Optimizing the Ion Conductivity and Mechanical Stability of Polymer Electrolyte Membranes Designed for Use in Lithium Ion Batteries: Combining Imidazolium-Containing Poly(ionic liquids) and Poly(propylene carbonate)
Abstract
:1. Introduction
2. Results and Discussion
2.1. Study of the Pure PILs and of Those with LiTFSI
2.2. Study of the Tricomponent Membrane PIL/PPC/LiTFSI
2.3. Study of the PPC-Containing Membranes Treated with Acetonitrile
2.4. Study of the Topography, Viscosity, and Mechanical Properties of Membranes
2.5. Study of the Thermal Behavior of Membranes Using DSC and TGA
3. Materials and Methods
3.1. Materials
3.2. Synthesis of PILs
3.2.1. Synthesis of Compound 1
3.2.2. Synthesis of Compound 2
3.2.3. Anion Exchange of Halide Anions by TFSI Anions of Compound 2
3.2.4. Synthesis of PILs
3.3. Preparation of the Samples for Electrochemical Measurements
3.3.1. Pure PILs and Bicomponent PIL/LiTFSI Membranes
3.3.2. The PIL Tricomponent Membranes with PPC and LiTFSI
3.3.3. Membrane Treatment with Acetonitrile
3.4. Electrochemical Measurements
3.5. Methods
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Armand, M.; Tarascon, J.M. Building better batterie. Nature 2008, 451, 652–657. [Google Scholar] [CrossRef]
- Nishi, Y. Lithium ion secondary batteries; past 10 years and the future. J. Power Sources 2001, 100, 101–106. [Google Scholar] [CrossRef]
- Xu, K. Nonaqueous Liquid Electrolytes for Lithium-Based Rechargeable Batteries. Chem. Rev. 2004, 104, 4303–4418. [Google Scholar] [CrossRef] [PubMed]
- Kalhoff, J.; Eshetu, G.G.; Bresser, D.; Passerini, S. Safer Electrolytes for Lithium-Ion Batteries: State of the Art and Perspectives. ChemSusChem 2015, 8, 2154–2175. [Google Scholar] [CrossRef] [PubMed]
- Suo, L.; Hu, Y.-S. New Class of Solvent-in-Salt Electrolyte for High-Energy Rechargeable Metallic Lithium Batteries. Nat. Commun. 2013, 4, 1481. [Google Scholar] [CrossRef]
- Feng, X.; Ouyang, M.; Liu, X.; Lu, L.; Xia, Y.; He, X. Thermal runaway mechanism of lithium ion battery for electric vehicles: A review. Energy Storage Mater. 2018, 10, 246–267. [Google Scholar] [CrossRef]
- Chen, Z.; Xiong, R.; Lu, J.; Li, X. Temperature rise prediction of lithium-ion battery suffering external short circuit for all-climate electric vehicles application. Appl. Energy 2018, 213, 375–383. [Google Scholar] [CrossRef]
- Finegan, D.P.; Scheel, M.; Robinson, J.B.; Tjaden, B.; Hunt, I.; Mason, T.J.; Millichamp, J.; Michiel, M.D.; Offer, G.J.; Hinds, G.; et al. In-operando high-speed tomography of lithium-ion batteries during thermal runaway. Nat. Commun. 2015, 6, 6924. [Google Scholar] [CrossRef]
- Chen, Y.; Kang, Y.; Zhao, Y.; Wang, L.; Liu, J.; Li, Y.; Liang, Z.; He, X.; Li, X.; Tavajohi, N.; et al. A review of lithium-ion battery safety concerns: The issues, strategies, and testing standards. J. Energy Chem. 2021, 59, 83–99. [Google Scholar] [CrossRef]
- Zheng, F.; Kotobuki, M.; Song, S.; Lai, M.O.; Lu, L. Review on solid electrolytes for all-solid-state lithium-ion batteries. J. Power Sources 2018, 389, 198–213. [Google Scholar] [CrossRef]
