DeepEnhancerPPO: An Interpretable Deep Learning Approach for Enhancer Classification
Abstract
:1. Introduction
2. Results
2.1. Determination of K-mers Using the Available Learning Embedding
2.2. A Comprehensive Exploration of K-mer Word Embeddings Based on Two Pre-Trained Models
2.2.1. Independent Feature Extraction of DNA2Vec Embedding with Existing Learned Embedding
2.2.2. Shared Feature Extraction for DNA2Vec and DNABERT Embeddings with Existing Learned Embedding
2.3. Determination of Hyperparameters
2.4. Ablation Study
2.5. Comparison of DeepEnhancerPPO with 24 State-of-the-Art Models
Performance of DeepEnhancerPPO Compared to 24 State-of-the-Art Models on the Independent Test Dataset for Two Enhancer Classification
2.6. Further Performance Analysis of DeepEnhancerPPO on Another Benchmark for Enhancer Category Classification
2.7. A Deeper Analysis of the Feature Reduction Module of DeepEnhancerPPO
2.7.1. The Best Feature Reduction Choice for DeepEnhancerPPO: PPO
2.7.2. Interpretability Analysis of DeepEnhancerPPO Based on PPO
3. Materials and Methods
3.1. Benchmark Datasets
3.2. Evaluation Metrics
3.3. Feature Representation of DNA Sequences
3.3.1. K-mer Encoding
3.3.2. Vector Representation Through Embedding and Its Advantages
3.4. Residual Module for Local and Hierarchical Feature Extraction
3.4.1. Adaptation to DNA Sequences and Extracting Local Features
3.4.2. Enhancing Depth for Feature Hierarchy
3.5. Transformer for DNA Sequence Feature Extraction
3.5.1. Incorporation of Positional Information
3.5.2. Multi-Head Self-Attention Mechanism
3.5.3. Layer Composition and Normalization
3.6. Proximal Policy Optimization for Feature Reduction
3.6.1. Problem Formulation
3.6.2. Environment Setup
- State: The fused feature from residual and transformer modules, averaging it along the batch dimension, and then using it to represent the current observation.
- Action: A binary vector where each element indicates whether a specific feature is kept (1) or discarded (0).
- Reward: The reward is based on the classification accuracy achieved using the selected features, and is calculated as follows:Here, the reward R is defined as the ratio of correct predictions to the total number of samples in the batch. Specifically, denotes the number of correct predictions made after applying the feature mask generated by the PPO agent to the fused feature representation, while N represents the batch size. This reward signal helps guide the PPO agent in selecting the most informative features for the classification task.
- Done: The end of an episode, typically after processing all batches of the dataset.
3.6.3. Training Procedure
- Interaction with the Environment: The agent observes the current state and selects an action (feature mask) based on its policy. The selected features are used to perform the classification task.
- Reward Calculation: The reward, defined as the classification accuracy on the training dataset, is computed and used to update the agent’s understanding of the effectiveness of the selected features.
- Policy Update: The agent’s policy is updated using the PPO objective, which aims to improve the expected reward while ensuring that the policy update does not deviate too much from the previous policy:In this equation, represents the ratio of the probability of taking action under the current policy to the probability under the old policy . The term is the advantage estimate, which measures how much better an action is compared to the expected value. The clipping function, , ensures that the policy update remains within a specified range, controlled by the hyperparameter (typically set between 0.1 and 0.2), to maintain stability during training.
- Episode Termination: An episode ends when all batches in the dataset are processed. The environment is reset, and the next episode begins.
3.6.4. Integration with Feature Extraction Modules
3.7. DeepEnhancerPPO
3.7.1. Model Design
3.7.2. Training
- Pre-training the Feature Extraction Modules:The initial phase focuses on pre-training the feature extraction modules of DeepEnhancerPPO. This involves the ResNet1D-18 and transformer components, which are trained to provide accurate and meaningful features for subsequent processing. During this phase, the feature reduction module (PPO agent) is essentially disabled by initializing the feature mask sequence to all ones, ensuring that all features are utilized. The parameters of the ResNet1D-18 and the transformer encoder are optimized by minimizing the binary cross-entropy loss Function (7).
