Cenobamate, a New Promising Antiseizure Medication: Experimental and Clinical Aspects
Abstract
:1. Introduction
2. Search Strategy and Selection Criteria
3. Mechanism of Action
4. Pharmacokinetics
5. Cenobamate in Animal Models of Seizures and Behavioral Tests
Substance/Drug | Convulsion Model | Animal Model | Method of Administration | ED50 (mg/kg) | Anticonvulsant Effect | Bibliography | |
---|---|---|---|---|---|---|---|
Cenobamate | PTZ (85 mg/kg) | mice | ip | 28.5 | + | [19,20] | |
mice | po | 7.1 | + | [20] | |||
PTZ | rats | ip | 13.6 | + | |||
rats | po | 25 | +/− | ||||
MES | mice | ip | 9.8 | + | [19,20] | ||
mice | po | 3.3 | + | [20] | |||
rats | ip | 2.9 | + | ||||
rats | po | 1.9 | + | ||||
6 Hz | 22 mA | mice | ip | 11 | + | [19,20] | |
32 mA | 17.9 | + | |||||
44 mA | 16.5 | + | |||||
picrotoxin | mice | ip | 34.5 | + | [20] | ||
bicuculline | mice | ip | >70 | − | [20] | ||
hippocampal-kindling-induced seizures | rats | ip | 16.4 | + | |||
audiogenic seizures | DBA/2 mouse model | ip | * | − | [25] | ||
YKP3090 | PTZ (85 mg/kg) | mice | ip | 56.4 | + | [20] | |
PTZ | rats | ip | 16.7 | + | |||
PTZ | rats | po | 8.14 | + | |||
MES | mice | ip | 38.2 | + | |||
MES | rats | ip | 26.1 | + | |||
MES | rats | po | 11.9 | + | |||
hippocampal-kindling-induced seizures | rats | ip | >50 | − | [20] | ||
YKP1983 | PTZ (85 mg/kd) | mice | ip | 35.9 | + | ||
PTZ | rats | ip | 19.3 | + | [20] | ||
PTZ | rats | po | 12.3 | +/− | |||
MES | mice | ip | 15.8 | + | |||
MES | rats | ip | 8.4 | + | |||
MES | rats | po | 2.9 | + | |||
hippocampal-kindling-induced seizures | rats | ip | 30 | − |
6. Cellular Effects of Cenobamate
7. Clinical Efficacy
8. Cenobamate—Liver and Kidney Functioning
9. Drug Load, Overtreatment of Epilepsy, and Drug Interactions
10. Conclusions
11. Future Prospects
- (1)
- Experimental studies, especially isobolographic analysis, allow for clearly identifying drug interactions resulting in synergy, additivity, or antagonism of action. In practice, this makes it possible to choose the best option for polytherapy (especially in the case of using ASMs with different mechanisms of action), characterized by synergy or additivity in terms of therapeutic effects and antagonism in the case of adverse effects of the drugs combined [48].
- (2)
- Experimental studies provide an opportunity to learn more about the efficacy of cenobamate in patients with types of seizures other than focal [36], which will help expand the clinical recommendation for this ASM.
- (3)
- Preclinical studies indicate the neuroprotective potential of cenobamate, which, in practice, may indicate an ASM limiting the process of epileptogenesis and, as a result, positively modifying the course of epilepsy [62].
