Macrophage Inflammatory Proteins (MIPs) Contribute to Malignant Potential of Colorectal Polyps and Modulate Likelihood of Cancerization Associated with Standard Risk Factors
Abstract
:1. Introduction
2. Results
2.1. Expression Patterns of Genes Coding for Selected MIP Chemokines with Respect to Polyps’ Characteristics
2.1.1. MIPs’ Expression in Neoplasms
2.1.2. Association of MIPs’ Expression with Lesion’s Histological Type
2.1.3. Association of MIP Expression with Dysplasia Grade
2.1.4. Association of MIP Expression with Lesion Size
2.1.5. Association of MIP Expression with Number/Character of Polyps
2.1.6. Association of MIP Expression with Polyp Sublocation
2.2. Modeling of Malignant Transformation Probability Based on Change in MIP Expression
2.2.1. Histological Type
2.2.2. Dysplasia Grade
2.2.3. Polyp Size
2.3. Expression of MIP Proteins in Colorectal Neoplasms
2.3.1. MIP Proteins in Polyps and Patient-Matched Normal Mucosa
2.3.2. MIP Proteins and Histological Type of Colorectal Neoplasms
2.3.3. MIP Proteins and Dysplasia Grade of Colorectal Neoplasms
2.3.4. MIP Proteins and Size of Colorectal Neoplasms
2.3.5. MIP Proteins and Polyp Sublocation in the Colorectum
3. Discussion
4. Materials and Methods
4.1. Specimen Acquisition and Further Pre-Analytical Processing
4.2. Patients
4.3. Quantification of Gene Expression with Use of Reverse-Transcribed Quantitative Polymerase Chain Reaction (RTqPCR)
4.4. Evaluation of the Protein Content with Use of Immunohistochemical (IHC) Methods
- Score 0 (denoted as −) was a negative result in which there was no reaction or the reaction occurred in the stromal area of the analyzed specimen;
- Score 1 (denoted as +) was a weak positive result, meaning that the cytoplasmic reaction in the glandular epithelial cells was associated with low intensity, or the reaction was observed only in a fraction of the specimen;
- Score 2 (denoted as ++) was a strong positive result which was associated with strong reaction intensity spotted in the entire sample.
4.5. Data Preprocessing and Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Global Cancer Observatory. Available online: https://gco.iarc.fr (accessed on 17 November 2023).
- Siegel, R.L.; Miller, K.D.; Wagle, N.S.; Jemal, A. Cancer statistics, 2023. CA Cancer J. Clin. 2023, 73, 17–48. [Google Scholar] [CrossRef]
- Simon, K. Colorectal cancer development and advances in screening. Clin. Interv. Aging 2016, 11, 967–976. [Google Scholar] [CrossRef]
- Morgan, E.; Arnold, M.; Gini, A.; Lorenzoni, V.; Cabasag, C.J.; Laversanne, M.; Vignat, J.; Ferlay, J.; Murphy, N.; Bray, F. Global burden of colorectal cancer in 2020 and 2040: Incidence and mortality estimates from GLOBOCAN. Gut 2023, 72, 338–344. [Google Scholar] [CrossRef]
- Cardoso, R.; Guo, F.; Heisser, T.; Hackl, M.; Ihle, P.; De Schutter, H.; Van Damme, N.; Valerianova, Z.; Atanasov, T.; Májek, O.; et al. Colorectal cancer incidence, mortality, and stage distribution in European countries in the colorectal cancer screening era: An international population-based study. Lancet Oncol. 2021, 22, 1002–1013. [Google Scholar] [CrossRef]
- Gupta, S. Screening for Colorectal Cancer. Hematol. Oncol. Clin. N. Am. 2022, 36, 393–414. [Google Scholar] [CrossRef]
- Lepore Signorile, M.; Grossi, V.; Fasano, C.; Simone, C. Colorectal Cancer Chemoprevention: A Dream Coming True? Int. J. Mol. Sci. 2023, 24, 7597. [Google Scholar] [CrossRef]
- Yamane, L.; Scapulatempo-Neto, C.; Reis, R.M.; Guimarães, D.P. Serrated pathway in colorectal carcinogenesis. World J. Gastroenterol. 2014, 20, 2634–2640. [Google Scholar] [CrossRef]
- Patel, A.; Tripathi, G.; Gopalakrishnan, K.; Williams, N.; Arasaradnam, R.P. Field cancerisation in colorectal cancer: A new frontier or pastures past? World J. Gastroenterol. 2015, 21, 3763–3772. [Google Scholar] [CrossRef]
- Hanahan, D.; Weinberg, R.A. Hallmarks of cancer: The next generation. Cell 2011, 144, 646–674. [Google Scholar] [CrossRef] [PubMed]
