Latest Therapeutical Approaches for Triple-Negative Breast Cancer: From Preclinical to Clinical Research
Abstract
:1. Introduction
1.1. Breast Cancer
1.2. TNBC Characteristics
1.3. Genetic and Epigenetic Alterations Commonly Found in TNBC
2. Current Treatments Approved for the Treatment of TNBC
2.1. Chemotherapy
2.2. Immunotherapy
2.3. Targeted Therapy
2.3.1. PARP Inhibitors
2.3.2. Androgen Receptor Antagonists
2.3.3. EGFR Inhibitors
2.3.4. Vascular Endothelial Growth Factor Inhibitors
2.4. Antibody–Drug Conjugates
3. Currently Ongoing Clinical Trials for TNBC Treatment
4. Emerging Therapies and Preclinical Approaches for the Treatment of TNBC
4.1. Epigenetic Modulators
4.2. Clustered Regularly Interspaced Short Palindromic Repeats Technology
4.3. Miniproteins
4.4. Radioconjugates
4.5. Cancer Vaccines
4.6. Proteolysis-Targeting Chimeras
5. Challenges and Limitations
6. Conclusions and Future Prospects
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Correction Statement
References
- Bray, F.; Laversanne, M.; Sung, H.; Ferlay, J.; Siegel, R.L.; Soerjomataram, I.; Jemal, A. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2024, 74, 229–263. [Google Scholar] [CrossRef] [PubMed]
- Perou, C.M.; Sorlie, T.; Eisen, M.B.; van de Rijn, M.; Jeffrey, S.S.; Rees, C.A.; Pollack, J.R.; Ross, D.T.; Johnsen, H.; Akslen, L.A.; et al. Molecular portraits of human breast tumours. Nature 2000, 406, 747–752. [Google Scholar] [CrossRef] [PubMed]
- Orrantia-Borunda, E.; Anchondo-Nunez, P.; Acuna-Aguilar, L.E.; Gomez-Valles, F.O.; Ramirez-Valdespino, C.A. Subtypes of Breast Cancer. In Breast Cancer; Mayrovitz, H.N., Ed.; Exon Publications: Brisbane, AU, USA, 2022. [Google Scholar] [CrossRef]
- Costa, R.L.; Gradishar, W.J. Triple-negative breast cancer: Current practice and future directions. J. Oncol. Pract. 2017, 13, 301–303. [Google Scholar] [CrossRef]
- Bauer, K.R.; Brown, M.; Cress, R.D.; Parise, C.A.; Caggiano, V. Descriptive analysis of estrogen receptor (ER)-negative, progesterone receptor (PR)-negative, and HER2-negative invasive breast cancer, the so-called triple-negative phenotype: A population-based study from the California cancer Registry. Cancer 2007, 109, 1721–1728. [Google Scholar] [CrossRef] [PubMed]
- Lehmann, B.D.; Bauer, J.A.; Chen, X.; Sanders, M.E.; Chakravarthy, A.B.; Shyr, Y.; Pietenpol, J.A. Identification of human triple-negative breast cancer subtypes and preclinical models for selection of targeted therapies. J. Clin. Investig. 2011, 121, 2750–2767. [Google Scholar] [CrossRef] [PubMed]
- Syrnioti, A.; Petousis, S.; Newman, L.A.; Margioula-Siarkou, C.; Papamitsou, T.; Dinas, K.; Koletsa, T. Triple Negative Breast Cancer: Molecular Subtype-Specific Immune Landscapes with Therapeutic Implications. Cancers 2024, 16, 2094. [Google Scholar] [CrossRef]
- Bhattarai, S.; Saini, G.; Gogineni, K.; Aneja, R. Quadruple-negative breast cancer: Novel implications for a new disease. Breast Cancer Res. 2020, 22, 127. [Google Scholar] [CrossRef]
- Bhat, Y.; Thrishna, M.R.; Banerjee, S. Molecular targets and therapeutic strategies for triple-negative breast cancer. Mol. Biol. Rep. 2023, 50, 10535–10577. [Google Scholar] [CrossRef] [PubMed]
- Bareche, Y.; Venet, D.; Ignatiadis, M.; Aftimos, P.; Piccart, M.; Rothe, F.; Sotiriou, C. Unravelling triple-negative breast cancer molecular heterogeneity using an integrative multiomic analysis. Ann. Oncol. 2018, 29, 895–902. [Google Scholar] [CrossRef]
- Marra, A.; Trapani, D.; Viale, G.; Criscitiello, C.; Curigliano, G. Practical classification of triple-negative breast cancer: Intratumoral heterogeneity, mechanisms of drug resistance, and novel therapies. NPJ Breast Cancer 2020, 6, 54. [Google Scholar] [CrossRef]
- Wang, D.Y.; Jiang, Z.; Ben-David, Y.; Woodgett, J.R.; Zacksenhaus, E. Molecular stratification within triple-negative breast cancer subtypes. Sci. Rep. 2019, 9, 19107. [Google Scholar] [CrossRef] [PubMed]
- Zhao, S.; Zuo, W.J.; Shao, Z.M.; Jiang, Y.Z. Molecular subtypes and precision treatment of triple-negative breast cancer. Ann. Transl. Med. 2020, 8, 499. [Google Scholar] [CrossRef] [PubMed]
- The Cancer Genome Atlas Network. Comprehensive molecular portraits of human breast tumours. Nature 2012, 490, 61–70. [Google Scholar] [CrossRef] [PubMed]
- Marques, M.; Sorolla, M.A.; Urdanibia, I.; Parisi, E.; Hidalgo, I.; Morales, S.; Salud, A.; Sorolla, A. Are Transcription Factors Plausible Oncotargets for Triple Negative Breast Cancers? Cancers 2022, 14, 1101. [Google Scholar] [CrossRef] [PubMed]
- Herman, J.G.; Baylin, S.B. Gene silencing in cancer in association with promoter hypermethylation. N. Engl. J. Med. 2003, 349, 2042–2054. [Google Scholar] [CrossRef]
- Kim, A.; Mo, K.; Kwon, H.; Choe, S.; Park, M.; Kwak, W.; Yoon, H. Epigenetic Regulation in Breast Cancer: Insights on Epidrugs. Epigenomes 2023, 7, 6. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.; Shan, L.; Wang, F.; Wang, J.; Wang, F.; Shen, G.; Liu, X.; Wang, B.; Yuan, Y.; Ying, J.; et al. Hypermethylation of BRCA1 gene: Implication for prognostic biomarker and therapeutic target in sporadic primary triple-negative breast cancer. Breast Cancer Res. Treat. 2015, 150, 479–486. [Google Scholar] [CrossRef] [PubMed]
