Advances in Research on Southern Corn Rust, a Devasting Fungal Disease
Abstract
:1. Introduction
2. Occurrence and Threats of SCR
3. SCR Characterization
3.1. Pathogen
3.2. Genome and Effectors of P. polysora
3.3. Genetic Diversity of P. polysora
3.4. P. polysora Infection Sources
4. Genetic Dissection of SCR Resistance
4.1. Resistant Maize Germplasm Resources
4.2. SCR-Resistance Genes/QTL
5. Prevention and Control Strategies
6. Conclusions and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Grote, U.; Fasse, A.; Nguyen, T.T.; Erenstein, O. Food security and the dynamics of wheat and maize value chains in Africa and Asia. Front. Sustain. Food Syst. 2021, 4, 617009. [Google Scholar] [CrossRef]
- Erenstein, O.; Jaleta, M.; Sonder, K.; Mottaleb, K.; Prasanna, B.M. Global maize production, consumption and trade: Trends and R&D implications. Food Secur. 2022, 14, 1295–1319. [Google Scholar] [CrossRef]
- Dolezal, W.; Tiwari, K.; Kemerait, R.; Kichler, J.; Sapp, P.; Pataky, J. An unusual occurrence of southern rust, caused by Rpp9-virulent Puccinia polysora, on corn in southwestern Georgia. Plant Dis. 2009, 93, 676. [Google Scholar] [CrossRef] [PubMed]
- Mueller, D.; Wise, K.A.; Sisson, A.J.; Allen, T.W.; Bergstrom, G.C.; Bissonnette, K.M.; Bradley, C.A.; Byamukama, E.; Chilvers, M.I.; Collins, A.A.; et al. Corn yield loss estimates due to diseases in the United States and Ontario, Canada from 2012 to 2015. Plant Health Prog. 2016, 17, 211–222. [Google Scholar] [CrossRef]
- Mueller, D.S.; Wise, K.A.; Sisson, A.J.; Allen, T.W.; Bergstrom, G.C.; Bissonnette, K.M.; Bradley, C.A.; Byamukama, E.; Chilvers, M.I.; Collins, A.A.; et al. Corn yield loss estimates due to diseases in the United States and Ontario, Canada, from 2016 to 2019. Plant Health Prog. 2020, 21, 238–247. [Google Scholar] [CrossRef]
- Sun, Q.; Li, L.; Guo, F.; Zhang, K.; Dong, J.; Luo, Y.; Ma, Z. Southern corn rust caused by Puccinia polysora Underw: A review. Phytopathol. Res. 2021, 3, 25. [Google Scholar] [CrossRef]
- CABI. Puccinia polysora (American corn rust). In Invasive Species Compendium; CABI International: Wallingford, UK, 2021. [Google Scholar] [CrossRef]
- Little, E.L. 2014 Georgia Plant Disease Loss Estimates; AP 102-7; UGA Extension: Athens, GA, USA, 2016; Available online: https://extension.uga.edu/publications/detail.html?number=AP102-7 (accessed on 22 September 2016).
- Rhind, D.; Waterston, J.M.; Deighton, F.C. Occurrence of Puccinia polysora Underw. in west Africa. Nature 1952, 169, 631. [Google Scholar] [CrossRef]
- Reyes, G.M. An epidemic outbreak of the maize rust in eastern and central Visayas, Philippines. Philipp. J. Agric. 1953, 18, 115–128. [Google Scholar]
- Futrell, M.C. Puccinia polysora epidemics on maize associated with cropping practice and genetic homogeneity. Phytopathology 1975, 65, 1040–1042. [Google Scholar] [CrossRef]
- Rodriguez-Ardon, R.; Scott, G.E.; King, S.B. Maize yield losses caused by southern corn rust. Crop Sci. 1980, 20, 812–814. [Google Scholar] [CrossRef]
- Liu, Y.Y.; Shi, J.; Wang, Q.L. Southern corn rust occurred in Hebei province in 1998. Plant Prot. 1999, 3, 53. [Google Scholar]
- Tang, S.Y.; Xu, Z.X.; Hu, D.M.; Wang, L.F.; Ji, H. Occurrence characteristics and control measures of corn rust in autumn of 2014 in Wuhan. Hubei Plant Prot. 2015, 2, 46–47. [Google Scholar]
- Brewbaker, J.L.; Kim, S.K.; So, Y.S.; Logroño, M.; Moon, H.G.; Ming, R.; Lu, X.W.; Josue, A.D. General resistance in maize to southern rust (Puccinia polysora Underw.). Crop Sci. 2011, 51, 1393–1409. [Google Scholar] [CrossRef]
- Ramirez-Cabral, N.Y.Z.; Kumar, L.; Shabani, F. Global risk levels for corn rusts (Puccinia sorghi and Puccinia polysora) under climate change projections. J. Phytopathol. 2017, 165, 563–574. [Google Scholar] [CrossRef]
- Ma, Z.; Wang, W.; Chen, X.; Gehman, K.; Yang, H.; Yang, Y. Prediction of the global occurrence of maize diseases and estimation of yield loss under climate change. Pest Manag. Sci. 2024, 80, 5759–5770. [Google Scholar] [CrossRef] [PubMed]
- Deng, C.; Leonard, A.; Cahill, J.; Lv, M.; Li, Y.; Thatcher, S.; Li, X.; Zhao, X.; Du, W.; Li, Z.; et al. The RppC-AvrRppC NLR-effector interaction mediates the resistance to southern corn rust in maize. Mol. Plant. 2022, 15, 904–912. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.; Zhang, B.; Ding, J.; Wang, H.; Deng, C.; Wang, J.; Yang, Q.; Pi, Q.; Zhang, R.; Zhai, H.; et al. Cloning southern corn rust resistant gene RppK and its cognate gene AvrRppK from Puccinia polysora. Nat. Commun. 2022, 13, 4392. [Google Scholar] [CrossRef]
- Holland, J.; Uhr, D.; Jeffers, D.; Goodman, M.M. Inheritance of resistance to southern corn rust in tropical-by-corn-belt maize populations. Theor. Appl. Genet. 1998, 96, 232–241. [Google Scholar] [CrossRef]
- Wang, S.; Zhang, R.; Shi, Z.; Zhao, Y.; Su, A.; Wang, Y.; Xing, J.; Ge, J.; Li, C.; Wang, X.; et al. Identification and fine mapping of RppM, a southern corn rust resistance gene in maize. Front. Plant Sci. 2020, 11, 1057. [Google Scholar] [CrossRef]
- Zhao, P.; Zhang, G.; Wu, X.; Li, N.; Shi, D.; Zhang, D.; Ji, C.; Xu, M.; Wang, S. Fine mapping of RppP25, a southern rust resistance gene in maize. J. Integr. Plant Biol. 2013, 55, 462–472. [Google Scholar] [CrossRef]