- Pre-training the Feature Reduction Module:In the second phase, we pre-train the feature reduction module, which is the PPO agent. Here, the parameters of the feature extraction (ResNet1D-18 and transformer encoder) and classification modules are frozen. The PPO agent interacts with the environment, collects experiences, and receives rewards based on classification accuracy, allowing it to learn an effective feature reduction policy. The PPO agent’s policy is updated by minimizing the clipped surrogate objective Function (6).
- Joint Training:In the final phase, we jointly train the feature extraction, feature reduction, and classification modules (see Algorithm 1). This involves simultaneously optimizing the binary cross-entropy loss for the classifier and the PPO objective function for feature reduction. Within each epoch, the feature extraction and classification modules are trained over multiple batches, followed by a single update of the PPO agent. This strategy ensures that DeepEnhancerPPO maintains stability and converges effectively during the training process.
Algorithm 1 Joint Training Procedure for DeepEnhancerPPO |
|
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Residual Module for Local and Hierarchical Feature Extraction
Appendix A.1. Residual Block Structure
Appendix B. Transformer for DNA Sequence Feature Extraction
Appendix B.1. Incorporation of Positional Information
Appendix B.2. Multi-Head Self-Attention Mechanism
Appendix B.3. Layer Composition and Normalization
Appendix C. Refined Hyperparameters for the Second Task: Enhancer Strength Classification
References
- Yang, J.H.; Hansen, A.S. Enhancer selectivity in space and time: From enhancer–promoter interactions to promoter activation. Nat. Rev. Mol. Cell Biol. 2024, 25, 574–591. [Google Scholar] [CrossRef] [PubMed]
- Zaugg, J.B.; Sahlén, P.; Andersson, R.; Alberich-Jorda, M.; de Laat, W.; Deplancke, B.; Ferrer, J.; Mandrup, S.; Natoli, G.; Plewczynski, D.; et al. Current challenges in understanding the role of enhancers in disease. Nat. Struct. Mol. Biol. 2022, 29, 1148–1158. [Google Scholar] [CrossRef]
- Pennacchio, L.A.; Bickmore, W.; Dean, A.; Nobrega, M.A.; Bejerano, G. Enhancers: Five essential questions. Nat. Rev. Genet. 2013, 14, 288–295. [Google Scholar] [CrossRef] [PubMed]
- Fukaya, T. Enhancer dynamics: Unraveling the mechanism of transcriptional bursting. Sci. Adv. 2023, 9, eadj3366. [Google Scholar] [CrossRef] [PubMed]
- Murakawa, Y.; Yoshihara, M.; Kawaji, H.; Nishikawa, M.; Zayed, H.; Suzuki, H.; Hayashizaki, Y.; Consortium, F.; Hayashizaki, Y. Enhanced identification of transcriptional enhancers provides mechanistic insights into diseases. Trends Genet. 2016, 32, 76–88. [Google Scholar] [CrossRef]
- Heintzman, N.D.; Ren, B. Finding distal regulatory elements in the human genome. Curr. Opin. Genet. Dev. 2009, 19, 541–549. [Google Scholar] [CrossRef]
- Yan, M.; Tsukasaki, M.; Muro, R.; Ando, Y.; Nakamura, K.; Komatsu, N.; Nitta, T.; Okamura, T.; Okamoto, K.; Takayanagi, H. Identification of an intronic enhancer regulating RANKL expression in osteocytic cells. Bone Res. 2023, 11, 43. [Google Scholar] [CrossRef]