- Stidham, R.W.; Higgins, P.D.R. Colorectal Cancer in Inflammatory Bowel Disease. Clin. Colon Rectal Surg. 2018, 31, 168–178. [Google Scholar] [CrossRef] [PubMed]
- Porter, R.J.; Arends, M.J.; Churchhouse, A.M.D.; Din, S. Inflammatory Bowel Disease-Associated Colorectal Cancer: Translational Risks from Mechanisms to Medicines. J. Crohn’s Colitis 2021, 15, 2131–2141. [Google Scholar] [CrossRef]
- Lucafò, M.; Curci, D.; Franzin, M.; Decorti, G.; Stocco, G. Inflammatory Bowel Disease and Risk of Colorectal Cancer: An Overview from Pathophysiology to Pharmacological Prevention. Front. Pharmacol. 2021, 12, 772101. [Google Scholar] [CrossRef]
- Goodla, L.; Xue, X. The Role of Inflammatory Mediators in Colorectal Cancer Hepatic Metastasis. Cells 2022, 11, 2313. [Google Scholar] [CrossRef]
- Vacante, M.; Ciuni, R.; Basile, F.; Biondi, A. Gut Microbiota and Colorectal Cancer Development: A Closer Look to the Adenoma-Carcinoma Sequence. Biomedicines 2020, 8, 489. [Google Scholar] [CrossRef]
- McLean, M.H.; Murray, G.I.; Stewart, K.N.; Norrie, G.; Mayer, C.; Hold, G.L.; Thomson, J.; Fyfe, N.; Hope, M.; Mowat, N.A.G.; et al. The Inflammatory Microenvironment in Colorectal Neoplasia. PLoS ONE 2011, 6, e15366. [Google Scholar] [CrossRef]
- Katona, B.W.; Weiss, J.M. Chemoprevention of Colorectal Cancer. Gastroenterology 2020, 158, 368–388. [Google Scholar] [CrossRef]
- Umezawa, S.; Higurashi, T.; Komiya, Y.; Arimoto, J.; Horita, N.; Kaneko, T.; Iwasaki, M.; Nakagama, H.; Nakajima, A. Chemoprevention of colorectal cancer: Past, present, and future. Cancer Sci. 2019, 110, 3018–3026. [Google Scholar] [CrossRef] [PubMed]
- Saini, M.K.; Vaiphei, K.; Sanyal, S.N. Chemoprevention of DMH-induced rat colon carcinoma initiation by combination administration of piroxicam and C-phycocyanin. Mol. Cell. Biochem. 2012, 361, 217–228. [Google Scholar] [CrossRef] [PubMed]
- Saini, M.K.; Sanyal, S.N. Targeting angiogenic pathway for chemoprevention of experimental colon cancer using C-phycocyanin as cyclooxygenase-2 inhibitor. Biochem. Cell Biol. 2014, 92, 206–218. [Google Scholar] [CrossRef] [PubMed]
- Meyskens, F.L., Jr.; McLaren, C.E.; Pelot, D.; Fujikawa-Brooks, S.; Carpenter, P.M.; Hawk, E.; Kelloff, G.; Lawson, M.J.; Kidao, J.; McCracken, J.; et al. Difluoromethylornithine plus sulindac for the prevention of sporadic colorectal adenomas: A randomized placebo-controlled, Double-Blind Trial. Cancer Prev. Res. 2008, 1, 32–38. [Google Scholar] [CrossRef]
- Burke, C.A.; Dekker, E.; Samadder, N.J.; Stoffel, E.; Cohen, A. Efficacy and safety of eflornithine (CPP-1X)/sulindac combination therapy versus each as monotherapy in patients with familial adenomatous polyposis (FAP): Design and rationale of a randomized, double-blind, Phase III trial. BMC Gastroenterol. 2016, 16, 87. [Google Scholar] [CrossRef]
- Korbecki, J.; Kojder, K.; Simińska, D.; Bohatyrewicz, R.; Gutowska, I.; Chlubek, D.; Baranowska-Bosiacka, I. CC Chemokines in a tumor: A review of pro-cancer and anti-cancer properties of the ligands of receptors CCR1, CCR2, CCR3, and CCR4. Int. J. Mol. Sci. 2020, 21, 8412. [Google Scholar] [CrossRef]
- Korbecki, J.; Grochans, S.; Gutowska, I.; Barczak, K.; Baranowska-Bosiacka, I. CC Chemokines in a tumor: A review of pro-cancer and anti-cancer properties of receptors CCR5, CCR6, CCR7, CCR8, CCR9, and CCR10 ligands. Int. J. Mol. Sci. 2020, 21, 7619. [Google Scholar] [CrossRef] [PubMed]
- Lewandowska, P.; Szczuka, I.; Bednarz-Misa, I.; Szczęśniak-Sięga, B.M.; Neubauer, K.; Mierzchała-Pasierb, M.; Zawadzki, M.; Witkiewicz, W.; Krzystek-Korpacka, M. Modulating Properties of Piroxicam, Meloxicam and Oxicam Analogues against Macrophage-Associated Chemokines in Colorectal Cancer. Molecules 2021, 26, 7375. [Google Scholar] [CrossRef] [PubMed]
