The PpPep2-Triggered PTI-like Response in Peach Trees Is Mediated by miRNAs
Abstract
:1. Introduction
2. Results and Discussion
2.1. miRNA-Seq Characterization of Peach Response to PpPep2
2.2. Analysis of Peach miRNA Response to PpPep2 on the Level of Processes
2.3. miRNAs Participate in PpPep2-Driven Regulation of Genes Involved in the Defense Response
3. Materials and Methods
3.1. Plant Material and Peptide Treatments
3.2. RNA Extraction and Illumina Sequencing
3.3. Bioinformatics Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bartels, S.; Boller, T. Quo Vadis, Pep? Plant Elicitor Peptides at the Crossroads of Immunity, Stress, and Development. J. Exp. Bot. 2015, 66, 5183–5193. [Google Scholar] [CrossRef]
- Gust, A.A.; Pruitt, R.; Nürnberger, T. Sensing Danger: Key to Activating Plant Immunity. Trends Plant Sci. 2017, 22, 779–791. [Google Scholar] [CrossRef] [PubMed]
- Couto, D.; Zipfel, C. Regulation of Pattern Recognition Receptor Signalling in Plants. Nat. Rev. Immunol. 2016, 16, 537–552. [Google Scholar] [CrossRef]
- Li, N.; Han, X.; Feng, D.; Yuan, D.; Huang, L.J. Signaling Crosstalk between Salicylic Acid and Ethylene/Jasmonate in Plant Defense: Do We Understand What They Are Whispering? Int. J. Mol. Sci. 2019, 20, 671. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Meng, X.; Shan, L.; He, P. Transcriptional Regulation of Pattern-Triggered Immunity in Plants. Cell Host Microbe 2016, 19, 641–650. [Google Scholar] [CrossRef] [PubMed]
- Li, P.; Zhao, L.; Qi, F.; Htwe, N.M.P.S.; Li, Q.; Zhang, D.; Lin, F.; Shang-Guan, K.; Liang, Y. The Receptor-like Cytoplasmic Kinase RIPK Regulates Broad-Spectrum ROS Signaling in Multiple Layers of Plant Immune System. Mol. Plant 2021, 14, 1652–1667. [Google Scholar] [CrossRef] [PubMed]
- Foix, L.; Nadal, A.; Zagorščak, M.; Ramšak, Ž.; Esteve-Codina, A.; Gruden, K.; Pla, M. Prunus persica Plant Endogenous Peptides PpPep1 and PpPep2 Cause PTI-like Transcriptome Reprogramming in Peach and Enhance Resistance to Xanthomonas arboricola pv. pruni. BMC Genom. 2021, 22, 360. [Google Scholar] [CrossRef]
- Yamaguchi, Y.; Huffaker, A. Endogenous Peptide Elicitors in Higher Plants. Curr. Opin. Plant Biol. 2011, 14, 351–357. [Google Scholar] [CrossRef]
- Huffaker, A.; Pearce, G.; Veyrat, N.; Erb, M.; Turlings, T.C.J.; Sartor, R.; Shen, Z.; Briggs, S.P.; Vaughan, M.M.; Alborn, H.T.; et al. Plant Elicitor Peptides Are Conserved Signals Regulating Direct and Indirect Antiherbivore Defense. Proc. Natl. Acad. Sci. USA 2013, 110, 5707–5712. [Google Scholar] [CrossRef]
- Ruiz, C.; Nadal, A.; Montesinos, E.; Pla, M. Novel Rosaceae Plant Elicitor Peptides as Sustainable Tools to Control Xanthomonas arboricola pv. pruni spp. Mol. Plant Pathol. 2018, 19, 418–431. [Google Scholar] [CrossRef]
- Yamada, K.; Yamashita-Yamada, M.; Hirase, T.; Fujiwara, T.; Tsuda, K.; Hiruma, K.; Saijo, Y. Danger Peptide Receptor Signaling in Plants Ensures Basal Immunity upon Pathogen-Induced Depletion of BAK1. EMBO J. 2016, 35, 46–61. [Google Scholar] [CrossRef] [PubMed]
- Bartels, S.; Lori, M.; MBengue, M.; Verk, M.; Klauser, D.; Hander, T.; Böni, R.; Robatzek, S.; Boller, T. The Family of Peps and Their Precursors in Arabidopsis: Differential Expression and Localization but Similar Induction of Pattern-Triggered Immune Responses. J. Exp. Bot. 2013, 64, 5309–5321. [Google Scholar] [CrossRef] [PubMed]
- Tang, J.; Han, Z.; Sun, Y.; Zhang, H.; Gong, X.; Chai, J. Structural Basis for Recognition of an Endogenous Peptide by the Plant Receptor Kinase PEPR1. Cell Res. 2015, 25, 110–120. [Google Scholar] [CrossRef] [PubMed]