- Lu, L.; Xu, Z.; Sun, S.; Du, Q.; Zhu, Z.; Weng, J.; Duan, C. Discovery and fine mapping of qSCR6.01, a novel major QTL conferring southern rust resistance in maize. Plant Dis. 2020, 104, 1918–1924. [Google Scholar] [CrossRef] [PubMed]
- Wanlayaporn, K.; Authrapun, J.; Vanavichit, A.; Tragoonrung, S. QTL mapping for partial resistance to southern corn rust using RILs of tropical sweet corn. Am. J. Plant Sci. 2013, 4, 878–889. [Google Scholar] [CrossRef]
- Guo, J.; Ma, Z.; Deng, C.; Ding, J.; Chang, Y. A comprehensive dynamic immune acetylproteomics profiling induced by Puccinia polysora in maize. BMC Plant Biol. 2022, 22, 610. [Google Scholar] [CrossRef] [PubMed]
- Moratelli, G.; Kaefer, K.A.C.; Ertel, F.; Vogt, R.T.; Ferreira, S.D.; Egewarth, V.A.; Mattei, E.; Rosa, W.B.; Egewarth, J.F. Effect of fungicide application times in the control management of leaf foliar diseases in maize. Afr. J. Agric. Res. 2015, 10, 3686–3695. [Google Scholar] [CrossRef]
- Meng, R.; Lv, Z.; Yan, J.; Chen, G.; Zhao, F.; Zeng, L.; Xu, B. Development of spectral disease indices for southern corn rust detection and severity classification. Remote Sens. 2020, 12, 3233. [Google Scholar] [CrossRef]
- Wang, Y.; Gong, M.; Li, H.; Xu, Y.; Xiao, J.; Zhang, Y.; Chang, J.; Yuan, H.; Li, H.; Shi, Y. Research progress on southern corn rust. J. Henan Agric. Univ. 2024, 58, 357–364. [Google Scholar] [CrossRef]
- Scott, G.E.; King, S.B.; Armour, J.W., Jr. Inheritance of resistance to southern corn rust in maize populations. Crop Sci. 1984, 24, 265–267. [Google Scholar] [CrossRef]
- Crouch, J.A.; Szabo, L.J. Real-time PCR detection and discrimination of the southern and common corn rust pathogens Puccinia polysora and Puccinia sorghi. Plant Dis. 2011, 95, 624–632. [Google Scholar] [CrossRef]
- Zhou, C.; Chen, C.; Cao, P.; Wu, S.; Sun, J.; Jin, D.; Wang, B. Characterization and fine mapping of RppQ, a resistance gene to southern corn rust in maize. Mol. Genet. Genom. 2007, 278, 723–728. [Google Scholar] [CrossRef] [PubMed]
- Sun, G.; Mural, R.V.; Turkus, J.D.; Schnable, J.C. Quantitative resistance loci to southern rust mapped in a temperate maize diversity panel. Phytopathology 2022, 112, 579–587. [Google Scholar] [CrossRef] [PubMed]
- Underwood, L.M. Some new fungi, chiefly from Alabama. Bull. Torrey Bot. Club 1897, 24, 81–86. [Google Scholar] [CrossRef]
- Cummins, G.B. Identity and distribution of three corn rusts. Phytopathology 1941, 31, 856–857. [Google Scholar]
- Nattrass, R.M. Occurrence of Puccinia polysora Underw. in East Africa. Nature 1953, 173, 527. [Google Scholar] [CrossRef] [PubMed]
- Orian, G. Occurrence of Puccinia polysora Underwood in the Indian Ocean Area. Nature 1954, 173, 505. [Google Scholar] [CrossRef]
- Payak, M.M. Introduction of Puccinia polysora, polysora rust of maize in India. Curr. Sci. 1994, 66, 317–318. [Google Scholar]
- Pont, W. Maize diseases are common in North Queensland. Qld. Agric. J. 1963, 89, 357–365. [Google Scholar]
- Barker, S.J. Testing of maize hybrids resistant to Puccinia polysora on the Atherton Tableland, Queensland. Qld. J. Agric. Anim. Sci. 1969, 26, 319–327. Available online: http://era.daf.qld.gov.au/id/eprint/11059 (accessed on 12 February 2024).
- Unartngam, J.; Janruang, P.; To-Anan, C. Genetic diversity of Puccinia polysora in Thailand based on inter simple sequence repeat (ISSR) markers analysis. Int. J. Agric. Technol. 2011, 7, 1125–1137. [Google Scholar]
- Hirayae, K.; Kawase, A.; Umeda, Y.; Nakatani, D.; Yamaguchi, T.; Nishi, K. Genetic variation of southern rust fungus of corn in Japan. Kyushu Plant Prot. Res. 1998, 44, 12–14. [Google Scholar] [CrossRef]
- Nishi, K.; Kawase, A.; Namiki, F.; Hirayae, K. Seasonal prevalence of southern rust of corn in Kumamoto Prefecture. Kyushu Plant Prot. Res. 1998, 44, 9–11. [Google Scholar] [CrossRef]
- Duan, D.R.; He, H.Z. Description of a rust Puccinia polysora on corn in Hainan Island. Mycosystema 1984, 3, 125–126. [Google Scholar]
- Liu, X.F.; Xu, J.Y.; Gu, Y.L.; Sun, Q.Y.; Yuan, W.Y.; Ma, Z.H. Occurrence of Puccinia polysora causing southern corn rust in the northeast Huanghuaihai region of China. Plant Dis. 2018, 102, 826. [Google Scholar] [CrossRef]
- Ren, Z.T.; Ma, Y.; Ren, Z.Z.; Li, H.X.; Li, H.Z. The emergence of southern corn rust and its prevention-control countermeasure. J. Maize Sci. 2005, 13, 124–126. [Google Scholar] [CrossRef]
- Cammack, R.H. Studies on Puccinia polysora Underw. III. Description and life cycle of P. polysora in west Africa. Trans. Br. Mycol. Soc. 1959, 42, 55–58. [Google Scholar] [CrossRef]
- Scott, G.E.; Futrell, M.C. Big epidemic on the way? Southern corn rust. Crops Soils Mag. 1976, April–May, 16–18. [Google Scholar]
- King, S.B.; Scott, G.E. Development of southern rust on maize at different stages of maturity. Plant Dis. 1982, 66, 477–481. [Google Scholar] [CrossRef]
- Hooker, A.L. Corn and Sorghum Rusts. In Diseases, Distribution, Epidemiology, and Control; Roelfs, A.P., Bushnell, W.R., Eds.; Academic Press: Cambridge, MA, USA, 1985; pp. 207–236. [Google Scholar] [CrossRef]
- Bradley, C.; Allen, T.; Faske, T.; Isakeit, T.; Jackson-Ziems, T.; Mehl, K.; Mueller, D.; Sisson, A.; Tenuta, A.; Weems, J.; et al. An Overview of Southern Rust; Report No.: CPN-2009; Crop Protection Network Publication: Ames, IA, USA, 2019; Available online: https://cropprotectionnetwork.org/publications/an-overview-of-southern-rust (accessed on 1 August 2019).