- Wang, Y.; Richards, W.D.; Wang, Y.; Richards, W.D.; Ong, S.P.; Miara, L.J.; Kim, J.C.; Mo, Y.; Ceder, G. Design principles for solid-state lithium superionic conductors. Nat. Mater. 2015, 14, 1026–1031. [Google Scholar] [CrossRef] [PubMed]
- Gao, Z.; Sun, H.; Fu, L.; Ye, F.; Zhang, Y.; Luo, W.; Huang, Y. Promises, Challenges, and Recent Progress of Inorganic Solid-State Electrolytes for All-Solid-State Lithium Batteries. Adv. Mater. 2018, 30, 1705702. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Li, C.; Piszcz, M.; Coya, E.; Rojo, T.; Rodriguez-Martinez, L.M.; Armand, M.; Zhou, Z. Single lithium-ion conducting solid polymer electrolytes: Advances and perspectives. Chem. Soc. Rev. 2017, 46, 797–815. [Google Scholar] [CrossRef] [PubMed]
- Zhao, W.; Yi, J.; He, P.; Zhou, H. Solid-State Electrolytes for Lithium-Ion Batteries: Fundamentals, Challenges and Perspectives. Electrochem. Energy Rev. 2019, 2, 574–605. [Google Scholar] [CrossRef]
- Yue, L.; Ma, J.; Zhang, J.; Zhao, J.; Dong, S.; Liu, Z.; Cui, G.; Chen, L. All solid-state polymer electrolytes for high-performance lithium ion batteries. Energy Storage Mater. 2016, 5, 139–164. [Google Scholar] [CrossRef]
- Quartarone, E.; Mustarelli, P. Electrolytes for solid-state lithium rechargeable batteries: Recent advances and perspectives. Chem. Soc. Rev. 2011, 40, 2525–2540. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.G.; Son, B.; Mukherjee, S.; Schuppert, N.; Bates, A.; Kwon, O.; Choi, M.J.; Chung, H.Y.; Park, S. A review of lithium and nonlithium based solid state batteries. J. Power Sources 2015, 282, 299–322. [Google Scholar] [CrossRef]
- Miller, T.F.; Wang, Z.G.; Coates, G.W.; Balsara, N.P. Designing Polymer Electrolytes for Safe and High Capacity Rechargeable Lithium Batteries. Acc. Chem. Res. 2017, 50, 590–593. [Google Scholar] [CrossRef]
- Zhang, Q.; Liu, K.; Ding, F.; Liu, X. Resent advances in solid polymer electrolytes for lithium batteries. Nano Res. 2017, 10, 4139–4174. [Google Scholar] [CrossRef]
- Agrawal, R.C.; Pandey, G.P. Solid polymer elecrtrolyte: Materials designing and all-solid-state battery applications: An overview. J. Phys. D Appl. Phys. 2008, 41, 223001. [Google Scholar] [CrossRef]
- Zhao, C.; Liu, L.; Qi, X.; Lu, Y.; Wu, F.; Zhao, J.; Yu, Y.; Hu, Y.-S.; Chen, L. Solid-State Sodium Batteries. Adv. Energy Mater. 2018, 8, 1703012. [Google Scholar] [CrossRef]
- Long, L.; Wang, S.; Xiao, M.; Meng, Y. Polymer electrolyte for lithium polymer batteries. J. Mater. Chem. A 2016, 4, 10038. [Google Scholar] [CrossRef]
- Fergus, J.W. Ceramic and polymeric solid electrolytes for lithium-ion batteries. J. Power Sources 2010, 195, 4554–4569. [Google Scholar] [CrossRef]
- Park, M.; Zhang, X.; Chung, M.; Less, G.B.; Sastry, A.M. A review of conduction phenomena in Li-ion batteries. J. Power Sources 2010, 195, 7904–7929. [Google Scholar] [CrossRef]
- Schauser, N.S.; Seshadri, R.; Segalman, R.A. Multivalent ion conduction in solid polymer systems. Mol. Syst. Des. Eng. 2019, 4, 263–279. [Google Scholar] [CrossRef]