- Yamaguchi, Y.; Huffaker, A.; Bryan, A.C.; Tax, F.E.; Ryan, C.A. PEPR2 Is a Second Receptor for the Pep1 and Pep2 Peptides and Contributes to Defense Responses in Arabidopsis. Plant Cell 2010, 22, 508–522. [Google Scholar] [CrossRef]
- Lori, M.; Van Verk, M.C.; Hander, T.; Schatowitz, H.; Klauser, D.; Flury, P.; Gehring, C.A.; Boller, T.; Bartels, S. Evolutionary Divergence of the Plant Elicitor Peptides (Peps) and Their Receptors: Interfamily Incompatibility of Perception but Compatibility of Downstream Signalling. J. Exp. Bot. 2015, 66, 5315–5325. [Google Scholar] [CrossRef]
- Ruiz, C.; Nadal, A.; Foix, L.; Montesinos, L.; Montesinos, E.; Pla, M. Diversity of Plant Defense Elicitor Peptides within the Rosaceae. BMC Genet. 2018, 19, 11. [Google Scholar] [CrossRef]
- Ross, A.; Yamada, K.; Hiruma, K.; Yamashita-Yamada, M.; Lu, X.; Takano, Y.; Tsuda, K.; Saijo, Y. The Arabidopsis PEPR Pathway Couples Local and Systemic Plant Immunity. EMBO J. 2014, 33, 62–75. [Google Scholar] [CrossRef]
- Khraiwesh, B.; Zhu, J.K.; Zhu, J. Role of MiRNAs and SiRNAs in Biotic and Abiotic Stress Responses of Plants. Biochim. Biophys. Acta Gene Regul. Mech. 2012, 1819, 137–148. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, Q.Q.; Zhang, J.; Wu, L.; Qi, Y.; Zhou, J.M. Identification of MicroRNAs Involved in Pathogen-Associated Molecular Pattern-Triggered Plant Innate Immunity. Plant Physiol. 2010, 152, 2222–2231. [Google Scholar] [CrossRef]
- Samarfard, S.; Ghorbani, A.; Karbanowicz, T.P.; Lim, Z.X.; Saedi, M.; Fariborzi, N.; McTaggart, A.R.; Izadpanah, K. Regulatory Non-Coding RNA: The Core Defense Mechanism against Plant Pathogens. J. Biotechnol. 2022, 359, 82–94. [Google Scholar] [CrossRef]
- Song, Y.Y.; Cao, M.; Xie, L.J.; Liang, X.T.; Zeng, R.S.; Su, Y.J.; Huang, J.H.; Wang, R.L.; Luo, S.M. Induction of DIMBOA Accumulation and Systemic Defense Responses as a Mechanism of Enhanced Resistance of Mycorrhizal Corn (Zea mays L.) to Sheath Blight. Mycorrhiza 2011, 21, 721–731. [Google Scholar] [CrossRef] [PubMed]
- Bajczyk, M.; Jarmolowski, A.; Jozwiak, M.; Pacak, A.; Pietrykowska, H.; Sierocka, I.; Swida-Barteczka, A.; Szewc, L.; Szweykowska-Kulinska, Z. Recent Insights into Plant MiRNA Biogenesis: Multiple Layers of MiRNA Level Regulation. Plants 2023, 12, 342. [Google Scholar] [CrossRef] [PubMed]
- Iki, T.; Yoshikawa, M.; Nishikiori, M.; Jaudal, M.C.; Matsumoto-Yokoyama, E.; Mitsuhara, I.; Meshi, T.; Ishikawa, M. In Vitro Assembly of Plant RNA-Induced Silencing Complexes Facilitated by Molecular Chaperone HSP90. Mol. Cell 2010, 39, 282–291. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Yu, B. Recent Advances in the Regulation of Plant MiRNA Biogenesis. RNA Biol. 2021, 18, 2087–2096. [Google Scholar] [CrossRef]
- Tomassi, A.H.; Re, D.A.; Romani, F.; Cambiagno, D.A.; Gonzalo, L.; Moreno, J.E.; Arce, A.L.; Manavella, P.A. The Intrinsically Disordered Protein CARP9 Bridges HYL1 to AGO1 in the Nucleus to Promote MicroRNA Activity. Plant Physiol. 2020, 184, 316–329. [Google Scholar] [CrossRef]
- Vaucheret, H.; Vazquez, F.; Crété, P.; Bartel, D.P. The Action of ARGONAUTE1 in the MiRNA Pathway and Its Regulation by the MiRNA Pathway Are Crucial for Plant Development. Genes. Dev. 2004, 18, 1187–1197. [Google Scholar] [CrossRef]
- Yu, Y.; Jia, T.; Chen, X. The ‘how’ and ‘where’ of plant microRNAs. New Phytol. 2017, 216, 1002–1017. [Google Scholar] [CrossRef]
- Song, X.; Li, Y.; Cao, X.; Qi, Y. MicroRNAs and Their Regulatory Roles in Plant-Environment Interactions. Annu. Rev. Plant Biol. 2019, 70, 489–525. [Google Scholar] [CrossRef]