- Halvorson, J.; Kim, Y.; Gill, U.; Friskop, A. First report of the southern corn rust pathogen Puccinia polysora on Zea mays in North Dakota. Can. J. Plant Pathol. 2021, 43, S352–S357. [Google Scholar] [CrossRef]
- Li, X.H.; Zhang, K.Y.; Li, L.F.; Zhang, S.M.; Luo, Y.; Ma, Z.H. Correlation between Puccinia polysora Underw. spore number and disease index and meteorological factors. Acta Phytopathol. Sin. 2019, 49, 362–369. [Google Scholar] [CrossRef]
- Godoy, C.V.; Amorim, L.; Filho, A.B.; Silva, H.P.; Silva, W.J.; Berger, R.D. Temporal progress of southern rust in maize under different environmental conditions. Fitopatol. Bras. 2003, 28, 273–278. [Google Scholar] [CrossRef]
- Chhetri, S.; Debnath, S. Effect of different temperature levels and incubation time on germination of urediniospores of Puccinia polysora Underw. Pharm. Innov. J. 2022, 11, 110–113. [Google Scholar]
- Yang, X.; Ding, X.L.; He, Z.L.; Ma, Z.H. Determination of temperature required by southern corn rust. Plant Prot. 2015, 41, 145–147. [Google Scholar] [CrossRef]
- Buck, J.W.; Dong, W.; Mueller, D.S. Effect of light exposure on in vitro germination and germ tube growth of eight species of rust fungi. Mycologia 2010, 102, 1134–1140. [Google Scholar] [CrossRef] [PubMed]
- Anikster, Y.; Wahl, I. Coevolution of the rust fungi on Gramineae and Liliaceae and their hosts. Annu. Rev. Phytopathol. 1979, 17, 367–403. [Google Scholar] [CrossRef]
- Hacquard, S.; Delaruelle, C.; Frey, P.; Tisserant, E.; Kohler, A.; Duplessis, S. Transcriptome analysis of poplar rust telia reveals overwintering adaptation and tightly coordinated karyogamy and meiosis processes. Front. Plant Sci. 2013, 4, 456. [Google Scholar] [CrossRef] [PubMed]
- Guerra, F.A.; De Rossi, R.L.; Brücher, E.; Vuletic, E.; Plazas, M.C.; Guerra, G.D.; Ducasse, D.A. Occurrence of the complete cycle of Puccinia sorghi Schw. in Argentina and implications on the common corn rust epidemiology. Eur. J. Plant Pathol. 2019, 154, 171–177. [Google Scholar] [CrossRef]
- Lorrain, C.; Gonçalves dos Santos, K.C.; Germain, H.; Hecker, A.; Duplessis, S. Advances in understanding obligate biotrophy in rust fungi. New Phytol. 2019, 222, 1190–1206. [Google Scholar] [CrossRef] [PubMed]
- Zhao, P.; Zhang, Z.F.; Hu, D.M.; Tsui, K.M.; Qi, X.H.; Phurbu, D.; Gafforov, Y.; Cai, L. Contribution to rust flora in China I, tremendous diversity from natural reserves and parks. Fungal Divers. 2021, 110, 1–58. [Google Scholar] [CrossRef]
- Jin, Y.; Szabo, L.J.; Carson, M. Century-old mystery of Puccinia striiformis life history solved with the identification of Berberis as an alternate host. Phytopathology 2010, 100, 432–435. [Google Scholar] [CrossRef]
- Sun, Q.; Liu, J.; Zhang, K.; Huang, C.; Li, L.; Dong, J.; Luo, Y.; Ma, Z. De novo transcriptome assembly, polymorphic SSR markers development and population genetics analyses for southern corn rust (Puccinia polysora). Sci. Rep. 2021, 11, 18029. [Google Scholar] [CrossRef]
- Sun, Q.; Liu, J.; Huang, C.; Liu, X.; Gao, J.; Li, L.; Luo, Y.; Ma, Z. Clonal expansion and dispersal pathways of Puccinia polysora in China. Phytopathology 2023, 113, 21–30. [Google Scholar] [CrossRef] [PubMed]
- Tavares, D.; Romos, A.P.; Pires, A.S.; Azinheira, H.G.; Caldeirinha, P.; Link, T.; Abranches, R.; Silva, M.d.C.; Voegele, R.T.; Loureiro, J.; et al. Genome size analyses of Pucciniales reveal the largest fungal genomes. Front. Plant Sci. 2014, 5, 422. [Google Scholar] [CrossRef]
- Ramos, A.P.; Tavares, S.; Tavares, D.; Silva, M.D.C.; Loureiro, J.; Talhinhas, P. Flow cytometry reveals that the rust fungus, Uromyces bidentis (Pucciniales), possesses the largest fungal genome reported—2489 Mbp. Mol. Plant Pathol. 2015, 16, 1006–1010. [Google Scholar] [CrossRef]
- Xia, C.; Qiu, A.; Wang, M.; Liu, T.; Chen, W.; Chen, X. Current Status and future perspectives of genomics research in the rust fungi. Int. J. Mol. Sci. 2022, 23, 9629. [Google Scholar] [CrossRef]
- Liang, J.; Li, Y.; Dodds, P.N.; Figueroa, M.; Sperschneider, J.; Han, S.; Tsui, C.K.M.; Zhang, K.; Li, L.; Ma, Z.; et al. Haplotype-phased and chromosome-level genome assembly of Puccinia polysora, a giga-scale fungal pathogen causing southern corn rust. Mol. Ecol. Resour. 2023, 23, 601–620. [Google Scholar] [CrossRef] [PubMed]
- Dodds, P.N.; Rathjen, J.P. Plant immunity: Towards an integrated view of plant–pathogen interactions. Nat. Rev. Genet. 2010, 11, 539–548. [Google Scholar] [CrossRef] [PubMed]
- Dodds, P.N. From gene-for-gene to resistosomes: Flor’s enduring legacy. Mol. Plant Microbe Interact. 2023, 36, 461–467. [Google Scholar] [CrossRef]
- Mei, J.; Zhou, S.; Liu, W. Gene-for-gene-mediated resistance to southern corn rust in maize. Trends Plant Sci. 2023, 28, 255–258. [Google Scholar] [CrossRef]
- Li, G.; Newman, M.; Yu, H.; Rashidzade, M.; Martínez-Soto, D.; Caicedo, A.; Allen, K.S.; Ma, L.J. Fungal effectors: Past, present, and future. Curr. Opin. Microbiol. 2024, 81, 102526. [Google Scholar] [CrossRef] [PubMed]
- Jones, J.D.; Dangl, J.L. The plant immune system. Nature 2006, 444, 323–329. [Google Scholar] [CrossRef] [PubMed]
- Asai, S.; Furzer, O.J.; Cevik, V.; Kim, D.S.; Ishaque, N.; Goritschnig, S.; Staskawicz, B.J.; Shirasu, K.; Jones, J.D.G. A downy mildew effector evades recognition by polymorphism of expression and subcellular localization. Nat. Commun. 2018, 9, 5192. [Google Scholar] [CrossRef]
- Saur, I.M.L.; Panstruga, R.; Schulze-Lefert, P. NOD-like receptor-mediated plant immunity: From structure to cell death. Nat. Rev. Immunol. 2021, 21, 305–318. [Google Scholar] [CrossRef] [PubMed]
- Yuan, M.; Ngou, B.P.M.; Ding, P.; Xin, X.F. PTI-ETI crosstalk: An integrative view of plant immunity. Curr. Opin. Plant Biol. 2021, 62, 102030. [Google Scholar] [CrossRef]
- Arndell, T.; Chen, J.; Sperschneider, J.; Upadhyaya, N.M.; Blundell, C.; Niesner, N.; Outram, M.A.; Wang, A.; Swain, S.; Luo, M.; et al. Pooled effector library screening in protoplasts rapidly identifies novel Avr genes. Nat. Plants 2024, 10, 572–580. [Google Scholar] [CrossRef] [PubMed]