- Ketkar, P.M.; Shen, K.H.; Hall, L.M.; Epps, T.H., III. Charging toward improved lithium-ion polymer electrolytes: Exploiting synergistic experimental and computational approaches to facilitate materials design. Mol. Syst. Des. Eng. 2019, 4, 223–238. [Google Scholar] [CrossRef]
- Röchow, E.T.; Coeler, M.; Pospiech, D.; Kobsch, O.; Mechtaeva, E.; Vogel, R.; Voit, B.; Nikolowski, K.; Wolter, M. In Situ Preparation of Crosslinked Polymer Electrolytes for Lithium Ion Batteries: A Comparison of Monomer Systems. Polymers 2020, 12, 1707. [Google Scholar] [CrossRef]
- Armand, M. Polymer solid electrolytes-an overview. Solid State Ion. 1983, 9, 745–754. [Google Scholar] [CrossRef]
- Zhang, D.; Meng, X.; Hou, W.; Hu, W.; Mo, J.; Yang, T.; Zhang, W.; Fan, Q.; Liu, L.; Jiang, B.; et al. Solid polymer electrolytes: Ion conduction mechanisms and enhancement strategies. Nano Res. Energy 2023, 2, e9120050. [Google Scholar] [CrossRef]
- Quartarone, E.; Mustarelli, P.; Magistris, A. PEO-based composite polymer electrolytes. Solid State Ion. 1998, 110, 1–14. [Google Scholar] [CrossRef]
- Croce, F.; Appetecchi, G.B.; Persi, L.; Scrosati, B. Nanocomposite polymer electrolytes for lithium batteries. Nature 1998, 394, 456–458. [Google Scholar] [CrossRef]
- Ngai, K.S.; Ramesh, S.; Ramesh, K.; Juan, J.C. A review of polymer electrolytes: Fundamental, approaches and applications. Ionics 2016, 22, 1259–1279. [Google Scholar] [CrossRef]
- Watanabe, T.; Inafune, Y.; Tanaka, M.; Mochizuki, Y.; Matsumoto, F.; Kawakami, H. Development of all-solid-state battery based on lithium-ion conductive polymer nanofiber framework. J. Power Sources 2019, 423, 255–262. [Google Scholar] [CrossRef]
- Zhang, W.Y.; Zhao, Q.; Yuan, J.Y. Porous polyelectrolytes: The interplay of charge and pores for new functionalities. Angew. Chem. Int. Ed. 2018, 57, 6754–6773. [Google Scholar] [CrossRef] [PubMed]
- Qian, W.J.; Texter, J.; Yan, F. Frontiers in poly(Ionic Liquid)s: Syntheses and applications. Chem. Soc. Rev. 2017, 46, 1124–1159. [Google Scholar] [CrossRef]
- Kokubo, H.; Sano, R.; Murai, K.; Ishii, S.; Watanabe, M. Ionic polymer actuators using poly(ionic liquid) electrolytes. Eur. Polym. J. 2018, 106, 266–272. [Google Scholar] [CrossRef]
- Eshetu, G.G.; Mecerreyes, D.; Forsyth, M.; Zhang, H.; Armand, M. Polymeric ionic liquids for lithium-based rechargeable batteries. Mol. Syst. Des. Eng. 2019, 4, 294–309. [Google Scholar] [CrossRef]
- Thayumanasundaram, S.; Rangasamy, V.S.; Seo, J.W.; Locquet, J.P. Electrochemical performance of polymer electrolytes based on poly(vinyl alcohol)/poly(acrylic acid) blend and pyrrolidinium ionic liquid for lithium rechargeable batteries. Electrochim. Acta 2017, 240, 371–378. [Google Scholar] [CrossRef]
- Lu, F.; Gao, X.P.; Wu, A.; Sun, N.; Shi, L.J.; Zheng, L.Q. Lithium-containing zwitterionic poly(Ionic Liquid)s as polymer electrolytes for lithium-ion batteries. J. Phys. Chem. C 2017, 121, 17756–17763. [Google Scholar] [CrossRef]
- Porcarelli, L.; Shaplov, A.S.; Salsamendi, M.; Nair, J.R.; Vygodskii, Y.S.; Mecerreyes, D.; Gerbaldi, C. Single-ion block copoly(ionic liquid)s as electrolytes for all-solid state lithium batteries. ACS Appl. Mater. Interfaces 2016, 8, 10350–10359. [Google Scholar] [CrossRef]