- Liu, W.W.; Meng, J.; Cui, J.; Luan, Y.S. Characterization and Function of MicroRNA∗s in Plants. Front. Plant Sci. 2017, 8, 2200. [Google Scholar] [CrossRef]
- Baumberger, N.; Baulcombe, D.C. Arabidopsis ARGONAUTE1 Is an RNA Slicer That Selectively Recruits MicroRNAs and Short Interfering RNAs. Proc. Natl. Acad. Sci. USA 2005, 102, 11928–11933. [Google Scholar] [CrossRef]
- Feng, H.; Wang, X.; Zhang, Q.; Fu, Y.; Feng, C.; Wang, B.; Huang, L.; Kang, Z. Monodehydroascorbate Reductase Gene, Regulated by the Wheat PN-2013 MiRNA, Contributes to Adult Wheat Plant Resistance to Stripe Rust through ROS Metabolism. Biochim. Biophys. Acta 2014, 1839, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Hou, S.; Liu, Z.; Shen, H.; Wu, D. Damage-Associated Molecular Pattern-Triggered Immunity in Plants. Front. Plant Sci. 2019, 10, 646. [Google Scholar] [CrossRef]
- Liu, S.; Wu, L.; Qi, H.; Xu, M. LncRNA/CircRNA–MiRNA–MRNA Networks Regulate the Development of Root and Shoot Meristems of Populus. Ind. Crops Prod. 2019, 133, 333–347. [Google Scholar] [CrossRef]
- Wei, F.L.; Wang, J.H.; Ding, G.; Yang, S.Y.; Li, Y.; Hu, Y.J.; Wang, S.L. Mechanical Force-Induced Specific MicroRNA Expression in Human Periodontal Ligament Stem Cells. Cells Tissues Organs 2014, 199, 353–363. [Google Scholar] [CrossRef] [PubMed]
- Xu, W.; Meng, Y.; Wise, R.P. Mla- and Rom1-Mediated Control of MicroRNA398 and Chloroplast Copper/Zinc Superoxide Dismutase Regulates Cell Death in Response to the Barley Powdery Mildew Fungus. New Phytol. 2014, 201, 1396–1412. [Google Scholar] [CrossRef] [PubMed]
- Kumar, R. Role of MicroRNAs in Biotic and Abiotic Stress Responses in Crop Plants. Appl. Biochem. Biotechnol. 2014, 174, 93–115. [Google Scholar] [CrossRef] [PubMed]
- Navarro, L.; Dunoyer, P.; Jay, F.; Arnold, B.; Dharmasiri, N.; Estelle, M.; Voinnet, O.; Jones, J.D.G. A Plant MiRNA Contributes to Antibacterial Resistance by Repressing Auxin Signaling. Science 2006, 312, 436–439. [Google Scholar] [CrossRef]
- Love, M.I.; Huber, W.; Anders, S. Moderated Estimation of Fold Change and Dispersion for RNA-Seq Data with DESeq2. Genome Biol. 2014, 15, 550. [Google Scholar] [CrossRef]
- Jiang, C.H.; Li, Z.J.; Zheng, L.Y.; Yu, Y.Y.; Niu, D.D. Small RNAs: Efficient and Miraculous Effectors That Play Key Roles in Plant–Microbe Interactions. Mol. Plant Pathol. 2023, 24, 999–1013. [Google Scholar] [CrossRef]
- Dai, X.; Zhuang, Z.; Zhao, P.X. PsRNATarget: A Plant Small RNA Target Analysis Server (2017 Release). Nucleic Acids Res. 2018, 46, W49–W54. [Google Scholar] [CrossRef]
- Tyagi, S.; Sharma, S.; Ganie, S.A.; Tahir, M.; Mir, R.R.; Pandey, R. Plant MicroRNAs: Biogenesis, Gene Silencing, Web-Based Analysis Tools and Their Use as Molecular Markers. 3 Biotech. 2019, 9, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Zhang, B.; Ma, R.; Yu, M.; Guo, S.; Guo, L.; Korir, N.K. Identification of Known and Novel MicroRNAs and Their Targets in Peach (Prunus persica) Fruit by High-Throughput Sequencing. PLoS ONE 2016, 11, e0159253. [Google Scholar] [CrossRef] [PubMed]
- Bigeard, J.; Colcombet, J.; Hirt, H. Signaling Mechanisms in Pattern-Triggered Immunity (PTI). Mol. Plant 2015, 8, 521–539. [Google Scholar] [CrossRef] [PubMed]
- Bartel, D.P. MicroRNAs: Genomics, Biogenesis, Mechanism, and Function. Cell 2004, 116, 281–297. [Google Scholar] [CrossRef] [PubMed]
- Spanudakis, E.; Jackson, S. The Role of MicroRNAs in the Control of Flowering Time. J. Exp. Bot. 2014, 65, 365–380. [Google Scholar] [CrossRef]