- (4)
- Preclinical studies have shown the lack of neurotoxicity caused by cenobamate in the brains of newborns [23], making it possible to use this AMS safely in neonatal seizures.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lattanzi, S. New evidence in adjunctive treatment of focal-onset seizures in adults: A critical appraisal. Glob. Reg. Health Technol. Assess. 2022, 9 (Suppl. S2), 14–19. [Google Scholar] [CrossRef] [PubMed]
- Kwan, P.; Arzimanoglou, A.; Berg, A.T.; Brodie, M.J.; Hauser, W.A.; Mathern, G.; Moshé, S.L.; Perucca, E.; Wiebe, S.; French, J. Definition of drug resistant epilepsy: Consensus proposal by the ad hoc Task Force of the ILAE Commission on Therapeutic Strategies. Epilepsia 2010, 51, 1069–1077. [Google Scholar] [CrossRef] [PubMed]
- Servilha-Menezes, G.; Garcia-Cairasco, N. A complex systems view on the current hypotheses of epilepsy pharmacoresistance. Epilepsia Open 2022, 7 (Suppl. S1), S8–S22. [Google Scholar] [CrossRef] [PubMed]
- Łukawski, K.; Gryta, P.; Łuszczki, J.; Czuczwar, S.J. Exploring the latest avenues for antiepileptic drug discovery and development. Expert Opin. Drug Discov. 2016, 11, 369–382. [Google Scholar] [CrossRef]
- Löscher, W.; Klein, P. The pharmacology and clinical efficacy of antiseizure medications: From bromide salts to cenobamate and beyond. CNS Drugs 2021, 35, 935–963. [Google Scholar] [CrossRef]
- Guignet, M.; Campbell, A.; White, H.S. Cenobamate (XCOPRI): Can preclinical and clinical evidence provide insight into its mechanism of action? Epilepsia 2020, 61, 2329–2339. [Google Scholar] [CrossRef]
- Löscher, W.; Sills, G.J.; White, H.S. The ups and downs of alkyl-carbamates in epilepsy therapy: How does cenobamate differ? Epilepsia 2021, 62, 596–614. [Google Scholar] [CrossRef]
- Pong, A.W.; Xu, K.J.; Klein, P. Recent advances in pharmacotherapy for epilepsy. Curr. Opin. Neurol. 2023, 36, 77–85. [Google Scholar] [CrossRef]
- Nakamura, M.; Cho, J.H.; Shin, H.; Jang, I.S. Effects of cenobamate (YKP3089), a newly developed anti-epileptic drug, on voltage-gated sodium channels in rat hippocampal CA3 neurons. Eur. J. Pharmacol. 2019, 855, 175–182. [Google Scholar] [CrossRef]
- Sharma, R.; Nakamura, M.; Neupane, C.; Jeon, B.H.; Shin, H.; Melnick, S.M.; Glenn, K.J.; IL-Sung, J.; Park, J.B. Positive allosteric modulation of GABAA receptors by a novel antiepileptic drug cenobamate. Eur. J. Pharmacol. 2020, 879, 173117. [Google Scholar] [CrossRef]
- Barbieri, M.A.; Perucca, E.; Spina, E.; Rota, P.; Franco, V. Cenobamate: A Review of its pharmacological properties, clinical efficacy and tolerability profile in the treatment of epilepsy. CNS Neurol. Disord. Drug Targets 2023, 22, 394–403. [Google Scholar] [CrossRef] [PubMed]
- Schmitz, B.; Lattanzi, S.; Vonck, K.; Kälviäinen, R.; Nashef, L.; Ben-Menachem, E. Cenobamate in refractory epilepsy: Overview of treatment options and practical considerations. Epilepsia Open 2023, 8, 1241–1255. [Google Scholar] [CrossRef] [PubMed]