- Safa, M.; Chamaani, A.; Chawla, N.; El-Zahab, B. Polymeric ionic liquid gel electrolyte for room temperature lithium battery applications. Electrochim. Acta 2016, 213, 587–593. [Google Scholar] [CrossRef]
- Yin, K.; Zhang, Z.X.; Yang, L.; Hirano, S.I. An imidazolium-based polymerized ionic liquid via novel synthetic strategy as polymer electrolytes for lithium-ion batteries. J. Power Sources 2014, 258, 150–154. [Google Scholar] [CrossRef]
- Zhou, D.; Liu, R.L.; Zhang, J.; Qi, X.G.; He, Y.B.; Li, B.H.; Yang, Q.H.; Hu, Y.S.; Kang, F.Y. In situ synthesis of hierarchical poly(ionic liquid)-based solid electrolytes for high-safety lithium-ion and sodium-ion batteries. Nano Energy 2017, 33, 45–54. [Google Scholar] [CrossRef]
- Tanaka, R.; Sakurai, M.; Sekiguchi, H.; Mori, H.; Murayama, T.; Ooyama, T. Lithium ion conductivity in polyoxyethylene/polyethylenimine blends. Electrochim. Acta 2001, 46, 1709–1715. [Google Scholar] [CrossRef]
- Schulze, M.W.; McIntosh, L.D.; Hillmyer, M.A.; Lodge, T.P. High-modulus, high-conductivity nanostructured polymer electrolyte membranes via polymerization-induced phase separation. Nano Lett. 2014, 14, 122–126. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Zhao, J.; Yue, L.; Wang, Q.; Chai, J.; Liu, Z.; Zhou, X.; Li, H.; Guo, Y.; Cui, G.; et al. Safety-Reinforced Poly(Propylene Carbonate)-Based All-Solid-State Polymer Electrolyte for Ambient-Temperature Solid Polymer Lithium Batteries. Adv. Energy Mater. 2015, 5, 1501082. [Google Scholar] [CrossRef]
- Ehrlich, L.; Pospiech, D.; Muza, U.L.; Lederer, A.; Muche, J.; Fischer, D.; Uhlmann, P.; Tzschöckell, F.; Muench, S.; Hager, M.D.; et al. Chloride Ion-Containing Polymeric Ionic Liquids for Application as Electrolytes in Solid-State Batteries. Macromol. Chem. Phys. 2023, 224, 220317. [Google Scholar] [CrossRef]
- Basile, F.; Kassalainen, G.E.; Williams, S.K.R. Interface for Direct and Continuous Sample-Matrix Deposition onto a MALDI Probe for Polymer Analysis by Thermal Field Flow Fractionation and Off-Line MALDI-MS. Anal. Chem. 2005, 77, 3008–3012. [Google Scholar] [CrossRef]
- Yoshizawa, M.; Naita, A.; Ohno, H. Design of Ionic Liquids for Electrochemical Application. Aust. J. Chem 2004, 57, 139–144. [Google Scholar] [CrossRef]
- Rofika, R.; Shelni, N.; Honggowiranto, W. The effect of acetonitrile as an additive on the ionic conductivity of imidazolium-based ionic liquid electrolyte and charge-discharge capacity of its Li-ion battery. Ionics 2019, 25, 3661–3671. [Google Scholar] [CrossRef]
- Bai, L.; Ghiassinejad, S. High Salt-Content Plasticized Flame-Retardant Polymer Electrolytes. ACS Appl. Mater. Interfaces 2021, 13, 44844–44859. [Google Scholar] [CrossRef]
- Ströbel, M.; Kiefer, L. High Flashpoint and Eco-Friendly Electrolyte Solvent for Lithium-Ion Batteries. Batteries 2023, 9, 348. [Google Scholar] [CrossRef]
- Aktekin, B.; Hernández, G. Concentrated LiFSI–Ethylene Carbonate Electrolytes and Their Compatibility with High-Capacity and High-Voltage Electrodes. ACS Appl. Energy Mater. 2022, 5, 585–595. [Google Scholar] [CrossRef]