- Boyle, A.P.; Davis, S.; Shulha, H.P.; Meltzer, P.; Margulies, E.H.; Weng, Z.; Furey, T.S.; Crawford, G.E. High-resolution mapping and characterization of open chromatin across the genome. Cell 2008, 132, 311–322. [Google Scholar] [CrossRef] [PubMed]
- Shyamsunder, P.; Shanmugasundaram, M.; Mayakonda, A.; Dakle, P.; Teoh, W.W.; Han, L.; Kanojia, D.; Lim, M.C.; Fullwood, M.; An, O.; et al. Identification of a novel enhancer of CEBPE essential for granulocytic differentiation. Blood J. Am. Soc. Hematol. 2019, 133, 2507–2517. [Google Scholar] [CrossRef] [PubMed]
- The ENCODE Project Consortium. An integrated encyclopedia of DNA elements in the human genome. Nature 2012, 489, 57. [Google Scholar] [CrossRef] [PubMed]
- Firpi, H.A.; Ucar, D.; Tan, K. Discover regulatory DNA elements using chromatin signatures and artificial neural network. Bioinformatics 2010, 26, 1579–1586. [Google Scholar] [CrossRef] [PubMed]
- Erwin, G.D.; Oksenberg, N.; Truty, R.M.; Kostka, D.; Murphy, K.K.; Ahituv, N.; Pollard, K.S.; Capra, J.A. Integrating diverse datasets improves developmental enhancer prediction. PLoS Comput. Biol. 2014, 10, e1003677. [Google Scholar] [CrossRef] [PubMed]
- Ernst, J.; Kellis, M. Discovery and characterization of chromatin states for systematic annotation of the human genome. Nat. Biotechnol. 2010, 28, 817–825. [Google Scholar] [CrossRef]
- Leung, M.K.; Xiong, H.Y.; Lee, L.J.; Frey, B.J. Deep learning of the tissue-regulated splicing code. Bioinformatics 2014, 30, i121–i129. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Fang, L.; Long, R.; Lan, X.; Chou, K.C. iEnhancer-2L: A two-layer predictor for identifying enhancers and their strength by pseudo k-tuple nucleotide composition. Bioinformatics 2016, 32, 362–369. [Google Scholar] [CrossRef] [PubMed]
- Jia, C.; He, W. EnhancerPred: A predictor for discovering enhancers based on the combination and selection of multiple features. Sci. Rep. 2016, 6, 38741. [Google Scholar] [CrossRef] [PubMed]
- Min, X.; Zeng, W.; Chen, S.; Chen, N.; Chen, T.; Jiang, R. Predicting enhancers with deep convolutional neural networks. BMC Bioinform. 2017, 18, 35–46. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, Q.H.; Nguyen-Vo, T.H.; Le, N.Q.K.; Do, T.T.; Rahardja, S.; Nguyen, B.P. iEnhancer-ECNN: Identifying enhancers and their strength using ensembles of convolutional neural networks. BMC Genom. 2019, 20, 951. [Google Scholar] [CrossRef]
- Huang, G.; Luo, W.; Zhang, G.; Zheng, P.; Yao, Y.; Lyu, J.; Liu, Y.; Wei, D.Q. Enhancer-LSTMAtt: A Bi-LSTM and attention-based deep learning method for enhancer recognition. Biomolecules 2022, 12, 995. [Google Scholar] [CrossRef]
- Aladhadh, S.; Almatroodi, S.A.; Habib, S.; Alabdulatif, A.; Khattak, S.U.; Islam, M. An Efficient Lightweight Hybrid Model with Attention Mechanism for Enhancer Sequence Recognition. Biomolecules 2022, 13, 70. [Google Scholar] [CrossRef]
- Kaur, A.; Chauhan, A.P.S.; Aggarwal, A.K. Prediction of enhancers in DNA sequence data using a hybrid CNN-DLSTM model. IEEE/ACM Trans. Comput. Biol. Bioinform. 2022, 20, 1327–1336. [Google Scholar] [CrossRef]