- Zolota, V.; Tzelepi, V.; Piperigkou, Z.; Kourea, H.; Papakonstantinou, E.; Argentou Mu, I.; Karamanos, N.K. Epigenetic Alterations in Triple-Negative Breast Cancer-The Critical Role of Extracellular Matrix. Cancers 2021, 13, 713. [Google Scholar] [CrossRef] [PubMed]
- Sofianidi, A.; Dumbrava, E.E.; Syrigos, K.N.; Nasrazadani, A. Triple-Negative Breast Cancer and Emerging Therapeutic Strategies: ATR and CHK1/2 as Promising Targets. Cancers 2024, 16, 1139. [Google Scholar] [CrossRef] [PubMed]
- Obidiro, O.; Battogtokh, G.; Akala, E.O. Triple Negative Breast Cancer Treatment Options and Limitations: Future Outlook. Pharmaceutics 2023, 15, 1796. [Google Scholar] [CrossRef] [PubMed]
- Gradishar, W.J.; Tjulandin, S.; Davidson, N.; Shaw, H.; Desai, N.; Bhar, P.; Hawkins, M.; O’Shaughnessy, J. Phase III trial of nanoparticle albumin-bound paclitaxel compared with polyethylated castor oil-based paclitaxel in women with breast cancer. J. Clin. Oncol. 2005, 23, 7794–7803. [Google Scholar] [CrossRef] [PubMed]
- Muro, K.; Chung, H.C.; Shankaran, V.; Geva, R.; Catenacci, D.; Gupta, S.; Eder, J.P.; Golan, T.; Le, D.T.; Burtness, B.; et al. Pembrolizumab for patients with PD-L1-positive advanced gastric cancer (KEYNOTE-012): A multicentre, open-label, phase 1b trial. Lancet Oncol. 2016, 17, 717–726. [Google Scholar] [CrossRef]
- Adams, S.; Loi, S.; Toppmeyer, D.; Cescon, D.W.; De Laurentiis, M.; Nanda, R.; Winer, E.P.; Mukai, H.; Tamura, K.; Armstrong, A.; et al. Pembrolizumab monotherapy for previously untreated, PD-L1-positive, metastatic triple-negative breast cancer: Cohort B of the phase II KEYNOTE-086 study. Ann. Oncol. 2019, 30, 405–411. [Google Scholar] [CrossRef] [PubMed]
- Schmid, P.; Cortes, J.; Pusztai, L.; McArthur, H.; Kummel, S.; Bergh, J.; Denkert, C.; Park, Y.H.; Hui, R.; Harbeck, N.; et al. Pembrolizumab for Early Triple-Negative Breast Cancer. N. Engl. J. Med. 2020, 382, 810–821. [Google Scholar] [CrossRef]
- Winer, E.P.; Lipatov, O.; Im, S.A.; Goncalves, A.; Munoz-Couselo, E.; Lee, K.S.; Schmid, P.; Tamura, K.; Testa, L.; Witzel, I.; et al. Pembrolizumab versus investigator-choice chemotherapy for metastatic triple-negative breast cancer (KEYNOTE-119): A randomised, open-label, phase 3 trial. Lancet Oncol. 2021, 22, 499–511. [Google Scholar] [CrossRef] [PubMed]
- Cortes, J.; Rugo, H.S.; Cescon, D.W.; Im, S.A.; Yusof, M.M.; Gallardo, C.; Lipatov, O.; Barrios, C.H.; Perez-Garcia, J.; Iwata, H.; et al. Pembrolizumab plus Chemotherapy in Advanced Triple-Negative Breast Cancer. N. Engl. J. Med. 2022, 387, 217–226. [Google Scholar] [CrossRef]
- Tolaney, S.M.; Kalinsky, K.; Kaklamani, V.G.; D’Adamo, D.R.; Aktan, G.; Tsai, M.L.; O’Regan, R.M.; Kaufman, P.A.; Wilks, S.T.; Andreopoulou, E.; et al. Eribulin Plus Pembrolizumab in Patients with Metastatic Triple-Negative Breast Cancer (ENHANCE 1): A Phase Ib/II Study. Clin. Cancer Res. 2021, 27, 3061–3068. [Google Scholar] [CrossRef] [PubMed]
- Emens, L.A.; Adams, S.; Barrios, C.H.; Dieras, V.; Iwata, H.; Loi, S.; Rugo, H.S.; Schneeweiss, A.; Winer, E.P.; Patel, S.; et al. First-line atezolizumab plus nab-paclitaxel for unresectable, locally advanced, or metastatic triple-negative breast cancer: IMpassion130 final overall survival analysis. Ann. Oncol. 2021, 32, 983–993. [Google Scholar] [CrossRef]
- Schmid, P.; Adams, S.; Rugo, H.S.; Schneeweiss, A.; Barrios, C.H.; Iwata, H.; Dieras, V.; Hegg, R.; Im, S.A.; Shaw Wright, G.; et al. Atezolizumab and Nab-Paclitaxel in Advanced Triple-Negative Breast Cancer. N. Engl. J. Med. 2018, 379, 2108–2121. [Google Scholar] [CrossRef]
- Dvir, K.; Giordano, S.; Leone, J.P. Immunotherapy in Breast Cancer. Int. J. Mol. Sci. 2024, 25, 7517. [Google Scholar] [CrossRef] [PubMed]
- Tung, N.; Garber, J.E. PARP inhibition in breast cancer: Progress made and future hopes. NPJ Breast Cancer 2022, 8, 47. [Google Scholar] [CrossRef]
- Robson, M.; Im, S.A.; Senkus, E.; Xu, B.; Domchek, S.M.; Masuda, N.; Delaloge, S.; Li, W.; Tung, N.; Armstrong, A.; et al. Olaparib for Metastatic Breast Cancer in Patients with a Germline BRCA Mutation. N. Engl. J. Med. 2017, 377, 523–533. [Google Scholar] [CrossRef]
- Litton, J.K.; Rugo, H.S.; Ettl, J.; Hurvitz, S.A.; Goncalves, A.; Lee, K.H.; Fehrenbacher, L.; Yerushalmi, R.; Mina, L.A.; Martin, M.; et al. Talazoparib in Patients with Advanced Breast Cancer and a Germline BRCA Mutation. N. Engl. J. Med. 2018, 379, 753–763. [Google Scholar] [CrossRef] [PubMed]
- Barchiesi, G.; Roberto, M.; Verrico, M.; Vici, P.; Tomao, S.; Tomao, F. Emerging Role of PARP Inhibitors in Metastatic Triple Negative Breast Cancer. Current Scenario and Future Perspectives. Front. Oncol. 2021, 11, 769280. [Google Scholar] [CrossRef] [PubMed]
