Unveiling the Future of Cardiac Care: A Review of Gene Therapy in Cardiomyopathies
Abstract
:1. Introduction
2. Materials and Methods
2.1. Literature Search
2.2. Inclusion and Exclusion Criteria
2.3. Analysis Process
3. Results
3.1. Types of Gene Therapy
3.2. Gene Therapy in Cardiomyopathies
3.2.1. Hypertrophic Cardiomyopathy
3.2.2. Cardiac Amyloidosis
3.2.3. Danon Disease
3.2.4. Fabry Disease
3.2.5. Pompe Disease
3.2.6. Friedreich’s Ataxia
3.2.7. Dilated Cardiomiopathy
3.2.8. Duchenne Disease
3.2.9. Arrhythmogenic Cardiomyopathy
4. Ethical and Safety Considerations
5. Future Perspectives
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Wexler, R.; Elton, T.; Pleister, A.; Feldman, D. Cardiomyopathy: An Overview. Am. Fam. Physician 2010, 79, 778–784. [Google Scholar]
- Ishikawa, K.; Weber, T.; Hajjar, R.J. Human Cardiac Gene Therapy. Circ. Res. 2018, 123, 601–613. [Google Scholar] [CrossRef] [PubMed]
- Rosenberg, S.A.; Aebersold, P.; Cornetta, K.; Kasid, A.; Morgan, R.A.; Moen, R.; Karson, E.M.; Lotze, M.T.; Yang, J.C.; Topalian, S.L.; et al. Gene Transfer into Humans—Immunotherapy of Patients with Advanced Melanoma, Using Tumor-Infiltrating Lymphocytes Modified by Retroviral Gene Transduction. N. Engl. J. Med. 1990, 323, 570–578. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.-H.; Pereira, N.L. Genetics of Cardiomyopathy: Clinical and Mechanistic Implications for Heart Failure. Korean Circ. J. 2021, 51, 797. [Google Scholar] [CrossRef]
- Pipe, S.W.; Gonen-Yaacovi, G.; Segurado, O.G. Hemophilia a Gene Therapy: Current and Next-Generation Approaches. Expert Opin. Biol. Ther. 2022, 22, 1099–1115. [Google Scholar] [CrossRef]
- Gill, D.R.; Pringle, I.A.; Hyde, S.C. Progress and Prospects: The Design and Production of Plasmid Vectors. Gene Ther. 2009, 16, 165–171. [Google Scholar] [CrossRef] [PubMed]
- Deyle, D.R.; Russell, D.W. Adeno-Associated Virus Vector Integration. Curr. Opin. Mol. Ther. 2010, 11, 442–447. [Google Scholar]
- Lufino, M.M.; Edser, P.A.; Wade-Martins, R. Advances in High-Capacity Extrachromosomal Vector Technology: Episomal Maintenance, Vector Delivery, and Transgene Expression. Mol. Ther. 2008, 16, 1525–1538. [Google Scholar] [CrossRef]
- Wooddell, C.I.; Reppen, T.; Wolff, J.A.; Herweijer, H. Sustained Liver-specific Transgene Expression from the Albumin Promoter in Mice Following Hydrodynamic Plasmid DNA Delivery. J. Gene Med. 2008, 10, 551–563. [Google Scholar] [CrossRef]
- Herweijer, H.; Zhang, G.; Subbotin, V.M.; Budker, V.; Williams, P.; Wolff, J.A. Time Course of Gene Expression after Plasmid DNA Gene Transfer to the Liver. J. Gene Med. 2001, 3, 280–291. [Google Scholar] [CrossRef]
- Samulski, R.J.; Muzyczka, N. AAV-Mediated Gene Therapy for Research and Therapeutic Purposes. Annu. Rev. Virol. 2014, 1, 427–451. [Google Scholar] [CrossRef]
- Park, K.; Kim, W.-J.; Cho, Y.-H.; Lee, Y.-I.; Lee, H.; Jeong, S.; Cho, E.-S.; Chang, S.-I.; Moon, S.-K.; Kang, B.-S.; et al. Cancer Gene Therapy Using Adeno-Associated Virus Vectors. Front. Biosci. 2008, 13, 2653–2659. [Google Scholar] [CrossRef]
- Wang, Z.; Lisowski, L.; Finegold, M.J.; Nakai, H.; Kay, M.A.; Grompe, M. AAV Vectors Containing rDNA Homology Display Increased Chromosomal Integration and Transgene Persistence. Mol. Ther. 2012, 20, 1902–1911. [Google Scholar] [CrossRef] [PubMed]
- Myers, V.D.; Landesberg, G.P.; Bologna, M.L.; Semigran, M.J.; Feldman, A.M. Cardiac Transduction in Mini-Pigs after Low-Dose Retrograde Coronary Sinus Infusion of AAV9-BAG3. JACC Basic Transl. Sci. 2022, 7, 951–953. [Google Scholar] [CrossRef] [PubMed]
- Tabebordbar, M.; Lagerborg, K.A.; Stanton, A.; King, E.M.; Ye, S.; Tellez, L.; Krunnfusz, A.; Tavakoli, S.; Widrick, J.J.; Messemer, K.A.; et al. Directed evolution of a family of AAV capsid variants enabling potent muscle-directed gene delivery across species. Cell 2021, 184, 4919–4938. [Google Scholar] [CrossRef] [PubMed]
- Butt, M.; Zaman, M.; Ahmad, A.; Khan, R.; Mallhi, T.; Hasan, M.; Khan, Y.; Hafeez, S.; Massoud, E.; Rahman, M.; et al. Appraisal for the Potential of Viral and Nonviral Vectors in Gene Therapy: A Review. Genes 2022, 13, 1370. [Google Scholar] [CrossRef]