- Le, N.Q.K.; Ho, Q.T.; Nguyen, T.T.D.; Ou, Y.Y. A transformer architecture based on BERT and 2D convolutional neural network to identify DNA enhancers from sequence information. Briefings Bioinform. 2021, 22, bbab005. [Google Scholar] [CrossRef] [PubMed]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention is all you need. Adv. Neural Inf. Process. Syst. 2017, 30, 6000–6010. [Google Scholar]
- Schulman, J.; Wolski, F.; Dhariwal, P.; Radford, A.; Klimov, O. Proximal policy optimization algorithms. arXiv 2017, arXiv:1707.06347. [Google Scholar]
- Adams, D. The Ultimate Hitchhiker’s Guide to the Galaxy: Five Novels in One Outrageous Volume; Del Rey Books: New York, NY, USA, 2010. [Google Scholar]
- Pornputtapong, N.; Acheampong, D.A.; Patumcharoenpol, P.; Jenjaroenpun, P.; Wongsurawat, T.; Jun, S.R.; Yongkiettrakul, S.; Chokesajjawatee, N.; Nookaew, I. KITSUNE: A tool for identifying empirically optimal K-mer length for alignment-free phylogenomic analysis. Front. Bioeng. Biotechnol. 2020, 8, 556413. [Google Scholar] [CrossRef] [PubMed]
- Ng, P. dna2vec: Consistent vector representations of variable-length k-mers. arXiv 2017, arXiv:1701.06279. [Google Scholar]
- Ji, Y.; Zhou, Z.; Liu, H.; Davuluri, R.V. DNABERT: Pre-trained Bidirectional Encoder Representations from Transformers model for DNA-language in genome. Bioinformatics 2021, 37, 2112–2120. [Google Scholar] [CrossRef] [PubMed]
- Majdik, Z.P.; Graham, S.S.; Shiva Edward, J.C.; Rodriguez, S.N.; Karnes, M.S.; Jensen, J.T.; Barbour, J.B.; Rousseau, J.F. Sample Size Considerations for Fine-Tuning Large Language Models for Named Entity Recognition Tasks: Methodological Study. JMIR AI 2024, 3, e52095. [Google Scholar] [CrossRef] [PubMed]
- McNemar, Q. Note on the sampling error of the difference between correlated proportions or percentages. Psychometrika 1947, 12, 153–157. [Google Scholar] [CrossRef] [PubMed]
- Koo, P.K.; Ploenzke, M. Improving representations of genomic sequence motifs in convolutional networks with exponential activations. Nat. Mach. Intell. 2020, 3, 258–266. [Google Scholar] [CrossRef]
- Florkowski, C. Sensitivity, specificity, receiver-operating characteristic (ROC) curves and likelihood ratios: Communicating the performance of diagnostic tests. Clin. Biochem. Rev. 2008, 29 (Suppl. 1), S83–S87. [Google Scholar] [PubMed]
- Liu, B.; Li, K.; Huang, D.S.; Chou, K.C. iEnhancer-EL: Identifying enhancers and their strength with ensemble learning approach. Bioinformatics 2018, 34, 3835–3842. [Google Scholar] [CrossRef] [PubMed]
- Le, N.Q.K.; Yapp, E.K.Y.; Ho, Q.T.; Nagasundaram, N.; Ou, Y.Y.; Yeh, H.Y. iEnhancer-5Step: Identifying enhancers using hidden information of DNA sequences via Chou’s 5-step rule and word embedding. Anal. Biochem. 2019, 571, 53–61. [Google Scholar] [CrossRef] [PubMed]
- Tan, K.K.; Le, N.Q.K.; Yeh, H.Y.; Chua, M.C.H. Ensemble of deep recurrent neural networks for identifying enhancers via dinucleotide physicochemical properties. Cells 2019, 8, 767. [Google Scholar] [CrossRef] [PubMed]
