Peripherally Restricted Activation of Opioid Receptors Influences Anxiety-Related Behaviour and Alters Brain Gene Expression in a Sex-Specific Manner
Abstract
:1. Introduction
2. Results
2.1. Animal Metrics
2.2. Behaviour Tests
2.2.1. Open Field Test
2.2.2. Elevated Plus Maze
2.3. Brain Gene Expression
2.4. Proximal Colon Gene Expression
2.5. Caecal Microbiome
2.5.1. Microbiota at the Family and Genus Level
2.5.2. Metagenome Community Function
2.6. Dataset Integration
3. Discussion
3.1. Behavioural Changes with Loperamide
3.2. Gene Expression in Relation to Behaviour
3.3. Microbiota Composition and Function
4. Materials and Methods
4.1. Ethical Approval
4.2. Animals
4.3. Experimental Design
4.4. Behaviour Tests
4.5. Sample Collection
4.6. Gene Expression
4.6.1. RNA Isolation
4.6.2. RNA Analysis Using RNA-Seq
4.7. Caecal Microbiota
4.8. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rhee, S.H.; Pothoulakis, C.; Mayer, E.A. Principles and clinical implications of the brain-gut-enteric microbiota axis. Nat. Rev. Gastroenterol. Hepatol. 2009, 6, 306–314. [Google Scholar] [CrossRef] [PubMed]
- Sarkar, A.; Lehto, S.M.; Harty, S.; Dinan, T.G.; Cryan, J.F.; Burnet, P.W.J. Psychobiotics and the Manipulation of Bacteria-Gut-Brain Signals. Trends Neurosci. 2016, 39, 763–781. [Google Scholar] [CrossRef] [PubMed]
- Cryan, J.F.; O’Riordan, K.J.; Cowan, C.S.M.; Sandhu, K.V.; Bastiaanssen, T.F.S.; Boehme, M.; Codagnone, M.G.; Cussotto, S.; Fulling, C.; Golubeva, A.V.; et al. The Microbiota-Gut-Brain Axis. Physiol. Rev. 2019, 99, 1877–2013. [Google Scholar] [CrossRef]
- Gershon, M.D. The Second Brain: A Groundbreaking New Understanding of Nervous Disorders of the Stomach and Intestine; HarperPerennial: New York, NY, USA, 1998. [Google Scholar]
- Spencer, N.J.; Hu, H. Enteric nervous system: Sensory transduction, neural circuits and gastrointestinal motility. Nat. Rev. Gastroenterol. Hepatol. 2020, 17, 338–351. [Google Scholar] [CrossRef]
- Ghaisas, S.; Maher, J.; Kanthasamy, A. Gut microbiome in health and disease: Linking the microbiome-gut-brain axis and environmental factors in the pathogenesis of systemic and neurodegenerative diseases. Pharmacol. Ther. 2016, 158, 52–62. [Google Scholar] [CrossRef] [PubMed]
- Heiss, C.N.; Olofsson, L.E. The role of the gut microbiota in development, function and disorders of the central nervous system and the enteric nervous system. J. Neuroendocrinol. 2019, 31, e12684. [Google Scholar] [CrossRef]
- Abrams, G.D.; Bishop, J.E. Effect of the normal microbial flora on gastrointestinal motility. Proc. Soc. Exp. Biol. Med. 1967, 126, 301–304. [Google Scholar] [CrossRef]
- Iwai, H.; Ishihara, Y.; Yamanaka, J.; Ito, T. Effects of bacterial flora on cecal size and transit rate of intestinal contents in mice. Jpn. J. Exp. Med. 1973, 43, 297–305. [Google Scholar]
- Cryan, J.F.; Dinan, T.G. Mind-altering microorganisms: The impact of the gut microbiota on brain and behaviour. Nat. Rev. Neurosci. 2012, 13, 701–712. [Google Scholar] [CrossRef]
