A Novel Glycoengineered Humanized Antibody Targeting DLK1 Exhibits Potent Anti-Tumor Activity in DLK1-Expressing Liver Cancer Cell Xenograft Models †
Abstract
:1. Introduction
2. Results
2.1. Binding Affinity of CBA-1205 to DLK1
2.2. CBA-1205 Has No Effect on Liver Cancer Cell Proliferation
2.3. ADCC Activity of CBA-1205
2.4. Antitumor Effects of Single-Agent CBA-1205 and Lenvatinib in Xenograft Mouse Models
2.5. Lenvatinib in Combination with CBA-1205 in Xenograft Mouse Models
2.6. Toxicity Study of CBA-1205 in Cynomolgus Monkey
3. Discussion
4. Materials and Methods
4.1. Generation of CBA-1205
4.2. Enzyme-Linked Immunosorbent Assay (ELISA)
4.3. Cell Culture
4.4. Flow Cytometry
4.5. Cell Proliferation Assay
4.6. ADCC Assay
4.7. Xenograft Experiments
4.8. Epitope Assays
4.9. Cross-Reactivity of CBA-1205 to Human, Cynomolgus Monkey, Mouse, and Rat DLK1
4.10. Toxicity Study in Cynomolgus Monkeys
4.11. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cancer Today. Global Cancer Observatory. International Agency for Research on Cancer. World Health Organization. Available online: https://gco.iarc.who.int/today/en/dataviz/tables?mode=cancer&group_populations=1&multiple_populations=1&types=0 (accessed on 26 June 2024).
- Lazzaro, A.; Hartshorn, K.L. A comprehensive narrative review on the history, current landscape, and future directions of hepatocellular carcinoma (HCC) systemic therapy. Cancers 2023, 15, 2506. [Google Scholar] [CrossRef] [PubMed]
- Kudo, M.; Finn, R.S.; Qin, S.; Han, K.H.; Ikeda, K.; Piscaglia, F.; Baron, A.; Park, J.W.; Han, G.; Jassem, J.; et al. Lenvatinib versus sorafenib in first-line treatment of patients with unresectable hepatocellular carcinoma: A randomised phase 3 non-inferiority trial. Lancet 2018, 391, 1163–1173. [Google Scholar] [CrossRef] [PubMed]
- Matsuki, M.; Hoshi, T.; Yamamoto, Y.; Ikemori-Kawada, M.; Minoshima, Y.; Funahashi, Y.; Matsui, J. Lenvatinib inhibits angiogenesis and tumor fibroblast growth factor signaling pathways in human hepatocellular carcinoma models. Cancer Med. 2018, 7, 2641–2653. [Google Scholar] [CrossRef]
- Buttell, A.; Qiu, W. The action and resistance mechanisms of Lenvatinib in liver cancer. Mol. Carcinog. 2023, 62, 1918–1934. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Lou, Y.; Bai, X.L.; Liang, T.B. Intratumoral heterogeneity of hepatocellular carcinoma: From single-cell to population-based studies. World J. Gastroenterol. 2020, 26, 3720–3736. [Google Scholar] [CrossRef] [PubMed]
- Fang, X.; Yan, Q.; Liu, S.; Guan, X.Y. Cancer stem cells in hepatocellular carcinoma: Intrinsic and extrinsic molecular mechanisms in stemness regulation. Int. J. Mol. Sci. 2022, 23, 12327. [Google Scholar] [CrossRef]
- Falix, F.A.; Aronson, D.C.; Lamers, W.H.; Gaemers, I.C. Possible roles of DLK1 in the Notch pathway during development and disease. Biochim. Biophys. Acta 2012, 1822, 988–995. [Google Scholar] [CrossRef]