- Butt, A.H.; Alkhalaf, S.; Iqbal, S.; Khan, Y.D. EnhancerP-2L: A Gene regulatory site identification tool for DNA enhancer region using CREs motifs. bioRxiv 2020. [Google Scholar] [CrossRef]
- Khanal, J.; Tayara, H.; Chong, K.T. Identifying enhancers and their strength by the integration of word embedding and convolution neural network. IEEE Access 2020, 8, 58369–58376. [Google Scholar] [CrossRef]
- Cai, L.; Ren, X.; Fu, X.; Peng, L.; Gao, M.; Zeng, X. iEnhancer-XG: Interpretable sequence-based enhancers and their strength predictor. Bioinformatics 2021, 37, 1060–1067. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Xu, L.; Li, Q.; Zhang, L. Identification and classification of enhancers using dimension reduction technique and recurrent neural network. Comput. Math. Methods Med. 2020, 2020, 8852258. [Google Scholar] [CrossRef] [PubMed]
- Lim, D.Y.; Khanal, J.; Tayara, H.; Chong, K.T. iEnhancer-RF: Identifying enhancers and their strength by enhanced feature representation using random forest. Chemom. Intell. Lab. Syst. 2021, 212, 104284. [Google Scholar] [CrossRef]
- Mu, X.; Wang, Y.; Duan, M.; Liu, S.; Li, F.; Wang, X.; Zhang, K.; Huang, L.; Zhou, F. A novel position-specific encoding algorithm (SeqPose) of nucleotide sequences and its application for detecting enhancers. Int. J. Mol. Sci. 2021, 22, 3079. [Google Scholar] [CrossRef] [PubMed]
- Niu, K.; Luo, X.; Zhang, S.; Teng, Z.; Zhang, T.; Zhao, Y. iEnhancer-EBLSTM: Identifying enhancers and strengths by ensembles of bidirectional long short-term memory. Front. Genet. 2021, 12, 665498. [Google Scholar] [CrossRef] [PubMed]
- Yang, R.; Wu, F.; Zhang, C.; Zhang, L. iEnhancer-GAN: A deep learning framework in combination with word embedding and sequence generative adversarial net to identify enhancers and their strength. Int. J. Mol. Sci. 2021, 22, 3589. [Google Scholar] [CrossRef] [PubMed]
- Khan, Z.U.; Pi, D.; Yao, S.; Nawaz, A.; Ali, F.; Ali, S. piEnPred: A bi-layered discriminative model for enhancers and their subtypes via novel cascade multi-level subset feature selection algorithm. Front. Comput. Sci. 2021, 15, 156904. [Google Scholar] [CrossRef]
- Liang, Y.; Zhang, S.; Qiao, H.; Cheng, Y. iEnhancer-MFGBDT: Identifying enhancers and their strength by fusing multiple features and gradient boosting decision tree. Math. Biosci. Eng 2021, 18, 8797–8814. [Google Scholar] [CrossRef]
- Kamran, H.; Tahir, M.; Tayara, H.; Chong, K.T. Ienhancer-deep: A computational predictor for enhancer sites and their strength using deep learning. Appl. Sci. 2022, 12, 2120. [Google Scholar] [CrossRef]
- Geng, Q.; Yang, R.; Zhang, L. A deep learning framework for enhancer prediction using word embedding and sequence generation. Biophys. Chem. 2022, 286, 106822. [Google Scholar] [CrossRef] [PubMed]
- Liao, M.; Zhao, J.p.; Tian, J.; Zheng, C.H. iEnhancer-DCLA: Using the original sequence to identify enhancers and their strength based on a deep learning framework. BMC Bioinform. 2022, 23, 480. [Google Scholar] [CrossRef]