- Storey, H.H.; Howland, A.K. Resistance in maize to the tropical American rust fungus, Puccinia polysora Underw. I. Genes Rpp1 and Rpp2. Heredity 1957, 11, 289–301. [Google Scholar] [CrossRef]
- Ryland, A.K.; Storey, H.H. Physiological races of Puccinia polysora Underw. Nature 1955, 176, 655–656. [Google Scholar] [CrossRef]
- Storey, H.H.; Howland, A.K. Resistance in maize to a third East African race of Puccinia polysora Underw. Ann. Appl. Biol. 1967, 60, 297–303. [Google Scholar] [CrossRef]
- Robert, A.L. Host ranges and races of the corn rusts. Phytopathology 1962, 52, 1010–1012. [Google Scholar]
- Ullstrup, A.J. Inheritance and linkage of a gene determining resistance in maize to an American race of Puccinia polysora. Phytopathology 1965, 55, 425–428. [Google Scholar]
- Casela, C.R.; Ferreira, A.S. Variability in isolates of Puccinia polysora in Brazil. Fitopatol. Bras. 2002, 27, 414–416. [Google Scholar] [CrossRef]
- Janruang, P.; Unartngam, A.; Unartngam, J. Genetic differentiation within the Puccinia polysora population occured on inbred lines of maize in Thailand. J. Agr. Technol. 2013, 9, 1497–1505. [Google Scholar]
- Xing, G.Z. Genetic Diversity and Ultrastructural Studies of Southern Corn Rust in China. Master’s Dissertation, Henan Agricultural University, Zhengzhou, China, 2011. [Google Scholar]
- Guo, Y.Y.; Chen, M.G.; Sun, S.L.; Wu, X.F.; Jiang, K.; Zhu, Z.D.; Li, H.J.; He, Y.Q.; Wang, X.M. Genetic diversity of Puccinia polysora Underw. in China. Sci. Agric. Sin. 2013, 46, 4523–4533. [Google Scholar] [CrossRef]
- Cammack, R.H. Studies on Puccinia polysora Underw: I. The world distribution of forms of P. polysora. Trans. Br. Mycol. Soc. 1958, 41, 89–94. [Google Scholar] [CrossRef]
- Cammack, R.H. Studies on Puccinia polysora Underw: II. A consideration of the method of introduction of P. Polysora into Africa. Trans. Br. Mycol. Soc. 1959, 42, 27–32. [Google Scholar] [CrossRef]
- Wang, X.; Liu, J.; Guo, Y.; Duan, C.; Zhu, Z.; Sun, S.; Yang, Z. Multiorigins of initial infection sources of Puccinia polysora causing southern rust of maize in China. J. Maize Sci. 2020, 28, 1–14+30. [Google Scholar] [CrossRef]
- Yan, H.H.; Wang, Y.; Zhang, R.Q.; Xia, S.C.; Wang, Z.K.; Song, X.Y. Genetic diversity and deduction of primary infection source of Puccinia polysora in Shandong Province based on ISSR-PCR. Mycosystema 2018, 37, 157–165. [Google Scholar] [CrossRef]
- Kumar, S.; Pardurange Gowda, K.T.; Pant, S.K.; Shekhar, M.; Kumar, B.; Kaur, B.; Hettiara Chchi, K.; Singh, O.N.; Parsanna, B.H. Sources of resistance to Exserohilum turcicum (Pass.) and Puccinia polysora (Underw.) incitant of Turcicum leaf blight and polysora rust of maize. Arch. Phytopathol. Plant Prot. 2011, 44, 528–536. [Google Scholar] [CrossRef]
- Pati, S.; Nongmaithem, N.; Samal, P. Screening of maize genotypes against polysora rust disease (Puccinia polysora Underw.) in Manipur. J. Eco-Friendly Agric. 2024, 19, 329–331. [Google Scholar] [CrossRef]
- Kurosawa, R.N.F.; Vivas, M.; Júnior, A.T.A.; dos Santos, A.; Mafra, G.S.; Guimarães, A.G.; Schwantes, I.A. Reaction of popcorn germplasm to polysora rust under field conditions and natural inoculation. Trop. Plant Pathol. 2016, 41, 415–422. [Google Scholar] [CrossRef]
- Chávez-Medina, J.A.; Leyva-López, N.E.; Pataky, J.K. Resistance to Puccinia polysora in maize accessions. Plant Dis. 2007, 91, 1489–1495. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Yang, D.; Yu, Y.; Sun, X.; Wang, B.; Wang, Z. Studies on southern corn rust and its resistance. Acta Phytopath. Sin. 2003, 33, 86–87. [Google Scholar] [CrossRef]
- Wang, Y.; Mu, C.; Li, X.; Duan, C.; Wang, J.; Lu, X.; Li, W.; Xu, Z.; Sun, S.; Zhang, A.; et al. Genome-wide association and transcriptome reveal genetic basis for southern corn rust in maize. J. Integr. Agric. 2023, in press. [Google Scholar] [CrossRef]
- Wang, X.; Jin, Q.; Shi, J.; Wang, Z.; Li, X. The status of maize diseases and the possible effect of variety resistance on disease occurrence in the future. Acta Phytopathol. Sin. 2006, 36, 1–11. [Google Scholar]
- Yuan, H.; Xin, X.; Li, C. Resistance comparisons to southern corn rust in different corn varieties. J. Maize Sci. 2010, 18, 107–109. [Google Scholar] [CrossRef]
- Li, S.C.; Du, Q. Preliminary report on identification of maize germplasm resources resistant to southern maize rust. Mod. Agric. Sci. Technol. 2010, 21, 187–189. [Google Scholar]
- Chen, W.J.; Li, W.C.; Yang, Z.H.; Sun, S.L.; Wang, X.M.; Zhu, Z.; Duan, C. Identification and genetic diversity analysis of maize germplasm resources for resistance to southern corn rust. J. Plant Genet. Resour. 2018, 19, 225–231. [Google Scholar] [CrossRef]
- Huang, F.Y. Evaluation of Maize Germplasms for Resistance to Puccinia polysora and Resistant Characteristics. Master Dissertation, Sichuan Agricultural University, Yaan, China, 2011. [Google Scholar]
- Jiang, K.; Du, Q.; Qin, Z.H.; Chen, M.G.; Li, S.C.; Sun, S.L.; Wu, X.F.; Guo, Y.Y.; Shi, Y.S.; Lin, X.H.; et al. Identification of resistance to southern corn rust (Puccinia polysora Underw) in maize germplasm. J. Plant Genet. Resour. 2013, 14, 711–714. [Google Scholar] [CrossRef]
- Du, Q.; Tang, Z.L.; Li, S.C.; Nong, Q.; Qin, L.Q. Identification and evaluation of maize germplasm resources against southern corn rust. J. South. Agric. 2013, 44, 765–768. [Google Scholar] [CrossRef]
- Han, L.P. Identification of Germplasm and Mapping Major Gene Resistance to Puccinia polysora in Maize. Master Dissertation, Henan Agricultural University, Zhengzhou, China, 2014. [Google Scholar]
- Yao, G.Q.; Cao, B.; Shan, J.; Wang, Y.X.; Han, Z.J.; Wang, L.M. Screening of new maize germplasms resistant to southern rust. Shandong Agric. Sci. 2014, 46, 112–116. [Google Scholar] [CrossRef]
- Mao, Y.X.; Xue, L.; Wang, L.P.; Chen, G.Q.; Lu, H.H.; Shi, M.L.; Huang, X.L.; Zhou, G.F.; Zhang, Z.L.; Zhao, J.Y.; et al. Exploitation and evaluation of rust-resistant maize germplasms. J. Maize Sci. 2017, 25, 55–61. [Google Scholar] [CrossRef]