- Hong, Q.; Li, B.; Cai, X.; Lv, Z.; Cai, S.; Zhong, Y.; Wen, B. Transcriptomic Analyses of the Adenoma-Carcinoma Sequence Identify Hallmarks Associated with the Onset of Colorectal Cancer. Front. Oncol. 2021, 11, 704531. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.; Su, J.; Zhao, S.; He, Y.; Li, S.; Yang, X.; Zhai, S.; Rong, S.; Zhang, X.; Xu, G.; et al. CCL3 Promotes Proliferation of Colorectal Cancer Related with TRAF6/NF-κB Molecular Pathway. Contrast Media Mol. Imaging 2022, 2022, 2387192. [Google Scholar] [CrossRef]
- Doll, D.; Keller, L.; Maak, M.; Boulesteix, A.-L.; Siewert, J.R.; Holzmann, B.; Janssen, K.-P. Differential expression of the chemokines GRO-2, GRO-3, and interleukin-8 in colon cancer and their impact on metastatic disease and survival. Int. J. Colorectal Dis. 2010, 25, 573–581. [Google Scholar] [CrossRef]
- Yang, X.; Wei, Y.; Sheng, F.; Xu, Y.; Liu, J.; Gao, L.; Yang, J.; Sun, X.; Huang, J.; Guo, Q. Comprehensive analysis of the prognosis and immune infiltration for CXC chemokines in colorectal cancer. Aging 2021, 13, 17548–17567. [Google Scholar] [CrossRef]
- De la Fuente López, M.; Landskron, G.; Parada, D.; Dubois-Camacho, K.; Simian, D.; Martinez, M.; Romero, D.; Roa, J.C.; Chahuán, I.; Gutiérrez, R.; et al. The relationship between chemokines CCL2, CCL3, and CCL4 with the tumor microenvironment and tumor-associated macrophage markers in colorectal cancer. Tumor Biol. 2018, 40, 1010428318810059. [Google Scholar] [CrossRef]
- Krzystek-Korpacka, M.; Diakowska, D.; Kapturkiewicz, B.; Bębenek, M.; Gamian, A. Profiles of circulating inflammatory cyto- 650 kines in colorectal cancer (CRC), high cancer risk conditions, and health are distinct. Possible implications for CRC screening 651 and surveillance. Cancer Lett. 2013, 337, 107–114. [Google Scholar] [CrossRef]
- Yamaguchi, M.; Okamura, S.; Yamaji, T.; Iwasaki, M.; Tsugane, S.; Shetty, V.; Koizumi, T. Plasma cytokine levels and the presence of colorectal cancer. PLoS ONE 2019, 14, e0213602. [Google Scholar] [CrossRef] [PubMed]
- Zou, Q.; Lei, X.; Xu, A.; Li, Z.; He, Q.; Huang, X.; Xu, G.; Tian, F.; Ding, Y.; Zhu, W. Chemokines in progression, chemoresistance, diagnosis, and prognosis of colorectal cancer. Front. Immunol. 2022, 13, 724139. [Google Scholar] [CrossRef] [PubMed]
- Liao, Y.-Y.; Tsai, H.-C.; Chou, P.-Y.; Wang, S.-W.; Chen, H.-T.; Lin, Y.-M.; Chiang, I.-P.; Chang, T.-M.; Hsu, S.-K.; Chou, M.-C.; et al. CCL3 promotes angiogenesis by dysregulation of miR-374b/VEGF-A axis in human osteosarcoma cells. Oncotarget 2016, 7, 4310–4325. [Google Scholar] [CrossRef] [PubMed]
- Morein, D.; Erlichman, N.; Ben-Baruch, A. Beyond Cell Motility: The Expanding Roles of Chemokines and Their Receptors in Malignancy. Front. Immunol. 2020, 11, 952. [Google Scholar] [CrossRef]
- Pender, S.L.-F.; Chance, V.; Whiting, C.V.; Buckley, M.; Edwards, M.; Pettipher, R.; MacDonald, T.T. Systemic administration of the chemokine macrophage inflammatory protein 1α exacerbates inflammatory bowel disease in a mouse model. Gut 2005, 54, 1114–1120. [Google Scholar] [CrossRef]
- Sasaki, S.; Baba, T.; Nishimura, T.; Hayakawa, Y.; Hashimoto, S.-I.; Gotoh, N.; Mukaida, N. Essential roles of the interaction between cancer cell-derived chemokine, CCL4, and intra-bone CCR5-expressing fibroblasts in breast cancer bone metastasis. Cancer Lett. 2016, 378, 23–32. [Google Scholar] [CrossRef] [PubMed]
- Bhat, A.A.; Nisar, S.; Singh, M.; Ashraf, B.; Masoodi, T.; Prasad, C.P.; Sharma, A.; Maacha, S.; Karedath, T.; Hashem, S.; et al. Cytokine- and chemokine-induced inflammatory colorectal tumor microenvironment: Emerging avenue for targeted therapy. Cancer Commun. 2022, 42, 689–715. [Google Scholar] [CrossRef]
- Yuan, P.; Zhou, Y.; Wang, Z.; Gui, L.; Ma, B. Dendritic cell-targeting chemokines inhibit colorectal cancer progression. Explor. Target. Anti-tumor Ther. 2022, 3, 828–840. [Google Scholar] [CrossRef]