- Traustadóttir, G.Á.; Lagoni, L.V.; Ankerstjerne, L.B.S.; Bisgaard, H.C.; Jensen, C.H.; Andersen, D.C. The imprinted gene Delta like non-canonical Notch ligand 1 (Dlk1) is conserved in mammals, and serves a growth modulatory role during tissue development and regeneration through Notch dependent and independent mechanisms. Cytokine Growth Factor. Rev. 2019, 46, 17–27. [Google Scholar] [CrossRef] [PubMed]
- Tanimizu, N.; Nishikawa, M.; Saito, H.; Tsujimura, T.; Miyajima, A. Isolation of hepatoblasts based on the expression of Dlk/Pref-1. J. Cell Sci. 2003, 116, 1775–1786. [Google Scholar] [CrossRef] [PubMed]
- Tanimizu, N.; Tsujimura, T.; Takahide, K.; Kodama, T.; Nakamura, K.; Miyajima, A. Expression of Dlk/Pref-1 defines a subpopulation in the oval cell compartment of rat liver. Gene Expr. Patterns 2004, 5, 209–218. [Google Scholar] [CrossRef]
- Ceder, J.A.; Jansson, L.; Helczynski, L.; Abrahamsson, P.A. Delta-like 1 (Dlk-1), a novel marker of prostate basal and candidate epithelial stem cells, is downregulated by notch signalling in intermediate/transit amplifying cells of the human prostate. Eur. Urol. 2008, 54, 1344–1353. [Google Scholar] [CrossRef]
- Harkness, L.; Taipaleenmaki, H.; Mahmood, A.; Frandsen, U.; Saamanen, A.M.; Kassem, M.; Abdallah, B.M. Isolation and differentiation of chondrocytic cells derived from human embryonic stem cells using dlk1/FA1 as a novel surface marker. Stem Cell Rev. Rep. 2009, 5, 353–368. [Google Scholar] [CrossRef] [PubMed]
- Yanai, H.; Nakamura, K.; Hijioka, S.; Kamei, A.; Ikari, T.; Ishikawa, Y.; Shinozaki, E.; Mizunuma, N.; Hatake, K.; Miyajima, A. Dlk-1, a cell surface antigen on foetal hepatic stem/progenitor cells, is expressed in hepatocellular, colon, pancreas and breast carcinomas at a high frequency. J. Biochem. 2010, 148, 85–92. [Google Scholar] [CrossRef] [PubMed]
- Seino, S.; Tsuchiya, A.; Watanabe, Y.; Kawata, Y.; Kojima, Y.; Ikarashi, S.; Yanai, H.; Nakamura, K.; Kumaki, D.; Hirano, M.; et al. Clinical outcome of hepatocellular carcinoma can be predicted by the expression of hepatic progenitor cell markers and serum tumour markers. Oncotarget 2018, 9, 21844–21860. [Google Scholar] [CrossRef] [PubMed]
- Cai, C.M.; Xiao, X.; Wu, B.H.; Wei, B.F.; Han, Z.G. Targeting endogenous DLK1 exerts antitumor effect on hepatocellular carcinoma through initiating cell differentiation. Oncotarget 2016, 7, 71466–71476. [Google Scholar] [CrossRef] [PubMed]
- Shin, S.; Wangensteen, K.J.; Teta-Bissett, M.; Wang, Y.J.; Mosleh-Shirazi, E.; Buza, E.L.; Greenbaum, L.E.; Kaestner, K.H. Genetic lineage tracing analysis of the cell of origin of hepatotoxin-induced liver tumors in mice. Hepatology 2016, 64, 1163–1177. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Liu, R.F.; Zhang, X.; Huang, L.Y.; Chen, F.; Fei, Q.L.; Han, Z.G. DLK1 as a potential target against cancer stem/progenitor cells of hepatocellular carcinoma. Mol. Cancer Ther. 2012, 11, 629–638. [Google Scholar] [CrossRef] [PubMed]
- von Horsten, H.H.; Ogorek, C.; Blanchard, V.; Demmler, C.; Giese, C.; Winkler, K.; Kaup, M.; Berger, M.; Jordan, I.; Sandig, V. Production of non-fucosylated antibodies by co-expression of heterologous GDP-6-deoxy-D-lyxo-4-hexulose reductase. Glycobiology 2010, 20, 1607–1618. [Google Scholar] [CrossRef]