- Traina, T.A.; Miller, K.; Yardley, D.A.; Eakle, J.; Schwartzberg, L.S.; O’Shaughnessy, J.; Gradishar, W.; Schmid, P.; Winer, E.; Kelly, C.; et al. Enzalutamide for the Treatment of Androgen Receptor-Expressing Triple-Negative Breast Cancer. J. Clin. Oncol. 2018, 36, 884–890. [Google Scholar] [CrossRef]
- Lehmann, B.D.; Abramson, V.G.; Sanders, M.E.; Mayer, E.L.; Haddad, T.C.; Nanda, R.; Van Poznak, C.; Storniolo, A.M.; Nangia, J.R.; Gonzalez-Ericsson, P.I.; et al. TBCRC 032 IB/II Multicenter Study: Molecular Insights to AR Antagonist and PI3K Inhibitor Efficacy in Patients with AR(+) Metastatic Triple-Negative Breast Cancer. Clin. Cancer Res. 2020, 26, 2111–2123. [Google Scholar] [CrossRef] [PubMed]
- Luo, J.; Jin, J.; Yang, F.; Sun, Z.; Zhang, W.; Shi, Y.; Xu, J.; Guan, X. The Correlation Between PARP1 and BRCA1 in AR Positive Triple-negative Breast Cancer. Int. J. Biol. Sci. 2016, 12, 1500–1510. [Google Scholar] [CrossRef]
- Nakai, K.; Hung, M.C.; Yamaguchi, H. A perspective on anti-EGFR therapies targeting triple-negative breast cancer. Am. J. Cancer Res. 2016, 6, 1609–1623. [Google Scholar] [PubMed]
- Ferrero, J.M.; Hardy-Bessard, A.C.; Capitain, O.; Lortholary, A.; Salles, B.; Follana, P.; Herve, R.; Deblock, M.; Dauba, J.; Atlassi, M.; et al. Weekly paclitaxel, capecitabine, and bevacizumab with maintenance capecitabine and bevacizumab as first-line therapy for triple-negative, metastatic, or locally advanced breast cancer: Results from the GINECO A-TaXel phase 2 study. Cancer 2016, 122, 3119–3126. [Google Scholar] [CrossRef] [PubMed]
- Kruse, V.; Denys, H.; Van Den Broecke, R.; Van Belle, S.; Cocquyt, V. The addition of bevacizumab to standard chemotherapy in breast cancer: Which patient benefits the most? Springerplus 2013, 2, 202. [Google Scholar] [CrossRef]
- Ribatti, D.; Nico, B.; Ruggieri, S.; Tamma, R.; Simone, G.; Mangia, A. Angiogenesis and Antiangiogenesis in Triple-Negative Breast cancer. Transl. Oncol. 2016, 9, 453–457. [Google Scholar] [CrossRef]
- Liu, J.; Liu, Q.; Li, Y.; Li, Q.; Su, F.; Yao, H.; Su, S.; Wang, Q.; Jin, L.; Wang, Y.; et al. Efficacy and safety of camrelizumab combined with apatinib in advanced triple-negative breast cancer: An open-label phase II trial. J. Immunother. Cancer 2020, 8, e000696. [Google Scholar] [CrossRef]
- Liu, J.; Wang, Y.; Tian, Z.; Lin, Y.; Li, H.; Zhu, Z.; Liu, Q.; Su, S.; Zeng, Y.; Jia, W.; et al. Multicenter phase II trial of Camrelizumab combined with Apatinib and Eribulin in heavily pretreated patients with advanced triple-negative breast cancer. Nat. Commun. 2022, 13, 3011. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Shao, B.; Tong, Z.; Ouyang, Q.; Wang, Y.; Xu, G.; Li, S.; Li, H. A phase Ib study of camrelizumab in combination with apatinib and fuzuloparib in patients with recurrent or metastatic triple-negative breast cancer. BMC Med. 2022, 20, 321. [Google Scholar] [CrossRef]
- Dri, A.; Arpino, G.; Bianchini, G.; Curigliano, G.; Danesi, R.; De Laurentiis, M.; Del Mastro, L.; Fabi, A.; Generali, D.; Gennari, A.; et al. Breaking barriers in triple negative breast cancer (TNBC)—Unleashing the power of antibody-drug conjugates (ADCs). Cancer Treat. Rev. 2024, 123, 102672, Erratum in Cancer Treat. Rev. 2024, 125, 102714. [Google Scholar] [CrossRef]
- Bardia, A.; Sun, S.; Thimmiah, N.; Coates, J.T.; Wu, B.; Abelman, R.O.; Spring, L.; Moy, B.; Ryan, P.; Melkonyan, M.N.; et al. Antibody–Drug Conjugate Sacituzumab Govitecan Enables a Sequential TOP1/PARP Inhibitor Therapy Strategy in Patients with Breast Cancer. Clin. Cancer Res. 2024, OF1–OF8. [Google Scholar] [CrossRef] [PubMed]
- Cardillo, T.M.; Zalath, M.B.; Arrojo, R.; Sharkey, R.M.; Govindan, S.V.; Chang, C.H.; Goldenberg, D.M. Sacituzumab govitecan plus platinum-based chemotherapy mediates significant antitumor effects in triple-negative breast, urinary bladder, and small-cell lung carcinomas. Oncotarget 2024, 15, 144–158. [Google Scholar] [CrossRef] [PubMed]
- Lehmann, U. Epigenetic Therapies in Triple-Negative Breast Cancer: Concepts, Visions, and Challenges. Cancers 2024, 16, 2164. [Google Scholar] [CrossRef]
- Connolly, R.M.; Li, H.; Jankowitz, R.C.; Zhang, Z.; Rudek, M.A.; Jeter, S.C.; Slater, S.A.; Powers, P.; Wolff, A.C.; Fetting, J.H.; et al. Combination Epigenetic Therapy in Advanced Breast Cancer with 5-Azacitidine and Entinostat: A Phase II National Cancer Institute/Stand Up to Cancer Study. Clin. Cancer Res. 2017, 23, 2691–2701. [Google Scholar] [CrossRef]
- Gatti-Mays, M.E.; Gameiro, S.R.; Ozawa, Y.; Knudson, K.M.; Hicks, K.C.; Palena, C.; Cordes, L.M.; Steinberg, S.M.; Francis, D.; Karzai, F.; et al. Improving the Odds in Advanced Breast Cancer with Combination Immunotherapy: Stepwise Addition of Vaccine, Immune Checkpoint Inhibitor, Chemotherapy, and HDAC Inhibitor in Advanced Stage Breast Cancer. Front. Oncol. 2020, 10, 581801. [Google Scholar] [CrossRef]
- Pal, S.K.; Tran, B.; Haanen, J.; Hurwitz, M.E.; Sacher, A.; Tannir, N.M.; Budde, L.E.; Harrison, S.J.; Klobuch, S.; Patel, S.S.; et al. CD70-Targeted Allogeneic CAR T-Cell Therapy for Advanced Clear Cell Renal Cell Carcinoma. Cancer Discov. 2024, 14, 1176–1189. [Google Scholar] [CrossRef]