- Luo, X.; Yu, Y.; Liang, A.; Xie, Y.; Liu, S.; Guo, J.; Wang, W.; Qi, R.; An, H.; Zhang, M.; et al. Intratumoral expression of MIP-1beta induces antitumor responses in a pre-established tumor model through chemoattracting T cells and NK cells. Cell Mol. Immunol. 2004, 1, 199–204. [Google Scholar]
- Allen, F.; Bobanga, I.D.; Rauhe, P.; Barkauskas, D.; Teich, N.; Tong, C.; Myers, J.; Huang, A.Y. CCL3 augments tumor rejection and enhances CD8+T cell infiltration through NK and CD103+dendritic cell recruitment via IFNγ. OncoImmunology 2017, 7, e1393598. [Google Scholar] [CrossRef]
- Coniglio, S.J. Role of Tumor-Derived Chemokines in Osteolytic Bone Metastasis. Front. Endocrinol. 2018, 9, 313. [Google Scholar] [CrossRef] [PubMed]
- Reschke, R.; Olson, D.J. Leveraging STING, Batf3 Dendritic Cells, CXCR3 Ligands, and Other Components Related to Innate Immunity to Induce A “Hot” Tumor Microenvironment That Is Responsive to Immunotherapy. Cancers 2022, 14, 2458. [Google Scholar] [CrossRef] [PubMed]
- Situ, Y.; Lu, X.; Cui, Y.; Xu, Q.; Deng, L.; Lin, H.; Shao, Z.; Chen, J. Systematic Analysis of CXC Chemokine–Vascular Endothelial Growth Factor a Network in Colonic Adenocarcinoma from the Perspective of Angiogenesis. BioMed Res. Int. 2022, 2022, 5137301. [Google Scholar] [CrossRef] [PubMed]
- Subat, S.; Mogushi, K.; Yasen, M.; Kohda, T.; Ishikawa, Y.; Tanaka, H. Identification of genes and pathways, including the CXCL2 axis, altered by DNA methylation in hepatocellular carcinoma. J. Cancer Res. Clin. Oncol. 2019, 145, 675–684. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Chen, F.; Gao, H.; Xu, Z.; Zhou, Y.; Wang, S.; Lv, Z.; Zhang, Y.; Xu, Z.; Huo, J.; et al. Cytokine concentration in peripheral blood of patients with colorectal cancer. Front. Immunol. 2023, 14, 1175513. [Google Scholar] [CrossRef]
- Zhao, J.; Ou, B.; Feng, H.; Wang, P.; Yin, S.; Zhu, C.; Wang, S.; Chen, C.; Zheng, M.; Zong, Y.; et al. Overexpression of CXCR2 predicts poor prognosis in patients with colorectal cancer. Oncotarget 2017, 8, 28442–28454. [Google Scholar] [CrossRef] [PubMed]
- Braoudaki, M.; Ahmad, M.S.; Mustafov, D.; Seriah, S.; Siddiqui, M.N.; Siddiqui, S.S. Chemokines and chemokine receptors in colorectal cancer; multifarious roles and clinical impact. Semin. Cancer Biol. 2022, 86, 436–449. [Google Scholar] [CrossRef]
- Sun, H.; Tang, C.; Chung, S.-H.; Ye, X.-Q.; Makusheva, Y.; Han, W.; Kubo, M.; Shichino, S.; Ueha, S.; Matsushima, K.; et al. Blocking DCIR mitigates colitis and prevents colorectal tumors by enhancing the GM-CSF-STAT5 pathway. Cell Rep. 2022, 40, 111158. [Google Scholar] [CrossRef]
- Lepsenyi, M.; Algethami, N.; Al-Haidari, A.A.; Algaber, A.; Syk, I.; Rahman, M.; Thorlacius, H. CXCL2-CXCR2 axis mediates αV integrin-dependent peritoneal metastasis of colon cancer cells. Clin. Exp. Metastasis 2021, 38, 401–410. [Google Scholar] [CrossRef]
- Zhang, H.; Ye, Y.-L.; Li, M.-X.; Ye, S.-B.; Huang, W.-R.; Cai, T.-T.; He, J.; Peng, J.-Y.; Duan, T.-H.; Cui, J.; et al. CXCL2/MIF-CXCR2 signaling promotes the recruitment of myeloid-derived suppressor cells and is correlated with prognosis in bladder cancer. Oncogene 2017, 36, 2095–2104. [Google Scholar] [CrossRef]
- Veglia, F.; Sanseviero, E.; Gabrilovich, D.I. Myeloid-derived suppressor cells in the era of increasing myeloid cell diversity. Nat. Rev. Immunol. 2021, 21, 485–498. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.; Zhao, J.; Feng, H.; Wang, P.; Zhang, Z.; Zong, Y.; Ma, J.; Zheng, M.; Lu, A. Antitumor efficacy of CC motif chemokine ligand 19 in colorectal cancer. Dig. Dis. Sci. 2014, 59, 2153–2162. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.; Zhu, C.; Chen, C.; Zong, Y.; Feng, H.; Liu, D.; Feng, W.; Zhao, J.; Lu, A. CCL19 suppresses angiogenesis through promoting miR-206 and inhibiting Met/ERK/Elk-1/HIF-1α/VEGF-A pathway in colorectal cancer. Cell Death Dis. 2018, 9, 974. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Lu, D.; Sun, K.; Xu, Y.; Hu, P.; Li, X.; Xu, F. Identification of biomarkers associated with diagnosis and prognosis of colorectal cancer patients based on integrated bioinformatics analysis. Gene 2019, 692, 119–125. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Wang, B.; Li, Y.; Hu, Y.; Li, X.; Yu, T.; Ju, Y.; Sun, T.; Gao, X.; Wei, Y. Powerful anticolon tumor effect of targeted gene immunotherapy using folate-modified nanoparticle delivery of CCL19 to activate the immune system. ACS Central Sci. 2019, 5, 277–289. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.; Ma, J.; Cai, W.; Wangpu, X.; Feng, H.; Zhao, J.; Guan, S.; Zong, Y.; Lu, A. CC motif chemokine ligand 19 suppressed colorectal cancer in vivo accompanied by an increase in IL-12 and IFN-γ. Biomed. Pharmacother. 2015, 69, 374–379. [Google Scholar] [CrossRef]
- Satorres, C.; García-Campos, M.; Bustamante-Balén, M. Molecular Features of the Serrated Pathway to Colorectal Cancer: Current Knowledge and Future Directions. Gut Liver 2021, 15, 31–43. [Google Scholar] [CrossRef]
- De Palma, F.D.E.; D’Argenio, V.; Pol, J.; Kroemer, G.; Maiuri, M.C.; Salvatore, F. The Molecular Hallmarks of the Serrated Pathway in Colorectal Cancer. Cancers 2019, 11, 1017. [Google Scholar] [CrossRef]
- Kycler, W.; Kubiak, A.; Trojanowski, M.; Janowski, J. Adenomas—Genetic factors in colorectal cancer prevention. Rep. Pract. Oncol. Radiother. 2018, 23, 75–83. [Google Scholar] [CrossRef]
- Song, M.; Emilsson, L.; Bozorg, S.R.; Nguyen, L.H.; Joshi, A.D.; Staller, K.; Nayor, J.; Chan, A.T.; Ludvigsson, J.F. Risk of colorectal cancer incidence and mortality after polypectomy: A Swedish record-linkage study. Lancet Gastroenterol. Hepatol. 2020, 5, 537–547. [Google Scholar] [CrossRef]
- Wieszczy, P.; Kaminski, M.F.; Franczyk, R.; Loberg, M.; Kobiela, J.; Rupinska, M.; Kocot, B.; Rupinski, M.; Holme, O.; Wojciechowska, U.; et al. Colorectal Cancer Incidence and Mortality After Removal of Adenomas During Screening Colonoscopies. Gastroenterology 2020, 158, 875–883.e5. [Google Scholar] [CrossRef] [PubMed]
- Ponugoti, P.L.; Cummings, O.W.; Rex, D.K. Risk of cancer in small and diminutive colorectal polyps. Dig. Liver Dis. 2017, 49, 34–37. [Google Scholar] [CrossRef] [PubMed]
- Nusko, G.; Mansmann, U.; Partzsch, U.; Altendorf-Hofmann, A.; Groitl, H.; Wittekind, C.; Ell, C.; Hahn, E.G. Invasive carcinoma in colorectal adenomas: Multivariate analysis of patient and adenoma characteristics. Endoscopy 1997, 29, 626–631. [Google Scholar] [CrossRef] [PubMed]
- Parsa, N.; Ponugoti, P.; Broadley, H.; Garcia, J.; Rex, D.K. Risk of cancer in 10–19 mm endoscopically detected colorectal lesions. Endoscopy 2019, 51, 452–457. [Google Scholar] [CrossRef] [PubMed]
- Yoon, H.; Shin, C.M.; Park, Y.S.; Kim, N.; Lee, D.H. Total polyp number may be more important than size and histology of polyps for prediction of metachronous high-risk colorectal neoplasms. BMC Gastroenterol. 2022, 22, 91. [Google Scholar] [CrossRef]
- Diakowska, D.; Krzystek-Korpacka, M. Local and Systemic Interleukin-32 in Esophageal, Gastric, and Colorectal Cancers: Clinical and Diagnostic Significance. Diagnostics 2020, 10, 785. [Google Scholar] [CrossRef]
- Lewandowska, P.; Wierzbicki, J.; Zawadzki, M.; Agrawal, A.; Krzystek-Korpacka, M. Biphasic Expression of Atypical Chemokine Receptor (ACKR) 2 and ACKR4 in Colorectal Neoplasms in Association with Histopathological Findings. Biomolecules 2020, 11, 8. [Google Scholar] [CrossRef]
- Szczuka, I.; Wierzbicki, J.; Serek, P.; Szczęśniak-Sięga, B.M.; Krzystek-Korpacka, M. Heat Shock Proteins HSPA1 and HSP90AA1 Are Upregulated in Colorectal Polyps and Can Be Targeted in Cancer Cells by Anti-Inflammatory Oxicams with Arylpiperazine Pharmacophore and Benzoyl Moiety Substitutions at Thiazine Ring. Biomolecules 2021, 11, 1588. [Google Scholar] [CrossRef]