- Ghit, A.; Assal, D.; Al-Shami, A.S.; Hussein, D.E.E. GABAA receptors: Structure, function, pharmacology, and related disorders. J. Genet. Eng. Biotechnol. 2021, 19, 123. [Google Scholar] [CrossRef] [PubMed]
- Goldschen-Ohm, M.P. Benzodiazepine modulation of GABAA receptors: A mechanistic perspective. Biomolecules 2022, 12, 1784. [Google Scholar] [CrossRef] [PubMed]
- Greenfield, L.J. Molecular mechanisms of antiseizure drug activity at GABAA receptors. Seizure 2013, 22, 589–600. [Google Scholar] [CrossRef]
- Roberti, R.; De Caro, C.; Iannone, L.F.; Zaccara, G.; Lattanzi, S.; Russo, E. Pharmacology of cenobamate: Mechanism of action, pharmacokinetics, drug-drug interactions and tolerability. CNS Drugs 2021, 35, 609–618. [Google Scholar] [CrossRef]
- Specchio, N.; Pietrafusa, N.; Vigevano, F. Is cenobamate the breakthrough we have been wishing for? Int. J. Mol. Sci. 2021, 22, 9339. [Google Scholar] [CrossRef]
- Smith, M.C.; Klein, P.; Krauss, G.L.; Rashid, S.; Seiden, L.G.; Stern, J.M.; Rosenfeld, W.E. Dose adjustment of concomitant antiseizure medications during cenobamate treatment: Expert opinion consensus recommendations. Neurol. Ther. 2022, 11, 1705–1720. [Google Scholar] [CrossRef]
- Bialer, M.; Johannessen, S.I.; Levy, R.H.; Perucca, E.; Tomson, T.; White, H.S. Progress report on new antiepileptic drugs: A summary of the Tenth Eilat Conference (EILAT X). Epilepsy Res. 2010, 92, 89–124. [Google Scholar] [CrossRef]
- Melnick, S.M.; Shin, Y.; Glenn, K.J. Anticonvulsant effects of cenobamate in chemically and electrically induced seizure models in rodents. Heliyon 2023, 9, e18920. [Google Scholar] [CrossRef]
- Bialer, M.; Johannessen, S.I.; Levy, R.H.; Perucca, E.; Tomson, T.; White, H.S. Progress report on new antiepileptic drugs: A summary of the Eleventh Eilat Conference (EILAT XI). Epilepsy Res. 2013, 103, 2–30. [Google Scholar] [CrossRef] [PubMed]
- Song, W.S.; Cho, Y.S.; Oh, S.P.; Yoon, S.H.; Kim, Y.S.; Kim, M.H. Cognitive and behavioral effects of the anti-epileptic drug cenobamate (YKP3089) and underlying synaptic and cellular mechanisms. Neuropharmacology 2022, 221, 109292. [Google Scholar] [CrossRef] [PubMed]
- Witherspoon, E.; Williams, G.; Focelli, P.A. Cenobamate suppresses seizures without inducing cell death in neonatal rats. Epilepsy Behav. 2024, 158, 109898. [Google Scholar] [CrossRef] [PubMed]
- Bittigau, P.; Sifringer, M.; Genz, K.; Reith, E.; Pospichil, D.; Govindrajalu, S.; Dzietko, M.; Pesditschek, S.; Mai, I.; Dikranian, K.; et al. Antiepileptic drugs and apoptopic neurodegeneration in the developing brain. Proc. Natl. Acad. Sci. USA 2002, 99, 15089–15094. [Google Scholar] [CrossRef] [PubMed]
- Leo, A.; Bosco, F.; Guarnieri, L.; De Sarro, C.; Rania, V.; Gallelli, L.; Citraro, R.; De Sarro, G. Cenobamate enhances the anticonvulsant effect of other antiseizure medications in the DBA/2 mouse model of reflex epilepsy. Eur. J. Pharmacol. 2024, 962, 176222. [Google Scholar] [CrossRef]
- Krauss, G.L.; Klein, P.; Brandt, C.; Lee, S.K.; Milanov, I.; Milovanovic, M.; Steinhoff, B.J.; Kamin, M. Safety and efficacy of adjunctive cenobamate (YKP3089) in patients with uncontrolled focal seizures: A multicentre, double-blind, randomised, placebo-controlled, dose-response trial. Lancet Neurol. 2020, 19, 38–48. [Google Scholar] [CrossRef]