- Heijtz, R.D.; Wang, S.; Anuar, F.; Qian, Y.; Björkholm, B.; Samuelsson, A.; Hibberd, M.L.; Forssberg, H.; Pettersson, S. Normal gut microbiota modulates brain development and behavior. Proc. Natl. Acad. Sci. USA 2011, 108, 3047–3052. [Google Scholar] [CrossRef]
- Neufeld, K.M.; Kang, N.; Bienenstock, J.; Foster, J.A. Reduced anxiety-like behavior and central neurochemical change in germ-free mice. Neurogastroenterol. Motil. 2011, 23, 255–264.e119. [Google Scholar] [CrossRef] [PubMed]
- Young, V.B. The role of the microbiome in human health and disease: An introduction for clinicians. BMJ 2017, 356, j831. [Google Scholar] [CrossRef] [PubMed]
- Appleton, J. The Gut-Brain Axis: Influence of Microbiota on Mood and Mental Health. Integr. Med. 2018, 17, 28–32. [Google Scholar]
- Champagne-Jorgensen, K.; McVey Neufeld, K.A. The Effect of Microbiota on Behaviour. Mod. Trends Psychiatry 2021, 32, 58–67. [Google Scholar] [CrossRef] [PubMed]
- Holzer, P. Opioid receptors in the gastrointestinal tract. Regul. Pept. 2009, 155, 11–17. [Google Scholar] [CrossRef]
- Trang, T.; Al-Hasani, R.; Salvemini, D.; Salter, M.W.; Gutstein, H.; Cahill, C.M. Pain and Poppies: The Good, the Bad, and the Ugly of Opioid Analgesics. J. Neurosci. Off. J. Soc. Neurosci. 2015, 35, 13879–13888. [Google Scholar] [CrossRef]
- Sudakov, S.; Bogdanova, N. Involvement of Peripheral Opioid Receptors in the Realization of Food Motivation Into Eating Behavior. Front. Behav. Neurosci. 2020, 14, 600920. [Google Scholar] [CrossRef]
- Wood, J.D.; Galligan, J.J. Function of opioids in the enteric nervous system. Neurogastroenterol. Motil. 2004, 16 (Suppl. S2), 17–28. [Google Scholar] [CrossRef]
- Duraffourd, C.; De Vadder, F.; Goncalves, D.; Delaere, F.; Penhoat, A.; Brusset, B.; Rajas, F.; Chassard, D.; Duchampt, A.; Stefanutti, A.; et al. Mu-opioid receptors and dietary protein stimulate a gut-brain neural circuitry limiting food intake. Cell 2012, 150, 377–388. [Google Scholar] [CrossRef]
- Kaneko, K.; Iwasaki, M.; Yoshikawa, M.; Ohinata, K. Orally administered soymorphins, soy-derived opioid peptides, suppress feeding and intestinal transit via gut μ1-receptor coupled to 5-HT1A, D2, and GABAB systems. Am. J. Physiol. Gastrointest. Liver Physiol. 2010, 299, G799–G805. [Google Scholar] [CrossRef]
- Garcia-Varela, L.; Rodriguez-Perez, M.; Custodia, A.; Moraga-Amaro, R.; Colabufo, N.A.; Aguiar, P.; Sobrino, T.; Dierckx, R.; van Waarde, A.; Elsinga, P.H.; et al. In Vivo Induction of P-Glycoprotein Function can be Measured with [(18)F]MC225 and PET. Mol. Pharm. 2021, 18, 3073–3085. [Google Scholar] [CrossRef] [PubMed]
- Montesinos, R.N.; Moulari, B.; Gromand, J.; Beduneau, A.; Lamprecht, A.; Pellequer, Y. Coadministration of P-glycoprotein modulators on loperamide pharmacokinetics and brain distribution. Drug Metab. Dispos. 2014, 42, 700–706. [Google Scholar] [CrossRef]
- DeHaven-Hudkins, D.L.; Burgos, L.C.; Cassel, J.A.; Daubert, J.D.; DeHaven, R.N.; Mansson, E.; Nagasaka, H.; Yu, G.; Yaksh, T. Loperamide (ADL 2-1294), an Opioid Antihyperalgesic Agent with Peripheral Selectivity. J. Pharmacol. Exp. Ther. 1999, 289, 494–502. [Google Scholar]