- Maeder, M.L.; Gersbach, C.A. Genome-Editing Technologies for Gene and Cell Therapy. Mol. Ther. 2016, 24, 430–446. [Google Scholar] [CrossRef] [PubMed]
- Redman, M.; King, A.; Watson, C.; King, D. What Is CRISPR/Cas9? Arch. Dis. Child. Educ. Pract. Ed. 2016, 101, 213–215. [Google Scholar] [CrossRef]
- Portin, P.; Wilkins, A. The Evolving Definition of the Term “Gene”. Genetics 2017, 205, 1353–1364. [Google Scholar] [CrossRef]
- Titeux, M.; Turczynski, S.; Pironon, N.; Hovnanian, A. Antisense-Mediated Splice Modulation to Reframe Transcripts. Methods Mol. Biol. 2018, 1828, 531–552. [Google Scholar]
- Sioud, M. RNA Interference: Story and Mechanisms. In Design and Delivery of SiRNA Therapeutics; Methods in Molecular Biology; Springer: Berlin/Heidelberg, Germany, 2021; Volume 2282, pp. 1–15. [Google Scholar]
- Antunes, M.O.; Scudeler, T.L. Hypertrophic cardiomyopathy. Int. J. Cardiol. Heart Vasc. 2020, 27, 100503. [Google Scholar] [CrossRef] [PubMed]
- Arbelo, E.; Protonotarios, A.; Gimeno, J.R.; Arbustini, E.; Barriales-Villa, R.; Basso, C.; Bezzina, C.R.; Biagini, E.; Blom, N.A.; De Boer, R.A.; et al. 2023 ESC Guidelines for the Management of Cardiomyopathies. Eur. Heart J. 2023, 44, 3503–3626. [Google Scholar] [PubMed]
- Glazier, A.A.; Thompson, A.; Day, S.M. Allelic Imbalance and Haploinsufficiency in MYBPC3-Linked Hypertrophic Cardiomyopathy. Pflug. Arch. Eur. J. Physiol. 2019, 471, 781–793. [Google Scholar] [CrossRef]
- Mearini, G.; Stimpel, D.; Geertz, B.; Weinberger, F.; Krämer, E.; Schlossarek, S.; Mourot-Filiatre, J.; Stoehr, A.; Dutsch, A.; Wijnker, P.J.M.; et al. Mybpc3 Gene Therapy for Neonatal Cardiomyopathy Enables Long-Term Disease Prevention in Mice. Nat. Commun. 2014, 5, 5515. [Google Scholar] [CrossRef]
- Wijnker, P.J.M.; Friedrich, F.W.; Dutsch, A.; Reischmann, S.; Eder, A.; Mannhardt, I.; Mearini, G.; Eschenhagen, T.; van der Velden, J.; Carrier, L. Comparison of the Effects of a Truncating and a Missense MYBPC3 Mutation on Contractile Parameters of Engineered Heart Tissue. J. Mol. Cell Cardiol. 2016, 97, 82–92. [Google Scholar] [CrossRef] [PubMed]
- Prondzynski, M.; Krämer, E.; Laufer, S.D.; Shibamiya, A.; Pless, O.; Flenner, F.; Müller, O.J.; Münch, J.; Redwood, C.; Hansen, A.; et al. Evaluation of MYBPC3 Trans-Splicing and Gene Replacement as Therapeutic Options in Human iPSC-Derived Cardiomyocytes. Mol. Ther. Nucleic Acids 2017, 7, 475–486. [Google Scholar] [CrossRef]
- Da Rocha, A.M.; Guerrero-Serna, G.; Helms, A.; Luzod, C.; Mironov, S.; Russell, M.; Jalife, J.; Day, S.M.; Smith, G.D.; Herron, T.J. Deficient cMyBP-C Protein Expression during Cardiomyocyte Differentiation Underlies Human Hypertrophic Cardiomyopathy Cellular Phenotypes in Disease Specific Human ES Cell Derived Cardiomyocytes. J. Mol. Cell. Cardiol. 2016, 99, 197–206. [Google Scholar] [CrossRef]
- Haroldson, J.; Harrison, W.; Lombardi, L.; Argast, G.; Duclos, Z.; Nelson, S.; Sethi, S.; Tomlinson, L.; Paterson, N.; Pollman, M.; et al. MyPeak-1: A Phase 1b Study to Evaluate Safety and Efficacy of TN-201, an Adeno-Associated virus Serotype 9 (AAV9) Investigational Gene Therapy, in Adults with MYBPC3-Associated Hypertrophic Cardiomyopathy (HCM). J. Card. Fail. 2024, 30, S5. [Google Scholar] [CrossRef]
- Ma, H.; Marti-Gutierrez, N.; Park, S.-W.; Wu, J.; Lee, Y.; Suzuki, K.; Koski, A.; Ji, D.; Hayama, T.; Ahmed, R.; et al. Correction of a Pathogenic Gene Mutation in Human Embryos. Nature 2017, 548, 413–419. [Google Scholar] [CrossRef]
- Gedicke-Hornung, C.; Behrens-Gawlik, V.; Reischmann, S.; Geertz, B.; Stimpel, D.; Weinberger, F.; Schlossarek, S.; Précigout, G.; Braren, I.; Eschenhagen, T.; et al. Rescue of Cardiomyopathy through U7sn RNA-mediated Exon Skipping in Mybpc3-targeted Knock-in Mice. EMBO Mol. Med. 2013, 5, 1128–1145. [Google Scholar] [CrossRef]