- Zhou, G.; Hao, D.; Mao, Y.; Zhu, Q.; Chen, G.; Lu, H.; Shi, M.; Huang, X.; Zhang, Z.; Zhao, J.; et al. Identification of genetic loci conferring partial resistance to southern corn rust through a genome-wide association study. Eur. J. Plant Pathol. 2018, 150, 1083–1090. [Google Scholar] [CrossRef]
- Liu, X.F.; Wu, H.Y.; Lou, C.J.; Yang, Z.S.; Yuan, W.Y.; Xu, G.P. Evaluation of rust resistance of some maize germplasms under natural conditions in off-season multiplication. J. Shanxi Agric. Sci. 2019, 47, 425–427+436. [Google Scholar] [CrossRef]
- Meng, C.; Huang, Y.H. Identification of main disease resistance of exotic improved maize inbred lines in Guangxi province. Jiangsu Agric. Sci. 2019, 47, 111–115. [Google Scholar] [CrossRef]
- Li, Y.L.; Liu, J.H.; Hu, J.G.; Zheng, J.R.; Li, C.Y. Resistance identification of waxy corn germplasm resources to southern corn rust. Guangdong Agric. Sci. 2011, 38, 24–25. [Google Scholar] [CrossRef]
- Tian, Y.J.; Wang, Q.Y.; Wu, B.; Ye, W.Z.; Chen, H.D. Identification and selection of fresh corn germplasm resources with resistance to southern corn rust. Guangdong Agric. Sci. 2021, 48, 111–117. [Google Scholar] [CrossRef]
- Zhang, Y.; Xu, L.; Zhang, D.F.; Dai, J.R.; Wang, S.C. Mapping of southern corn rust-resistant genes in the W2D inbred line of maize (Zea mays L.). Mol. Breed. 2010, 25, 433–439. [Google Scholar] [CrossRef]
- Deng, C.; Lv, M.; Li, X.; Zhao, X.; Li, H.; Li, Z.; Tian, Z.; Leonard, A.; Jaqueth, J.; Li, B.; et al. Identification and fine mapping of qSCR4.01, a novel major QTL for resistance to Puccinia polysora in maize. Plant Dis. 2020, 104, 1944–1948. [Google Scholar] [CrossRef]
- Wang, X.T.; Gao, H.W.; Hao, J.J.; Zhang, J.; Zhang, G.F.; Wang, Z.P. Molecular marker-assisted selection of maize variety ‘Weiyu618’ with resistance to southern corn rust. Mol. Plant Breed. 2024, 22, 4998–5006. [Google Scholar] [CrossRef]
- Wang, S.; Zhang, R.Y.; Wang, R.H.; Song, W.; Zhao, J.R. Research progress of southern corn rust and resistance breeding. Sci. Agric. Sin. 2024, 57, 2732–2743. [Google Scholar] [CrossRef]
- Storey, H.; Howland, A.K. Resistance in maize to the Tropical American rust fungus, Puccinia polysora. II: Linkage of genes Rpp1 and Rpp2. Heredity 1959, 13, 61–65. [Google Scholar] [CrossRef]
- Liu, Z.X.; Wang, S.C.; Dai, J.R.; Huang, L.J.; Cao, H.H. Studies of genetic analysis and SSR linked marker location of gene resistance to southern rust in inbred line P25 of maize. Acta Genet. Sin. 2003, 30, 706–710. [Google Scholar]
- Chen, C.X.; Wang, Z.L.; Yang, D.E.; Ye, C.J.; Zhao, Y.B.; Jin, D.M.; Weng, M.L.; Wang, B. Molecular tagging and genetic mapping of the disease resistance gene RppQ to southern corn rust. Theor. Appl. Genet. 2004, 108, 945–950. [Google Scholar] [CrossRef] [PubMed]
- Yao, G.Q.; Shan, J.; Cao, B.; Cui, G.L.; Du, S.L.; Han, Z.J.; Liu, T.S.; Li, C.L.; Wang, L.M. Mapping the maize southern rust resistance gene of inbred line CML470. J. Plant Genet. Resour. 2013, 14, 515–522. [Google Scholar] [CrossRef]
- Zhang, X.L. Study on the Resistance of Maize to Northern Corn Leaf Blight and Southern Corn Rust. Ph.D. Dissertation, Chinese Academy of Agricultural Sciences, Beijing, China, 2013. [Google Scholar]
- Wu, X.; Li, N.; Zhao, P.; He, Y.; Wang, S. Geographic and genetic identification of RppS, a novel locus conferring broad resistance to southern corn rust disease in China. Euphytica 2015, 205, 17–23. [Google Scholar] [CrossRef]
- Jiang, K. Characterization of Maize Resistance to Puccinia polysora. Master Dissertation, Hebei Normal University of Science and Technology, Qinhuangdao, China, 2013. [Google Scholar]
- Wang, S.; Wang, X.; Zhang, R.; Liu, Q.; Sun, X.; Wang, J.; Wang, Y.; Xing, J.; Liu, Y.; Zhao, Y.; et al. RppM, encoding a typical CC-NBS-LRR protein, confers resistance to southern corn rust in maize. Front. Plant Sci. 2022, 13, 951318. [Google Scholar] [CrossRef] [PubMed]
- Jines, M.P.; Balint-Kurti, P.; Robertson-Hoyt, L.A.; Molnar, T.; Holland, J.B.; Goodman, M.M. Mapping resistance to Southern rust in a tropical by temperate maize recombinant inbred topcross population. Theor. Appl. Genet. 2007, 114, 659–667. [Google Scholar] [CrossRef] [PubMed]
- Lv, M.; Deng, C.; Li, X.; Zhao, X.; Li, H.; Li, Z.; Tian, Z.; Leonard, A.; Jaqueth, J.; Li, B.; et al. Identification and fine-mapping of RppCML496, a major QTL for resistance to Puccinia polysora in maize. Plant Genome 2021, 14, e20062. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.W.; Qin, J.M.; Shi, C.Q.; Zheng, J.X.; Qin, Y.A.; Huang, A.X. QTL Mapping and genetic analysis of a gene with high resistance to southern corn rust. Sci. Agric. Sin. 2019, 52, 2033–2041. [Google Scholar] [CrossRef]
- Ai, T.S.; Tian, Z.Q.; Li, H.M.; Deng, C.; Ding, J.Q.; Zhang, X.L.; Liu, H.F.; Zhu, W.L.; Li, Z.M. Mapping and effectiveness analysis for resistance genes of southern corn rust in maize. J. Henan Agric. Univ. 2018, 52, 514–518. [Google Scholar] [CrossRef]
- Chen, W.J.; Lu, L.; Li, W.C.; Zhang, X.J.; Sun, S.L.; Zhu, Z.D.; Wang, X.M.; Duan, C.X. QTL mapping for resistance to southern corn rust in maize. J. Plant Genet. Resour. 2019, 20, 521–529. [Google Scholar] [CrossRef]
- Li, Z.M.; Li, Z.; Ding, J.Q.; Tian, Z.Q. Major QTL mapping and effect analysis for resistance to southern corn rust. J. Henan Agric. Sci. 2024, 53, 109–116. [Google Scholar] [CrossRef]
- Liu, J.; Wang, X.; Hou, C.; Hu, M.; Du, W.; Sun, P.; Dai, Z.; Wang, X.; Chen, R.; Gao, F.; et al. qSCR4.05 and qSCR4.08, two QTLs on chromosome 4 are associated with resistance to southern corn rust in maize. Physiol. Mol. Plant Pathol. 2024, 134, 102420. [Google Scholar] [CrossRef]
- Tian, Z.; Du, W.; Li, Z.; Deng, C.; Lv, M.; Li, X.; Zhao, X.; Hao, J.; Han, L.; Li, Z.; et al. Genetic detection and identification of the candidate resistance gene for a major QTL resistant to Puccinia polysora in maize. Physiol. Mol. Plant Pathol. 2022, 121, 101871. [Google Scholar] [CrossRef]