- Mellstrand, T. Loperamide—An opiate receptor agonist with gastrointestinal motility effects. Scand. J. Gastroenterol. Suppl. 1987, 130, 65–66. [Google Scholar] [CrossRef] [PubMed]
- Galligan, J.J.; Sternini, C. Insights into the Role of Opioid Receptors in the GI Tract: Experimental Evidence and Therapeutic Relevance. Handb. Exp. Pharmacol. 2017, 239, 363–378. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Kelley, A.E. Enhanced intake of high-fat food following striatal mu-opioid stimulation: Microinjection mapping and fos expression. Neuroscience 2000, 99, 267–277. [Google Scholar] [CrossRef]
- Sudakov, S.K.; Bashkatova, V.G.; Kolpakov, A.A.; Trigub, M.M. Peripheral administration of loperamide and methylnaloxone decreases the degree of anxiety in rats. Bull. Exp. Biol. Med. 2010, 149, 273–275. [Google Scholar] [CrossRef]
- Brown, A.P.; Dinger, N.; Levine, B.S. Stress produced by gavage administration in the rat. Contemp. Top. Lab. Anim. Sci. 2000, 39, 17–21. [Google Scholar]
- Meijer, M.K.; Spruijt, B.M.; van Zutphen, L.F.; Baumans, V. Effect of restraint and injection methods on heart rate and body temperature in mice. Lab. Anim. 2006, 40, 382–391. [Google Scholar] [CrossRef]
- Patti, C.L.; Frussa-Filho, R.; Silva, R.H.; Carvalho, R.C.; Kameda, S.R.; Takatsu-Coleman, A.L.; Cunha, J.L.; Abilio, V.C. Behavioral characterization of morphine effects on motor activity in mice. Pharmacol. Biochem. Behav. 2005, 81, 923–927. [Google Scholar] [CrossRef]
- Paul, A.K.; Gueven, N.; Dietis, N. Profiling the Effects of Repetitive Morphine Administration on Motor Behavior in Rats. Molecules 2021, 26, 4355. [Google Scholar] [CrossRef] [PubMed]
- De Gregori, S.; De Gregori, M.; Ranzani, G.N.; Allegri, M.; Minella, C.; Regazzi, M. Morphine metabolism, transport and brain disposition. Metab. Brain Dis. 2012, 27, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Vander Weele, C.M.; Porter-Stransky, K.A.; Mabrouk, O.S.; Lovic, V.; Singer, B.F.; Kennedy, R.T.; Aragona, B.J. Rapid dopamine transmission within the nucleus accumbens: Dramatic difference between morphine and oxycodone delivery. Eur. J. Neurosci. 2014, 40, 3041–3054. [Google Scholar] [CrossRef] [PubMed]
- Craft, R.M.; Clark, J.L.; Hart, S.P.; Pinckney, M.K. Sex differences in locomotor effects of morphine in the rat. Pharmacol. Biochem. Behav. 2006, 85, 850–858. [Google Scholar] [CrossRef] [PubMed]
- Lever, C.; Burton, S.; O’Keefe, J. Rearing on hind legs, environmental novelty, and the hippocampal formation. Rev. Neurosci. 2006, 17, 111–133. [Google Scholar] [CrossRef]
- Sturman, O.; Germain, P.L.; Bohacek, J. Exploratory rearing: A context- and stress-sensitive behavior recorded in the open-field test. Stress 2018, 21, 443–452. [Google Scholar] [CrossRef]
- Alves, R.; Carvalho, J.; Venditti, M. High- and Low-Rearing Rats Differ in the Brain Excitability Controlled by the Allosteric Benzodiazepine Site in the GABAA Receptor. J. Behav. Brain Sci. 2012, 2, 315–325. [Google Scholar] [CrossRef]