- Nakamura, K.; Takahashi, K.; Sakaguchi, I.; Lingyi, Z.; Yanai, H.; Kanke, T. CBA-1205, a novel glycoengineered humanized antibody targeting DLK-1 exhibits potent anti-tumor activity in DLK-1 expressing tumor xenograft models. In Proceedings of the AACR Annual Meeting 2019, Atlanta, GA, USA, 29 March–3 April 2019. Abstract 1535. [Google Scholar]
- Nakamura, K.; Sakaguchi, I.; Takahashi, K. Synergistic and long-lasing anti-tumor efficacy of CBA-1205, a novel glycoengineered humanized antibody targeting DLK-1, in combination with Lenvatinib in human HCC xenograft models. In Proceedings of the AACR Annual Meeting 2023, Orland, FL, USA, 14–19 April 2023. Abstract 1862. [Google Scholar]
- Floridon, C.; Jensen, C.H.; Thorsen, P.; Nielsen, O.; Sunde, L.; Westergaard, J.G.; Thomsen, S.G.; Teisner, B. Does fetal antigen 1 (FA1) identify cells with regenerative, endocrine and neuroendocrine potentials? A study of FA1 in embryonic, fetal, and placental tissue and in maternal circulation. Differentiation 2000, 66, 49–59. [Google Scholar] [CrossRef] [PubMed]
- Larsen, J.B.; Jensen, C.H.; Schrøder, H.D.; Teisner, B.; Bjerre, P.; Hagen, C. Fetal antigen 1 and growth hormone in pituitary somatotroph cells. Lancet 1996, 347, 191. [Google Scholar] [CrossRef]
- Tornehave, D.; Jansen, P.; Teisner, B.; Rasmussen, H.B.; Chemnitz, J.; Moscoso, G. Fetal antigen 1 (FA1) in the human pancreas: Cell type expression, topological and quantitative variations during development. Anat Embryol. 1993, 187, 335–341. [Google Scholar] [CrossRef] [PubMed]
- Traustadóttir, G.Á.; Jensen, C.H.; Thomassen, M.; Beck, H.C.; Mortensen, S.B.; Laborda, J.; Baladrón, V.; Sheikh, S.P.; Andersen, D.C. Evidence of non-canonical NOTCH signaling: Delta-like 1 homolog (DLK1) directly interacts with the NOTCH1 receptor in mammals. Cell Signal. 2016, 28, 246–254. [Google Scholar] [CrossRef] [PubMed]
- Baladrón, V.; Ruiz-Hidalgo, M.J.; Nueda, M.L.; Díaz-Guerra, M.J.; García-Ramírez, J.J.; Bonvini, E.; Gubina, E.; Laborda, J. dlk acts as a negative regulator of Notch1 activation through interactions with specific EGF-like repeats. Exp. Cell Res. 2005, 303, 343–359. [Google Scholar] [CrossRef]
- Traustadóttir, G.Á.; Jensen, C.H.; Garcia Ramirez, J.J.; Beck, H.C.; Sheikh, S.P.; Andersen, D.C. The non-canonical NOTCH1 ligand Delta-like 1 homolog (DLK1) self interacts in mammals. Int. J. Biol. Macromol. 2017, 97, 460–467. [Google Scholar] [CrossRef]
- Wang, Y.; Zhao, L.; Smas, C.; Sul, H.S. Pref-1 interacts with fibronectin to inhibit adipocyte differentiation. Mol. Cell Biol. 2010, 30, 3480–3492. [Google Scholar] [CrossRef] [PubMed]
- Tsui, Y.M.; Chan, L.K.; Ng, I.O. Cancer stemness in hepatocellular carcinoma: Mechanisms and translational potential. Br. J. Cancer 2020, 122, 1428–1440. [Google Scholar] [CrossRef]