- Jiang, J.; Wakimoto, H.; Seidman, J.G.; Seidman, C.E. Allele-Specific Silencing of Mutant Myh6 Transcripts in Mice Suppresses Hypertrophic Cardiomyopathy. Science 2013, 342, 111–114. [Google Scholar] [CrossRef] [PubMed]
- Aimo, A.; Castiglione, V.; Rapezzi, C.; Franzini, M.; Panichella, G.; Vergaro, G.; Gillmore, J.; Fontana, M.; Passino, C.; Emdin, M. RNA-Targeting and Gene Editing Therapies for Transthyretin Amyloidosis. Nat. Rev. Cardiol. 2022, 19, 655–667. [Google Scholar] [CrossRef] [PubMed]
- Adams, D.; Gonzalez-Duarte, A.; O’Riordan, W.D.; Yang, C.-C.; Ueda, M.; Kristen, A.V.; Tournev, I.; Schmidt, H.H.; Coelho, T.; Berk, J.L.; et al. Patisiran, an RNAi Therapeutic, for Hereditary Transthyretin Amyloidosis. N. Engl. J. Med. 2018, 379, 11–21. [Google Scholar] [CrossRef] [PubMed]
- Maurer, M.S.; Kale, P.; Fontana, M.; Berk, J.L.; Grogan, M.; Gustafsson, F.; Hung, R.R.; Gottlieb, R.L.; Damy, T.; González-Duarte, A.; et al. Patisiran Treatment in Patients with Transthyretin Cardiac Amyloidosis. N. Engl. J. Med. 2023, 389, 1553–1565. [Google Scholar] [CrossRef] [PubMed]
- Habtemariam, B.A.; Karsten, V.; Attarwala, H.; Goel, V.; Melch, M.; Clausen, V.A.; Garg, P.; Vaishnaw, A.K.; Sweetser, M.T.; Robbie, G.J.; et al. Single-Dose Pharmacokinetics and Pharmacodynamics of Transthyretin Targeting N-Acetylgalactosamine-Small Interfering Ribonucleic Acid Conjugate, Vutrisiran, in Healthy Subjects. Clin. Pharmacol. Ther. 2021, 109, 372–382. [Google Scholar] [CrossRef] [PubMed]
- Adams, D.; Tournev, I.L.; Taylor, M.S.; Coelho, T.; Planté-Bordeneuve, V.; Berk, J.L.; González-Duarte, A.; Gillmore, J.D.; Low, S.-C.; Sekijima, Y.; et al. Efficacy and Safety of Vutrisiran for Patients with Hereditary Transthyretin-Mediated Amyloidosis with Polyneuropathy: A Randomized Clinical Trial. Amyloid 2023, 30, 18–26. [Google Scholar] [CrossRef]
- Fontana, M.; Berk, J.L.; Gillmore, J.D.; Witteles, R.M.; Grogan, M.; Drachman, B.; Damy, T.; Garcia-Pavia, P.; Taubel, J.; Solomon, S.D.; et al. Vutrisiran in Patients with Transthyretin Amyloidosis with Cardiomyopathy. N. Engl. J. Med. 2024. [Google Scholar] [CrossRef]
- Benson, M.D.; Kluve-Beckerman, B.; Zeldenrust, S.R.; Siesky, A.M.; Bodenmiller, D.M.; Showalter, A.D.; Sloop, K.W. Targeted Suppression of an Amyloidogenic Transthyretin with Antisense Oligonucleotides. Muscle Nerve 2006, 33, 609–618. [Google Scholar] [CrossRef]
- Benson, M.D.; Waddington-Cruz, M.; Berk, J.L.; Polydefkis, M.; Dyck, P.J.; Wang, A.K.; Planté-Bordeneuve, V.; Barroso, F.A.; Merlini, G.; Obici, L.; et al. Inotersen Treatment for Patients with Hereditary Transthyretin Amyloidosis. N. Engl. J. Med. 2018, 379, 22–31. [Google Scholar] [CrossRef]
- Brannagan, T.H.; Wang, A.K.; Coelho, T.; Waddington Cruz, M.; Polydefkis, M.J.; Dyck, P.J.; Plante-Bordeneuve, V.; Berk, J.L.; Barroso, F.; Merlini, G.; et al. Early Data on Long-Term Efficacy and Safety of Inotersen in Patients with Hereditary Transthyretin Amyloidosis: A 2-Year Update from the Open-Label Extension of the NEURO-TTR Trial. Eur. J. Neurol. 2020, 27, 1374–1381. [Google Scholar] [CrossRef]
- Coelho, T.; Marques, W.; Dasgupta, N.R.; Chao, C.-C.; Parman, Y.; França, M.C.; Guo, Y.-C.; Wixner, J.; Ro, L.-S.; Calandra, C.R.; et al. Eplontersen for Hereditary Transthyretin Amyloidosis with Polyneuropathy. JAMA 2023, 330, 1448–1458. [Google Scholar] [CrossRef] [PubMed]
- Maurer, M.; Kristen, A.; Benson, M.; Falk, R.; Buchele, G.; Brambatti, M.; Tsimikas, S.; Viney, N.; Tai, L.; Monteiro, C.; et al. Evaluation of the Efficacy and Safety of Ionis-Ttr-Lrx in Patients with Transthyretin-Mediated Amyloid Cardiomyopathy: The Cardio-Ttransform Study. Can. J. Cardiol. 2021, 37 (Suppl. S10), S69. [Google Scholar] [CrossRef]
- Gillmore, J.D.; Gane, E.; Taubel, J.; Kao, J.; Fontana, M.; Maitland, M.L.; Seitzer, J.; O’Connell, D.; Walsh, K.R.; Wood, K.; et al. CRISPR-Cas9 In Vivo Gene Editing for Transthyretin Amyloidosis. N. Engl. J. Med. 2021, 385, 493–502. [Google Scholar] [CrossRef]
- D’Souza, R.S.; Law, L. Danon Disease. Available online: https://www.ncbi.nlm.nih.gov/books/NBK545211/ (accessed on 1 October 2024).
