, L.; Voet, T.; Michel, G.; Jing, N.; et al. Self-assembly of embryonic and two extra-embryonic stem cell types into gastrulating embryo-like structures. Nat. Cell Biol. 2018, 20, 979–989. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Ryan, D.J.; Wang, W.; Tsang, J.C.; Lan, G.; Masaki, H.; Gao, X.; Antunes, L.; Yu, Y.; Zhu, Z.; et al. Establishment of mouse expanded potential stem cells. Nature 2017, 550, 393–397. [Google Scholar] [CrossRef]
- Yang, Y.; Liu, B.; Xu, J.; Wang, J.; Wu, J.; Shi, C.; Xu, Y.; Dong, J.; Wang, C.; Lai, W.; et al. Derivation of Pluripotent Stem Cells with In Vivo Embryonic and Extraembryonic Potency. Cell 2017, 169, 243–257.e25. [Google Scholar] [CrossRef]
- Posfai, E.; Schell, J.P.; Janiszewski, A.; Rovic, I.; Murray, A.; Bradshaw, B.; Yamakawa, T.; Pardon, T.; El Bakkali, M.; Talon, I.; et al. Evaluating totipotency using criteria of increasing stringency. Nat. Cell Biol. 2021, 23, 49–60. [Google Scholar] [CrossRef]
- Perleberg, C.; Kind, A.; Schnieke, A. Genetically engineered pigs as models for human disease. Dis. Model. Mech. 2018, 11, dmm030783. [Google Scholar] [CrossRef]
- Jiang, Z.; Sun, J.; Dong, H.; Luo, O.; Zheng, X.; Obergfell, C.; Tang, Y.; Bi, J.; O’Neill, R.; Ruan, Y.; et al. Transcriptional profiles of bovine in vivo pre-implantation development. BMC Genom. 2014, 15, 756. [Google Scholar] [CrossRef]
Species | Mouse | Human | Monkey | Cow | Pig |
---|---|---|---|---|---|
Compaction cell stage | 8 | 4–16 | 16–32 | 16–32 | 16–32 |
Common major molecules in compaction | E-cadherin (mediating cell–cell adhesion) | ||||
Key signaling for EPI development | Jak/Stat3, BMP | TGFβ/Nodal | TGFβ/Nodal | TGFβ/SMADs | TGFβ/Nodal |
Key signaling for PrE development | FGF/ERK | FGF/ERK | BMP4 | FGF/ERK, other | FGF/ERK, other |
ERK pathway in first TE fate | Promoting the TE fate | Upon inhibitor treatment, lack data in embryo, naïve hESC into TE | Lack data in embryo; upon TGFβ/Nodal and ERK inhibitor treatment, can obtain TSCs | Upon inhibitor treatment, expansion of the TE | Upon inhibitor treatment, expansion of the TE |
Species | Mouse | Human | Monkey | Cow | Pig |
---|---|---|---|---|---|
Initiation | E6.25- | E14- | E14- | E14- | E11- |
Signaling | BMP, WNT, and Nodal | ||||
Morphology | Cup shape | Flat, bilaminar disc structures | Flat, bilaminar disc structures that then elongate into tubular and filamentous forms |
A. Blastoids | |||||||
---|---|---|---|---|---|---|---|
Species | Cell Source | Platform | Seeding | Basal Media | Media Supplementation | Efficiency | References |
Human | Naïve hESCs hiPSCs | 24-well AggreWell 400 | H9, YN-hESCs: 30,000 cells/well WIBR3-hESCs, RC-hiPSCs, and YN-hiPSCs: 36,000 cells/well Other cell lines: optimization of the initial cell number is required | eHDM: DMEM/F12:neurobasal (1:1), N2B27 eTDM: DMEM/F12:neurobasal (3:1), N2B27 | eHDM: bFGF, Activin A, Chir99021, CEPT cocktail eTDM: KSR, PD0325901, A83-01, SB590885, WH-4-023, rhLIF, LPA, and CEPT cocktail | _ | [110] |
Primed hESCs convert to naïve | 24-well AggreWell 400 | 100,000 cells/well | N2B27+NaPy and BIM: DMEM/F12:neurobasal (1:1), N2B27 | N2B27+NaPy BIM: NaPy, ITS-X, KOSR, PD0325901, A83-01,WH-4-023, IM-12, rhEGF, ascorbic acid, and valproic acid | Blastoid cavitation up to 90% | [7] | |