- Xu, Y.; Zhang, L.; Wu, G. Epigenetic Regulation of Juvenile-to-Adult Transition in Plants. Front. Plant Sci. 2018, 9, 1048. [Google Scholar] [CrossRef]
- Chuck, G.; Cigan, A.M.; Saeteurn, K.; Hake, S. The Heterochronic Maize Mutant Corngrass1 Results from Overexpression of a Tandem MicroRNA. Nat. Genet. 2007, 39, 544–549. [Google Scholar] [CrossRef]
- Qin, L.; Zhao, L.; Wu, C.; Qu, S.; Wang, S. Identification of MicroRNA Transcriptome in Apple Response to Alternaria Alternata Infection and Evidence That MiR390 Is Negative Regulator of Defense Response. Sci. Hortic. 2021, 289, 110435. [Google Scholar] [CrossRef]
- Lu, Y.; Feng, Z.; Liu, X.; Bian, L.; Xie, H.; Zhang, C.; Mysore, K.S.; Liang, J. MiR393 and MiR390 Synergistically Regulate Lateral Root Growth in Rice under Different Conditions. BMC Plant Biol. 2018, 18, 261. [Google Scholar] [CrossRef]
- Zhou, Z.; Schenke, D.; Shen, E.; Fan, L.; Cai, D. MicroRNAs Constitute an Additional Layer in Plant Response to Simultaneous Bio- and Abiotic Stresses as Exemplified by UV-B Radiation and Flg22-Treatment on Arabidopsis Thaliana. Plant Cell Environ. 2024, 47, 14773. [Google Scholar] [CrossRef]
- Guo, H.; Nolan, T.M.; Song, G.; Liu, S.; Xie, Z.; Chen, J.; Schnable, P.S.; Walley, J.W.; Yin, Y. FERONIA Receptor Kinase Contributes to Plant Immunity by Suppressing Jasmonic Acid Signaling in Arabidopsis thaliana. Curr. Biol. 2018, 28, 3316–3324.e6. [Google Scholar] [CrossRef] [PubMed]
- Mu, X.Y.; Liu, X.R.; Cai, J.H.; Zhu, W.J.; Wang, Z.; Yang, Q.; You, X. MiR395 Overexpression Increases Eggplant Sensibility to Verticillium dahliae Infection. Russ. J. Plant Physiol. 2018, 65, 203–210. [Google Scholar] [CrossRef]
- Wei, H.; Zhao, Y.; Xie, Y.; Wang, H. Exploiting SPL Genes to Improve Maize Plant Architecture Tailored for High-Density Planting. J. Exp. Bot. 2018, 69, 4675–4688. [Google Scholar] [CrossRef] [PubMed]
- Luo, P.; Di, D.W.; Wu, L.; Yang, J.; Lu, Y.; Shi, W. MicroRNAs Are Involved in Regulating Plant Development and Stress Response through Fine-Tuning of TIR1/AFB-Dependent Auxin Signaling. Int. J. Mol. Sci. 2022, 23, 510. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Q.H.; Fan, L.; Liu, Y.; Xu, H.; Llewellyn, D.; Wilson, I. MiR482 Regulation of NBS-LRR Defense Genes during Fungal Pathogen Infection in Cotton. PLoS ONE 2013, 8, e84390. [Google Scholar] [CrossRef]
- Eckardt, N.A. A MicroRNA Cascade in Plant Defense. Plant Cell 2012, 24, 840. [Google Scholar] [CrossRef]
- Shivaprasad, P.V.; Chen, H.M.; Patel, K.; Bond, D.M.; Santos, B.A.C.M.; Baulcombe, D.C. A MicroRNA Superfamily Regulates Nucleotide Binding Site–Leucine-Rich Repeats and Other MRNAs. Plant Cell 2012, 24, 859. [Google Scholar] [CrossRef]
- Liu, Z.; Sun, Z.; Zeng, C.; Dong, X.; Li, M.; Liu, Z.; Yan, M. The Elemental Defense Effect of Cadmium on Alternaria Brassicicola in Brassica Juncea. BMC Plant Biol. 2022, 22, 17. [Google Scholar] [CrossRef]
- Matthewman, C.A.; Kawashima, C.G.; Húska, D.; Csorba, T.; Dalmay, T.; Kopriva, S. MiR395 Is a General Component of the Sulfate Assimilation Regulatory Network in Arabidopsis. FEBS Lett. 2012, 586, 3242–3248. [Google Scholar] [CrossRef]
- Trivilin, A.P.; Hartke, S.; Moraes, M.G. Components of Different Signalling Pathways Regulated by a New Orthologue of AtPROPEP1 in Tomato Following Infection by Pathogens. Plant Pathol. 2014, 63, 1110–1118. [Google Scholar] [CrossRef]
- Krueger, F. Trim Galore. Available online: https://github.com/FelixKrueger/TrimGalore (accessed on 30 September 2024).