- Yamada, Y.; Furukawa, K. Unusual Stability of Acetonitrile-Based Superconcentrated Electrolytes for Fast-Charging Lithium-Ion Batteries. J. Am. Chem. Soc. 2014, 136, 5039–5046. [Google Scholar] [CrossRef]
- Nilsson, V.; Younesi, R. Critical evaluation of the stability of higly concentrated LiTFSI-Acetonitrile electrolytes vs. graphite, lithium metal and LiFePO4 electrodes. J. Power Sources 2018, 30, 334–341. [Google Scholar] [CrossRef]
- Bruce, P.G.; Vincent, C.A. Steady state current flow in solid binary electrolyte cells. J. Electroanal. Chem. Interfacial Electrochem. 1987, 1, 225. [Google Scholar] [CrossRef]
- Golodnitsky, D. Electrolytes: Single Lithium Ion Conducting Polymers; Elsevier B.V.: Amsterdam, The Netherlands, 2009; pp. 112–127. [Google Scholar]
- Doyle, M.; Fuller, T.F. The importance of the lithium ion transference number in lithium/polymer cells. Electrochim. Acta 1994, 39, 2073–2081. [Google Scholar] [CrossRef]
- Ogumi, Z.; Uchimoto, Y. Ionically Conductive Thin Polymer Films Prepared by Plasma Polymerization: III. Preparation and Characterization of Ultrathin Films Having Fixed Sulfonic Acid Groups with Only One Mobile Species. J. Electrochem. Soc. 1990, 29, 137. [Google Scholar] [CrossRef]
- Zhang, S.-Y.; Li, Y.-R.; Xing, T.; Liu, H.-Y.; Liu, Z.-B.; Li, Z.-T.; Wu, M.-B. Recent progress in the use of polyanions as solid electrolytes. New Carbon Mater. 2022, 37, 358–370. [Google Scholar] [CrossRef]
- Singh, M.; Odusanya, O.; Wilmes, G.M.; Eitouni, H.B.; Gomez, E.D.; Patel, A.J.; Chen, V.L.; Park, M.J.; Fragouli, P.; Iatrou, H.; et al. Effect of Molecular Weight on the Mechanical and Electrical Properties of Block Copolymer Electrolytes. Macromolecules 2007, 40, 4578–4585. [Google Scholar] [CrossRef]
- Zhang, S.; Lee, K.H.; Frisbie, C.D.; Lodge, T.P. Ionic Conductivity, Capacitance, and Viscoelastic Properties of Block Copolymer-Based Ion Gels. Macromolecules 2011, 44, 940–949. [Google Scholar] [CrossRef]
- Wang, T.R.; Zhang, R.Q.; Wu, Y.M.; Zhu, G.N.; Hu, C.C.; Wen, J.Y.; Luo, W. Engineering a flexible and mechanically strong composite electrolyte for solid-state lithium batteries. J. Energy Chem. 2020, 46, 187–190. [Google Scholar] [CrossRef]
- Yoshizawa, M.; Ohno, H. Synthesis of molten salt-type polymer brush and effect of brush structure on the ionic conductivity. Electrochim. Acta 2001, 46, 1723–1728. [Google Scholar] [CrossRef]
- Zugmann, S.; Fleischmann, M. Measurement of transference numbers for lithium ion electrolytes via four different methods, a comparative study. Electrochim. Acta 2011, 56, 3926–3933. [Google Scholar] [CrossRef]
Sample | Mn [kg·mol−1] | Mw [kg·mol−1] | Ð (Mn/Mw) | Tg, °C | Ionic Conductivity, S·cm−1 |
---|---|---|---|---|---|
PIL-5 | 40.6 ± 2.4 | 53.7 ± 1.7 | 1.3 ± 0.04 | −34 | 1.0 × 10−5 |
PIL-6 | 35.0 ± 1.1 | 43.8 ± 1.3 | 1.3 ± 0.01 | −42 | 1.5 × 10−5 |
PIL-10 | 42.1 ± 0.8 | 53.8 ± 1.5 | 1.3 ± 0.06 | −46 | 2.9 × 10−5 |
Sample | Ionic Conductivity at RT [S·cm−1] | Ionic Conductivity at 60 °C [S·cm−1] |
---|---|---|
PIL-6 | 1.5 × 10−5 | 1.38 × 10−4 |
PIL-6 with 10 wt% LiTFSI | 8.05 × 10−6 | 5.06 × 10−5 |
PIL-6 with 20 wt% LiTFSI | 1.30 × 10−6 | 2.12 × 10−5 |