- Luo, H.; Chen, C.; Shan, W.; Ding, P.; Luo, L. iEnhancer-BERT: A novel transfer learning architecture based on DNA-language model for identifying enhancers and their strength. In International Conference on Intelligent Computing; Springer: Cham, Switzerland, 2022; pp. 153–165. [Google Scholar]
- Mehmood, F.; Arshad, S.; Shoaib, M. ADH-Enhancer: An attention-based deep hybrid framework for enhancer identification and strength prediction. Briefings Bioinform. 2024, 25, bbae030. [Google Scholar] [CrossRef] [PubMed]
- Grešová, K.; Martinek, V.; Čechák, D.; Šimeček, P.; Alexiou, P. Genomic benchmarks: A collection of datasets for genomic sequence classification. BMC Genom. Data 2023, 24, 25. [Google Scholar] [CrossRef]
- Andersson, R.; Gebhard, C.; Miguel-Escalada, I.; Hoof, I.; Bornholdt, J.; Boyd, M.; Chen, Y.; Zhao, X.; Schmidl, C.; Suzuki, T.; et al. An atlas of active enhancers across human cell types and tissues. Nature 2014, 507, 455–461. [Google Scholar] [CrossRef] [PubMed]
- Howe, K.L.; Achuthan, P.; Allen, J.; Allen, J.; Alvarez-Jarreta, J.; Amode, M.R.; Armean, I.M.; Azov, A.G.; Bennett, R.; Bhai, J.; et al. Ensembl 2021. Nucleic Acids Res. 2021, 49, D884–D891. [Google Scholar] [CrossRef] [PubMed]
- Lin, D.; Tang, X. Conditional infomax learning: An integrated framework for feature extraction and fusion. In Proceedings of the Computer Vision–ECCV 2006: 9th European Conference on Computer Vision, Graz, Austria, 7–13 May 2006; Springer: Berlin/Heidelberg, Germany, 2006; pp. 68–82. [Google Scholar]
- Vidal-Naquet, M.; Ullman, S. Object Recognition with Informative Features and Linear Classification. In Proceedings of the ICCV, Nice, France, 14–17 October 2003; Volume 3, p. 281. [Google Scholar]
- Meyer, P.E.; Bontempi, G. On the use of variable complementarity for feature selection in cancer classification. In Workshops on Applications of Evolutionary Computation; Springer: Berlin/Heidelberg, Germany, 2006; pp. 91–102. [Google Scholar]
- Li, J.; Cheng, K.; Wang, S.; Morstatter, F.; Trevino, R.P.; Tang, J.; Liu, H. Feature selection: A data perspective. ACM Comput. Surv. (CSUR) 2017, 50, 1–45. [Google Scholar] [CrossRef]
- Yang, H.; Moody, J. Data visualization and feature selection: New algorithms for nongaussian data. Adv. Neural Inf. Process. Syst. 1999, 12, 687–693. [Google Scholar]
- Lewis, D.D. Feature selection and feature extraction for text categorization. In Proceedings of the Speech and Natural Language: Proceedings of a Workshop Held at Harriman, New York, NY, USA, 23–26 February 1992. [Google Scholar]
- Peng, H.; Long, F.; Ding, C. Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy. IEEE Trans. Pattern Anal. Mach. Intell. 2005, 27, 1226–1238. [Google Scholar] [CrossRef]
- Mnih, V. Asynchronous Methods for Deep Reinforcement Learning. arXiv 2016, arXiv:1602.01783. [Google Scholar]
- Lillicrap, T. Continuous control with deep reinforcement learning. arXiv 2015, arXiv:1509.02971. [Google Scholar]
- Rafailov, R.; Sharma, A.; Mitchell, E.; Manning, C.D.; Ermon, S.; Finn, C. Direct preference optimization: Your language model is secretly a reward model. Adv. Neural Inf. Process. Syst. 2024, 36, 53728–53741. [Google Scholar]