- Rossano, J.; Lin, K.; Epstein, S.; Battiprolu, P.; Ricks, D.; Syed, A.A.; Waldron, A.; Schwartz, J.; Greenberg, B. Safety Profile of the First Pediatric Cardiomyopathy Gene Therapy Trial: RP-A501 (AAV9:LAMP2B) for Danon Disease. J. Card. Fail. 2023, 29, 554. [Google Scholar] [CrossRef]
- Michaud, M.; Mauhin, W.; Belmatoug, N.; Bedreddine, N.; Garnotel, R.; Catros, F.; Lidove, O.; Gaches, F. Fabry disease: A review. Rev. Med. Interne 2021, 42, 110–119. [Google Scholar] [CrossRef] [PubMed]
- Umer, M.; Kalra, D.K. Treatment of Fabry Disease: Established and Emerging Therapies. Pharmaceuticals 2023, 16, 320. [Google Scholar] [CrossRef] [PubMed]
- Felis, A.; Whitlow, M.; Kraus, A.; Warnock, D.G.; Wallace, E. Current and Investigational Therapeutics for Fabry Disease. Kidney Int. Rep. 2020, 5, 407–413. [Google Scholar] [CrossRef] [PubMed]
- 4D Molecular Therapeutics. Presents Interim Data from 4D-310 INGLAXA Phase 1/2 Clinical Trials & Development Plans for Fabry Disease Cardiomyopathy at WORLDSymposium TM—4D Molecular Therapeutics. Available online: https://ir.4dmoleculartherapeutics.com/news-releases/news-release-details/4d-molecular-therapeutics-presents-interim-data-4d-310-inglaxa/ (accessed on 1 October 2024).
- Dose-Ranging Study of ST-920, an AAV2/6 Human Alpha Galactosidase A Gene Therapy in Subjects with Fabry Disease (STAAR). Available online: https://clinicaltrials.gov/study/NCT04046224?cond=Fabry%20Disease&intr=ST-920&rank=2 (accessed on 1 October 2024).
- Open Label, Study of Efficacy and Safety of AVR-RD-01 for Treatment-Naive Subjects with Classic Fabry Disease. Available online: https://clinicaltrials.gov/study/NCT03454893?cond=Fabry%20Disease&intr=AVR-RD-01&rank=1 (accessed on 1 October 2024).
- Taverna, S.; Cammarata, G.; Colomba, P.; Sciarrino, S.; Zizzo, C.; Francofonte, D.; Zora, M.; Scalia, S.; Brando, C.; Curto, A.L.; et al. Pompe Disease: Pathogenesis, Molecular Genetics and Diagnosis. Aging 2020, 12, 15856–15874. [Google Scholar] [CrossRef]
- Leslie, N.; Bailey, L. Pompe Disease. In GeneReviews®; Adam, M.P., Feldman, J., Mirzaa, G.M., Pagon, R.A., Wallace, S.E., Amemiya, A., Eds.; University of Washington, Seattle: Seattle, WA, USA, 1993. [Google Scholar]
- Smith, B.K.; Collins, S.W.; Conlon, T.J.; Mah, C.S.; Lawson, L.A.; Martin, A.D.; Fuller, D.D.; Cleaver, B.D.; Clément, N.; Phillips, D.; et al. Phase I/II Trial of Adeno-Associated Virus-Mediated Alpha-Glucosidase Gene Therapy to the Diaphragm for Chronic Respiratory Failure in Pompe Disease: Initial Safety and Ventilatory Outcomes. Hum. Gene Ther. 2013, 24, 630–640. [Google Scholar] [CrossRef]
- Corti, M.; Cleaver, B.; Clément, N.; Conlon, T.J.; Faris, K.J.; Wang, G.; Benson, J.; Tarantal, A.F.; Fuller, D.; Herzog, R.W.; et al. Evaluation of Readministration of a Recombinant Adeno-Associated Virus Vector Expressing Acid Alpha-Glucosidase in Pompe Disease: Preclinical to Clinical Planning. Hum. Gene Ther. Clin. Dev. 2015, 26, 185–193. [Google Scholar] [CrossRef]
- Smith, E.C.; Hopkins, S.; Case, L.E.; Xu, M.; Walters, C.; Dearmey, S.; Han, S.-O.; Spears, T.G.; Chichester, J.A.; Bossen, E.H.; et al. Phase I Study of Liver Depot Gene Therapy in Late-Onset Pompe Disease. Mol. Ther. 2023, 31, 1994–2004. [Google Scholar] [CrossRef] [PubMed]
- Eggers, M.; Vannoy, C.H.; Huang, J.; Purushothaman, P.; Brassard, J.; Fonck, C.; Meng, H.; Prom, M.J.; Lawlor, M.W.; Cunningham, J.; et al. Muscle-Directed Gene Therapy Corrects Pompe Disease and Uncovers Species-Specific GAA Immunogenicity. EMBO Mol. Med. 2022, 14, e13968. [Google Scholar] [CrossRef] [PubMed]
- Payne, R.M.; Wagner, G.R. Cardiomyopathy in Friedreich Ataxia: Clinical Findings and Research. J. Child. Neurol. 2012, 27, 1179–1186. [Google Scholar] [CrossRef] [PubMed]
- Bencze, K.Z.; Kondapalli, K.C.; Cook, J.D.; McMahon, S.; Millán-Pacheco, C.; Pastor, N.; Stemmler, T.L. The Structure and Function of Frataxin. Crit. Rev. Biochem. Mol. Biol. 2006, 41, 269–291. [Google Scholar] [CrossRef] [PubMed]
- Munoz-Zuluaga, C.; Gertz, M.; Yost-Bido, M.; Greco, A.; Gorman, N.; Chen, A.; Kooner, V.; Rosenberg, J.B.; De, B.P.; Kaminsky, S.M.; et al. Identification of Safe and Effective Intravenous Dose of AAVrh.10hFXN to Treat the Cardiac Manifestations of Friedreich’s Ataxia. Hum. Gene Ther. 2023, 34, 605–615. [Google Scholar] [CrossRef]
- Schultheiss, H.-P.; Fairweather, D.; Caforio, A.L.P.; Escher, F.; Hershberger, R.E.; Lipshultz, S.E.; Liu, P.P.; Matsumori, A.; Mazzanti, A.; McMurray, J.; et al. Dilated Cardiomyopathy. Nat. Rev. Dis. Primers 2019, 5, 32. [Google Scholar] [CrossRef]
- Gerull, B.; Klaassen, S.; Brodehl, A. The genetic landscape of cardiomyopathies. In Genetic Causes of Cardiac Disease; Erdmann, J., Moretti, A., Eds.; Springer: Cham, Switzerland, 2019; pp. 45–91. [Google Scholar]