- Dobin, A.; Davis, C.A.; Schlesinger, F.; Drenkow, J.; Zaleski, C.; Jha, S.; Batut, P.; Chaisson, M.; Gingeras, T.R. STAR: Ultrafast Universal RNA-Seq Aligner. Bioinformatics 2013, 29, 15–21. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Dewey, C.N. RSEM: Accurate Transcript Quantification from RNA-Seq Data with or without a Reference Genome. BMC Bioinform. 2011, 12, 323. [Google Scholar] [CrossRef] [PubMed]
- Peterson, H.; Kolberg, L.; Raudvere, U.; Kuzmin, I.; Vilo, J. Gprofiler2—An R Package for Gene List Functional Enrichment Analysis and Namespace Conversion Toolset g: Profiler. F1000Res 2020, 9, 709. [Google Scholar] [CrossRef]
- Wickham, H. Ggplot2: Elegant Graphics for Data Analysis, 1st ed.; Springer: New York, NY, USA, 2009; ISBN 978-0-387-98141-3. [Google Scholar]
ID | miRNA | Predicted Mature Sequence | Normalized Counts | t1_t0 | t24_t0 | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Strand | Sequence 5′-3′ | t0 | t1 | t24 | |||||||
ENSRNA049996926 | ppe-miR156g | 5p | UUGACAGAAGAUAGAGAGCAC | 1 | 93 | 170 | 6.0 | 6.8 | |||
ENSRNA049996633 | ppe-miR171c | 5p | UGAUUGAGCCGUGCCAAUAUC | 4 | 16 | 16 | 2.1 | 2.1 | |||
ENSRNA049995981 | ppe-miR7122b | 3p | CCGUGUUUCCUUGUAUAAAG | 115 | 301 | 368 | 1.4 | 1.7 | |||
5p | UUAUACAAUGAAAUCACGGUCG | ||||||||||
ENSRNA049995989 | ppe-miR7122a | 3p | GCCGUGUUUCUUUGUAUAAAG | 2506 | 5006 | 6695 | 1.0 | 1.4 | |||
5p | UUAUACAAUGAAAUCACGGCCG | ||||||||||
ENSRNA049996187 | ppe-miR482a | 3p | UUUCCGAAACCUCCCAUUCCAA | 324 | 501 | 620 | 0.6 | 0.9 | |||
5p | GGGUGAGAGGUUGCCGGAAAGA | ||||||||||
ENSRNA050003821 | ppe-miR396b | 5p | UUCCACAGCUUUCUUGAACUU | 8203 | 12,003 | 14,798 | 0.5 | 0.9 | |||
ENSRNA049996209 | ppe-miR482f | 3p | UCUUUCCUACUCCACCCAUUCC | 3215 | 4544 | 6556 | 0.5 | 1.0 | |||
ENSRNA049996042 | ppe-miR403 | 3p | UUAGAUUCACGCACAAACUCG | 1307 | 1823 | 2510 | 0.5 | 0.9 | |||
ENSRNA049996194 | ppe-miR482e | 3p | UUGCCUAUUCCUCCCAUGCCAA | 534 | 608 | 825 | 0.2 | 0.6 | |||
ENSRNA049996910 | ppe-miR162 | 3p | UCGAUAAACCUCUGCAUCCAG | 2901 | 3101 | 4694 | 0.1 | 0.7 | |||
ENSRNA049996592 | ppe-miR171a | 3p | UGAUUGAGCCGUGCCAAUAUC | 74 | 99 | 111 | 0.4 | 0.6 | |||
ENSRNA050003799 | ppe-miR159 | 3p | UUUGGAUUGAAGGGAGCUCUA | 82 | 106 | 128 | 0.4 | 0.6 | |||
ENSRNA049997214 | ppe-miR167a | 5p | UGAAGCUGCCAGCAUGAUCUA | 200 | 495 | 284 | 1.3 | 0.5 | |||
ENSRNA049996319 | ppe-miR8127 | 3p | UUCAAAGGGUACAUCCACAGU | 1745 | 1803 | 1372 | 0.0 | −0.3 | |||
5p | CAACUGUGGACAUACCCUUUG | ||||||||||
ENSRNA049996833 | ppe-miR168 | 5p | UCGCUUGGUGCAGGUCGGGAA | 788 | 648 | 485 | −0.3 | −0.7 | |||
