Cancer Spheroids Embedded in Tissue-Engineered Skin Substitutes: A New Method to Study Tumorigenicity In Vivo
Abstract
:1. Introduction
2. Results
2.1. Overview of the Subcutaneous Injection Method Compared to the Grafting of Tissue-Engineered Skin (TES) and Cancer-Cell-Spheroid-Containing Tissue-Engineered Skin (cTES)
2.2. Subcutaneous Injection of HeLa Cells Leads to Variable Rates of Tumor Development
2.3. In Vitro Development of HeLa Spheroids
2.4. cTES Grafting Allows Rapid Growth of Cancer Cells
2.5. Absence of Metastasis in Both Subcutaneous Injection and cTES Grafting Assays
3. Discussion
4. Materials and Methods
4.1. Ethical Considerations
4.2. Cell Culture
4.3. Spheroid Formation
4.4. TES and cTES Production
4.5. Subcutaneous Injection of Nude Mice
4.6. Tumor Size Measurements
4.7. Skin Substitute Grafting onto Nude Mice
4.8. Histological and Immunofluorescence Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lezmi, E.; Benvenisty, N. The Tumorigenic Potential of Human Pluripotent Stem Cells. Stem Cells Transl. Med. 2022, 11, 791–796. [Google Scholar] [CrossRef]
- Ito, E.; Miyagawa, S.; Takeda, M.; Kawamura, A.; Harada, A.; Iseoka, H.; Yajima, S.; Sougawa, N.; Mochizuki-Oda, N.; Yasuda, S.; et al. Tumorigenicity assay essential for facilitating safety studies of hiPSC-derived cardiomyocytes for clinical application. Sci. Rep. 2019, 9, 1881. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z. Assessing Tumorigenicity in Stem Cell-Derived Therapeutic Products: A Critical Step in Safeguarding Regenerative Medicine. Bioengineering 2023, 10, 857. [Google Scholar] [CrossRef]
- FDA. Characterization and Qualification of Cell Substrates and Other Biological Materials Used in the Production of Viral Vaccines for Infectious Disease Indications; Center for Biologics Evaluation and Research: Rockville, MA, USA, 2010. [Google Scholar]
- Du, F.; Zhao, X.; Fan, D. Tumorigenicity Assay in Nude Mice. Bio Protoc. 2017, 7, e2364. [Google Scholar] [CrossRef] [PubMed]
- Grachev, V.; Magrath, D.; Griffiths, E. WHO requirements for the use of animal cells as in vitro substrates for the production of biologicals (Requirements for biological susbstances no. 50). Biologicals 1998, 26, 175–193. [Google Scholar] [CrossRef] [PubMed]
- Boyce, S.T.; Zimmerman, R.L.; Supp, D.M. Tumorigenicity Testing in Athymic Mice of Cultured Human Melanocytes for Transplantation in Engineered Skin Substitutes. Cell Transplant. 2015, 24, 1423–1429. [Google Scholar] [CrossRef] [PubMed]
- Oh, S.; Gu, E.Y.; Han, J.S.; Lee, B.S.; Moon, K.S.; Kim, Y.B.; Han, K.H. Tumorigenicity Assessment of Human Cancer Cell Lines Xenografted on Immunodeficient Mice as Positive Controls of Tumorigenicity Testing. Int. J. Toxicol. 2022, 41, 476–487. [Google Scholar] [CrossRef] [PubMed]
- Bao, L.; Matsumura, Y.; Baban, D.; Sun, Y.; Tarin, D. Effects of inoculation site and Matrigel on growth and metastasis of human breast cancer cells. Br. J. Cancer 1994, 70, 228–232. [Google Scholar] [CrossRef] [PubMed]
- Benton, G.; Kleinman, H.K.; George, J.; Arnaoutova, I. Multiple uses of basement membrane-like matrix (BME/Matrigel) in vitro and in vivo with cancer cells. Int. J. Cancer 2011, 128, 1751–1757. [Google Scholar] [CrossRef]