- Mu, X.; Dai, Z.; Guo, Z.; Zhang, H.; Yang, J.; Gan, X.; Li, J.; Liu, Z.; Tang, J.; Gou, M. Systematic dissection of disease resistance to southern corn rust by bulked-segregant and transcriptome analysis. Crop J. 2022, 10, 426–435. [Google Scholar] [CrossRef]
- Wang, Y.; Ma, S.; Zhang, D.; Li, C.; Chen, L.; Tang, B.; An, Y.; Liu, X.; He, G.; Shi, Y.; et al. Identification of RppSLN from an Elite Landrace: A Major Locus Conferring Resistance to Southern Corn Rust in Maize (Zea mays L.). Plants 2024, 13, 3227. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.Z.; Hou, J.B.; Ye, P.; Hu, L.; Huang, J.S.; Dai, Z.K.; Zhang, B.; Dai, S.; Que, J.M.; Min, H.; et al. A teosinte-derived allele of a MYB transcription repressor confers multiple disease resistance in maize. Mol. Plant 2021, 14, 1846–1863. [Google Scholar] [CrossRef] [PubMed]
- de Souza Camacho, L.R.; Coan, M.M.D.; Scapim, C.A.; Barth Pinto, R.J.; Tessmann, D.J.; Contreras-Soto, R.I. A genome-wide association study for partial resistance to southern corn rust in tropical maize. Plant Breed. 2019, 138, 770–780. [Google Scholar] [CrossRef]
- Shu, G.; Wang, A.; Wang, X.; Ding, J.; Chen, R.; Gao, F.; Wang, A.; Li, T.; Wang, Y. Identification of southern corn rust resistance QTNs in Chinese summer maize germplasm via multi-locus GWAS and post-GWAS analysis. Front. Plant Sci. 2023, 14, 1221395. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Cheng, D.; Guo, S.; Chen, C.; Wang, Y.; Zhong, Y.; Qi, X.; Liu, Z.; Wang, D.; Wang, Y.; et al. Genome-wide association and genomic prediction for resistance to southern corn rust in DH and testcross populations. Front. Plant Sci. 2023, 14, 1109116. [Google Scholar] [CrossRef] [PubMed]
- Oo, N.N.; Ruanjaichon, V.; Laosatit, K.; Toojinda, T.; Unartngam, J. Genome wide association study (GWAS) for southern corn rust (SCR) disease resistance in maize. Thai Agricul. Res. J. 2024, 42, 71–85. [Google Scholar] [CrossRef]
- Wang, S.; Chen, Z.; Tian, L.; Ding, Y.; Zhang, J.; Zhou, J.; Liu, P.; Chen, Y.; Wu, L. Comparative proteomics combined with analyses of transgenic plants reveal ZmREM1.3 mediates maize resistance to southern corn rust. Plant Biotechnol. J. 2019, 17, 2153–2168. [Google Scholar] [CrossRef] [PubMed]
- Yan, X.C.; Liu, Q.; Yang, Q.; Wang, K.L.; Zhai, X.Z.; Kou, M.Y.; Liu, J.L.; Li, S.T.; Deng, S.H.; Li, M.M.; et al. Single-cell transcriptomic profiling of maize cell heterogeneity and systemic immune responses against Puccinia polysora Underw. Plant Biotechnol. J. 2024; online. [Google Scholar] [CrossRef]
- Gupta, M.; Choudhary, M.; Singh, A.; Sheoran, S.; Singla, D.; Rakshit, S. Meta-QTL analysis for mining of candidate genes and constitutive gene network development for fungal disease resistance in maize (Zea mays L.). Crop J. 2023, 11, 511–522. [Google Scholar] [CrossRef]
- Cai, W.; Wang, H.; Wang, R.; Liu, Y.; Zhang, Y. Research on new model of new varieties cooperated by science and enterprise cooperation based on the analysis of Jingke 968 corn variety R&D consorium. Till. Culti. 2020, 40, 58–60. [Google Scholar] [CrossRef]
- Zhang, N.; Qi, X.; Li, X.; Li, G.; Li, G.; Hu, J. Introgression of the RppQ gene from field corn improves southern rust resistance in sweet corn. Mol. Breed. 2022, 42, 53. [Google Scholar] [CrossRef] [PubMed]
- Zhu, M.; Tong, L.; Xu, M.; Zhong, T. Genetic dissection of maize disease resistance and its applications in molecular breeding. Mol. Breed. 2021, 41, 32. [Google Scholar] [CrossRef] [PubMed]
- Ijaz, M.; Khan, F.; Zaki, H.E.M.; Khan, M.M.; Radwan, K.S.A.; Jiang, Y.; Qian, J.; Ahmed, T.; Shahid, M.S.; Luo, J.; et al. Recent trends and advancements in CRISPR-based tools for enhancing resistance against plant pathogens. Plants 2023, 12, 1911. [Google Scholar] [CrossRef]
- Liu, T.X.; Zhao, C.L.; Wang, X.P.; Zhao, Z.J.; Li, C.H. Inter-cropping with southern corn rust resistance maize genotype improved maize (Zea mays L.) defense response. Life Sci. J. 2013, 10, 2861–2868. [Google Scholar] [CrossRef]
- Zhang, R.; Zhou, L.; Ma, C.; Wang, W.; Wang, R.; Sun, P.; Zhang, P.; Yin, C.; Liu, J.; Wang, Z. Research progresses of southern corn rust in China. China Plant Prot. 2024, 44, 28–36. [Google Scholar] [CrossRef]
- Su, Q.; Jia, J.; Liu, H.; Meng, L.; Zhang, W.; Bai, X.; Wu, H.; Wang, Y.; Lu, M.; Zhang, Z. The key technology of screening and application fungicides on southern corn rust. J. Northeast Agric. Sci. 2023, 48, 86–89. [Google Scholar] [CrossRef]
- Zhao, Z.; Wang, J.; Li, W.; Tian, W.; Huangfu, Z.; Zhang, S.F. Integrated chemical control technologies of summer maize pests and diseases in the eastern Henan plain. J. Agr. 2019, 9, 15–19. [Google Scholar] [CrossRef]
- Gan, L.; Dai, Y.; Lu, X.; Teng, Z.; Chen, W.; Yang, X. Seasonal epidemic dynamics and chemical control of leaf spot diseases on fresh corn in the mountain area of the south Fujian. Plant Prot. 2021, 47, 213–222. [Google Scholar] [CrossRef]
- Faske, T.R.; Emerson, M. Multiyear evaluation of fungicide efficacy and application timing for control of southern rust in hybrid corn in Arkansas. Plant Dis. 2021, 105, 1108–1114. [Google Scholar] [CrossRef] [PubMed]
- He, D.C.; He, M.H.; Amalin, D.M.; Liu, W.; Alvindia, D.G.; Zhan, J. Biological control of plant diseases: An evolutionary and eco-economic consideration. Pathogens 2021, 10, 1311. [Google Scholar] [CrossRef] [PubMed]
- Zhao, C.C.; Jiao, Z.J.; Pang, F.H.; Wang, T.; Wang, L.; Li, S.; Tao, A.L.; Huang, S.L. Identification of biocontrol strain R-4 and its efficacy in controlling southern corn rust. J. Maize Sci. 2017, 25, 136–141. [Google Scholar] [CrossRef]
- Silva, D.D.D.; Mendes, S.M.; Parreira, D.F.; Pacheco, R.C.; Marucci, R.C.; Cota, L.V.; Costa, R.V.; Figueiredo, J.E.F. Fungivory: A new and complex ecological function of Doru luteipes (Scudder) (Dermaptera: Forficulidae). Braz. J. Biol. 2021, 82, e238763. [Google Scholar] [CrossRef] [PubMed]
- Lv, Z.; Xu, B.; Zhong, L.; Chen, G.; Huang, Z.; Sun, R.; Huang, W.; Zhao, F.; Meng, R. Improved monitoring of southern corn rust using UAV-based multi-view imagery and an attention-based deep learning method. Comput. Electron. Agric. 2024, 224, 109232. [Google Scholar] [CrossRef]