- Ganesh, S.K.; Arnett, D.K.; Assimes, T.L.; Basson, C.T.; Chakravarti, A.; Ellinor, P.T.; Engler, M.B.; Goldmuntz, E.; Herrington, D.M.; Hershberger, R.E.; et al. Genetics and Genomics for the Prevention and Treatment of Cardiovascular Disease: Update: A Scientific Statement from the American Heart Association. Circulation 2013, 128, 2813–2851. [Google Scholar] [CrossRef]
- Akhtar, M.M.; Lorenzini, M.; Cicerchia, M.; Ochoa, J.P.; Hey, T.M.; Sabater Molina, M.; Restrepo-Cordoba, M.A.; Dal Ferro, M.; Stolfo, D.; Johnson, R.; et al. Clinical Phenotypes and Prognosis of Dilated Cardiomyopathy Caused by Truncating Variants in the TTN Gene. Circ. Heart Fail. 2020, 13, e006832. [Google Scholar] [CrossRef]
- Peters, S.; Kumar, S.; Elliott, P.; Kalman, J.M.; Fatkin, D. Arrhythmic Genotypes in Familial Dilated Cardiomyopathy: Implications for Genetic Testing and Clinical Management. Heart Lung Circ. 2019, 28, 31–38. [Google Scholar] [CrossRef]
- Grote Beverborg, N.; Später, D.; Knöll, R.; Hidalgo, A.; Yeh, S.T.; Elbeck, Z.; Silljé, H.H.W.; Eijgenraam, T.R.; Siga, H.; Zurek, M.; et al. Phospholamban Antisense Oligonucleotides Improve Cardiac Function in Murine Cardiomyopathy. Nat. Commun. 2021, 12, 5180. [Google Scholar] [CrossRef]
- Nishiyama, T.; Zhang, Y.; Cui, M.; Li, H.; Sanchez-Ortiz, E.; McAnally, J.R.; Tan, W.; Kim, J.; Chen, K.; Xu, L.; et al. Precise genomic editing of pathogenic mutations in RBM20 rescues dilated cardiomyopathy. Sci. Transl. Med. 2022, 14, eade1633. [Google Scholar] [CrossRef] [PubMed]
- Del Monte, F.; Harding, S.E.; Dec, G.W.; Gwathmey, J.K.; Hajjar, R.J. Targeting Phospholamban by Gene Transfer in Human Heart Failure. Circulation 2002, 105, 904–907. [Google Scholar] [CrossRef] [PubMed]
- Azibani, F.; Brull, A.; Arandel, L.; Beuvin, M.; Nelson, I.; Jollet, A.; Ziat, E.; Prudhon, B.; Benkhelifa-Ziyyat, S.; Bitoun, M.; et al. Gene Therapy via Trans-Splicing for LMNA-Related Congenital Muscular Dystrophy. Mol. Ther. Nucleic Acids 2018, 10, 376–386. [Google Scholar] [CrossRef] [PubMed]
- Duan, D.; Goemans, N.; Takeda, S.; Mercuri, E.; Aartsma-Rus, A. Duchenne Muscular Dystrophy. Nat. Rev. Dis. Primers 2021, 7, 13. [Google Scholar] [CrossRef]
- Hoy, S.M. Delandistrogene Moxeparvovec: First Approval. Drugs 2023, 83, 1323–1329. [Google Scholar] [CrossRef]
- Mendell, J.R.; Sahenk, Z.; Lehman, K.J.; Lowes, L.P.; Reash, N.F.; Iammarino, M.A.; Alfano, L.N.; Lewis, S.; Church, K.; Shell, R.; et al. Long-Term Safety and Functional Outcomes of Delandistrogene Moxeparvovec Gene Therapy in Patients with Duchenne Muscular Dystrophy: A Phase 1/2a Nonrandomized Trial. Muscle Nerve 2024, 69, 93–98. [Google Scholar] [CrossRef]
- Mendell, J.R.; Shieh, P.B.; McDonald, C.M.; Sahenk, Z.; Lehman, K.J.; Lowes, L.P.; Reash, N.F.; Iammarino, M.A.; Alfano, L.N.; Sabo, B.; et al. Expression of SRP-9001 Dystrophin and Stabilization of Motor Function up to 2 Years Post-Treatment with Delandistrogene Moxeparvovec Gene Therapy in Individuals with Duchenne Muscular Dystrophy. Front. Cell Dev. Biol. 2023, 11, 1167762. [Google Scholar] [CrossRef]
- Zaidman, C.M.; Proud, C.M.; McDonald, C.M.; Lehman, K.J.; Goedeker, N.L.; Mason, S.; Murphy, A.P.; Guridi, M.; Wang, S.; Reid, C.; et al. Delandistrogene Moxeparvovec Gene Therapy in Ambulatory Patients (Aged ≥ 4 to <8 Years) with Duchenne Muscular Dystrophy: 1-Year Interim Results from Study SRP-9001-103 (ENDEAVOR). Ann. Neurol. 2023, 94, 955–968. [Google Scholar]
- Deng, J.; Zhang, J.; Shi, K.; Liu, Z. Drug Development Progress in Duchenne Muscular Dystrophy. Front. Pharmacol. 2022, 13, 950651. [Google Scholar] [CrossRef]
- Krishna, L.; Prashant, A.; Kumar, Y.H.; Paneyala, S.; Patil, S.J.; Ramachandra, S.C.; Vishwanath, P. Molecular and Biochemical Therapeutic Strategies for Duchenne Muscular Dystrophy. Neurol. Int. 2024, 16, 731–760. [Google Scholar] [CrossRef]
- Wilton-Clark, H.; Yokota, T. Antisense and Gene Therapy Options for Duchenne Muscular Dystrophy Arising from Mutations in the N-Terminal Hotspot. Genes 2022, 13, 257. [Google Scholar] [CrossRef]
- Duan, D. Systemic AAV Micro-Dystrophin Gene Therapy for Duchenne Muscular Dystrophy. Mol. Ther. 2018, 26, 2337–2356. [Google Scholar] [CrossRef] [PubMed]
- Sen-Chowdhry, S.; Morgan, R.D.; Chambers, J.C.; McKenna, W.J. Arrhythmogenic Cardiomyopathy: Etiology, Diagnosis, and Treatment. Annu. Rev. Med. 2010, 61, 233–253. [Google Scholar] [CrossRef] [PubMed]
- Costa, S.; Gasperetti, A.; Medeiros-Domingo, A.; Akdis, D.; Brunckhorst, C.; Saguner, A.M.; Duru, F. Familial Arrhythmogenic Cardiomyopathy: Clinical Determinants of Phenotype Discordance and the Impact of Endurance Sports. J. Clin. Med. 2020, 9, 3781. [Google Scholar] [CrossRef] [PubMed]
- van Tintelen, J.P.; Entius, M.M.; Bhuiyan, Z.A.; Jongbloed, R.; Wiesfeld, A.C.P.; Wilde, A.A.M.; van der Smagt, J.; Boven, L.G.; Mannens, M.M.A.M.; van Langen, I.M.; et al. Plakophilin-2 Mutations Are the Major Determinant of Familial Arrhythmogenic Right Ventricular Dysplasia/Cardiomyopathy. Circulation 2006, 113, 1650–1658. [Google Scholar] [CrossRef] [PubMed]