ENSRNA049997189 | ppe-miR535b | 5p | UGACGACGAGAGAGAGCACGC | 466 | 178 | 199 | −1.4 | −1.2 | |||
ENSRNA049996546 | ppe-miR482c | 3p | UUCCCAAGCCCGCCCAUUCCAA | 4406 | 2720 | 1915 | −0.7 | −1.2 | |||
5p | UUCCCAAGCCCGCCCAUUCCAA | ||||||||||
ENSRNA049996130 | ppe-miR395c | 3p | CUGAAGUGUUUGGGGGAACUC | 108 | 62 | 49 | −0.8 | −1.1 | |||
ENSRNA049996345 | ppe-miR172b | 3p | AGAAUCUUGAUGAUGCUGCAU | 113 | 116 | 43 | 0.0 | −1.4 | |||
ENSRNA050003783 | ppe-miR390 | 5p | AAGCUCAGGAGGGAUAGCGCC | 416 | 299 | 152 | −0.5 | −1.4 | |||
ENSRNA049996145 | ppe-MIR395n | 3p | CUGAAGUGUUUGGGGGAACUC | 233 | 185 | 84 | −0.3 | −1.5 | |||
ENSRNA049996894 | ppe-miR166e | 3p | UCGGACCAGGCUUCAUUCCCC | 2574 | 1091 | 801 | −1.2 | −1.7 | |||
ENSRNA049996107 | ppe-miR395a | 3p | CUGAAGUGUUUGGGGGGACCC | 6318 | 3680 | 1792 | −0.8 | −1.8 | |||
5p | GUUCCCUCAAACACUUCAUU | ||||||||||
ENSRNA049997194 | ppe-miR535a | 5p | UGACAACGAGAGAGAGCACGC | 167 | 37 | 43 | −2.2 | −1.9 | |||
ENSRNA049996563 | ppe-miR156h | 5p | UUGACAGAAGAUAGAGAGCAC | 693 | 289 | 188 | −1.3 | −1.9 | |||
ENSRNA049996028 | ppe-miR169d | 5p | UGAGCCAAGGAUGACUUGCCA | 48 | 27 | 10 | −0.8 | −2.2 | |||
ENSRNA049996100 | ppe-miR395l | 3p | CUGAAGUGUUUGGGGGAACUC | 1193 | 558 | 252 | −1.1 | −2.2 | |||
ENSRNA050003167 | ppe-miR530 | 5p | UCUGCAUUUGCACCUGCACCU | 391 | 178 | 76 | −1.1 | −2.4 | |||
ENSRNA049996115 | ppe-miR395j | 3p | CUGAAGUGUUUGGGGGAACUC | 40 | 21 | 5 | −0.9 | −3.0 | |||
ENSRNA049996137 | ppe-miR395i | 3p | CUGAAGUGUUUGGGGGAACUC | 50 | 19 | 6 | −1.4 | −3.1 | |||
ENSRNA049996172 | ppe-miR395k | 3p | CUGAAGUGUUUGGGGGAACUC | 376 | 233 | 36 | −0.7 | −3.4 | |||
ENSRNA049996180 | ppe-miR395f | 3p | CUGAAGUGUUUGGGGGAACUC | 53 | 20 | 4 | −1.4 | −3.8 | |||
ENSRNA049996069 | ppe-miR395m | 3p | CUGAAGUGUUUGGGGGAACUC | 17 | 7 | 1 | −1.3 | −3.9 |
DEM | Predicted Target Gene 1 | Predicted Target Gene 2 | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
miRNA | t1_t0 | t24_t0 | # DEG Targets | Target ID | Target Description | t1_t0 | t24_t0 | t48_t0 | Target ID | Target Description | t1_t0 | t24_t0 | t48_t0 | ||
ppe-MIR156g | 6.0 | 6.8 | 2 | PRUPE.5G208300 | Teosinte glume architecture 1 | 0.7 | −0.3 | 0.3 | |||||||
ppe-MIR171c | 2.1 | 2.1 | 4 | PRUPE.2G274300 | Hexose carrier protein HEX6 | 1.5 | 0.3 | −0.6 | |||||||
ppe-miR7122b-3p | 1.4 | 1.7 | 3 | ||||||||||||
ppe-miR7122b-5p | 1.4 | 1.7 | 6 | PRUPE.3G227700 | Uncharacterized LOC18783989 | −0.5 | 1.1 | 0.5 | |||||||
ppe-miR7122a-3p | 1.0 | 1.4 | 5 | PRUPE.6G281500 | Receptor-like protein 12 | 2.0 | 0.0 | 0.0 | PRUPE.3G039200 | Linoleate 13S-lipoxygenase 3-1, chloroplastic | 1.9 | 0.5 | 0.2 | ||