- Chung, S.S.; French, J.A.; Kowalski, J.; Krauss, G.L.; Lee, S.K.; Maciejowski, M.; Rosenfeld, W.E.; Sperling, M.R.; Mizne, S.; Kamin, M. Randomized phase 2 study of adjunctive cenobamate in patients with uncontrolled focal seizures. Neurology 2020, 94, e2311–e2322. [Google Scholar] [CrossRef]
- French, J.A.; Chung, S.S.; Krauss, G.L.; Lee, S.K.; Maciejowski, M.; Rosenfeld, W.E.; Sperling, M.R.; Kamin, M. Long-term safety of adjunctive cenobamate in patients with uncontrolled focal seizures: Open-label extension of a randomized clinical study. Epilepsia 2021, 62, 2142–2150. [Google Scholar] [CrossRef]
- Sperling, M.R.; Klein, P.; Aboumatar, S.; Gelfand, M.; Halford, J.J.; Krauss, G.L.; Rosenfeld, W.E.; Vossler, D.G.; Wechsler, R.; Borchert, L.; et al. Cenobamate (YKP3089) as adjunctive treatment for uncontrolled focal seizures in a large, phase 3, multicenter, open-label safety study. Epilepsia 2020, 61, 1099–1108. [Google Scholar] [CrossRef]
- Villanueva, V.; Santos-Carrasco, D.; Cabezudo-García, P.; Gómez-Ibáñez, A.; Garcés, M.; Serrano-Castro, P.; Castro-Vilanova, M.D.; Sayas, D.; Lopez-Gonzalez, F.J.; Rodríguez-Osorio, X.; et al. Real-world safety and effectiveness of cenobamate in patients with focal onset seizures: Outcomes from an Expanded Access Program. Epilepsia Open 2023, 8, 918–929. [Google Scholar] [CrossRef]
- Sander, J.W.; Rosenfeld, W.E.; Halford, J.J.; Steinhoff, B.J.; Biton, V.; Toledo, M. Long-term individual retention with cenobamate in adults with focal seizures: Pooled data from the clinical development program. Epilepsia 2022, 63, 139–149. [Google Scholar] [CrossRef] [PubMed]
- Klein, P.; Krauss, G.L.; Steinhoff, B.J.; Devinsky, O.; Sperling, M.R. Failure to use new breakthrough treatments for epilepsy. Epilepsia 2023, 64, 1458–1465. [Google Scholar] [CrossRef] [PubMed]
- Villanueva, V.; Serratosa, J.M.; Toledo, M.; Calleja, M.A.; Navarro, A.; Sabaniego, J.; Perez-Domper, P.; Álvarez-Barón, E.; Subias, S.; Gil, A. Number needed to treat and associated cost analysis of cenobamate versus third-generation anti-seizure medications for the treatment of focal-onset seizures in patients with drug-resistant epilepsy in Spain. Epilepsy Behav. 2023, 139, 109054. [Google Scholar] [CrossRef]
- Steinhoff, B.J.; Georgiou, D.; Intravooth, T. The cenobamate KORK study—A prospective monocenter observational study investigating cenobamate as an adjunctive therapy in refractory epilepsy, with comparisons to historical cohorts treated with add-on lacosamide, perampanel, and brivaracetam. Epilepsia Open 2024, 9, 1502–1514. [Google Scholar] [CrossRef]
- Lattanzi, S.; Ranzato, F.; Di Bonavetura, C.; Bonanni, P.; Gambardella, A.; Tartara, E.; Assenza, G.; Procaccini, M.; Falsetto, M.; Villano, V.; et al. Effectiveness and saftety of adjunctive cenobamate in people with focal-onset epilepsy: Evidence from the first interim analysis of the BLESS study. Neurol. Ther. 2024, 13, 1203–1217. [Google Scholar] [CrossRef]