- Haarnoja, T.; Zhou, A.; Abbeel, P.; Levine, S. Soft actor-critic: Off-policy maximum entropy deep reinforcement learning with a stochastic actor. In Proceedings of the International Conference on Machine Learning, PMLR, Stockholm, Sweden, 10–15 July 2018; pp. 1861–1870. [Google Scholar]
- Xiong, L.; Kang, R.; Ding, R.; Kang, W.; Zhang, Y.; Liu, W.; Huang, Q.; Meng, J.; Guo, Z. Genome-wide identification and characterization of enhancers across 10 human tissues. Int. J. Biol. Sci. 2018, 14, 1321. [Google Scholar] [CrossRef]
- Wold, S.; Esbensen, K.; Geladi, P. Principal component analysis. Chemom. Intell. Lab. Syst. 1987, 2, 37–52. [Google Scholar] [CrossRef]
- Cohen, I.; Huang, Y.; Chen, J.; Benesty, J.; Benesty, J.; Chen, J.; Huang, Y.; Cohen, I. Pearson correlation coefficient. In Noise Reduction in Speech Processing; Springer: Berlin/Heidelberg, Germany, 2009; pp. 1–4. [Google Scholar]
- Rainio, O.; Teuho, J.; Klén, R. Evaluation metrics and statistical tests for machine learning. Sci. Rep. 2024, 14, 6086. [Google Scholar] [CrossRef]
- Han, G.S.; Li, Q.; Li, Y. Nucleosome positioning based on DNA sequence embedding and deep learning. BMC Genom. 2022, 23, 301. [Google Scholar] [CrossRef] [PubMed]
- Faye, B.; Lebbah, M.; Azzag, H. Supervised Batch Normalization. arXiv 2024, arXiv:2405.17027. [Google Scholar]
- Wang, W.; Wu, Q.; Li, C. iEnhancer-DCSA: Identifying enhancers via dual-scale convolution and spatial attention. BMC Genom. 2023, 24, 393. [Google Scholar] [CrossRef] [PubMed]
Model | SN | SP | ACC | MCC | AUC |
---|---|---|---|---|---|
iEnhancer-2L [15] | 0.7100 | 0.7500 | 0.7300 | 0.4604 | 0.8062 |
EnhancerPred [16] | 0.7350 | 0.7450 | 0.7400 | 0.4800 | 0.8013 |
iEnhancer-EL [34] | 0.7100 | 0.7850 | 0.7475 | 0.4964 | 0.8173 |
iEnhancer-5Step [35] | 0.8200 | 0.7600 | 0.7900 | 0.5800 | - |
DeployEnhancer [36] | 0.7550 | 0.7600 | 0.7550 | 0.5100 | 0.7704 |
iEnhancer-ECNN [18] | 0.7520 | 0.7850 | 0.7690 | 0.5370 | 0.8320 |
EnhancerP-2L [37] | 0.7810 | 0.8105 | 0.7950 | 0.5907 | - |
iEnhancer-CNN [38] | 0.7825 | 0.7900 | 0.7750 | 0.5850 | - |
iEnhancer-XG [39] | 0.7400 | 0.7750 | 0.7575 | 0.5150 | - |
Enhancer-DRRNN [40] | 0.7330 | 0.8010 | 0.7670 | 0.5350 | 0.8370 |
Enhancer-BERT [22] | 0.8000 | 0.7120 | 0.7560 | 0.5140 | - |
iEnhancer-RF [41] | 0.7850 | 0.8100 | 0.7975 | 0.5952 | 0.8600 |
spEnhancer [42] | 0.8300 | 0.7150 | 0.7725 | 0.5793 | 0.8235 |
iEnhancer-EBLSTM [43] | 0.7550 | 0.7950 | 0.7720 | 0.5340 | 0.8350 |
iEnhancer-GAN [44] | 0.8110 | 0.7580 | 0.7840 | 0.5670 | - |
piEnhPred [45] | 0.8250 | 0.7840 | 0.8040 | 0.6099 | - |
iEnhancer-RD [44] | 0.8100 | 0.7650 | 0.7880 | 0.5760 | 0.8440 |
iEnhancer-MFGBDT [46] | 0.7679 | 0.7955 | 0.7750 | 0.5607 | - |
Enhancer-LSTMAtt [19] | 0.7950 | 0.8150 | 0.8050 | 0.6101 | 0.8588 |
iEnhancer-Deep [47] | 0.8150 | 0.6700 | 0.7402 | 0.4902 | - |
Rank-GAN [48] | 0.7487 | 0.7563 | 0.7525 | 0.5051 | 0.8062 |
iEnhancer-DCLA [49] | 0.7800 | 0.7850 | 0.7825 | 0.5650 | 0.8269 |
iEnhancer-BERT [50] | - | - | 0.7930 | 0.5850 | 0.8440 |
ADH-Enhancer [51] | 0.8420 | 0.8700 | 0.8430 | 0.6860 | - |