- Fridman, R.; Kibbey, M.C.; Royce, L.S.; Zain, M.; Sweeney, M.; Jicha, D.L.; Yannelli, J.R.; Martin, G.R.; Kleinman, H.K. Enhanced tumor growth of both primary and established human and murine tumor cells in athymic mice after coinjection with Matrigel. J. Natl. Cancer Inst. 1991, 83, 769–774. [Google Scholar] [CrossRef] [PubMed]
- Fridman, R.; Benton, G.; Aranoutova, I.; Kleinman, H.K.; Bonfil, R.D. Increased initiation and growth of tumor cell lines, cancer stem cells and biopsy material in mice using basement membrane matrix protein (Cultrex or Matrigel) co-injection. Nat. Protoc. 2012, 7, 1138–1144. [Google Scholar] [CrossRef]
- Fridman, R.; Sweeney, T.M.; Zain, M.; Martin, G.R.; Kleinman, H.K. Malignant transformation of NIH-3T3 cells after subcutaneous co-injection with a reconstituted basement membrane (matrigel). Int. J. Cancer 1992, 51, 740–744. [Google Scholar] [CrossRef]
- Germain, L.; Larouche, D.; Nedelec, B.; Perreault, I.; Duranceau, L.; Bortoluzzi, P.; Beaudoin Cloutier, C.; Genest, H.; Caouette-Laberge, L.; Dumas, A.; et al. Autologous bilayered self-assembled skin substitutes (SASSs) as permanent grafts: A case series of 14 severely burned patients indicating clinical effectiveness. Eur. Cells Mater. 2018, 36, 128–141. [Google Scholar] [CrossRef] [PubMed]
- Pouliot, R.; Larouche, D.; Auger, F.A.; Juhasz, J.; Xu, W.; Li, H.; Germain, L. Reconstructed human skin produced in vitro and grafted on athymic mice. Transplantation 2002, 73, 1751–1757. [Google Scholar] [CrossRef]
- Roy, V.; Magne, B.; Vaillancourt-Audet, M.; Blais, M.; Chabaud, S.; Grammond, E.; Piquet, L.; Fradette, J.; Laverdière, I.; Moulin, V.J.; et al. Human Organ-Specific 3D Cancer Models Produced by the Stromal Self-Assembly Method of Tissue Engineering for the Study of Solid Tumors. BioMed Res. Int. 2020, 2020, 6051210. [Google Scholar] [CrossRef]
- Gibot, L.; Galbraith, T.; Huot, J.; Auger, F.A. Development of a tridimensional microvascularized human skin substitute to study melanoma biology. Clin. Exp. Metastasis 2013, 30, 83–90. [Google Scholar] [CrossRef] [PubMed]
- Bourland, J.; Fradette, J.; Auger, F.A. Tissue-engineered 3D melanoma model with blood and lymphatic capillaries for drug development. Sci. Rep. 2018, 8, 13191. [Google Scholar] [CrossRef] [PubMed]
- Siprashvili, Z.; Nguyen, N.T.; Bezchinsky, M.Y.; Marinkovich, M.P.; Lane, A.T.; Khavari, P.A. Long-term type VII collagen restoration to human epidermolysis bullosa skin tissue. Hum. Gene Ther. 2010, 21, 1299–1310. [Google Scholar] [CrossRef] [PubMed]
- Goyer, B.; Larouche, D.; Kim, D.H.; Veillette, N.; Pruneau, V.; Bernier, V.; Auger, F.A.; Germain, L. Immune tolerance of tissue-engineered skin produced with allogeneic or xenogeneic fibroblasts and syngeneic keratinocytes grafted on mice. Acta Biomater. 2019, 90, 192–204. [Google Scholar] [CrossRef] [PubMed]