- Gray, J.A.; McNaughton, N. Memory and the septo-hippocampal system. In Neuropsychology of Anxiety: An Enquiry into the Function of the Septo-Hippocampal System; Oxford Academic: Oxford, UK, 2003; pp. 158–203. [Google Scholar]
- Zhan, B.; Ma, H.Y.; Wang, J.L.; Liu, C.B. Sex differences in morphine-induced behavioral sensitization and social behaviors in ICR mice. Dongwuxue Yanjiu 2015, 36, 103–108. [Google Scholar] [CrossRef]
- Woolley, C.S. Acute effects of estrogen on neuronal physiology. Annu. Rev. Pharmacol. Toxicol. 2007, 47, 657–680. [Google Scholar] [CrossRef]
- Bohacek, J.; Daniel, J.M. Increased daily handling of ovariectomized rats enhances performance on a radial-maze task and obscures effects of estradiol replacement. Horm. Behav. 2007, 52, 237–243. [Google Scholar] [CrossRef]
- Daniel, J.M. Effects of oestrogen on cognition: What have we learned from basic research? J. Neuroendocrinol. 2006, 18, 787–795. [Google Scholar] [CrossRef] [PubMed]
- Parkar, N.; Spencer, N.J.; Wiklendt, L.; Olson, T.; Young, W.; Janssen, P.; McNabb, W.C.; Dalziel, J.E. Novel insights into mechanisms of inhibition of colonic motility by loperamide. Front. Neurosci. 2024, 18, 1424936. [Google Scholar] [CrossRef] [PubMed]
- Bale, T.L.; Vale, W.W. CRF and CRF receptors: Role in stress responsivity and other behaviors. Annu. Rev. Pharmacol. Toxicol. 2004, 44, 525–557. [Google Scholar] [CrossRef] [PubMed]
- Reul, J.M.; Holsboer, F. Corticotropin-releasing factor receptors 1 and 2 in anxiety and depression. Curr. Opin. Pharmacol. 2002, 2, 23–33. [Google Scholar] [CrossRef]
- Bale, T.L.; Contarino, A.; Smith, G.W.; Chan, R.; Gold, L.H.; Sawchenko, P.E.; Koob, G.F.; Vale, W.W.; Lee, K.F. Mice deficient for corticotropin-releasing hormone receptor-2 display anxiety-like behaviour and are hypersensitive to stress. Nat. Genet. 2000, 24, 410–414. [Google Scholar] [CrossRef] [PubMed]
- Minnebo, Y.; Delbaere, K.; Goethals, V.; Raes, J.; Van de Wiele, T.; De Paepe, K. Gut microbiota response to in vitro transit time variation is mediated by microbial growth rates, nutrient use efficiency and adaptation to in vivo transit time. Microbiome 2023, 11, 240. [Google Scholar] [CrossRef]
- Parkar, N.; Dalziel, J.E.; Spencer, N.J.; Janssen, P.; McNabb, W.C.; Young, W. Slowed gastrointestinal transit is associated with an altered caecal microbiota in an aged rat model. Front. Cell. Infect. Microbiol. 2023, 13, 1139152. [Google Scholar] [CrossRef]
- Regueira, A.; Lema, J.M.; Mauricio-Iglesias, M. Microbial inefficient substrate use through the perspective of resource allocation models. Curr. Opin. Biotechnol. 2021, 67, 130–140. [Google Scholar] [CrossRef]
- Wexler, H.M. Bacteroides: The good, the bad, and the nitty-gritty. Clin. Microbiol. Rev. 2007, 20, 593–621. [Google Scholar] [CrossRef]
- Parthasarathy, G.; Chen, J.; Chen, X.; Chia, N.; O’Connor, H.M.; Wolf, P.G.; Gaskins, H.R.; Bharucha, A.E. Relationship Between Microbiota of the Colonic Mucosa vs Feces and Symptoms, Colonic Transit, and Methane Production in Female Patients With Chronic Constipation. Gastroenterology 2016, 150, 367–379.e361. [Google Scholar] [CrossRef]