Naïve hESCs hiPSCs | 96-well plate (non-adherent hydrogel microwells) | 3.0 × 104 cells/well | PXGL and PALLY: DMEM/F12, neurobasal (1:1), N2B27 | PXGL media: BSA, PD0325901, XAV-939, Gö 6983, and hLIF PALLY media: BSA, PD0325901, A 83-01, LPA, hLIF, and Y-27632 | More than 70% | [111] | |
Cynomolgus monkey | Naïve cyESCs | 24-well AggreWell 400 | 30,000 naïve cyESCs/well | HDM and mTDM: DMEM/F12, neurobasal (1:1), N2B27 | HDM: bFGF, Activin A, and CHIR99021 mTDM: ITS-X, Na-pyruvate, KSR, BSA, PD0325901, A83-01, CHIR99021, SB431542, IWR-1, TSA, DZNep, rhLIF, human Activin A, EGF, L-ascorbic acid, and VPA | 25% | [60] |
Cattle | bEPSC bTSC | 24-well AggreWell 400 | 19,200 bEPSCs/well 19,200 bTSCs/well | DMEM/F12:neurobasal (1:1), N2B27 | BSA, ITS-X, LIF, Activin A, FGF2, PD032590, Chir99021, and CEPT cocktail | 64.2% ± 7.6% | [112] |
Pig | pESCs | Ultra-low attachment multiple-well plates | 40,000 pESCs/well | 4FXY and iBlastoid: DMEM/F12:neurobasal (1:1), N2B27 | 4FXY: iBlastoid minus hLIF, BMP4, bFGF, SB431542, DZNep, and TSA iBlastoid: KOSR, 2-Phospho-l-ascorbic acid trisodium salt, human IL-6, human sIL-6 Receptor α, Activin A, hLIF, human IGF1, BMP4, bFGF, CHIR99021, XAV939, SB431542, Y-27632, DZNep, and TSA | 29.68% | [113] |
B. Gastruloids | |||||||
Species | Cell Source | Platform | Seeding | Basal Media | Media Supplementation | Efficiency | References |
Mouse | mESCs PrE-ES (Ffgr2-E2A-Gata6)mTSCs | AggreWell 800 or 384-well low adhesion plate | well: (microwell or well) mESCs: 20~24 cells/well PrE-ES: 5~10 cells/well mTSCs: 70 cells/well | ETX: DMEM IVC1: Advanced DMEM/F-12 | Method B ETX: 15% FBS, sodium pyruvate, and doxycycline IVC 1: 20% FBS, ITS-X, β-oestradiol, progesterone, and N-acetyl-l-cysteine IVC 2: IVC1 with 30% FBS instead of 20% FBS | 40% | [5] |
Human | Primed hESCs and hiPSCs convert into hEPSCs | (1) 24-well AggreWell 400 (2) 24-well AggreWell 800 | Method 1 (1)5.4~10.8 × 104 cells/well (2) 1.35~2.7 × 104 cells/well Method 2 (2) 1.35~2.7 × 104 | tHDM: DMEM/F12:neurobasal (1:1), N2B27 IVC1, 2: Advanced DMEM/F12 | tHDM: FGF2, Activin-A, CHIR99021, PD0325901, and CEPT cocktail tHDM(-CEPT cocktail) tHDM(-Chir) IVC1: ITS-X, β-estradiol, progesterone, N-acetyl-l-cysteine, sodium pyruvate, 5% FBS, and 4% Matrigel IVC2: IVC1 with 30% KSR instead of 20% FBS IVC2 plus D-glucose | 26.67% | [6] |
Primed hESCs (PrE using Tet-On system; GATA6 or SOX17 or GATA3 or TFAP2C) | 24-well AggreWell 400 and ultra-low attachment 96-well plates | Wild-type ESCs and hypoblast-like cells: each with 9600 cells/well Trophoblast-like cells: 19,200 cells/well | N2B27: DMEM/F12:neurobasal A (1:1), N2B27 hIVC1: Advanced DMEM/F12 | N2B27: doxycycline, KSR hIVC1: 20% FBS, hIGF1, ITS-X, glucose, sodium lactate, β-estradiol, and progesterone | - | [114] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, H.; Kim, E. Current Status of Synthetic Mammalian Embryo Models. Int. J. Mol. Sci. 2024, 25, 12862. https://doi.org/10.3390/ijms252312862
Kim H, Kim E. Current Status of Synthetic Mammalian Embryo Models. International Journal of Molecular Sciences. 2024; 25(23):12862. https://doi.org/10.3390/ijms252312862
Chicago/Turabian StyleKim, Haneul, and Eunhye Kim. 2024. "Current Status of Synthetic Mammalian Embryo Models" International Journal of Molecular Sciences 25, no. 23: 12862. https://doi.org/10.3390/ijms252312862
APA StyleKim, H., & Kim, E. (2024). Current Status of Synthetic Mammalian Embryo Models. International Journal of Molecular Sciences, 25(23), 12862. https://doi.org/10.3390/ijms252312862