- Wierzbicki, J.; Lipiński, A.; Bednarz-Misa, I.; Lewandowski, Ł.; Neubauer, K.; Lewandowska, P.; Krzystek-Korpacka, M. Monocyte Chemotactic Proteins (MCP) in Colorectal Adenomas Are Differently Expressed at the Transcriptional and Protein Levels: Implications for Colorectal Cancer Prevention. J. Clin. Med. 2021, 10, 5559. [Google Scholar] [CrossRef]
- Cabrero-de Las Heras, S.; Martínez-Balibrea, E. CXC family of chemokines as prognostic or predictive biomarkers and possible drug targets in colorectal cancer. World J. Gastroenterol. 2018, 24, 4738–4749. [Google Scholar] [CrossRef]
- Gupta, S.; Lieberman, D.; Anderson, J.C.; Burke, C.A.; Dominitz, J.A.; Kaltenbach, T.; Robertson, D.J.; Shaukat, A.; Syngal, S.; Rex, D.K. Recommendations for Follow-Up after Colonoscopy and Polypectomy: A Consensus Update by the US Multi-Society Task Force on Colorectal Cancer. Gastroenterology 2020, 158, 1131–1153.e5. [Google Scholar] [CrossRef] [PubMed]
- Väyrynen, J.P.; Kantola, T.; Väyrynen, S.A.; Klintrup, K.; Bloigu, R.; Karhu, T.; Mäkelä, J.; Herzig, K.-H.; Karttunen, T.J.; Tuomisto, A.; et al. The relationships between serum cytokine levels and tumor infiltrating immune cells and their clinical significance in colorectal cancer. Int. J. Cancer 2016, 139, 112–121. [Google Scholar] [CrossRef] [PubMed]
- Song, M.; Sasazuki, S.; Camargo, M.C.; Shimazu, T.; Charvat, H.; Yamaji, T.; Sawada, N.; Kemp, T.J.; Pfeiffer, R.M.; Hildesheim, A.; et al. Circulating inflammatory markers and colorectal cancer risk: A prospective case-cohort study in Japan. Int. J. Cancer 2018, 143, 2767–2776. [Google Scholar] [CrossRef]
- Nishikawa, G.; Kawada, K.; Nakagawa, J.; Toda, K.; Ogawa, R.; Inamoto, S.; Mizuno, R.; Itatani, Y.; Sakai, Y. Bone marrow-derived mesenchymal stem cells promote colorectal cancer progression via CCR5. Cell Death Dis. 2019, 10, 264. [Google Scholar] [CrossRef] [PubMed]
- Burgess, N.G.; Hourigan, L.F.; Zanati, S.A.; Brown, G.J.; Singh, R.; Williams, S.J.; Raftopoulos, S.C.; Ormonde, D.; Moss, A.; Byth, K.; et al. Risk stratification for covert invasive cancer among patients referred for colonic endoscopic mucosal resection: A large multicenter cohort. Gastroenterology 2017, 153, 732–742.e1. [Google Scholar] [CrossRef] [PubMed]
- Koyuncuer, A.; Zenginkinet, T. New Classification of Benign Epithelial Tumors: Colorectal Polyps and Synchronous Neoplasms: An Update and Critical Assessment: An Analysis of 678 Consecutive Cases and 1137 Polyps. Medeni. Med. J. 2023, 38, 39–44. [Google Scholar] [CrossRef]
- Neilson, L.J.; Rutter, M.D.; Saunders, B.P.; Plumb, A.; Rees, C.J. Assessment and management of the malignant colorectal polyp. Front. Gastroenterol. 2015, 6, 117–126. [Google Scholar] [CrossRef]
- Krzystek-Korpacka, M.; Zawadzki, M.; Kapturkiewicz, B.; Lewandowska, P.; Bednarz-Misa, I.; Gorska, S.; Witkiewicz, W.; Gamian, A. Subsite heterogeneity in the profiles of circulating cytokines in colorectal cancer. Cytokine 2018, 110, 435–441. [Google Scholar] [CrossRef]
- Krzystek-Korpacka, M.; Diakowska, D.; Bania, J.; Gamian, A. Expression stability of common housekeeping genes is differently affected by bowel inflammation and cancer: Implications for finding suitable normalizers for inflammatory bowel disease studies. Inflamm. Bowel Dis. 2014, 20, 1147–1156. [Google Scholar] [CrossRef]
- Maier, T.; Güell, M.; Serrano, L. Correlation of mRNA and protein in complex biological samples. FEBS Lett. 2009, 583, 3966–3973. [Google Scholar] [CrossRef]
- Smit, W.L.; Spaan, C.N.; de Boer, R.J.; Ramesh, P.; Garcia, T.M.; Meijer, B.J.; Vermeulen, J.L.M.; Lezzerini, M.; MacInnes, A.W.; Koster, J.; et al. Driver mutations of the adenoma-carcinoma sequence govern the intestinal epithelial global translational capacity. Proc. Natl. Acad. Sci. USA 2020, 117, 25560–25570. [Google Scholar] [CrossRef] [PubMed]
- Mollica Poeta, V.; Massara, M.; Capucetti, A.; Bonecchi, R. Chemokines and Chemokine Receptors: New Targets for Cancer Immunotherapy. Front. Immunol. 2019, 10, 379. [Google Scholar] [CrossRef] [PubMed]