ppe-miR7122a-5p | 1.0 | 1.4 | 4 | PRUPE.1G317500 | Lipid phosphate phosphatase 2 | 0.9 | −0.1 | −0.2 | |||||||
ppe-MIR482f | 0.5 | 1.0 | 11 | PRUPE.2G022400 | Putative disease resistance RPP13-like protein 1 | 1.0 | −0.6 | −0.3 | |||||||
ppe-miR403 | 0.5 | 0.9 | 2 | PRUPE.1G525900 | Pentatricopeptide repeat-containing protein At5g27460 | 1.5 | 0.1 | −0.1 | PRUPE.1G385000 | Hypothetical protein PRUPE.1G385000 | 1.7 | −0.2 | −0.7 | ||
ppe-miR482a-3p | 0.6 | 0.9 | 15 | PRUPE.6G295900 | Receptor-like protein kinase FERONIA | 1.1 | −0.5 | 0.4 | |||||||
ppe-miR482a-5p | 0.6 | 0.9 | 10 | ||||||||||||
ppe-miR396b | 0.5 | 0.9 | 9 | PRUPE.5G013100 | Abscisic acid 8′-hydroxylase 1 | 3.1 | −0.7 | 1.1 | |||||||
ppe-miR162 | 0.1 | 0.7 | 3 | PRUPE.1G385500 | Hypothetical protein PRUPE.1G385500 | 1.0 | −0.1 | −0.8 | |||||||
ppe-miR159 | 0.4 | 0.6 | 5 | PRUPE.6G073300 | Scarecrow-like protein 30 | 3.4 | 0.3 | −0.8 | |||||||
ppe-miR482e | 0.2 | 0.6 | 10 | PRUPE.4G284000 | Putative disease resistance protein RGA3 | 0.8 | −0.5 | −0.4 | |||||||
ppe-miR171a | 0.4 | 0.6 | 4 | PRUPE.2G274300 | Hexose carrier protein HEX6 | 1.5 | 0.3 | −0.6 | |||||||
ppe-MIR167a | 1.3 | 0.5 | 9 | PRUPE.2G290200 | Protein DETOXIFICATION 49 | 4.7 | 0.8 | −0.4 | |||||||
ppe-miR8127-3p | 0.0 | −0.3 | 2 | ||||||||||||
ppe-miR8127-5p | 0.0 | −0.3 | 4 | ||||||||||||
ppe-miR168 | −0.3 | −0.7 | 3 | PRUPE.7G053500 | Glycerol-3-phosphate dehydrogenase [NAD(+)] GPDHC1, cytosolic | −0.3 | 0.8 | 0.6 | |||||||
ppe-MIR395c | −0.8 | −1.1 | 15 | PRUPE.6G180002 | Sulfate transporter 2.1 | 0.2 | −0.9 | 0.5 | PRUPE.1G023002 | ATP sulfurylase 1, chloroplastic | 0.2 | −0.5 | 0.9 | ||
ppe-MIR482c-3p | −0.7 | −1.2 | 12 | ||||||||||||
ppe-miR482c-5p | −0.7 | −1.2 | 15 | PRUPE.7G243500 | SPX domain-containing protein 1 | 0.7 | 2.2 | 1.0 | |||||||
ppe-MIR535b | −1.4 | −1.2 | 10 | PRUPE.4G158000 | Nematode-induced LRR-RLK 2 (NILR1) | 2.1 | −0.7 | −0.8 | |||||||
ppe-MIR172b | 0.0 | −1.4 | 12 | ||||||||||||
ppe-MIR390 | −0.5 | −1.4 | 10 | PRUPE.4G121900 | Receptor-like protein 12 | 4.2 | 0.3 | 0.0 | |||||||
ppe-MIR395n | −0.3 | −1.5 | 15 | PRUPE.6G180009 | Sulfate transporter 2.1 | 0.2 | −0.9 | 0.5 | PRUPE.1G023009 | ATP sulfurylase 1, chloroplastic | 0.2 | −0.5 | 0.9 | ||
ppe-MIR166e | −1.2 | −1.7 | 5 | PRUPE.7G041600 | Two-component response regulator ORR9 | −0.9 | 0.1 | 0.6 | |||||||
ppe-MIR395a-3p | −0.8 | −1.8 | 7 | PRUPE.6G180000 | Sulfate transporter 2.1 | 0.2 | −0.9 | 0.5 | PRUPE.1G023000 | ATP sulfurylase 1, chloroplastic | 0.2 | −0.5 | 0.9 | ||