- van Opbergen, C.J.M.; Narayanan, B.; Sacramento, C.B.; Stiles, K.M.; Mishra, V.; Frenk, E.; Ricks, D.; Chen, G.; Zhang, M.; Yarabe, P.; et al. AAV-Mediated Delivery of Plakophilin-2a Arrests Progression of Arrhythmogenic Right Ventricular Cardiomyopathy in Murine Hearts: Preclinical Evidence Supporting Gene Therapy in Humans. Circ. Genom. Precis. Med. 2024, 17, e004305. [Google Scholar] [CrossRef]
- Gene Therapy for ACM Due to a PKP2 Pathogenic Variant. Available online: https://www.clinicaltrials.gov/study/NCT06109181?intr=A%20phase%201%2F2%20trial%20of%20the%20safety%20and%20efficacy%20of%20SRD-001%20(AAV1%2FSERCA2a)%20in%20subjects%20with%20heart%20failure%20with%20reduced%20ejection%20fraction&limit=10&id=NCT06109181&rank=1 (accessed on 1 October 2024).
- Sheikh, F.; Zhang, J.; Wang, J.; Bradford, W.H.; Nair, A.; Fargnoli, A.; Selvan, N.; Gutierrez, S.; Law, K.; Fenn, T.; et al. Abstract 13599: LX2020, an Adeno Associated Viral-Based Plakophilin 2 Gene Therapy Stabilizes Cardiac Disease Phenotype in a Severe Mouse Model of Arrhythmogenic Right Ventricular Cardiomyopathy. Circulation 2022, 146 (Suppl. S1), A13599. [Google Scholar] [CrossRef]
- Mundisugih, J.; Ravindran, D.; Kizana, E. Exploring the Therapeutic Potential of Gene Therapy in Arrhythmogenic Right Ventricular Cardiomyopathy. Biomedicines 2024, 12, 1351. [Google Scholar] [CrossRef] [PubMed]
- Grisorio, L.; Bongianino, R.; Gianeselli, M.; Priori, S.G. Gene Therapy for Cardiac Diseases: Methods, Challenges, and Future Directions. Cardiovasc. Res. 2024, 120, 1664–1682. [Google Scholar] [CrossRef]
- Polak, T.B.; Bunnik, E.M. Financial considerations in expanded access policy for gene therapies: A tough nut to crack? Mol. Ther. 2021, 29, 1936. [Google Scholar] [CrossRef]
- Ayanoğlu, F.B.; Elçin, A.E.; Elçin, Y.M. Bioethical issues in genome editing by CRISPR-Cas9 technology. Turk. J. Biol. 2020, 44, 110–120. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Koo, T.; Jee, H.G.; Cho, H.Y.; Lee, G.; Lim, D.G.; Shin, H.S.; Kim, J.S. CRISPR RNAs trigger innate immune responses in human cells. Genome Res. 2018, 28, 367–373. [Google Scholar] [CrossRef] [PubMed]
- Colella, P.; Ronzitti, G.; Mingozzi, F. Emerging Issues in AAV-Mediated In Vivo Gene Therapy. Mol. Ther. Methods Clin. Dev. 2017, 8, 87–104. [Google Scholar] [CrossRef] [PubMed]
- Anzalone, A.V.; Koblan, L.W.; Liu, D.R. Genome editing with CRISPR—Cas nucleases, base transposases and prime. Nat. Biotechnol. 2020, 38, 824–844. [Google Scholar] [CrossRef]
- Bhattacharjee, R.; Jana, A.; Nandi, A.; Sinha, A.; Bhattacharjee, A.; Mitra, S.; Kar, S.; Dey, A.; Kumar Singh, S.; Rajender Varma, S.; et al. Synergy of Nanocarriers with CRISPR-Cas9 in an Emerging Technology Platform for Biomedical Appliances: Current Insights and Perspectives. Mat. Des. 2022, 224, 111415. [Google Scholar] [CrossRef]
- Birgaoanu, M.; Sachse, M.; Gatsiou, A. RNA Editing Therapeutics: Advances, Challenges and Perspectives on Combating Heart Disease. Cardiovasc. Drugs Ther. 2023, 37, 401–411. [Google Scholar] [CrossRef]
Study Identifier | Description | Status |
---|---|---|
NCT05836259 (non-randomized open-label study) | Evaluates the safety, tolerability, and pharmacodynamics of TN-201 (Recombinant Adeno-associated Virus Serotype 9 (AAV9) containing Myosin Binding Protein C Transgene) in adult patients (6–30) with symptomatic MYBPC3 mutation-associated nHCM. | Ongoing |
Study Identifier | Description | Status |
---|---|---|
NCT04601051 (Non-Randomized open- label Phase 1 Study) | NTLA-2001 is injected once in six patients with ATTRv with polyneuropathy and patients with ATTRv with cardiomyopathy. | Ongoing |
NCT01960348 (APOLLO-A) (Phase 3 double-blind placebo-controlled Study) | ATTRv patients with polyneuropathy were assigned in a 2:1 ratio to receive intravenous patisiran or placebo once every 3 weeks. A total of 225 patients underwent randomization. The patisiran-treated patients had an important improvement in the neuropathy-related measurements and in quality of life. | Terminated |
NCT03997383 (APOLLO-B) (Phase 3, Randomized, Double-blind trial) | Patients with ATTRv or ATTRwt were assigned in a 1:1 ratio to receive either patisiran or a placebo, administered every three weeks for a duration of 12 months. A total of 360 individuals were randomly allocated to receive either patisiran or a placebo. After 12 months, the decrease in the distance covered during the 6-MWT was not as significant in the patisiran group as it was in the placebo group. Additionally, the KCCQ-OS scores showed improvement in the patisiran group, whereas they decreased in the placebo group. | Ongoing |
NCT03759379 (HELIOS-A) (Phase 3 Global, Randomized, Open-label Study) | ATTRv patients were assigned randomly in a 3:1 ratio to receive subcutaneous vutrisiran every three months or intravenous patisiran every three weeks over a period of 18 months. The study included 164 individuals. Vutrisiran successfully achieved the main objective of altering the baseline score in the mNIS + 7; notable enhancements compared to an external placebo were noted in the Norfolk QoL-DN assessment, the 10 m walking test, modified BMI, and the Rasch-built Overall Disability Scale. | Ongoing |