Gene | Fold-Change in Expression (P/N)—Pair-Wise Analysis | P/N Comparison across Groups | |||
---|---|---|---|---|---|
All Cases | H | A | AC | ||
CCL3 | ↓1.7 (1.3–2.2) 2,3 | ↑2.5 (1–6.2) 1,4,* | ↓1.8 (1.4–2.4) 2,4,* | ↓3.7 (0.1–137) 4 | p = 0.008 5 |
CCL4 | ↓1.4, (1.3–1.5) 3 | ↑1.2 (0.4–3.8) 4 | ↓1.4 (1.3–1.4) 3 | ↓3.6 (0.2–64) 4 | p = 0.373 6 |
CXCL2 | ↑2.5 (2.2–2.5) 2,3 | ↑2.3 (0.9–5.7) 4 | ↑2.5 (2.2–2.5) 2,3 | ↑2.1 (0–126) 4 | p = 0.891 6 |
CCL19 | ↓3.1, (2.1–4.7) 2,4 | ↓1.3 (0.3–5.6) 4 | ↓3.2 (2.2–4.8) 2,3 | ↓21.4 (0.1–5600) 4 | p = 0.167 5 |
Gen | Fold-Change in Gene Expression (P/N) | p 1 | p 2 | ||||
---|---|---|---|---|---|---|---|
H | T | T-V | V | AC 4 | |||
CCL3 | ↑2.5 (1.2–6.9) | ↓1.4 3 (1.0–2.0) | ↓2.0 3 (1.3–2.7) | ↓2.8 3 (0.6–25) | ↓2.8 3 (1.1–41) | 0.015 | 0.381 |
CCL4 | ↑1.5 (0.4–3.8) | 1.0 (0.8–2.7) | ↓1.1 (0.9–1.7) | ↓1.9 (0.5–9.5) | ↓4.7 (0.9–19) | 0.512 | 0.527 |
CXCL2 | ↑2.3 (1.4–8.5) | ↑1.4 (1.1–3.2) | ↑2.3 (1.8–3.3) | ↑1.2 (0.2–3.3) | ↑5.4 (0.5–18.5) | 0.461 | 0.167 |
CCL19 | ↑1.4 (0.2–5.1) | ↓3.5 (0.7–6.5) | ↓3.9 (1.7–5.5) | ↓22.2 (0.6–57.5) | ↓27.8 (13–609) | 0.240 | 0.360 |
Gene | Fold-Change in Gene Expression (P/N) | p 1 | p 2 | ||
---|---|---|---|---|---|
H | LGD | HGD | |||
CCL3 | ↑2.5 (1.2–6.9) | ↓1.8 (1.3–2.5) 3 | ↓1.4 (0.8–3.4) 3 | 0.006 | 0.930 |
CCL4 | ↑1.5 (0.4–3.8) | ↓1.1 (0.9–1.6) | ↓1.1 (0.6–2.4) | 0.672 | 0.879 |
CXCL2 | ↑2.3 (1.3–8.5) | ↑2.0 (1.6–3.2) | ↑2.1 (1.6–3.1) | 0.859 | 0.706 |
CCL19 | ↑1.4 (0.2–5.1) | ↓4.6 (2.6–5.7) | ↓1.7 (0.6–23.9) | 0.357 | 0.581 |
Gene | Fold-Change in Gene Expression (P/N) | p | ||
---|---|---|---|---|
≤10 mm | 10–19 mm | ≥20 mm | ||
CCL3 | ↓1.3 (0.8–2.5) | ↓1.7 (1–2.5) | ↓2.0 (1.1–3.3) | 0.468 |
CCL4 | 1.0 (0.8–1.7) | ↓1.2 (0.8–1.8) | ↓1.4 (0.8–2.5) | 0.429 |
CXCL2 | ↑1.8 (1.4–2.3) | ↑2.7 (1.8–3.9) | ↑1.8 (1.1–3.1) | 0.091 |
CCL19 | ↓2.9 (0.7–5.5) | ↓4.6 (0.9–7.4) | ↓3.9 (1.7–12.4) | 0.703 |
Gene | Fold-Change in Gene Expression (P/N) | p | ||
---|---|---|---|---|
One | Multiple | Carpet-like | ||
CCL3 | ↓1.8 (1.3–2.3) | ↓1.2 (0.7–3.8) | ↑1.9 (0.1–4.9) | 0.504 |
CCL4 | ↓1.2 (1–1.7) | ↓1.1 (0.4–2.8) | ↑2.8 (0.1–8.1) | 0.462 |
CXCL2 | ↑2.0 (1.6–2.8) | ↑2.1 (1.4–3.2) | ↑3.2 (0.1–19.9) | 0.987 |
CCL19 | ↓4.4 (2.3–5.6) | ↓1.8 (0.3–8.2) | ↓1.5 (0.1–893) | 0.303 |
Gene | Fold-Change in Gene Expression (P/N) | p 1 | p 2 | |||
---|---|---|---|---|---|---|
Right Colon | Left Colon | Rectum | Distal Colon | |||
CCL3 | ↑1.2 (0.7–1.8) | ↓1.9 (1.3–3.1) 3 | ↓2.0 (0.7–2.7) | ↓1.9 (1.4–2.5) | 0.041 | 0.016 |
CCL4 | ↑1.5 (0.8–2.7) | ↓1.4 (1–2.5) | ↓1.2 (0.7–1.9) | ↓1.3 (1–1.8) | 0.063 | 0.025 |
CXCL2 | ↑2.5 (1.6–4.2) | ↑2.0 (1.6–2.5) | ↑2.2 (1.3–3.4) | ↑2.0 (1.6–2.6) | 0.536 | 0.271 |
CCL19 | ↓1.6 (0.5–4.8) | ↓4.2 (1.9–7) | ↓5.2 (1.5–19.9) | ↓4.6 (2.7–7) | 0.242 | 0.127 |
Feature | CCL3 | CCL4 | CXCL2 | CCL19 | ||||
---|---|---|---|---|---|---|---|---|
ϕi | p | ϕi | p | ϕi | p | ϕi | p | |
Intc. 1 (pred. state: AC) | −1.81 | <0.001 | −1.61 | <0.001 | −1.46 | <0.001 | −1.62 | <0.001 |
Intc. 2 (pred. state: V ∨ AC) | −0.77 | <0.001 | −0.62 | <0.001 | −0.49 | <0.001 | −0.62 | <0.001 |
Intc. 3 (pred. state: TV ∨ V ∨ AC) | 1.13 | <0.001 | 1.25 | <0.001 | 1.38 | <0.001 | 1.25 | <0.001 |
Intc. 4 (pred. state: T ∨ TV ∨ V ∨ AC) | 1.86 | <0.001 | 1.98 | <0.001 | 2.13 | <0.001 | 1.97 | <0.001 |
Expression in normal mucosa | −0.004 | 0.146 | −0.01 | 0.091 | −0.061 | 0.023 * | −0.01 | 0.245 |
Expression in polyp (lesion) | 0.03 | 0.550 | −0.024 | 0.020 * | −0.01 | 0.583 | −0.01 | 0.507 |
P/N | 0.07 | 0.145 | - | 0.105 | - | 0.807 | - | 0.616 |
Normal × polyp × P/N | −0.0003 | 0.012 * | - | 0.622 | - | 0.387 | - | 0.134 |
Normal × polyp | 0.01 | 0.470 | 0.025 | 0.011 * | - | 0.963 | 0.005 | 0.011 * |
Feature | CCL3 | CCL4 | CXCL2 | CCL19 | ||||
---|---|---|---|---|---|---|---|---|
ϕi | p | ϕi | p | ϕi | p | ϕi | p | |
Intc. 1 (pred. state: AC) | −1.88 | <0.001 | −1.55 | <0.001 | −1.48 | <0.001 | −1.64 | <0.001 |