- Agashe, S.; Worrell, G.; Britton, J.; Noe, K.; Ritaccio, A.; Wirrell, E.C.; Nickels, K.C.; Cascino, G.D.; Burkholder, D. Cenobamate in generalized epilepsy and combined generalized and focal epilepsy. Neurol. Clin. Pract. 2023, 13, e200133. [Google Scholar] [CrossRef]
- Rissardo, J.P.; Fornari Caprara, A.L. Cenobamate (YKP3089) and drug-resistant epilepsy: A review of the literature. Medicina 2023, 59, 1389. [Google Scholar] [CrossRef]
- Strzelczyk, A.; Mann, C.; Willems, L.M.; Rosenow, F.; Bauer, S. Cenobamate for the treatment of focal epilepsies. Expert Opin. Pharmacother. 2020, 21, 2215–2223. [Google Scholar] [CrossRef]
- Sperling, M.; Klein, P.; Kamin, M. Safety of Cenobamate (YKP3089) as Adjunctive Treatment for Uncontrolled Focal Seizures in a Large, Multicenter, Open-Label Study (P1.5-019). Neurology 2019, 92, 19. [Google Scholar] [CrossRef]
- Mudigoudar, B.; Wheless, J. Safety of adjunctive treatment with cenobamate in patients with uncontrolled focal seizures. Lancet Neurol. 2020, 19, 288. [Google Scholar] [CrossRef]
- Vernillet, L.; Greene, S.A.; Kim, H.W.; Melnick, S.M.; Glenn, K. Mass balance, metabolism, and excretion of cenobamate, a new antiepileptic drug, after a single oral administration in healthy male subjects. Eur. J. Drug Metab. Pharmacokinet. 2020, 45, 513–522. [Google Scholar] [CrossRef] [PubMed]
- Baldelli, S.; Cattaneo, D.; Giodini, L.; Baietto, L.; Di Perri, G.; D’Avolio, A.; Clementi, E. Development and validation of a HPLC-UV method for the quantification of antiepileptic drugs in dried plasma spots. Clin. Chem. Lab. Med. 2015, 53, 435–444. [Google Scholar] [CrossRef] [PubMed]
- Naik, G.S.; Kodagali, R.; Mathew, B.S.; Thomas, M.; Prabha, R.; Mathew, V.; Fleming, D.H. Therapeutic drug monitoring of levetiracetam and lamotrigine: Is there a need? Ther. Drug Monit. 2015, 37, 437–444. [Google Scholar] [CrossRef] [PubMed]
- Witt, J.A.; Nass, R.D.; Baumgartner, T.; von Wrede, R.; Elger, C.E.; Surges, R.; Helmstaedter, C. Does the accumulated antiepileptic drug load in chronic epilepsy reflect disease severity? Epilepsia 2020, 61, 2685–2695. [Google Scholar] [CrossRef]
- Hilgers, A.; Schaefer, M. Systematic adverse drug reaction monitoring of patients under newer antiepileptic drugs using routine clinical data of inpatients. Drugs Real World Outcomes 2016, 3, 209–221. [Google Scholar] [CrossRef]
- Deckers, C.L. Overtreatment in adults with epilepsy. Epilepsy Res. 2002, 52, 43–52. [Google Scholar] [CrossRef]
- Kanner, A.M.; Ashman, E.; Gloss, D.; Harden, C.; Bourgeois, B.; Bautista, J.F.; Abou-Khalil, B.; Burakgazi-Dalkilic, E.; Llanas Park, E.; Stern, J.; et al. Practice guideline update summary: Efficacy and tolerability of the new antiepileptic drugs I: Treatment of new-onset epilepsy: Report of the Guideline Development, Dissemination, and Implementation Subcommittee of the American Academy of Neurology and the American Epilepsy Society. Neurology 2018, 91, 74–81. [Google Scholar]