- Foy, S.P.; Jacoby, K.; Bota, D.A.; Hunter, T.; Pan, Z.; Stawiski, E.; Ma, Y.; Lu, W.; Peng, S.; Wang, C.L.; et al. Non-viral precision T cell receptor replacement for personalized cell therapy. Nature 2023, 615, 687–696. [Google Scholar] [CrossRef] [PubMed]
- Sorolla, A.; Wang, E.; Golden, E.; Duffy, C.; Henriques, S.T.; Redfern, A.D.; Blancafort, P. Precision medicine by designer interference peptides: Applications in oncology and molecular therapeutics. Oncogene 2020, 39, 1167–1184. [Google Scholar] [CrossRef]
- Beltran, A.S.; Graves, L.M.; Blancafort, P. Novel role of Engrailed 1 as a prosurvival transcription factor in basal-like breast cancer and engineering of interference peptides block its oncogenic function. Oncogene 2014, 33, 4767–4777. [Google Scholar] [CrossRef] [PubMed]
- Gandhi, N.S.; Wang, E.; Sorolla, A.; Kan, Y.J.; Malik, A.; Batra, J.; Young, K.A.; Tie, W.J.; Blancafort, P.; Mancera, R.L. Design and Characterization of a Cell-Penetrating Peptide Derived from the SOX2 Transcription Factor. Int. J. Mol. Sci. 2021, 22, 9354. [Google Scholar] [CrossRef] [PubMed]
- Wang, E.; Sorolla, A.; Cunningham, P.T.; Bogdawa, H.M.; Beck, S.; Golden, E.; Dewhurst, R.E.; Florez, L.; Cruickshank, M.N.; Hoffmann, K.; et al. Tumor penetrating peptides inhibiting MYC as a potent targeted therapeutic strategy for triple-negative breast cancers. Oncogene 2019, 38, 140–150. [Google Scholar] [CrossRef] [PubMed]
- Hart, J.R.; Garner, A.L.; Yu, J.; Ito, Y.; Sun, M.; Ueno, L.; Rhee, J.K.; Baksh, M.M.; Stefan, E.; Hartl, M.; et al. Inhibitor of MYC identified in a Krohnke pyridine library. Proc. Natl. Acad. Sci. USA 2014, 111, 12556–12561. [Google Scholar] [CrossRef] [PubMed]
- Morgan, R.; Boxall, A.; Harrington, K.J.; Simpson, G.R.; Gillett, C.; Michael, A.; Pandha, H.S. Targeting the HOX/PBX dimer in breast cancer. Breast Cancer Res. Treat. 2012, 136, 389–398. [Google Scholar] [CrossRef] [PubMed]
- Masso-Valles, D.; Beaulieu, M.E.; Jauset, T.; Giuntini, F.; Zacarias-Fluck, M.F.; Foradada, L.; Martinez-Martin, S.; Serrano, E.; Martin-Fernandez, G.; Casacuberta-Serra, S.; et al. MYC Inhibition Halts Metastatic Breast Cancer Progression by Blocking Growth, Invasion, and Seeding. Cancer Res. Commun. 2022, 2, 110–130. [Google Scholar] [CrossRef]
- Garralda, E.; Beaulieu, M.E.; Moreno, V.; Casacuberta-Serra, S.; Martinez-Martin, S.; Foradada, L.; Alonso, G.; Masso-Valles, D.; Lopez-Estevez, S.; Jauset, T.; et al. MYC targeting by OMO-103 in solid tumors: A phase 1 trial. Nat. Med. 2024, 30, 762–771. [Google Scholar] [CrossRef]
- Maltsev, O.V.; Marelli, U.K.; Kapp, T.G.; Di Leva, F.S.; Di Maro, S.; Nieberler, M.; Reuning, U.; Schwaiger, M.; Novellino, E.; Marinelli, L.; et al. Stable Peptides Instead of Stapled Peptides: Highly Potent alphavbeta6-Selective Integrin Ligands. Angew. Chem. Int. Ed. Engl. 2016, 55, 1535–1539. [Google Scholar] [CrossRef]
- Bagati, A.; Kumar, S.; Jiang, P.; Pyrdol, J.; Zou, A.E.; Godicelj, A.; Mathewson, N.D.; Cartwright, A.N.R.; Cejas, P.; Brown, M.; et al. Integrin alphavbeta6-TGFbeta-SOX4 Pathway Drives Immune Evasion in Triple-Negative Breast Cancer. Cancer Cell 2021, 39, 54–67 e59. [Google Scholar] [CrossRef]
- Hernandez, R.; Grudzinski, J.J.; Aluicio-Sarduy, E.; Massey, C.F.; Pinchuk, A.N.; Bitton, A.N.; Patel, R.; Zhang, R.; Rao, A.V.; Iyer, G.; et al. (177)Lu-NM600 Targeted Radionuclide Therapy Extends Survival in Syngeneic Murine Models of Triple-Negative Breast Cancer. J. Nucl. Med. 2020, 61, 1187–1194. [Google Scholar] [CrossRef] [PubMed]
- Heesch, A.; Ortmanns, L.; Maurer, J.; Stickeler, E.; Sahnoun, S.E.M.; Mottaghy, F.M.; Morgenroth, A. The Potential of PSMA as a Vascular Target in TNBC. Cells 2023, 12, 551. [Google Scholar] [CrossRef]
- Sartor, O.; de Bono, J.; Chi, K.N.; Fizazi, K.; Herrmann, K.; Rahbar, K.; Tagawa, S.T.; Nordquist, L.T.; Vaishampayan, N.; El-Haddad, G.; et al. Lutetium-177-PSMA-617 for Metastatic Castration-Resistant Prostate Cancer. N. Engl. J. Med. 2021, 385, 1091–1103. [Google Scholar] [CrossRef]
- Radaram, B.; Glazer, S.E.; Yang, P.; Li, C.W.; Hung, M.C.; Gammon, S.T.; Alauddin, M.; Piwnica-Worms, D. Evaluation of (89)Zr-Labeled Anti-PD-L1 Monoclonal Antibodies Using DFO and Novel HOPO Analogues as Chelating Agents for Immuno-PET. ACS Omega 2023, 8, 17181–17194. [Google Scholar] [CrossRef] [PubMed]
- Harris, P.E.; Rubsamen, R. New Vaccine Therapy for Triple-Negative Breast Cancer. Curr. Breast Cancer Rep. 2024, 288–301. [Google Scholar] [CrossRef]
- Corti, C.; Giachetti, P.; Eggermont, A.M.M.; Delaloge, S.; Curigliano, G. Therapeutic vaccines for breast cancer: Has the time finally come? Eur. J. Cancer 2022, 160, 150–174. [Google Scholar] [CrossRef]
- Sakamoto, K.M.; Kim, K.B.; Kumagai, A.; Mercurio, F.; Crews, C.M.; Deshaies, R.J. Protacs: Chimeric molecules that target proteins to the Skp1-Cullin-F box complex for ubiquitination and degradation. Proc. Natl. Acad. Sci. USA 2001, 98, 8554–8559. [Google Scholar] [CrossRef]