PIL-6 with 30 wt% LiTFSI | 7.58 × 10−7 | 1.60 × 10−5 |
Sample | Ionic Conductivity [S·cm−1] |
---|---|
PIL-5/PPC/LiTFSI | 1 × 10−6 |
PIL-6/PPC/LiTFSI | 2 × 10−6 |
PIL-10/PPC/LiTFSI | 3 × 10−6 |
PPC/LiTFSI | 1 × 10−8 |
Entry | Membrane | Amount of Acetonitrile [wt%] | Ionic Conductivity [S·cm−1] |
---|---|---|---|
#1 | PPC/LiTFSI | 10 | 2 × 10−6 |
#2 | PPC/LiTFSI | 20 | 1 × 10−5 |
#3 | PPC/LiTFSI | 30 | 1 × 10−3 |
#4 | PPC/PIL-10/LiTFSI | 2 | 1 × 10−6 |
#5 | PPC/PIL-6/LiTFSI | 8 | 3 × 10−4 |
#6 | PPC/PIL-10/LiTFSI | 30 | 3 × 10−3 |
R0 [Ω] | Rss [Ω] | I0 [A] | Iss [A] | t+ |
---|---|---|---|---|
890 | 1506 | 10.95 × 10−6 | 3.28 × 10−6 | 0.29 |
Sample | Viscosity at RT (20 °C), [kPa s] | Viscosity at 60 °C, [kPa s] |
---|---|---|
PIL-10/PPC/LiTFSI 1/1/0.6 wt/wt/wt/ | 242.8 | 3.5 |
PIL-10 | 1.1 | 0.7 |
PPC | 182.2 | 35.6 |
PIL-10/PPC 1/1 wt/wt | 8.3 | 0.6 |
Sample | Young’s Modulus, [MPa] | Ionic Conductivity [S·cm−1] (at Temperature, [°C]) | Reference |
---|---|---|---|
PPC/PIL-10/LiTFSI | ~100 | 10−6 (RT); 10−5 (60) | This work |
PI-g-PEO/LiTFSI | 93 | 10−4 (RT) | [33] |
PPC/cellulose/LiTFSI | 25 | 10−4 (RT) | [46] |
PEO/LiTFSI | 0.45 | 10−7 (RT) | [33] |
PIPS PS-b-PEO (a) | ~1000 | 10−4 (50) | [45] |
PS-b-PEO | ~50 | 10−4 (90) | [61] |
PS-b-PEO-b-PS + IL | <1 | 10−3 (90) | [62] |
PEO/LLZTO (b) | 4.73 | 10−5 (21); 10−4 (60) | [63] |
PVDF-HFP/LLZTO (c) | 12.3 | 10−7 (21); 10−6 (60) | [63] |
Sample | Tg * [°C] (DSC) | Tstart of dec., [°C] (TGA) | Tmaximum of dec., [°C] (TGA) |
---|---|---|---|
PIL-10 | −45 | 350 | 410 |
PPC | 13 | 210 | 245 |
PIL-10/LiTFSI | −43 | 320 | 410 |
PPC/LiTFSI | 16 | 180 | 206 |
PPC/PIL-10 | −40/30 | 225 | 400 |
PPC/PIL-10/LiTFSI | −6 | 180 | 411 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kiriy, N.; Özenler, S.; Voigt, P.; Kobsch, O.; Meier-Haack, J.; Arnhold, K.; Janke, A.; Muza, U.L.; Geisler, M.; Lederer, A.; et al. Optimizing the Ion Conductivity and Mechanical Stability of Polymer Electrolyte Membranes Designed for Use in Lithium Ion Batteries: Combining Imidazolium-Containing Poly(ionic liquids) and Poly(propylene carbonate). Int. J. Mol. Sci. 2024, 25, 1595. https://doi.org/10.3390/ijms25031595
Kiriy N, Özenler S, Voigt P, Kobsch O, Meier-Haack J, Arnhold K, Janke A, Muza UL, Geisler M, Lederer A, et al. Optimizing the Ion Conductivity and Mechanical Stability of Polymer Electrolyte Membranes Designed for Use in Lithium Ion Batteries: Combining Imidazolium-Containing Poly(ionic liquids) and Poly(propylene carbonate). International Journal of Molecular Sciences. 2024; 25(3):1595. https://doi.org/10.3390/ijms25031595
Chicago/Turabian StyleKiriy, Nataliya, Sezer Özenler, Pauline Voigt, Oliver Kobsch, Jochen Meier-Haack, Kerstin Arnhold, Andreas Janke, Upenyu L. Muza, Martin Geisler, Albena Lederer, and et al. 2024. "Optimizing the Ion Conductivity and Mechanical Stability of Polymer Electrolyte Membranes Designed for Use in Lithium Ion Batteries: Combining Imidazolium-Containing Poly(ionic liquids) and Poly(propylene carbonate)" International Journal of Molecular Sciences 25, no. 3: 1595. https://doi.org/10.3390/ijms25031595