- Collins, S.L.; Patterson, A.D. The gut microbiome: An orchestrator of xenobiotic metabolism. Acta Pharm. Sin. B 2020, 10, 19–32. [Google Scholar] [CrossRef] [PubMed]
- Fala, A.K.; Alvarez-Ordonez, A.; Filloux, A.; Gahan, C.G.M.; Cotter, P.D. Quorum sensing in human gut and food microbiomes: Significance and potential for therapeutic targeting. Front. Microbiol. 2022, 13, 1002185. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Li, M.; Shao, D.; Ma, S.; Wei, W. Altered Fecal Microbiota Signatures in Patients With Anxiety and Depression in the Gastrointestinal Cancer Screening: A Case-Control Study. Front. Psychiatry 2021, 12, 757139. [Google Scholar] [CrossRef]
- Park, S.; Li, C.; Wu, X.; Zhang, T. Gut Microbiota Alterations and Their Functional Differences in Depression According to Enterotypes in Asian Individuals. Int. J. Mol. Sci. 2023, 24, 3329. [Google Scholar] [CrossRef]
- Hollis, F.; van der Kooij, M.A.; Zanoletti, O.; Lozano, L.; Canto, C.; Sandi, C. Mitochondrial function in the brain links anxiety with social subordination. Proc. Natl. Acad. Sci. USA 2015, 112, 15486–15491. [Google Scholar] [CrossRef]
- Zhao, A.R.; Li, J.; Wang, S.Q.; Bian, L.H.; Li, W.J.; Guo, J.Y. Stress can affect mitochondrial energy metabolism and AMPK/SIRT1 signaling pathway in rats. Brain Res. Bull. 2023, 203, 110770. [Google Scholar] [CrossRef]
- Filiou, M.D.; Sandi, C. Anxiety and Brain Mitochondria: A Bidirectional Crosstalk. Trends Neurosci. 2019, 42, 573–588. [Google Scholar] [CrossRef]
- Liu, L.; Cheng, S.; Qi, X.; Meng, P.; Yang, X.; Pan, C.; Chen, Y.; Zhang, H.; Zhang, Z.; Zhang, J.; et al. Mitochondria-wide association study observed significant interactions of mitochondrial respiratory and the inflammatory in the development of anxiety and depression. Transl. Psychiatry 2023, 13, 216. [Google Scholar] [CrossRef] [PubMed]
- Tzingounis, A.V.; Kobayashi, M.; Takamatsu, K.; Nicoll, R.A. Hippocalcin gates the calcium activation of the slow afterhyperpolarization in hippocampal pyramidal cells. Neuron 2007, 53, 487–493. [Google Scholar] [CrossRef]
- Miyazaki, H.; Nambu, K.; Matsunaga, Y.; Hashimoto, M. Disposition and metabolism of [14C]loperamide in rats. Eur. J. Drug Metab. Pharmacokinet. 1979, 4, 199–206. [Google Scholar] [CrossRef]
- Dalziel, J.E.; Young, W.; Bercik, P.; Spencer, N.J.; Ryan, L.J.; Dunstan, K.E.; Lloyd-West, C.M.; Gopal, P.K.; Haggarty, N.W.; Roy, N.C. Tracking gastrointestinal transit of solids in aged rats as pharmacological models of chronic dysmotility. Neurogastroenterol. Motil. 2016, 28, 1241–1251. [Google Scholar] [CrossRef] [PubMed]
- Vera, G.; Giron, R.; Martin-Fontelles, M.I.; Abalo, R. Radiographic dose-dependency study of loperamide effects on gastrointestinal motor function in the rat. Temporal relationship with nausea-like behavior. Neurogastroenterol. Motil. 2019, 31, e13621. [Google Scholar] [CrossRef] [PubMed]