- Zhou, L.; Zhou, K.; Chang, Y.; Yang, J.; Fan, B.; Su, Y.; Li, Z.; Mannan, R.; Mahapatra, S.; Ding, M.; et al. Discovery of ZLC491 as a Potent, Selective, and Orally Bioavailable CDK12/13 PROTAC Degrader. J. Med. Chem. 2024, 67, 18247–18264. [Google Scholar] [CrossRef]
- Du, Y.; Chen, X.; Chen, W.; Chen, G.; Cheng, X.; Wang, H.; Guo, L.; Li, C.; Yao, D. Design, synthesis and biological evaluation of a novel PAK1 degrader for the treatment of triple negative breast cancer. Bioorg. Med. Chem. 2024, 112, 117896. [Google Scholar] [CrossRef] [PubMed]
- Karpinska, K.; Mehlich, D.; Sabbasani, V.R.; Lomiak, M.; Torres-Ayuso, P.; Wrobel, K.; Truong, V.N.; Serwa, R.; Swenson, R.E.; Brognard, J.; et al. Selective Degradation of MLK3 by a Novel CEP1347-VHL-02 PROTAC Compound Limits the Oncogenic Potential of TNBC. J. Med. Chem. 2024, 67, 15012–15028. [Google Scholar] [CrossRef] [PubMed]
- He, H.; Li, F.; Tang, R.; Wu, N.; Zhou, Y.; Cao, Y.; Wang, C.; Wan, L.; Zhou, Y.; Zhuang, H.; et al. Ultrasound Controllable Release of Proteolysis Targeting Chimeras for Triple-Negative Breast Cancer Treatment. Biomater. Res. 2024, 28, 0064. [Google Scholar] [CrossRef] [PubMed]
- Teufelsbauer, M.; Stickler, S.; Eggerstorfer, M.T.; Hammond, D.C.; Hamilton, G. BET-directed PROTACs in triple negative breast cancer cell lines MDA-MB-231 and MDA-MB-436. Breast Cancer Res. Treat. 2024, 208, 89–101. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Li, G.; Zuo, C.; Wang, X.; Han, F.; Jia, Y.; Shang, H.; Tian, Y. Discovery of ganoderic acid A (GAA) PROTACs as MDM2 protein degraders for the treatment of breast cancer. Eur. J. Med. Chem. 2024, 270, 116367. [Google Scholar] [CrossRef]
- Velez, J.; Dale, B.; Park, K.S.; Kaniskan, H.U.; Yu, X.; Jin, J. Discovery of a novel, highly potent EZH2 PROTAC degrader for targeting non-canonical oncogenic functions of EZH2. Eur. J. Med. Chem. 2024, 267, 116154. [Google Scholar] [CrossRef]
- Ismail, T.M.; Crick, R.G.; Du, M.; Shivkumar, U.; Carnell, A.; Barraclough, R.; Wang, G.; Cheng, Z.; Yu, W.; Platt-Higgins, A.; et al. Targeted Destruction of S100A4 Inhibits Metastasis of Triple Negative Breast Cancer Cells. Biomolecules 2023, 13, 1099. [Google Scholar] [CrossRef] [PubMed]
- Yi, J.; Li, H.; Chu, B.; Kon, N.; Hu, X.; Hu, J.; Xiong, Y.; Kaniskan, H.U.; Jin, J.; Gu, W. Inhibition of USP7 induces p53-independent tumor growth suppression in triple-negative breast cancers by destabilizing FOXM1. Cell Death Differ. 2023, 30, 1799–1810. [Google Scholar] [CrossRef] [PubMed]
- Pu, C.; Liu, Y.; Deng, R.; Xu, Q.; Wang, S.; Zhang, H.; Luo, D.; Ma, X.; Tong, Y.; Li, R. Development of PROTAC degrader probe of CDK4/6 based on DCAF16. Bioorg. Chem. 2023, 138, 106637. [Google Scholar] [CrossRef] [PubMed]
- Zhao, C.; Chen, D.; Suo, F.; Setroikromo, R.; Quax, W.J.; Dekker, F.J. Discovery of highly potent HDAC8 PROTACs with anti-tumor activity. Bioorg. Chem. 2023, 136, 106546. [Google Scholar] [CrossRef]
- Li, X.; Zhang, Z.; Gao, F.; Ma, Y.; Wei, D.; Lu, Z.; Chen, S.; Wang, M.; Wang, Y.; Xu, K.; et al. c-Myc-Targeting PROTAC Based on a TNA-DNA Bivalent Binder for Combination Therapy of Triple-Negative Breast Cancer. J. Am. Chem. Soc. 2023, 145, 9334–9342. [Google Scholar] [CrossRef]
- Noblejas-Lopez, M.D.M.; Nieto-Jimenez, C.; Burgos, M.; Gomez-Juarez, M.; Montero, J.C.; Esparis-Ogando, A.; Pandiella, A.; Galan-Moya, E.M.; Ocana, A. Activity of BET-proteolysis targeting chimeric (PROTAC) compounds in triple negative breast cancer. J. Exp. Clin. Cancer Res. 2019, 38, 383. [Google Scholar] [CrossRef] [PubMed]
- Wei, J.; Meng, F.; Park, K.S.; Yim, H.; Velez, J.; Kumar, P.; Wang, L.; Xie, L.; Chen, H.; Shen, Y.; et al. Harnessing the E3 Ligase KEAP1 for Targeted Protein Degradation. J. Am. Chem. Soc. 2021, 143, 15073–15083. [Google Scholar] [CrossRef] [PubMed]
- Pu, C.; Tong, Y.; Liu, Y.; Lan, S.; Wang, S.; Yan, G.; Zhang, H.; Luo, D.; Ma, X.; Yu, S.; et al. Selective degradation of PARP2 by PROTACs via recruiting DCAF16 for triple-negative breast cancer. Eur. J. Med. Chem. 2022, 236, 114321. [Google Scholar] [CrossRef] [PubMed]
- Pu, C.; Wang, S.; Luo, D.; Liu, Y.; Ma, X.; Zhang, H.; Yu, S.; Lan, S.; Huang, Q.; Deng, R.; et al. Synthesis and biological evaluation of a tumor-selective degrader of PARP1. Bioorg. Med. Chem. 2022, 69, 116908. [Google Scholar] [CrossRef]
- Li, G.; Lin, S.S.; Yu, Z.L.; Wu, X.H.; Liu, J.W.; Tu, G.H.; Liu, Q.Y.; Tang, Y.L.; Jiang, Q.N.; Xu, J.H.; et al. A PARP1 PROTAC as a novel strategy against PARP inhibitor resistance via promotion of ferroptosis in p53-positive breast cancer. Biochem. Pharmacol. 2022, 206, 115329. [Google Scholar] [CrossRef] [PubMed]
- Niu, T.; Li, K.; Jiang, L.; Zhou, Z.; Hong, J.; Chen, X.; Dong, X.; He, Q.; Cao, J.; Yang, B.; et al. Noncovalent CDK12/13 dual inhibitors-based PROTACs degrade CDK12-Cyclin K complex and induce synthetic lethality with PARP inhibitor. Eur. J. Med. Chem. 2022, 228, 114012. [Google Scholar] [CrossRef]