- Błaszczyk, B.; Miziak, B.; Czuczwar, P.; Wierzchowska-Cioch, E.; Pluta, R.; Czuczwar, S.J. A viewpoint on rational and irrational fixed-drug combinations. Expert Rev. Clin. Pharmacol. 2018, 11, 761–771. [Google Scholar] [CrossRef]
- Verrotti, A.; Lattanzi, S.; Brigo, F.; Zaccara, G. Pharmacodynamic interactions of antiepileptic drugs: From bench to clinical practice. Epilepsy Behav. 2020, 104, 106939. [Google Scholar] [CrossRef]
- Park, K.M.; Kim, S.E.; Lee, B.I. Antiepileptic drug therapy in patients with drug-resistant epilepsy. J. Epilepsy Res. 2019, 9, 14–26. [Google Scholar] [CrossRef]
- Pietrafusa, N.; Falcicchio, G.; Russo, E.; Lattanzi, S.; Goffredo, B.; Simeoli, R.; Cairoli, S.; Corsetti, T.; Roberti, R.; De Tommaso, M.; et al. Cenobamate as add-on therapy for drug resistant epilepsies: Effectiveness, drug to drug interactions and neuropsychological impact. What have we learned from real word evidence? Front. Pharmacol. 2023, 14, 1239152. [Google Scholar] [CrossRef] [PubMed]
- Beltrán-Corbellini, Á.; Romeral-Jiménez, M.; Mayo, P.; Sánchez-Miranda Román, I.; Iruzubieta, P.; Chico-García, J.L.; Parra-Díaz, P.; García-Morales, I.; Toledano, R.; Aledo-Serrano, Á.; et al. Cenobamate in patients with highly refractory focal epilepsy: A retrospective real-world study. Seizure 2023, 111, 71–77. [Google Scholar] [CrossRef] [PubMed]
- Peña-Ceballos, J.; Moloney, P.B.; Munteanu, T.; Doyle, M.; Colleran, N.; Liggan, B.; Breen, A.; Murphy, S.; El-Naggar, H.; Widdess-Walsh, P.; et al. Adjunctive cenobamate in highly active and ultra-refractory focal epilepsy: A “real-world” retrospective study. Epilepsia 2023, 64, 1225–1235. [Google Scholar] [CrossRef] [PubMed]
- Becker, D.A.; Demko, S.A. Dose reduction and discontinuation of concomitant antiseizure medications after initiating cenobamate: A retrospective review. Epilepsy Res. 2023, 197, 107242. [Google Scholar] [CrossRef] [PubMed]
- Aboumatar, S.; Ferrari, L.; Stern, S.; Wade, C.T.; Weingarten, M.; Connor, G.S.; Rosenfeld, W.E. Reductions in concomitant antiseizure medication drug load during adjunctive cenobamate therapy: Post-hoc analysis of a subset of patients from a phase 3, multicenter, open-label study. Epilepsy Res. 2024, 200, 107306. [Google Scholar] [CrossRef]
- Carreño, M.; Gil-Nagel, A.; Serratosa, J.M.; Toledo, M.; Rodriguez-Uranga, J.J.; Villanueva, V. Spanish consensus on the management of concomitant antiseizure medications when using cenobamate in adults with drug-resistant focal seizures. Epilepsia Open 2024, 9, 1051–1058. [Google Scholar] [CrossRef]
- Privitera, M.; Richy, F.F.; Schaber, V.F. Indirect treatment comparison of cenobamate to other ASMs for the treatment of uncontrolled focal seizures. Epilepsy Behav. 2022, 126, 108429. [Google Scholar] [CrossRef]
- Rosenfeld, W.E.; Nisman, A.; Ferrari, L. Efficacy of adjunctive cenobamate based on number of concomitant antiseizure medications, seizure frequency, and epilepsy duration at baseline: A post-hoc analysis of a randomized clinical study. Epilepsy Res. 2021, 172, 106592. [Google Scholar] [CrossRef]