- Dalziel, J.E.; Zobel, G.; Dewhurst, H.; Hurst, C.; Olson, T.; Rodriguez-Sanchez, R.; Mace, L.; Parkar, N.; Thum, C.; Hannaford, R.; et al. A Diet Enriched with Lacticaseibacillus rhamnosus HN001 and Milk Fat Globule Membrane Alters the Gut Microbiota and Decreases Amygdala GABA a Receptor Expression in Stress-Sensitive Rats. Int. J. Mol. Sci. 2023, 24, 433. [Google Scholar] [CrossRef] [PubMed]
- Dobin, A.; Davis, C.A.; Schlesinger, F.; Drenkow, J.; Zaleski, C.; Jha, S.; Batut, P.; Chaisson, M.; Gingeras, T.R. STAR: Ultrafast universal RNA-seq aligner. Bioinformatics 2013, 29, 15–21. [Google Scholar] [CrossRef] [PubMed]
- Robinson, M.D.; McCarthy, D.J.; Smyth, G.K. edgeR: A Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 2010, 26, 139–140. [Google Scholar] [CrossRef]
- Ritchie, M.E.; Phipson, B.; Wu, D.; Hu, Y.; Law, C.W.; Shi, W.; Smyth, G.K. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015, 43, e47. [Google Scholar] [CrossRef]
- Subramanian, A.; Tamayo, P.; Mootha, V.K.; Mukherjee, S.; Ebert, B.L.; Gillette, M.A.; Paulovich, A.; Pomeroy, S.L.; Golub, T.R.; Lander, E.S.; et al. Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. USA 2005, 102, 15545–15550. [Google Scholar] [CrossRef]
- Young, W.; Maclean, P.; Dunstan, K.; Ryan, L.; Peters, J.; Armstrong, K.; Anderson, R.; Dewhurst, H.; van Gendt, M.; Dilger, R.N.; et al. Lacticaseibacillus rhamnosus HN001 alters the microbiota composition in the cecum but not the feces in a piglet model. Front. Nutr. 2022, 9, 1002369. [Google Scholar] [CrossRef]
- Buchfink, B.; Xie, C.; Huson, D.H. Fast and sensitive protein alignment using DIAMOND. Nat. Methods 2015, 12, 59–60. [Google Scholar] [CrossRef]
- Dixon, P. VEGAN, A Package of R Functions for Community Ecology. J. Veg. Sci. 2003, 14, 927–930. [Google Scholar] [CrossRef]
- Kanehisa, M.; Goto, S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000, 28, 27–30. [Google Scholar] [CrossRef] [PubMed]
- Mallick, H.; Rahnavard, A.; McIver, L.J.; Ma, S.; Zhang, Y.; Nguyen, L.H.; Tickle, T.L.; Weingart, G.; Ren, B.; Schwager, E.H.; et al. Multivariable association discovery in population-scale meta-omics studies. PLoS Comput. Biol. 2021, 17, e1009442. [Google Scholar] [CrossRef] [PubMed]
- Le Cao, K.A.; Boitard, S.; Besse, P. Sparse PLS discriminant analysis: Biologically relevant feature selection and graphical displays for multiclass problems. BMC Bioinform. 2011, 12, 253. [Google Scholar] [CrossRef] [PubMed]
Sex | Treatment | Bodyweight (g) | Food Intake (g) | Faecal Output (g) | Rat | |||
---|---|---|---|---|---|---|---|---|
Pre | Post | Pre | Post | Pre | Post | n | ||
Male | Control | 481.62 ± 14.30 | 480.75 ± 13.82 | 32.12 ± 1.79 | 31.37 ± 1.08 | 9.61 ± 0.46 | 9.18 ± 0.61 | 8 |
Lop. | 480.87 ± 16.20 | 474.87 ± 17.54 | 33.37 ± 1.20 | 20.75 ± 2.01 *** | 9.62 ± 0.44 | 6.68 ± 0.53 *** | 8 | |
Female | Control | 266.87 ± 8.64 | 265.12 ± 8.22 | 21.87 ± 1.07 | 19.12 ± 0.76 | 5.93 ± 0.24 | 5.71 ± 0.22 | 8 |
Lop. | 278.85 ± 8.44 | 275.42 ± 8.65 | 22.85 ± 0.67 | 12.85 ± 1.71 ** | 6.08 ± 0.16 | 3.80 ± 0.45 ** | 7 |