- Zhao, B.; Burgess, K. TrkC-Targeted Kinase Inhibitors And PROTACs. Mol. Pharm. 2019, 16, 4313–4318. [Google Scholar] [CrossRef] [PubMed]
- He, R.; Song, Z.; Bai, Y.; He, S.; Huang, J.; Wang, Y.; Zhou, F.; Huang, W.; Guo, J.; Wang, Z.; et al. Discovery of AXL Degraders with Improved Potencies in Triple-Negative Breast Cancer (TNBC) Cells. J. Med. Chem. 2023, 66, 1873–1891. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Chen, X.; Liu, X.; Lu, D.; Li, S.; Qu, L.; Yin, F.; Luo, H.; Zhang, Y.; Luo, Z.; et al. Discovery of precision targeting EZH2 degraders for triple-negative breast cancer. Eur. J. Med. Chem. 2022, 238, 114462. [Google Scholar] [CrossRef] [PubMed]
- Dale, B.; Anderson, C.; Park, K.S.; Kaniskan, H.U.; Ma, A.; Shen, Y.; Zhang, C.; Xie, L.; Chen, X.; Yu, X.; et al. Targeting Triple-Negative Breast Cancer by a Novel Proteolysis Targeting Chimera Degrader of Enhancer of Zeste Homolog 2. ACS Pharmacol. Transl. Sci. 2022, 5, 491–507. [Google Scholar] [CrossRef]
- Wu, Y.; Xue, J.; Li, J. Chemical degrader enhances the treatment of androgen receptor-positive triple-negative breast cancer. Arch. Biochem. Biophys. 2022, 721, 109194. [Google Scholar] [CrossRef] [PubMed]
- Shah, V.V.; Duncan, A.D.; Jiang, S.; Stratton, S.A.; Allton, K.L.; Yam, C.; Jain, A.; Krause, P.M.; Lu, Y.; Cai, S.; et al. Mammary-specific expression of Trim24 establishes a mouse model of human metaplastic breast cancer. Nat. Commun. 2021, 12, 5389. [Google Scholar] [CrossRef]
- Wei, D.; Wang, H.; Zeng, Q.; Wang, W.; Hao, B.; Feng, X.; Wang, P.; Song, N.; Kan, W.; Huang, G.; et al. Discovery of Potent and Selective CDK9 Degraders for Targeting Transcription Regulation in Triple-Negative Breast Cancer. J. Med. Chem. 2021, 64, 14822–14847. [Google Scholar] [CrossRef]
- Bruna, A.; Rueda, O.M.; Greenwood, W.; Batra, A.S.; Callari, M.; Batra, R.N.; Pogrebniak, K.; Sandoval, J.; Cassidy, J.W.; Tufegdzic-Vidakovic, A.; et al. A Biobank of Breast Cancer Explants with Preserved Intra-tumor Heterogeneity to Screen Anticancer Compounds. Cell 2016, 167, 260–274 e222. [Google Scholar] [CrossRef]
- Marcotte, R.; Sayad, A.; Brown, K.R.; Sanchez-Garcia, F.; Reimand, J.; Haider, M.; Virtanen, C.; Bradner, J.E.; Bader, G.D.; Mills, G.B.; et al. Functional Genomic Landscape of Human Breast Cancer Drivers, Vulnerabilities, and Resistance. Cell 2016, 164, 293–309. [Google Scholar] [CrossRef]
- Shu, S.; Wu, H.J.; Ge, J.Y.; Zeid, R.; Harris, I.S.; Jovanovic, B.; Murphy, K.; Wang, B.; Qiu, X.; Endress, J.E.; et al. Synthetic Lethal and Resistance Interactions with BET Bromodomain Inhibitors in Triple-Negative Breast Cancer. Mol. Cell 2020, 78, 1096–1113 e1098. [Google Scholar] [CrossRef] [PubMed]
- Nedeljkovic, M.; Damjanovic, A. Mechanisms of Chemotherapy Resistance in Triple-Negative Breast Cancer-How We Can Rise to the Challenge. Cells 2019, 8, 957. [Google Scholar] [CrossRef] [PubMed]
- Feng, X.; Yang, C.; Huang, Y.; Su, D.; Wang, C.; Wilson, L.L.; Yin, L.; Tang, M.; Li, S.; Chen, Z.; et al. In vivo CRISPR screens identify Mga as an immunotherapy target in triple-negative breast cancer. Proc. Natl. Acad. Sci. USA 2024, 121, e2406325121. [Google Scholar] [CrossRef]
- Poulet, S.; Dai, M.; Wang, N.; Yan, G.; Boudreault, J.; Daliah, G.; Guillevin, A.; Nguyen, H.; Galal, S.; Ali, S.; et al. Genome-wide in vivo CRISPR screen identifies TGFbeta3 as actionable biomarker of palbociclib resistance in triple negative breast cancer. Mol. Cancer 2024, 23, 118. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.; Hu, J.; Zheng, Y.; Zhao, S.; Ma, J. Artificial intelligence: Opportunities and challenges in the clinical applications of triple-negative breast cancer. Br. J. Cancer 2023, 128, 2141–2149. [Google Scholar] [CrossRef] [PubMed]
Start | Phase | Estimated No. Patients | Disease | Drug Regimen | Primary Outcome | Secondary Outcome | NCT No. |
---|---|---|---|---|---|---|---|
2022 | I/II | 20 | Advanced or mTNBC | PD1+ TIL infusion | AE, ORR | PFS, CBR, DoR, OS | NCT05451784 |
2024 | II | 53 | AR-positive mTNBC | Abemaciclib + Bicalutamide | DCR | AE, HRQoL, ORR, DoR, PFS, OS | NCT06365788 |
2024 | II | 36 | Locally advanced unresectable or mTNBC | Trilaciclib + Pembrolizumab, Gemcitabine, and Carboplatin | ORR | PFS, DoR, OS, AE | NCT06027268 |
2024 | III | 350 | Locally recurrent inoperable or resistant mTNBC | FDA018 (ADC) vs. ICC (Eribulin, Capecitabine, Gemcitabine, or Vinorelbine) | PFS, OS | ORR, DoR, DCR, AE, ADA | NCT06519370 |
2023 | III | 192 | Basal-like immune suppressed (BLIS) subtype of TNBC | VEGFR BP102 + nab-Paclitaxel with maintenance of VEGFR + Capecitabine | PFS | ORR, DoR, OS, DCR | NCT05806060 |
2024 | II | 52 | Unresectable, locally advanced, recurrent, or mTNBC | BL-B01D1 (ADC) + PD-1 mAB | ORR, RP2D | PFS, DCR, DoR, TEAE | NCT06471205 |
2024 | III | 406 | Unresectable locally advanced or mTNBC after taxane failure | BL-B01D1 (ADC) vs. ICC | PFS, OS | ORR, DCR, DoR, TEAE, ADA | NCT06382142 |