Intc. 2 (pred. state: HG ∨ AC) | 0.67 | <0.001 | 0.85 | <0.001 | 0.94 | <0.001 | 0.79 | <0.001 |
Intc. 3 (pred. state: LG ∨ HG ∨ AC) | 1.79 | <0.001 | 1.95 | <0.001 | 2.05 | <0.001 | 1.90 | <0.001 |
Expression in normal mucosa | 0.00 | 0.847 | 0.00 | 0.908 | −0.04 | 0.101 | 0.00 | 0.519 |
Expression in polyp (lesion) | 0.01 | 0.930 | 0.00 | 0.449 | −0.00 | 0.785 | 0.02 | 0.108 |
P/N | 0.123 | 0.033 * | - | 0.839 | - | 0.736 | - | 0.870 |
Normal × polyp × P/N | −0.0004 | 0.004 * | - | 0.133 | - | 0.550 | - | 0.419 |
Normal × polyp | 0.01 | 0.539 | - | 0.118 | - | 0.223 | - | 0.068 |
Feature | CCL3 | CCL4 | CXCL2 | CCL19 | ||||
---|---|---|---|---|---|---|---|---|
ϕi | p | ϕi | p | ϕi | p | ϕi | p | |
Intc. 1 (pred. state: L) | −0.73 | <0.001 | −0.72 | <0.001 | −0.57 | <0.001 | −0.8176 | <0.001 |
Intc. 2 (pred. state: M ∨ L) | 0.46 | <0.001 | 0.47 | <0.001 | 0.66 | <0.001 | 0.3926 | <0.001 |
Expression in normal mucosa | −0.01 | 0.334 | −0.01 | 0.243 | −0.194 | 0.005 * | −0.00 | 0.724 |
Expression in polyp | 0.00 | 0.838 | 0.00 | 0.845 | 0.00 | 0.838 | 0.03 | 0.067 |
P/N | - | 0.333 | - | 0.817 | - | 0.269 | - | 0.388 |
Normal × polyp × P/N | - | 0.185 | - | 0.942 | - | 0.747 | - | 0.749 |
Normal × polyp | - | 0.320 | - | 0.439 | - | 0.829 | - | 0.494 |
Parameter | Protein Analysis | Gene Expression Analysis |
---|---|---|
n | 62 | 173 |
Sex distribution: F/M, n | 27/35 | 78/95 |
Age [yrs.], mean (95% CI) | 62.9 (60.2–65.7) | 65.3 (63.6–67.0) |
Weight, n: | ||
Lean/Overweight/Obese/x | 29/27/6/0 | 77/74/20/2 |
Smoking status, n: | ||
no/yes/x | 40/22/0 | 120/51/2 |
Alcohol, n: | ||
no/occasional/moderate/AUD/x | 3/58/1/0/0 | 15/151/4/1/2 |
Type 2 diabetes, n: | ||
no/yes/x | 49/13/0 | 135/36/2 |
Arterial hypertension, n: | ||
no/yes/x | 19/43/0 | 64/107/2 |
Polyp histology, n: | ||
hyperplastic polyps | 4 | 11 |
tubular adenoma | 23 | 37 |
tubulo-villous adenoma | 29 | 107 |
villous adenoma | 6 | 13 |
adenocarcinoma in the polyp | 0 | 5 |
Grade of dysplasia, n: | ||
low/high | 55/3 | 128/29 |
Polyp size, n: | ||
<10 mm/10–19 mm/≥20 mm | 19/24/19 | 39/75/58 |
Polyp location, n: | ||
right colon/left colon/rectum | 12/35/15 | 90/38/45 |
Number of polyps, n: | ||
Single/multiple (≥2) | 60/2 | 129/36 |
carpet-like lesions | 0 | 7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wierzbicki, J.; Bednarz-Misa, I.; Lewandowski, Ł.; Lipiński, A.; Kłopot, A.; Neubauer, K.; Krzystek-Korpacka, M. Macrophage Inflammatory Proteins (MIPs) Contribute to Malignant Potential of Colorectal Polyps and Modulate Likelihood of Cancerization Associated with Standard Risk Factors. Int. J. Mol. Sci. 2024, 25, 1383. https://doi.org/10.3390/ijms25031383
Wierzbicki J, Bednarz-Misa I, Lewandowski Ł, Lipiński A, Kłopot A, Neubauer K, Krzystek-Korpacka M. Macrophage Inflammatory Proteins (MIPs) Contribute to Malignant Potential of Colorectal Polyps and Modulate Likelihood of Cancerization Associated with Standard Risk Factors. International Journal of Molecular Sciences. 2024; 25(3):1383. https://doi.org/10.3390/ijms25031383
Chicago/Turabian StyleWierzbicki, Jarosław, Iwona Bednarz-Misa, Łukasz Lewandowski, Artur Lipiński, Anna Kłopot, Katarzyna Neubauer, and Małgorzata Krzystek-Korpacka. 2024. "Macrophage Inflammatory Proteins (MIPs) Contribute to Malignant Potential of Colorectal Polyps and Modulate Likelihood of Cancerization Associated with Standard Risk Factors" International Journal of Molecular Sciences 25, no. 3: 1383. https://doi.org/10.3390/ijms25031383
APA StyleWierzbicki, J., Bednarz-Misa, I., Lewandowski, Ł., Lipiński, A., Kłopot, A., Neubauer, K., & Krzystek-Korpacka, M. (2024). Macrophage Inflammatory Proteins (MIPs) Contribute to Malignant Potential of Colorectal Polyps and Modulate Likelihood of Cancerization Associated with Standard Risk Factors. International Journal of Molecular Sciences, 25(3), 1383. https://doi.org/10.3390/ijms25031383