Gene | Protein | logFC | FDR | p Value | Lop. |
---|---|---|---|---|---|
Tmem72 | Transmembrane protein 72 | −5.63141 | 0.04781366 | 2.61 × 10−5 | Decreased |
Crhr2 | Corticotropin releasing hormone receptor 2 | −4.0482 | 0.04781366 | 4.18 × 10−5 | Decreased |
RGD1561795 | Unknown function | −2.71571 | 0.04781366 | 3.90 × 10−5 | Decreased |
LOC683212 | Similar to keratin complex 1, acidic gene 18 | −2.39166 | 0.04781366 | 1.79 × 10−5 | Decreased |
Ucp3 | Uncoupling protein 3 | −2.29239 | 0.04781366 | 3.17 × 10−5 | Decreased |
Zic1 | Zic family member 1 | −2.19697 | 0.04781366 | 2.27 × 10−5 | Decreased |
Ccdc33 | Coiled-coil domain containing 33 | −1.58709 | 0.04781366 | 1.99 × 10−5 | Decreased |
Phylum | Family | Genus | Male | Female | q-Value | |||
---|---|---|---|---|---|---|---|---|
Control | Lop. | Control | Lop. | Trtmt | Sex | |||
Bacteroidetes | Bacteroidaceae | Bacteroides | 3.83 ± 0.25 | 6.72 ± 0.62 | 5.33 ± 0.50 | 7.01 ± 0.95 | 0.004 | 0.180 |
Bacteroidetes | Barnesiellaceae | Barnesiella | 0 | 0.42 ± 0.12 | 0.14 ± 0.09 | 0.44 ± 0.12 | 0.004 | 0.415 |
Bacteroidetes | Muribaculaceae | Duncaniella | 0 | 0.58 ± 0.09 | 0.33 ± 0.13 | 0.49 ± 0.13 | 0.009 | 0.303 |
Bacteroidetes | Muribaculaceae | Muribaculum | 0.77 ± 0.12 | 1.31 ± 0.11 | 1.19 ± 0.13 | 1.35 ± 0.16 | 0.041 | 0.143 |
Bacteroidetes | Tannerellaceae | Parabacteroides | 0 | 0.73 ± 0.13 | 0.21 ± 0.14 | 0.71 ± 0.13 | <0.001 | 0.416 |
Firmicutes | Lactobacillaceae | Lactobacillus | 3.66 ± 1.01 | 9.93 ± 0.91 | 4.38 ± 1.09 | 8.78 ± 1.03 | 0.001 | 0.971 |
Firmicutes | Lactobacillaceae | Limosilactobacillus | 0.21 ± 0.14 | 0.44 ± 0.14 | 0.32 ± 0.16 | 1.11 ± 0.11 | 0.016 | 0.076 |
Firmicutes | Clostridiaceae | Butyricicoccus | 2.16 ± 0.13 | 1.54 ± 0.20 | 2.34 ± 0.24 | 1.76 ± 0.25 | 0.016 | 0.429 |
Firmicutes | Clostridiaceae | Clostridium | 5.82 ± 0.38 | 4.15 ± 0.68 | 7.05 ± 0.68 | 3.77 ± 0.72 | 0.003 | 0.767 |
Firmicutes | Incertae sedis | Colidextribacter | 2.51 ± 0.06 | 1.74 ± 0.16 | 1.80 ± 0.14 | 1.65 ± 0.23 | 0.026 | 0.066 |
Firmicutes | Eubacteriaceae | Eubacterium | 4.47 ± 0.39 | 2.98 ± 0.43 | 6.56 ± 0.81 | 4.55 ± 1.44 | 0.026 | 0.176 |
Firmicutes | Lachnospiraceae | Acetatifactor | 2.82 ± 0.23 | 1.35 ± 0.19 | 2.34 ± 0.23 | 1.19 ± 0.20 | <0.001 | 0.339 |
Firmicutes | Lachnospiraceae | Blautia | 1.61 ± 0.05 | 1.05 ± 0.12 | 1.74 ± 0.13 | 1.02 ± 0.16 | <0.001 | 0.930 |
Firmicutes | Lachnospiraceae | Dorea | 1.61 ± 0.16 | 1.06 ± 0.14 | 1.95 ± 0.15 | 1.12 ± 0.11 | <0.001 | 0.278 |
Firmicutes | Lachnospiraceae | Enterocloster | 1.38 ± 0.08 | 0.92 ± 0.09 | 1.42 ± 0.09 | 0.90 ± 0.11 | <0.001 | 0.951 |
Firmicutes | Lachnospiraceae | Roseburia | 5.22 ± 0.63 | 3.36 ± 0.54 | 4.56 ± 0.51 | 2.71 ± 0.61 | 0.011 | 0.347 |
Firmicutes | Lachnospiraceae | Schaedlerella | 2.59 ± 0.30 | 1.51 ± 0.19 | 3.69 ± 0.40 | 1.97 ± 0.28 | <0.001 | 0.066 |
Firmicutes | Ruminococcaceae | Flavonifractor | 1.32 ± 0.02 | 0.94 ± 0.08 | 0.98 ± 0.08 | 0.92 ± 0.13 | 0.041 | 0.111 |