NCT04153149 (HELIOS-B) (Phase 3 randomized, double-blind, placebo-controlled study) | Patients diagnosed with ATTR-CM were administered either vutrisiran or a placebo every 12 weeks in a 1:1 ratio, with the treatment lasting up to 36 months. A total of 655 individuals were randomly assigned; 326 were treated with vutrisiran, while 329 received the placebo. The use of vutrisiran was linked to a decreased likelihood of death from any reason and lower occurrences of repeated cardiovascular events compared to the placebo group, along with a reduced risk of mortality observed up to 42 months. | Ongoing |
Study Identifier | Description | Status |
---|---|---|
NCT01737398 (NEURO-TTR) (phase 2/3 randomized, double-blind, placebo-controlled study) | Individuals diagnosed with stage 1/2 ATTRv with polyneuropathy were randomly divided in a 2:1 ratio to receive either weekly subcutaneous injections of inotersen or a placebo. In total, 172 participants (112 in the inotersen group and 60 in the placebo group) received at least one dose of the treatment being studied. Both mNIS + 7 and the Norfolk QOL-DN score showed a preference for inotersen. | Terminated |
NCT04136184 (NEURO-TTRansform) (Phase 3 Global, Open-Label, Randomized Study) | Patients with ATTRv with polyneuropathy were randomly assigned to receive subcutaneous injections of either eplontersen every four weeks or inotersen weekly. The group receiving eplontersen showed results indicative of a substantial reduction in serum transthyretin levels, reduced neuropathic impairment, and an improved quality of life when compared to historical placebo data. | Terminated |
NCT04136171 (CARDIO-TTRansform) (Phase 3 Global, Double-Blind, Randomized, Placebo-Controlled Study) | Assesses the effectiveness and safety of 1400 individuals diagnosed with ATTR cardiomyopathy, who will be randomly assigned to receive subcutaneous injections of either eplontersen or a placebo once every four weeks. | Ongoing |
Study Identifier | Description | Status |
---|---|---|
NCT03882437 (non-randomized open-label phase 1) | A total of 7–10 male subjects aged 8 and over received a single IV infusion of RP-A501 (LAMP2B transgene contained in a recombinant adeno-associated virus serotype 9 (AAV9). | Ongoing |
Study Identifier | Description | Status |
---|---|---|
NCT04519749 (Open-label, phase 1/2) | The study assesses the safety and tolerability of 4D-310 (AAV vector containing the GLA transgene) in patients with classic or late-onset FD with cardiac involvement, regardless of whether they are receiving enzyme replacement therapy with corticosteroid prophylactic immunosuppression. | Ongoing |
NCT04046224 (Phase 1/2) STAAR | A total of 13 individuals were analyzed. Using ST-920 (isaralgagene civaparvovec), a functional GLA gene is introduced in the liver through a single injection of a recombinant AAV2/6 vector, eliminating the necessity for immunosuppressive therapy. | Ongoing |
NCT03454893 (Open-label) | Autologous stem cell transplantation involving CD34+ cells that have been modified in patients with Fabry disease using a lentiviral vector that carries the human GLA gene. | Terminated |
Study Identifier | Description | Status |
---|---|---|
NCT00976352 (Phase 1/2) | Nine ventilator-dependent children have received intradiaphragmatic administration of AAV-mediated GAA gene | Terminated |
NCT03533673 (Prospective, open-label phase 1/2) | The study employed AAV 2/8 as a vector for the GAA gene, regulated by a liver-specific promoter (AAV8-LSPhGAA), in seven individuals diagnosed with late-onset Pompe Disease. | Ongoing |
NCT04174105 (Phase 1/2 open-label, ascending dose, multicenter clinical study) FORTIS | The trial tests AT845 (AAV8 that is able to express GAA in skeletal muscle and heart). | Ongoing |
NCT04093349 (Phase 1/2 dose-escalation trial) RESOLUTE | The study evaluates the safety, tolerability, and effectiveness of a single intravenous infusion of SPK-3006 (an AAV vector featuring a bioengineered Rh74-derived capsid that promotes the production of GAA) in adults diagnosed with clinically moderate, late-onset Pompe disease who are undergoing enzyme replacement therapy (ERT). | Ongoing |
NCT02240407 (double-blind, randomized, phase I controlled study) | The study assesses the toxicity, distribution within the body, and possible effects of re-administering rAAV9-DES-hGAA delivered through intramuscular injection. Two individuals diagnosed with Late-Onset Pompe disease participated in the trial. As of now, there have been no findings regarding the effectiveness and safety of the treatment.. | Terminated |
Study Identifier | Description | Status |
---|---|---|