2023 | III | 223 | Immunomodulatory locally advanced or mTNBC | Famitinib (TKI) + Camrelizumab (anti-PD-1) and TPC (Nab-Paclitaxel, Capecitabine/Eribulin/Carboplatin) or Camrelizumab + TPC | PFS | ORR, DoR, CBR, OS | NCT05760378 |
2022 | II/III | 450 | Untreated and inoperable locally advanced or mTNBC | BO13 (mAB) + Nab-Paclitaxel | ORR (phase II) PFS (phase III) | DCR, DoR, TTR, OS, CP, TEAE | NCT05555706 |
2022 | II | 63 | Germline or somatic mutated BRCA1/2, PALB2 or RAD51C/D advanced patients Patients with RAD51-foci low score without known or with negative germline or somatic mutation in BRCA1, BRCA2, PALB2, RAD51C, or RAD51D | Olaparib | ORR | PFS, AE | NCT05340413 |
2024 | I | 30 | mTNBC or locally advanced inoperable TNBC | Pembrolizumab + Cryoablation vs. Pembrolizumab alone | Changes in CD4-PD1 levels | - | NCT06246968 |
2023 | II | 78 | Advanced or mTNBC | Utidelone (microtubule stabilizing agent) + Tirelizumab + Bevacizumab | ORR | PFS, DCR, OS, AEs | NCT06125080 |
2024 | III | 360 | Inoperable locally advanced/mTNBC | PM8002 (anti-PD-L1/anti-VEGF-A bispecific antibody) + Nab-Paclitaxel vs. Placebo + Nab-Paclitaxel | PFS, OS | ORR, DCR, DoR, AE, HRQol | NCT06419621 |
2024 | II | 90 | Advanced or metastatic breast cancer (TNBC or HR+/ER+/HER2-) | PCS6422 (Eniluracil) + Capecitabine vs. Capecitabine alone | ORR, AEs | DCR, DoR, TTR, PFS | NCT06568692 |
2018 | III | 657 | Locally advanced or mTNBC | Nanosomal Docetaxel Lipid Suspension vs. Taxotere | ORR | PFS, OS, AE | NCT03671044 |
2023 | II | 46 | Unresectable locally advanced or metastatic immunomodulatory TNBC | Camrelizumab + Famitinib with/without nab-Paclitaxel | PFS | ORR | NCT05670925 |
2023 | III | 203 | LAR subtype with PI3K/AKT/mTOR mutation of locally recurrent inoperable or mTNBC | Everolimus + ICC (nab-Paclitaxel, Capecitabine, Eribulin, Carboplatin, Vinorelbine or Utidelone) vs. ICC alone | PFS | ORR, DoR, DCR, OS, AE, PRO | NCT05954442 |
2022 | III | 540 | Previously untreated, locally advanced, inoperable or mTNBC with PD-L1 negative | Sacituzumab govitecan vs. TPC (Paclitaxel, nab-Paclitaxel, Gemcitabine + Carboplatin) | PFS | OS, ORR, DoR, TTR, TEAE | NCT05382299 |
2024 | I/II | 85 | Advanced or metastatic refractory breast cancer | TIL therapy + IO (Cyclophosphamide, Fludarabine, IL-2, Pembrolizumab) | AE, ORR | DCR, DoR, PFS, OS, HRQol | NCT06532812 |
2023 | II | 36 | HER2- metastatic or locally advanced metaplastic breast cancer (MpBC) | L-NMMA (iNOS inhibitor) and Nab-Paclitaxel combined with Alpelisib | RPD2, ORR | PFS, OS, PIK3CA status | NCT05660083 |
2024 | II | 44 | Pretreated, locally advanced, or mTNBC | PLX038 (PEGylated prodrug of SN-38) | Best Tumor response (PR or CR) | TTR, SAEs, DoR, PFS, OS, AE, PK, PD | NCT06162351 |
2022 | II | 175 | Unresectable locally advanced, recurrent, or metastatic HER2-negative breast cancer with no prior systemic therapy | Sacituzumab tirumotecan (SKB264) with/without KL-A167 (PD-L1 monoclonal Ab) | AEs, ORR | PFS, DoR, DCR, PK | NCT05445908 |
2017 | I | 70 | Relapsed/refractory locally advanced BC or mTNBC | OTS167PO (MELK inhibitor) | MTD | - | NCT02926690 |
2022 | I | 26 | Locally advanced or mTNBC or another solid tumor | BL-M02D1 (TROP2 ADC) | DLT, MTD, RP2D | TEAE, Cmax, Tmax, CL, ORR, DCR, DoR, PFS, ADA | NCT05339685 |
2023 | II | 160 | Previously untreated, locally advanced, unresectable, or metastatic (stage IV) PD-L1 positive TNBC | Tobemstomig (bispecific Ab antiPD-1/anti-LAG3) + Nab Paclitaxel vs. Pembrolizumab + Nab-Paclitaxel | PFS | ORR, DoR, OS, ADA | NCT05852691 |
2016 | I/II | 229 | Advanced or metastatic solid tumors (included TNBC) | LY2880070 (Chk1 inhibitor) alone and in combination with Gemcitabine | Maximum Tolerated Dose | DLT, Cmax, Tmax, ORR, PFS, OS | NCT02632448 |
2024 | I | 80 | Unresectable, locally advanced, or metastatic solid tumor (included TNBC) | AGX101 (ADC therapy) | MTD, DLT, AE | PK, ADA, ORR, DCR, PFS, OS | NCT06440005 |
2021 | I/IIa | 48 | Metastatic or advanced solid tumors (included TNBC) | BT-001 (oncolytic vaccinia virus) alone or in combination with Pembrolizumab | AE, iORR, iDCR | AE; DCR, PFS, DoR, OS | NCT04725331 |
2023 | I | 130 | Locally advanced or metastatic solid tumor (included TNBC) | JANX008 (EGFR—TRACTr) | DLT, AE/SAE | Cmax, ADA, ORR, DoR, PFS | NCT05783622 |
2023 | I | 77 | Metastatic solid tumor | PLN-101095 (specific integrin inhibitor) alone or in combination with Pembrolizumab | DLT | Cmax, PK, Tmax, DCR, ORR | NCT06270706 |
2022 | I/II | 354 | Locally advanced, unresectable, or metastatic solid tumor (included TNBC) | PRO1184 (folate receptor α—ADC) in monotherapy or in combination with Carboplatin, Bevacizumab, or Pembrolizumab | TEAE, DLT, ORR, | DCR, PFS, OS, Cmax, Tmax | NCT05579366 |
2022 | I/II | 657 | Different solid tumor, including TNBC with progression on or after treatment with at least one line of systemic CT in the advanced setting | NUV-868 (BD2-selective BET inhibitor) as monotherapy or with Olaparib or Enzalutamide | RPD2, DLT, PK, PFS, ORR | - | NCT05252390 |