Firmicutes | Ruminococcaceae | Ruminococcus | 6.14 ± 0.20 | 5.04 ± 0.49 | 5.39 ± 0.27 | 4.17 ± 0.28 | 0.008 | 0.105 |
Proteobacteria | Enterobacteriaceae | Klebsiella | 0.67 ± 0.03 | 0.15 ± 0.10 | 0.40 ± 0.12 | 0.23 ± 0.11 | 0.008 | 0.411 |
Male | |||||
Level 1 | Level 2 | Level 3 | Control | Lop. | q-Value |
Metabolism | Nucleotide Metabolism | K1000240 Pyrimidine metabolism | 2.615 ± 0.015 | 2.849 ± 0.028 | <0.001 |
Metabolism | Nucleotide Metabolism | K1000230 Purine metabolism | 6.904 ± 0.054 | 7.293 ± 0.054 | 0.010 |
Metabolism | Carbohydrate Metabolism | K1000010 Glycolysis/Gluconeogenesis | 2.780 ± 0.020 | 2.950 ± 0.025 | 0.010 |
Environmental Information Processing | Signal Transduction | K1002020 Two- component system | 6.910 ± 0.136 | 5.664 ± 0.195 | 0.010 |
Metabolism | Amino Acid Metabolism | K1000300 Lysine biosynthesis | 1.346 ± 0.014 | 1.433 ± 0.011 | 0.011 |
Female | |||||
Level 1 | Level 2 | Level 3 | Control | Lop. | q-Value |
Metabolism | Xenobiotics Biodegradation and Metabolism | K1000361 Chlorocyclohexane and chlorobenzene degradation | 0.037 ± 0.001 | 0.051 ± 0.001 | 0.015 |
Metabolism | Nucleotide Metabolism | K1000230 Purine metabolism | 6.758 ± 0.070 | 7.219 ± 0.090 | 0.049 |
Metabolism | Carbohydrate Metabolism | K1000040 Pentose and glucuronate interconversions | 1.598 ± 0.028 | 1.429 ± 0.031 | 0.049 |
Metabolism | Metabolism of Other Amino Acids | K1000480 Glutathione metabolism | 0.051 ± 0.004 | 0.076 ± 0.004 | 0.049 |
Metabolism | Carbohydrate Metabolism | K1000052 Galactose metabolism | 3.208 ± 0.069 | 2.838 ± 0.060 | 0.049 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Parkar, N.; Young, W.; Olson, T.; Hurst, C.; Janssen, P.; Spencer, N.J.; McNabb, W.C.; Dalziel, J.E. Peripherally Restricted Activation of Opioid Receptors Influences Anxiety-Related Behaviour and Alters Brain Gene Expression in a Sex-Specific Manner. Int. J. Mol. Sci. 2024, 25, 13183. https://doi.org/10.3390/ijms252313183
Parkar N, Young W, Olson T, Hurst C, Janssen P, Spencer NJ, McNabb WC, Dalziel JE. Peripherally Restricted Activation of Opioid Receptors Influences Anxiety-Related Behaviour and Alters Brain Gene Expression in a Sex-Specific Manner. International Journal of Molecular Sciences. 2024; 25(23):13183. https://doi.org/10.3390/ijms252313183
Chicago/Turabian StyleParkar, Nabil, Wayne Young, Trent Olson, Charlotte Hurst, Patrick Janssen, Nick J. Spencer, Warren C. McNabb, and Julie E. Dalziel. 2024. "Peripherally Restricted Activation of Opioid Receptors Influences Anxiety-Related Behaviour and Alters Brain Gene Expression in a Sex-Specific Manner" International Journal of Molecular Sciences 25, no. 23: 13183. https://doi.org/10.3390/ijms252313183
APA StyleParkar, N., Young, W., Olson, T., Hurst, C., Janssen, P., Spencer, N. J., McNabb, W. C., & Dalziel, J. E. (2024). Peripherally Restricted Activation of Opioid Receptors Influences Anxiety-Related Behaviour and Alters Brain Gene Expression in a Sex-Specific Manner. International Journal of Molecular Sciences, 25(23), 13183. https://doi.org/10.3390/ijms252313183