DeepEnhancerPPO (Ours) | 0.9000 | 0.9200 | 0.9100 | 0.8202 | 0.9585 |
Model | SN | SP | ACC | MCC | AUC |
---|---|---|---|---|---|
iEnhancer-2L [15] | 0.7100 | 0.7500 | 0.7300 | 0.4604 | 0.8062 |
EnhancerPred [16] | 0.7350 | 0.7450 | 0.7400 | 0.4800 | 0.8013 |
iEnhancer-EL [34] | 0.5400 | 0.6800 | 0.6100 | 0.2222 | 0.6801 |
iEnhancer-5Step [35] | 0.7400 | 0.5300 | 0.6350 | 0.2800 | - |
DeployEnhancer [36] | 0.8315 | 0.4561 | 0.6849 | 0.3120 | 0.6714 |
iEnhancer-ECNN [18] | 0.7910 | 0.7480 | 0.6780 | 0.3680 | 0.7480 |
EnhancerP-2L [37] | 0.6829 | 0.7922 | 0.7250 | 0.4624 | - |
iEnhancer-CNN [38] | 0.6525 | 0.7610 | 0.7500 | 0.3232 | - |
iEnhancer-XG [39] | 0.7000 | 0.5700 | 0.6350 | 0.2720 | - |
Enhancer-DRRNN [40] | 0.8580 | 0.8400 | 0.8490 | 0.6990 | - |
Enhancer-BERT [22] | - | - | - | - | - |
iEnhancer-RF [41] | 0.9300 | 0.7700 | 0.8500 | 0.7091 | 0.9700 |
spEnhancer [42] | 0.9100 | 0.3300 | 0.6200 | 0.3703 | 0.6253 |
iEnhancer-EBLSTM [43] | 0.8120 | 0.5360 | 0.6580 | 0.3240 | 0.6880 |
iEnhancer-GAN [44] | 0.9610 | 0.5370 | 0.7490 | 0.5050 | - |
piEnhPred [45] | 0.7000 | 0.7500 | 0.7250 | 0.4506 | - |
iEnhancer-RD [44] | 0.8100 | 0.7650 | 0.7880 | 0.5760 | 0.8440 |
iEnhancer-MFGBDT [46] | 0.7255 | 0.6681 | 0.6850 | 0.3862 | - |
Enhancer-LSTMAtt [19] | 0.9900 | 0.8000 | 0.8950 | 0.8047 | 0.9637 |
iEnhancer-Deep [47] | 0.7300 | 0.4900 | 0.6100 | 0.2266 | - |
Rank-GAN [48] | 0.7068 | 0.6889 | 0.6970 | 0.3954 | 0.7702 |
iEnhancer-DCLA [49] | 0.8700 | 0.6900 | 0.7800 | 0.5693 | 0.8226 |
iEnhancer-BERT [50] | - | - | 0.7010 | 0.4010 | 0.8120 |
ADH-Enhancer [51] | 0.8730 | 0.7500 | 0.8750 | 0.7740 | - |
DeepEnhancerPPO (Ours) | 0.9500 | 0.6700 | 0.8100 | 0.6458 | 0.8524 |
DeepEnhancerPPO-Refined (Ours) | 0.8900 | 0.8600 | 0.8750 | 0.7503 | 0.9442 |
Model | SN | SP | ACC | MCC | AUC |
---|---|---|---|---|---|
Baseline-1 [52] | - | - | 0.6890 | - | - |
Baseline-2 [52] | - | - | 0.8110 | - | - |
DeepEnhancerPPO (Ours) | 0.9299 | 0.7500 | 0.8482 | 0.6738 | 0.8856 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mu, X.; Huang, Z.; Chen, Q.; Shi, B.; Xu, L.; Xu, Y.; Zhang, K. DeepEnhancerPPO: An Interpretable Deep Learning Approach for Enhancer Classification. Int. J. Mol. Sci. 2024, 25, 12942. https://doi.org/10.3390/ijms252312942
Mu X, Huang Z, Chen Q, Shi B, Xu L, Xu Y, Zhang K. DeepEnhancerPPO: An Interpretable Deep Learning Approach for Enhancer Classification. International Journal of Molecular Sciences. 2024; 25(23):12942. https://doi.org/10.3390/ijms252312942
Chicago/Turabian StyleMu, Xuechen, Zhenyu Huang, Qiufen Chen, Bocheng Shi, Long Xu, Ying Xu, and Kai Zhang. 2024. "DeepEnhancerPPO: An Interpretable Deep Learning Approach for Enhancer Classification" International Journal of Molecular Sciences 25, no. 23: 12942. https://doi.org/10.3390/ijms252312942
APA StyleMu, X., Huang, Z., Chen, Q., Shi, B., Xu, L., Xu, Y., & Zhang, K. (2024). DeepEnhancerPPO: An Interpretable Deep Learning Approach for Enhancer Classification. International Journal of Molecular Sciences, 25(23), 12942. https://doi.org/10.3390/ijms252312942