- Llovet, J.M.; Kudo, M.; Merle, P.; Meyer, T.; Qin, S.; Ikeda, M.; Xu, R.; Edeline, J.; Ryoo, B.Y.; Ren, Z.; et al. Lenvatinib plus pembrolizumab versus lenvatinib plus placebo for advanced hepatocellular carcinoma (LEAP-002): A randomised, double-blind, phase 3 trial. Lancet Oncol. 2023, 24, 1399–1410. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Xu, J.; Du, Q.; Yan, Y.; Geller, D.A. IRF2 regulates cellular survival and Lenvatinib-sensitivity of hepatocellular carcinoma (HCC) through regulating β-catenin. Transl. Oncol. 2021, 14, 101059. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Lu, Y.; Wu, M.; Wang, H.; Gong, Y.; Gu, Y. Neogambogic acid suppresses characteristics and growth of colorectal cancer stem cells by inhibition of DLK1 and Wnt/β-catenin pathway. Eur. J. Pharmacol. 2022, 929, 175112. [Google Scholar] [CrossRef] [PubMed]
- Paul, C.; Sardet, C.; Fabbrizio, E. The Wnt-target gene Dlk-1 is regulated by the Prmt5-associated factor Copr5 during adipogenic conversion. Biol. Open 2015, 4, 312–316. [Google Scholar] [CrossRef]
- Sanceau, J.; Poupel, L.; Joubel, C.; Lagoutte, I.; Caruso, S.; Pinto, S.; Desbois-Mouthon, C.; Godard, C.; Hamimi, A.; Montmory, E.; et al. DLK1/DIO3 locus upregulation by a β-catenin-dependent enhancer drives cell proliferation and liver tumorigenesis. Mol. Ther. 2024, 32, 1125–1143. [Google Scholar] [CrossRef] [PubMed]
- Luke, J.J.; Bao, R.; Sweis, R.F.; Spranger, S.; Gajewski, T.F. WNT/β-catenin pathway activation correlates with immune exclusion across human cancers. Clin. Cancer Res. 2019, 25, 3074–3083. [Google Scholar] [CrossRef] [PubMed]
- Pittaway, J.F.H.; Lipsos, C.; Mariniello, K.; Guasti, L. The role of delta-like non-canonical Notch ligand 1 (DLK1) in cancer. Endocr. Relat. Cancer 2021, 28, R271–R287. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, K.; Yamamoto, M.; Xin, B.; Ooshio, T.; Goto, M.; Fujii, K.; Liu, Y.; Okada, Y.; Furukawa, H.; Nishikawa, Y. Emergence of the dedifferentiated phenotype in hepatocyte-derived tumors in mice: Roles of oncogene-induced epigenetic alterations. Hepatol. Commun. 2019, 3, 697–715. [Google Scholar] [CrossRef]
- Liu, Y.; Xin, B.; Yamamoto, M.; Goto, M.; Ooshio, T.; Kamikokura, Y.; Tanaka, H.; Meng, L.; Okada, Y.; Mizukami, Y.; et al. Generation of combined hepatocellular-cholangiocarcinoma through transdifferentiation and dedifferentiation in p53-knockout mice. Cancer Sci. 2021, 112, 3111–3124. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, M.; Xin, B.; Watanabe, K.; Ooshio, T.; Fujii, K.; Chen, X.; Okada, Y.; Abe, H.; Taguchi, Y.; Miyokawa, N.; et al. Oncogenic determination of a broad spectrum of phenotypes of hepatocyte-derived mouse liver tumors. Am. J. Pathol. 2017, 187, 2711–2725. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Cui, M.L.; Chen, T.Y.; Xie, H.Y.; Cui, Y.; Tu, H.; Chen, F.H.; Ge, C.; Li, J.J. Serum DLK1 is a potential prognostic biomarker in patients with hepatocellular carcinoma. Tumour Biol. 2015, 36, 8399–8404. [Google Scholar] [CrossRef]