- Yang, L.; Li, L.; Dong, Z.; Zhu, J.; Guo, W.; Song, Y.; Cui, H.; Lv, S.; Sindhu, L.; Men, X. EIRP model driven by machine learning for predicting the occurrence risk of southern corn rust (Puccinia polysora Underw.) in northern China. Agric. For. Meteorol. 2024, 356, 110149. [Google Scholar] [CrossRef]
Country | Resistant Material | References | |
---|---|---|---|
High Resistance | Resistance | ||
India | 71354 | Not mentioned | [92] |
India | Not mentioned | NAI-104, 116, 117, 124, 137, 148, CM-212, CM-501, V-336 V-341 | [91] |
Brazil | L80, ARZM05083, PARA172 | L63, L65, L76, P1, P4, ARZM07049, URUG 298 AMARELO, URUG 298 ROXO | [93] |
America | Va59, IA DS61, Yellow Flint, Inbred 2-687, 4F-374 GE 3, Inbred 627, Puerto Rico 13, Loreto 9, Loreto 11, San Martin 126, OC5, Mo6, OC15, Kyles Long Ear, Va21A, Va22B, C103, Guerrero 3, INB 101LFY, Maiz Amarillo Klein, Mkt. Asuncion, Niksar Tokat, Arnet Damascus, Inbred 378, Inbred 334, No. 8815, No. 9179, No. 9180, Various markets, 4F-35 BK, 4F-240 BX 16, No. 162, No. 1122, No. 1126, Ladyfinger, E292, A256-1, E680, No. 9, Pukanki Zolti 1294, Antioquia 308, Antioquia 373, Antioquia 377, Atlatnico 308, Bolivar 308, Bolivar 326, Huil 1351, Magdelena 310, Magdelena 362, Tolima 403, Valle 343, Comum 094-R2, Lima 86, Loreto 8, San Martin 7, San Martin 9, Mo17, San Martin 111, Narino 628, BOZM 1155, Ky228 | Not mentioned | [94] |
China | Qi319 | 178 | [95] |
China | Qi319 | CL11 | [96] |
China | Ludan981, Ludan50 | Yuyu22, Huidan4, Hudan2000 | [97] |
China | Ludan981, Liyu16, DH601 | [98] | |
China | Qi319, X178, N223, CA091, Liao2202, Qi318, Shuang M9B-1, Zong548-1521, L005, K36, Liao2204, Zun90110, Huapei09 up A196, Huapei09 up A242, 85Bai16, LO932, A31, A67, A69, A82, A101, A110, A210, A224 | N321, N324, N338, JiTian15, Liao4271, Liao7794, ZhongXi042, Ji880, Fu8538, Lu65, Zhengbai11, FR218, M256, Huapei09 up A818, CS801, XS801, Ludan981, Nongda108, Huidan4, 4026, A16, A25, A52, A59, A73, A104, B781, Weichun3, A145, A156, A164, A182, A203, Bianyao13, A225, A252, Paobaogu, Huangbaogu, ChiL028 | [99] |
China | Ji186, 664062, Shen11-17, 95036, 164, 3271, 5304-48, Dan3130, 65 Chang35, Liao2202, Liao2204, YH09-272, Zun90110, A69, A101, A104, 5363, 5364, K36, P25, ShuangM9B-1, XiaoBaiZi, BaShiTian, BaiYuMi, XiaoHuangYuMi, JinHuang55, W456, SW15, SW19, SW21, LO932, SW94, SW107, SW113, SW114, SW115, CA091, CML180, Chi556 | JiKu6, JiKu12, 5362, 5041, 5042, ChiShuiBai, BaiBaoGu, Lu9801, ZiBaoGu, JinHuangZao, entry02, X178, KH13, CI24, Liao5088, Liao51, ChiL382, CT3354, D9C2, 20104046, 9872, 12084, 6969, ChiH16, ChiH7, I62, Chi005, Chi007, Dan 79-1, BaXi 501, Chi74521, ReDai-1, 08F65, 9d1, S7, Bai p, 03Chang130, 05-949 | [100] |
China | A69, A82, A101, A104, Baiyumi, Bashitian, Xiaobaizi, Xiaohuangyumi, Szylaecka, Liao2202, Qi318, ShuangM9B-1, K36, Liao2204, Zun90110, 178, 5362, 5363, 5364, 5304-48, W456, SW-94, SW-113, SW-115, 2202, CA091, LO932 | [101] | |
China | X178, K36, Zun90110, W456, Liao2202, Liao2204, ShuangM9B-1, Chi556, Chi547, Liao2201, SW-40, SW-94, SW-107, SW-113, SW-115, 3271, NX3, 70391, Laolaibi, Bashitian, Xiaobaizi, A69, A82, A101, A104, Dr11 | [102] | |
China | 139 germplasms from CIMMYT (such as CML161, CML204, CML286, W-98, SW-113, CI181); P138 (Chinese temperate maize inbred line) | 104 germplasms from CIMMYT (such as CML165, CML268, CML285, CI197); 7 maize hybrids (i.e., Chenyu201, Chengdan22, Dika008, Guidan0810, Nongda108, Yumeitou105, Zhengda619); X178 (Chinese temperate maize inbred line) | [103] |
China | CML305, CML307, CML411, CML470, CML496, CML497, S37, P178, K22 | 526018, P138, Dan360, B77, Ye478, Yu87-1, 7884-4Ht, CA47, CML115, CML360, Dan599, Zhong69, ZZ01, A619, D863F, GEMS41 | [104] |
China | CML144, CML247, CML451, CML470 | CML159, CML161, CML206, CML387, CML395, CML491, CML496 | [105] |
China | K22, Qi319, ZGF, JHF, T178, R3, R4, R5, R7, R9, R11, N1, N24, Z25M, T43.7, T458, T75, T2 | Nongda1145, Zhong128, DH02, 9409F, 4377, Z25F, H04-24, T1013, T1016, R2, R6, R10, N11, N23, N33, R-8, N1009, N1012 | [106] |
China | 43.7, DH02, Zheng39, T2, JH3372, K22, P138, S2, ZGF, CM, T178, Zhong128, JS06730, N1, Qi319·X7, N24, S6, T75 | Not mentioned | [107] |
China | Bao335, M36, Hua168-1, Dongzheng1, Tai99-2 | 3104, Tai3-1, M8111, TS3926, TS771 | [109] |
China | KF6717, 494-2 | 40 germplasms (such as P19-713-10, TZihongnuo) | [110] |
China | Waxy corn: 11N7-1-1, ZQN9-1-1-1, 09N1-1-1; Sweet corn: Z01-1-1; Sweet-waxy corn: ZTN9-1-1-2 | Waxy corn: ZTN-1-1, 12N3-2, 09N17-1-1, JN-1-1-2, HHN09-1-1-1, KN45-2-1, KN7-1-1, KN-1-1-3, DN-8-1-1, KN56-1-1, FN9-1-1, FN8-1-2-1, FN2-1-2, ZQN8-1-1-1; Sweet corn: 10T5-1-2-1, QT7-1-2-2, WST-1-1, Z95, XZT-1-1-1, 11T8-1-1-1, KT38-1-1-1, 09T15-1-2-1, Z145-1-1-2; Sweet-waxy corn: S20, TN14-2-2-2, S15, TN6-2-1-2, TN12-2-1-2, TN27-3-1, TN72-2-1 | [111] |
SCR-Resistant Lines | Genes/QTL | Chr. a | Location | PVE b | References |
---|---|---|---|---|---|
AFRO.29 | Rpp1 | [78,116] | |||
AFRO.24 | Rpp2 | [78,116] | |||
Rpp3–Rpp8 | [81] | ||||
PT186208 | Rpp9 | 10S | [11] | ||
AFRO.761 | Rpp10 | [80] | |||
AFRO.600 | Rpp11 | [80] | |||
P25 | RppP25 | 10S | Between SSR markers P091 and M271, with an estimated length of 40 kb | [22,117] | |
Qi319 | RppQ | 10S | Between SCAR marker MA7 and AFLP marker M-CCG/E-AGA157 with distances of 0.46 and 1.71 cM, respectively | [31,118] | |
W2D | RppD | 10S | Between SSR marker umc1291 and CAPS marker CAPS858, with genetic distances of 2.9 and 0.8 cM, respectively | [112] | |
CML470 | RppCML470 | 10S | Between SSR marker umc1380 and umc1291 with distances of 3.5 and 8.8 cM, respectively | [119] | |
Jiku12 | Rpp12 | 10S | On the distal arm of chromosome 10 with 4.2 cM genetic distance from SSR marker phi063 | [120] | |
SCML205 | RppS (an allele of RppK) | 10S | On the distal arm of chromosome 10S with 8.4 cM away from the marker IDP4283 | [19,121] | |
Liao 2204 | RppL2204 | 10S | On the distal arm of chromosome 10 with 9.6 cM genetic distance from SSR marker umc1380 | [122] | |