NCT05302271 (phase 1, open-label, dose escalation) | Assesses the safety and effectiveness of AAVrh.10hFXN (a gene transfer vector based on the rh.10 serotype adeno-associated virus that encodes FXN) for addressing the cardiomyopathy linked to Friedreich’s ataxia. | Ongoing |
Study Identifier | Description | Status |
---|---|---|
NCT03375164 (Phase 1/2 open-label) | Four boys between the ages of 4 and 8 years old, with DMD were administered a one-time intravenous infusion of Delandistrogene moxeparvovec (SRP-9001) in combination with prednisone. | Terminated |
NCT03769116 (Multicenter, randomized, double-blind, placebo-controlled) | Effectiveness of Delandistrogene moxeparvovec in individuals aged over 4 and under 8 years with DMD. Participants were randomly allocated to receive either a placebo (n = 21) or Delandistrogene moxeparvovec (n = 20), and then switched treatments for Part 2 of the study. | Terminated |
NCT04626674 (Open-label phase 1) ENDEAVOR | Assesses the expression of micro-dystrophin, safety, and functional results following the administration of commercially manufactured Delandistrogene moxeparvovec. Males with DMD who were between 4 and 8 years old were given a single intravenous dose of Delandistrogene moxeparvovec (1.33 × 1014 vg/kg). | Ongoing |
NCT03362502 (open-label, non-randomized, single-ascending dose) | Evaluates the safety and tolerability of PF-06939926 (fordadistrogene movaparvovec) gene therapy in 22 subjects. This therapy utilizes an AAV9 containing a truncated human dystrophin gene (mini-dystrophin) controlled by a muscle-specific promoter. | Ongoing |
NCT05429372 (Phase 2 Experimental) | Evaluates the safety and dystrophin expression following the administration of PF-06939926 in male participants with early-stage Duchenne muscular dystrophy (aged between 2 and 4 years). | Ongoing |
NCT04281485 (Multicenter, randomized, double-blind, placebo-controlled, phase 3) | Assesses the efficacy of PF-06939926 gene therapy. A total of 122 patients (>4 years old; <8 years old) have been randomly assigned to one of two groups: two-thirds of the participants underwent gene therapy at the beginning of the study, while one-third were given a placebo initially and then received gene therapy after a year. | Ongoing |
NCT03368742 (Phase 1/2, controlled, open-label, single-ascending dose) | SGT-001 (AAV9 vector containing muscle-specific promoter and microdystrophin construct) will be injected in 12 patients with DMD who will be followed for approximately 5 years. The study will evaluate its safety, tolerability, and efficacy. | Ongoing |
Study Identifier | Description | Status |
---|---|---|
NCT05885412 (Phase 1, dose escalation) | The trial evaluates an intravenously injected recombinant AAV vector containing PKP2 (RP-A601) in subjects with high risk PKP2-ACM. | Ongoing |
NCT06109181 (Phase1/2, open-label, dose-escalating, multicenter trial) | The study assesses the safety and tolerability of LX2020 (AAV vector encoding PKP2 gene) in 10 adult patients with PKP2-ACM. | Ongoing |
NCT06228924 (RIDGE-1) (open-label, phase 1) | The trial will include a maximum of 15 patients across two designated dose groups who are experiencing symptomatic PKP2-ACM. Patients in each cohort will receive a single i.v. dose of TN-401 (AAV9 containing PKP2 Transgene). | Ongoing |
NCT06311708 (multicenter, observational) | The study evaluates the prevalence of pre-existing antibodies to AAV9 in a population of patients with PKP2-ACM | Ongoing |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Venturiello, D.; Tiberi, P.G.; Perulli, F.; Nardoianni, G.; Guida, L.; Barsali, C.; Terrone, C.; Cianca, A.; Lustri, C.; Sclafani, M.; et al. Unveiling the Future of Cardiac Care: A Review of Gene Therapy in Cardiomyopathies. Int. J. Mol. Sci. 2024, 25, 13147. https://doi.org/10.3390/ijms252313147
Venturiello D, Tiberi PG, Perulli F, Nardoianni G, Guida L, Barsali C, Terrone C, Cianca A, Lustri C, Sclafani M, et al. Unveiling the Future of Cardiac Care: A Review of Gene Therapy in Cardiomyopathies. International Journal of Molecular Sciences. 2024; 25(23):13147. https://doi.org/10.3390/ijms252313147
Chicago/Turabian StyleVenturiello, Damiano, Pier Giorgio Tiberi, Francesco Perulli, Giulia Nardoianni, Leonardo Guida, Carlo Barsali, Carlo Terrone, Alessandro Cianca, Camilla Lustri, Matteo Sclafani, and et al. 2024. "Unveiling the Future of Cardiac Care: A Review of Gene Therapy in Cardiomyopathies" International Journal of Molecular Sciences 25, no. 23: 13147. https://doi.org/10.3390/ijms252313147
APA StyleVenturiello, D., Tiberi, P. G., Perulli, F., Nardoianni, G., Guida, L., Barsali, C., Terrone, C., Cianca, A., Lustri, C., Sclafani, M., Tini, G., Barbato, E., & Musumeci, B. (2024). Unveiling the Future of Cardiac Care: A Review of Gene Therapy in Cardiomyopathies. International Journal of Molecular Sciences, 25(23), 13147. https://doi.org/10.3390/ijms252313147