- Kusakawa, S.; Machida, K.; Yasuda, S.; Takada, N.; Kuroda, T.; Sawada, R.; Okura, H.; Tsutsumi, H.; Kawamata, S.; Sato, Y. Characterization of in vivo tumorigenicity tests using severe immunodeficient NOD/Shi-scid IL2Rγ(null) mice for detection of tumorigenic cellular impurities in human cell-processed therapeutic products. Regen. Ther. 2015, 1, 30–37. [Google Scholar] [CrossRef]
- Kalluri, R. The biology and function of fibroblasts in cancer. Nat. Rev. Cancer 2016, 16, 582–598. [Google Scholar] [CrossRef] [PubMed]
- Xing, F.; Saidou, J.; Watabe, K. Cancer associated fibroblasts (CAFs) in tumor microenvironment. Front. Biosci. (Landmark Ed) 2010, 15, 166–179. [Google Scholar] [CrossRef] [PubMed]
- Vinci, M.; Gowan, S.; Boxall, F.; Patterson, L.; Zimmermann, M.; Court, W.; Lomas, C.; Mendiola, M.; Hardisson, D.; Eccles, S.A. Advances in establishment and analysis of three-dimensional tumor spheroid-based functional assays for target validation and drug evaluation. BMC Biol. 2012, 10, 29. [Google Scholar] [CrossRef] [PubMed]
- Magan, M.; Wiechec, E.; Roberg, K. CAFs affect the proliferation and treatment response of head and neck cancer spheroids during co-culturing in a unique in vitro model. Cancer Cell Int. 2020, 20, 599. [Google Scholar] [CrossRef] [PubMed]
- Kunz-Schughart, L.A.; Kreutz, M.; Knuechel, R. Multicellular spheroids: A three-dimensional in vitro culture system to study tumour biology. Int. J. Exp. Pathol. 1998, 79, 1–23. [Google Scholar] [CrossRef]
- Cartier, A.; Barbier, M.A.; Larouche, D.; Morissette, A.; Bussières, A.; Montalin, L.; Beaudoin Cloutier, C.; Germain, L. Tie-Over Bolster Pressure Dressing Improves Outcomes of Skin Substitutes Xenografts on Athymic Mice. Int. J. Mol. Sci. 2022, 23, 5507. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barbier, M.A.; Ferland, K.; De Koninck, H.; Doucet, E.J.; Dubourget, L.; Kim, M.; Cattier, B.; Morissette, A.; Bchetnia, M.; Larouche, D.; et al. Cancer Spheroids Embedded in Tissue-Engineered Skin Substitutes: A New Method to Study Tumorigenicity In Vivo. Int. J. Mol. Sci. 2024, 25, 1513. https://doi.org/10.3390/ijms25031513
Barbier MA, Ferland K, De Koninck H, Doucet EJ, Dubourget L, Kim M, Cattier B, Morissette A, Bchetnia M, Larouche D, et al. Cancer Spheroids Embedded in Tissue-Engineered Skin Substitutes: A New Method to Study Tumorigenicity In Vivo. International Journal of Molecular Sciences. 2024; 25(3):1513. https://doi.org/10.3390/ijms25031513
Chicago/Turabian StyleBarbier, Martin A., Karel Ferland, Henri De Koninck, Emilie J. Doucet, Ludivine Dubourget, MinJoon Kim, Bettina Cattier, Amélie Morissette, Mbarka Bchetnia, Danielle Larouche, and et al. 2024. "Cancer Spheroids Embedded in Tissue-Engineered Skin Substitutes: A New Method to Study Tumorigenicity In Vivo" International Journal of Molecular Sciences 25, no. 3: 1513. https://doi.org/10.3390/ijms25031513
APA StyleBarbier, M. A., Ferland, K., De Koninck, H., Doucet, E. J., Dubourget, L., Kim, M., Cattier, B., Morissette, A., Bchetnia, M., Larouche, D., Kim, D. H., St-Jean, G., & Germain, L. (2024). Cancer Spheroids Embedded in Tissue-Engineered Skin Substitutes: A New Method to Study Tumorigenicity In Vivo. International Journal of Molecular Sciences, 25(3), 1513. https://doi.org/10.3390/ijms25031513