Jing2416K | RppM * | 10S | Anchored to a 110 kb region between InDel markers I15-5 and I16-4 | [21,123] | |
NC300 | 10S | Between markers UMC1380 and BNLG1451 (bins 10.0 and 10.1, respectively) | 83% | [124] | |
hA9104 | 1 | Between markers umc2025 and umc1919 | 17.6–22.1% | [24] | |
6 | Between markers umc1614-umc1250 | 7.0–7.4% | |||
10 | Between markers umc1246-umc1239 | 15.1–22.0% | |||
CML496 | RppC * (also named as RppCML496) | 10 | Mapped to an interval of 27.5 Kb between markers SSR-C2 and CRS-2839039 | 43–78% | [18,125] |
K22 | RppK * | 10S | Mapped to an interval of ~18.3 Kb delimited by the markers SNP20 and SNP5 | 68% | [19] |
Qi319 | qSCR6.01 | 6 | Between markers Y6q77 and Y6q79, with physical locations of 77.6 and 79.6 Mb, respectively | 17.99–24.15% | [23] |
S313 | RppS313 | 10S | Mapped to a ~0.48 Mb region between SNP markers A005915 and A009920 | 83.1% | [126] |
P178 | qSCR10.01 | 10S | Mapped to a 1.34 Mb region between the markers UMC1380 and C(10)3595071 | 45.31% | [127] |
W456 | qSCR10 | 10 | Between markers umc2034 and umc1291, with genetic distances of 2.15 and 0.36 cM, respectively | 24.19% | [128] |
TY4 | qSCR6.01 (also named as RppT) | 6 | Mapped to an interval of 4. 09 Mb delimited by the markers M3 and M4 | 17.87% | [129] |
CT3354 | qSCR4.05 | 4 | Between markers AX-86269884 and AX-108026358 | 18.3% | [130] |
qSCR4.08 | 4 | Between markers X-91851815 and AX-107983145 | 11.2% | ||
975-12 | qSCR3 | 10 | Mapped to a ~225 Kb region flanked by MR10–2 and MR10-3 | 70.3–78.4% | [131] |
CIMBL83 | qSCR4.01 | 4 | Mapped to an interval of ~770 Kb with flanking markers SOURST-83_2035716 and PZE-104005694 | 48–65% | [113] |
L119A | QTL8 | 10 | Mapped to a 400 kb region (chromosome 8: 1,397,359–1,797,359) | [132] | |
Silunuo (SLN) | RppSLN | 10 | Mapped to an interval of 38 Kb with flanking markers W4 and W6 | 84.77% | [133] |
Test Materials | Loci Names (QTL or SNPs) | Chr. a | Positions | Candidate Genes | References |
---|---|---|---|---|---|
253 maize inbred lines | PZE-104026873 | 4 | Bin 4.04 (31,713,714) | [107] | |
PZE-108082079 | 8 | Bin 8.05 (138,887,412) | |||
PZE-108107270 | 8 | Bin 8.06 (161,428,052) | |||
PZE-108111762 | 8 | Bin 8.06 (164,040,056) | |||
SYN12403 | 10 | Bin 10.00 (2,658,622) | |||
SYN17109 | 10 | Bin 10.01 (3,989,555) | |||
PZE-110040601 | 10 | Bin 10.02 (77,534,916) | |||
164 tropical maize inbred lines | S1_54225397 | 10 | Bin 10.03 (46,253,522) | GRMZM2G015599 | [135] |
S1_828487200 | 7 | Bin 7.05 (169,059,365) | GRMZM2G451097 | ||
S1_195983129 | 9 | Bin 9.03 (38,378,950) | GRMZM2G099745 | ||
S1_1010317140 | 5 | Bin 5.05 (174,062,894) | GRMZM2G460958 | ||
S1_838749354 | 5 | Bin 5.00 (2,495,108) | GRMZM2G119186 | ||
S1_574229676 | 8 | Bin 8.03 (90,179,433) | GRMZM2G170167 | ||
S1_461974523 | 6 | Bin 6.05 (147,332,216) | GRMZM2G133082 | ||
S1_1762313727 | 4 | Bin 4.10 (237,936,661) | GRMZM5G851807 | ||
140 inbred maize lines | S1_218 | 1 | 218619398 | Zm00001d032240, Zm00001d032244 | [136] |
S1_299b | 1 | 299623487 | Zm00001d034678 | ||
S2_12 | 2 | 12916090 | Zm00001d002447 | ||
S2_220 | 2 | 220613149 | |||
S4_170 | 4 | 170324384 | Zm00001d051812 | ||
S4_200 | 4 | 200738088 | Zm00001d052781 | ||
S5_145 | 5 | 145816043 | Zm00001d016131 | ||
S5_210 | 5 | 210212211 | Zm00001d017927 | ||
S5_211 | 5 | 211183684 | Zm00001d017928 | ||
S6_164a | 6 | 164808768 | Zm00001d038791, Zm00001d038806 | ||
S6_164b | 6 | 164811804 | Zm00001d038791, Zm00001d038806 | ||
S6_165 | 6 | 165682422 | Zm00001d038843 | ||
S8_123 | 8 | 123503579 | Zm00001d010672, Zm00001d010673 | ||
384 DH lines and 903 hybrids | AX-90698604 | 1 | 187,217,509 | [137] | |
AX-108029030 | 8 | 17,058,853 | |||
AX-108089672 | 10 | 3,276,832 | |||
AX-107981937 | 7 | 21,288,994 | |||
AX-108109448 | 8 | 167,766,262 | |||
262 maize RILs | AX-90974807 | 5 | S5_211766821 | [138] | |
AX-91809638 | 10 | S10_13757681 | |||
AX-91451802 | 10 | S10_145635671 | |||
AX-91151225 | 9 | S9_138444899 | |||
AX-90966401 | 5 | S5_179463254 | |||
AX-91648757 | 5 | S5_37538103 | |||
AX-90915192 | 4 | S4_227597917 | |||
AX-90858848 | 4 | S4_13128859 | |||
AX-91634643 | 4 | S4_208062434 | |||
AX-90859313 | 4 | S4_14738387 | |||
AX-90630900 | 3 | S3_178600050 | Zm00001d04270 | ||
AX-91411063 | 3 | S3_178254806 | Zm00001d04270 | ||
AX-91847440 | 3 | S3_38803403 | |||
AX-91593556 | 3 | S3_218037573 | |||
AX-90577822 | 2 | S2_13599625 | |||
AX-91437579 | 2 | S2_11930489 | |||
AX-90710167 | 1 | S1_233445080 | |||
AX-90682835 | 1 | S1_124668841 | |||
AX-91426201 | 1 | S1_174752484 | |||
752 temperate maize genotypes | Chr2:231,271,050 | 2 | 231,271,050 | Zm00001d007424 | [32] |
Chr4:78,851,667 | 4 | 78,851,667 | Zm00001d050283 Zm00001d050284 Zm00001d050293 | ||
Chr4:173,863,109 | 4 | 173,863,109 | Zm00001 d051914 Zm00001d051893 Zm00001d051869 Zm00001d051884 | ||
Chr6: 169,030,253 | 6 | 169,030,253 | Zm00001d039039 Zm00001d039020 Zm00001d039043 Zm00001d039004 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cao, Y.; Cheng, Z.; Ma, J.; Yang, W.; Liu, X.; Zhang, X.; Zhang, J.; Wu, X.; Duan, C. Advances in Research on Southern Corn Rust, a Devasting Fungal Disease. Int. J. Mol. Sci. 2024, 25, 13644. https://doi.org/10.3390/ijms252413644
Cao Y, Cheng Z, Ma J, Yang W, Liu X, Zhang X, Zhang J, Wu X, Duan C. Advances in Research on Southern Corn Rust, a Devasting Fungal Disease. International Journal of Molecular Sciences. 2024; 25(24):13644. https://doi.org/10.3390/ijms252413644
Chicago/Turabian StyleCao, Yanyong, Zeqiang Cheng, Juan Ma, Wenbo Yang, Xueman Liu, Xuan Zhang, Jinghua Zhang, Xiaolin Wu, and Canxing Duan. 2024. "Advances in Research on Southern Corn Rust, a Devasting Fungal Disease" International Journal of Molecular Sciences 25, no. 24: 13644. https://doi.org/10.3390/ijms252413644
APA StyleCao, Y., Cheng, Z., Ma, J., Yang, W., Liu, X., Zhang, X., Zhang, J., Wu, X., & Duan, C. (2024). Advances in Research on Southern Corn Rust, a Devasting Fungal Disease. International Journal of Molecular Sciences, 25(24), 13644. https://doi.org/10.3390/ijms252413644