- Takagi, H.; Zhao, S.; Muto, S.; Yokouchi, H.; Nishihara, H.; Harada, T.; Yamaguchi, H.; Mine, H.; Watanabe, M.; Ozaki, Y.; et al. Delta-like 1 homolog (DLK1) as a possible therapeutic target and its application to radioimmunotherapy using 125I-labelled anti-DLK1 antibody in lung cancer models (HOT1801 and FIGHT004). Lung Cancer 2021, 153, 134–142. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.C.; Cheng, S.H.; Wu, C.H.; Li, W.Y.; Wang, J.S.; Kung, M.L.; Chu, T.H.; Huang, S.T.; Feng, C.T.; Huang, S.C.; et al. Delta-like 1 homologue promotes tumorigenesis and epithelial-mesenchymal transition of ovarian high-grade serous carcinoma through activation of Notch signaling. Oncogene 2019, 38, 3201–3215. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Wang, M.; Zhang, Z.; Zhao, W.; Wang, C.; Tu, L.; Zhang, Y.; Cao, H. Prognostic values of DLK1 for surgery and imatinib mesylate adjuvant therapy in gastrointestinal stromal tumors. Am. J. Cancer Res. 2016, 6, 2700–2712. [Google Scholar] [PubMed Central]
- Grassi, E.S.; Jeannot, P.; Pantazopoulou, V.; Berg, T.J.; Pietras, A. Niche-derived soluble DLK1 promotes glioma growth. Neoplasia 2020, 22, 689–701. [Google Scholar] [CrossRef] [PubMed]
Day 1 Mean ± SD | Day 22 Mean ± SD | |||||||
---|---|---|---|---|---|---|---|---|
Dose (mg/kg) | Sex | n | Cmax (µg/mL) | t1/2 (h) | AUC0–168 h (µg·h/mL) | Cmax (µg/mL) | t1/2 (h) | AUC0–168 h (µg·h/mL) |
10 | Male | 4 | 235 ± 17 | 115 ± 8 | 19,200 ± 2500 | 387 ± 64 | 174 ± 29 | 39,900 ± 9000 |
Female | 4 | 222 ± 8 | 143 ± 29 | 17,400 ± 1700 | 360 ± 27 | 195 ± 59 | 37,200 ± 4800 | |
30 | Male | 4 | 749 ± 125 | 109 ± 25 | 56,100 ± 7300 | 1320 ± 70 | 92.6 ± 13.0 | 106,000 ± 8000 |
Female | 4 | 702 ± 114 | 100 ± 10 | 56,200 ± 10,700 | 1330 ± 210 | 92.9 ± 17.7 | 112,000 ± 20,000 | |
100 | Male | 6 | 2370 ± 430 | 72.9 ± 11.9 | 169,000 ± 28,000 | 4480 ± 740 | 88.3 ± 18.1 | 325,000 ± 58,000 |
Female | 6 | 2360 ± 370 | 82.9 ± 11.2 | 172,000 ± 15,000 | 4320 ± 280 | 81.6 ± 14.3 | 338,000 ± 38,000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nakamura, K.; Takahashi, K.; Sakaguchi, I.; Satoh, T.; Zhang, L.; Yanai, H.; Tsukumo, Y. A Novel Glycoengineered Humanized Antibody Targeting DLK1 Exhibits Potent Anti-Tumor Activity in DLK1-Expressing Liver Cancer Cell Xenograft Models. Int. J. Mol. Sci. 2024, 25, 13627. https://doi.org/10.3390/ijms252413627
Nakamura K, Takahashi K, Sakaguchi I, Satoh T, Zhang L, Yanai H, Tsukumo Y. A Novel Glycoengineered Humanized Antibody Targeting DLK1 Exhibits Potent Anti-Tumor Activity in DLK1-Expressing Liver Cancer Cell Xenograft Models. International Journal of Molecular Sciences. 2024; 25(24):13627. https://doi.org/10.3390/ijms252413627
Chicago/Turabian StyleNakamura, Koji, Kota Takahashi, Izumi Sakaguchi, Takumi Satoh, Lingyi Zhang, Hiroyuki Yanai, and Yukihito Tsukumo. 2024. "A Novel Glycoengineered Humanized Antibody Targeting DLK1 Exhibits Potent Anti-Tumor Activity in DLK1-Expressing Liver Cancer Cell Xenograft Models" International Journal of Molecular Sciences 25, no. 24: 13627. https://doi.org/10.3390/ijms252413627
APA StyleNakamura, K., Takahashi, K., Sakaguchi, I., Satoh, T., Zhang, L., Yanai, H., & Tsukumo, Y. (2024). A Novel Glycoengineered Humanized Antibody Targeting DLK1 Exhibits Potent Anti-Tumor Activity in DLK1-Expressing Liver Cancer Cell Xenograft Models. International Journal of Molecular Sciences, 25(24), 13627. https://doi.org/10.3390/ijms252413627