- Steinhoff, B.J.; Rosenfeld, W.E.; Serratosa, J.M.; Brandt, C.; Klein, P.; Toledo, M.; Krauss, G.L. Practical guidance for the management of adults receiving adjunctive cenobamate for the treatment of focal epilepsy—expert opinion. Epilepsy Behav. 2021, 123, 108270. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, J.; Wang, C. Efficacy and safety of cenobamate in patients with uncontrolled focal seizures: A meta-analysis. Acta Neurol. Scand. 2021, 144, 58–66. [Google Scholar] [CrossRef]
- Schuetz, E.; Wagner, K.; Metternich, B.; Papadopoulou, G.; Kravalis, K.; Heers, M.; Martínez-Lizana, E.; Castillo-Rodriguez, M.; Altenmüller, D.-M.; Bonhage, A.; et al. Effects of cenobamate on cognitive performance of epilepsy patients. Seizure 2022, 102, 129–133. [Google Scholar] [CrossRef] [PubMed]
- Wicinski, R.; Puk, O.; Malinowski, B. Cenobamate: Neuroprotective potential of a new antiepileptic drug. Neurochem. Res. 2021, 46, 439–446. [Google Scholar] [CrossRef] [PubMed]
- French, J.A. Cenobamate for focal seizures—a game changer? Nat. Rev. Neurol. 2020, 16, 133–134. [Google Scholar] [CrossRef] [PubMed]
Clinical Trial | Age of Patients [Years] | Type of Epileptic Seizures | Dosage of Cenobamate [mg/24 h] | Duration of Therapy | Median Percentage Reductions in Seizure Frequency [%] | Responder Rates [%] | Frequency of Adverse Events [% of Patients] | Respective Discontinuation of the Treatment [% of Patients] | References |
---|---|---|---|---|---|---|---|---|---|
NCT01866111 | 18–70 | resistant focal seizures | placebo | 8 weeks | 24 | 25 | 70 | 5 | [26] |
100 | 35.5 | 40 | 65 | 10 | |||||
200 | 55 | 56 | 76 | 14 | |||||
400 | 55 | 64 | 90 | 20 | |||||
NCT01397968 phase 2 | 18–65 | resistant focal seizures | placebo | 12 weeks | 21.5 | 21.5 | ≤16.5 | NA | [27] |
200 | 55.6 | 55.6 | ≤22.1 | NA | |||||
Open-label extension of the trial (NCT01397968) examined long-term retention rate | 18–65 | resistant focal seizures | 200 mg daily with a range of 50–400 mg | 6.4–7.8 years | NA | NA | ≤32.9 | 10.1–19.5 | [28] |
YKP3089C021, phase 3 | 18–70 | resistant focal seizures | 25–400 | NA | NA | NA | ≤28.1 | <20 | [29] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Błaszczyk, B.; Czuczwar, S.J.; Miziak, B. Cenobamate, a New Promising Antiseizure Medication: Experimental and Clinical Aspects. Int. J. Mol. Sci. 2024, 25, 13014. https://doi.org/10.3390/ijms252313014
Błaszczyk B, Czuczwar SJ, Miziak B. Cenobamate, a New Promising Antiseizure Medication: Experimental and Clinical Aspects. International Journal of Molecular Sciences. 2024; 25(23):13014. https://doi.org/10.3390/ijms252313014
Chicago/Turabian StyleBłaszczyk, Barbara, Stanisław J. Czuczwar, and Barbara Miziak. 2024. "Cenobamate, a New Promising Antiseizure Medication: Experimental and Clinical Aspects" International Journal of Molecular Sciences 25, no. 23: 13014. https://doi.org/10.3390/ijms252313014
APA StyleBłaszczyk, B., Czuczwar, S. J., & Miziak, B. (2024). Cenobamate, a New Promising Antiseizure Medication: Experimental and Clinical Aspects. International Journal of Molecular Sciences, 25(23), 13014. https://doi.org/10.3390/ijms252313014