ppe-miR395a-5p | −0.8 | −1.8 | 4 | PRUPE.6G180001 | Sulfate transporter 2.1 | 0.2 | −0.9 | 0.5 | PRUPE.1G023001 | ATP sulfurylase 1, chloroplastic | 0.2 | −0.5 | 0.9 | ||
ppe-MIR535a | −2.2 | −1.9 | 8 | PRUPE.8G263900 | Probable pectinesterase/pectinesterase inhibitor 7 | 4.7 | 1.4 | 1.4 | |||||||
ppe-MIR156h | −1.3 | −1.9 | 2 | PRUPE.4G089000 | Cationic amino acid transporter 1 | 1.6 | 0.7 | 0.7 | |||||||
ppe-MIR395l | −1.1 | −2.2 | 15 | PRUPE.6G180007 | Sulfate transporter 2.1 | 0.2 | −0.9 | 0.5 | PRUPE.1G023007 | ATP sulfurylase 1, chloroplastic | 0.2 | −0.5 | 0.9 | ||
ppe-MIR169d | −0.8 | −2.2 | 7 | PRUPE.7G093100 | Nuclear transcription factor Y subunit A-10 (NFYA10) | 0.1 | 0.1 | 0.3 | |||||||
ppe-miR530 | −1.1 | −2.4 | 1 | ||||||||||||
ppe-MIR395j | −0.9 | −3.0 | 15 | PRUPE.6G180005 | Sulfate transporter 2.1 | 0.2 | −0.9 | 0.5 | PRUPE.1G023005 | ATP sulfurylase 1, chloroplastic | 0.2 | −0.5 | 0.9 | ||
ppe-MIR395i | −1.4 | −3.1 | 15 | PRUPE.6G180004 | Sulfate transporter 2.1 | 0.2 | −0.9 | 0.5 | PRUPE.1G023004 | ATP sulfurylase 1, chloroplastic | 0.2 | −0.5 | 0.9 | ||
ppe-MIR395k | −0.7 | −3.4 | 15 | PRUPE.6G180006 | Sulfate transporter 2.1 | 0.2 | −0.9 | 0.5 | PRUPE.1G023006 | ATP sulfurylase 1, chloroplastic | 0.2 | −0.5 | 0.9 | ||
ppe-MIR395f | −1.4 | −3.8 | 15 | PRUPE.6G180003 | Sulfate transporter 2.1 | 0.2 | −0.9 | 0.5 | PRUPE.1G023003 | ATP sulfurylase 1, chloroplastic | 0.2 | −0.5 | 0.9 | ||
ppe-MIR395m | −1.3 | −3.9 | 15 | PRUPE.6G180008 | Sulfate transporter 2.1 | 0.2 | −0.9 | 0.5 | PRUPE.1G023008 | ATP sulfurylase 1, chloroplastic | 0.2 | −0.5 | 0.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Foix, L.; Pla, M.; Martín-Mur, B.; Esteve-Codina, A.; Nadal, A. The PpPep2-Triggered PTI-like Response in Peach Trees Is Mediated by miRNAs. Int. J. Mol. Sci. 2024, 25, 13099. https://doi.org/10.3390/ijms252313099
Foix L, Pla M, Martín-Mur B, Esteve-Codina A, Nadal A. The PpPep2-Triggered PTI-like Response in Peach Trees Is Mediated by miRNAs. International Journal of Molecular Sciences. 2024; 25(23):13099. https://doi.org/10.3390/ijms252313099
Chicago/Turabian StyleFoix, Laura, Maria Pla, Beatriz Martín-Mur, Anna Esteve-Codina, and Anna Nadal. 2024. "The PpPep2-Triggered PTI-like Response in Peach Trees Is Mediated by miRNAs" International Journal of Molecular Sciences 25, no. 23: 13099. https://doi.org/10.3390/ijms252313099
APA StyleFoix, L., Pla, M., Martín-Mur, B., Esteve-Codina, A., & Nadal, A. (2024). The PpPep2-Triggered PTI-like Response in Peach Trees Is Mediated by miRNAs. International Journal of Molecular Sciences, 25(23), 13099. https://doi.org/10.3390/ijms252313099