2024 | I | 220 | Advanced or metastatic solid tumor, expressing Nectin 4 | LY4052031 (ADC targeting Nectin-4) | DLT, ORR, RP2D | PK, DoR, TTR, PFS, OS, DCR | NCT06465069 |
2024 | I | 280 | Advanced or metastatic solid tumors known to express Nectin 4 | LY4101174 (ADC targeting Nectin-4) | DLT, ORR, RP2D | PK, DoR, TTR, PFS, DCR, OS | NCT06238479 |
2023 | I | 48 | Advanced or metastatic epithelial tumors including TNBC | MT-302 (TROP2-targeting mRNA-based CAR therapy) | AE, MTD, DLT, RP2D | PK | NCT05969041 |
2022 | I/II | 60 | Locally advanced or metastatic TNBC without previous systematic treatment. | PM8002 (anti-PD-L1/anti-VEGF-A bispecific antibody) + Nab-Paclitaxel | ORR, TRAE | DCR, DoR, PFS, OS | NCT05918133 |
2020 | I/II | 116 | Locally advanced or metastatic cancer, including TNBC | OC-001 (CD-137 mAB) as monotherapy or combined with Avelumab (anti-PD-1/PD-L1 Ab) | DLT, SAE, TEAE | Cmax, Chin, ORR, DoR, PFS, TTR, DCR, OS | NCT04260802 |
2021 | I | 345 | Advanced malignancies include TNBC | NX-1607 (inhibitor of CBL-B) alone or in combination with Paclitaxel | TEAE, SAE, DLT, ORR | PK, DoR, DCR, PFS, OS, PD | NCT05107674 |
2022 | III | 646 | Locally advanced or metastatic cancer in response to 6 months of standard immunotherapy (IO), including TNBC | Reduced dose intensity of IO vs. standard IO | PFS | ORR, OS, DoR, QL | NCT05078047 |
2022 | I | 100 | Patients with ROR1+ relapsed or refractory TNBC and other cancers | LYL797 (ROR1-targeted CAR T-cell therapy) | DLT, TEAE, RP2D | ORR, DoR, PFS, OS, Cmax, Tmax | NCT05274451 |
2018 | I/II | 747 | Advanced or metastatic solid tumors, including TNBC | Regorafenib + Avelumab (anti PD-L1 Ab) | RP2D, OR | MTD, DLT, PFS, OS, PK | NCT03475953 |
2021 | I/II | 115 | Patients with advanced solid tumors | MDNA11 (IL-2 Superkine) alone or in combination with Pembrolizumab | TEAE, TRAE, DLT | Cmax, Tmax, ADA, ORR, DCR, PFS, TIL levels | NCT05086692 |
PROTAC’s Name/s | Target | In Vitro | In Vivo | E3 Ligase | Ref. |
---|---|---|---|---|---|
Compound 29 | CDK9 | MDA-MB-231 cells | MDA-MB-231 xenograft | CRBN | [70] |
ZLC491 | CDK12 and CDK13 | MDA-MB-231 cells | MDA-MB-231 xenograft | CRBN | [71] |
Compound 19s | PAK1 | MDA-MB-231 cells | MDA-MB-231 xenograft | CRBN and VHL | [72] |
CEP1347-VHL-02 | MLK3 | MDA-MB-468 and HCC1806 cells | - | VHL | [73] |
ARV-825 | BRD4 | MDA-MB-231 cells | MDA-MB-231 xenograft | CRBN | [74] |
ARV-771 and MZ1 | BET | MDA-MB-231 and MDA-MB-468 cells | - | VHL | [75] |
Ganoderic acid A (GAA) | MDM2 | MDA-MB-231 cells | MDA-MB-231 xenograft in zebrafish | VHL | [76] |
MS8847 | EZH2 | MDA-MB-468 and BT549 cells, and BT549 3D cultures | - | VHL | [77] |
US-10113 | S100A4 | MDA-MB-231 and 4T1 cells | 4T1 allograft | CRBN | [78] |
PU7-1 | USP7-1 | MDA-MB-468 and BT549 cells | MDA-MB-468 xenograft | CRBN and VHL | [79] |
A4 | CDK4/6 | MDA-MB-231 cells | MDA-MB-231 xenograft | DCAF16 | [80] |
CT-4 | HDAC8 | MDA-MB-231 cells | - | CRBN | [81] |
TEP | MYC | MDA-MB-468, Hs578T cells and 4T1 | 4T1 allograft | Pomalidomide | [82] |
MZ1 and ARV-825 | BRD2 and BRD4 | MDA-MB-231 and BT549 cells | MDA-MB-231 xenograft | CRBN and VHL | [83] |
MS83 | BRD3 and BRD4 | MDA-MB-231 and MDA-MB-468 cells | - | KEAP1 | [84] |
C8 | PARP2 | MDA-MB-231 cells | MDA-MB-231 xenograft | DCAF16 | [85] |
LB23 | PARP1 | MDA-MB-231 cells | - | CRBN | [86] |
NN3 | PARP1 | MDA-MB-231 cells | MDA-MB-231 xenograft | MDM2 | [87] |
PP-C8 | CDK12-Cyclin K complex | MDA-MB-231 cells | - | CRBN | [88] |
IY-IY-pom | TrkC | Hs578T | - | CRBN | [89] |
Compound 6n | AXL kinase | MDA-MB-231 and MDA-MB-468 cells, and TNBC patient organoids | MDA-MB-231 xenograft | CRBN | [90] |
UI3i | EZH2 | MDA-MB-231 and MDA-MB-468 | - | CRBN | [91] |
MS8815 | EZH2 | MDA-MB-453, BT549 and patient-derived TNBC cells | - | VHL | [92] |
AR-PROTAC | AR | BT549 | BT549 xenograft | VHL | [93] |
dTRIM24 | TRIM24 | Metaplastic and non-metaplastic TNBC tumorspheres | - | VHL | [94] |
Compound 45 | CDK9 | MDA-MB-231 cells | MDA-MB-231 xenograft | CRBN | [95] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pont, M.; Marqués, M.; Sorolla, A. Latest Therapeutical Approaches for Triple-Negative Breast Cancer: From Preclinical to Clinical Research. Int. J. Mol. Sci. 2024, 25, 13518. https://doi.org/10.3390/ijms252413518
Pont M, Marqués M, Sorolla A. Latest Therapeutical Approaches for Triple-Negative Breast Cancer: From Preclinical to Clinical Research. International Journal of Molecular Sciences. 2024; 25(24):13518. https://doi.org/10.3390/ijms252413518
Chicago/Turabian StylePont, Mariona, Marta Marqués, and Anabel Sorolla. 2024. "Latest Therapeutical Approaches for Triple-Negative Breast Cancer: From Preclinical to Clinical Research" International Journal of Molecular Sciences 25, no. 24: 13518. https://doi.org/10.3390/ijms252413518
APA StylePont, M., Marqués, M., & Sorolla, A. (2024). Latest Therapeutical Approaches for Triple-Negative Breast Cancer: From Preclinical to Clinical Research. International Journal of Molecular Sciences, 25(24), 13518. https://doi.org/10.3390/ijms252413518