Placenta-Specific Transcripts Containing Androgen Response Elements Are Altered In Silico by Male Growth Outcomes
Abstract
:1. Introduction
2. Results
2.1. Maternal and Neonatal Characteristics
2.2. Placental Transcript Expression Variation in Response to Fetal Growth Outcomes
2.3. Differentially Expressed Transcripts Contain ARE Full and Half Sites
2.4. Gene Set Enrichment Analysis
3. Discussion
4. Materials and Methods
4.1. Sample Cohort
4.2. RNA Extraction and RNA Sequencing
4.3. Data Processing and Differential Gene Expression Analysis
4.4. Gene Set Testing
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sharma, D.; Shastri, S.; Sharma, P. Intrauterine Growth Restriction: Antenatal and Postnatal Aspects. Clin. Med. Insights Pediatr. 2016, 10, 67–83. [Google Scholar] [CrossRef]
- Gaccioli, F.; Lager, S. Placental Nutrient Transport and Intrauterine Growth Restriction. Front. Physiol. 2016, 7, 40. [Google Scholar] [CrossRef]
- Krishna, U.; Bhalerao, S. Placental insufficiency and fetal growth restriction. J. Obstet. Gynaecol. Ind. 2011, 61, 505–511. [Google Scholar] [CrossRef] [PubMed]
- Burton, G.J.; Fowden, A.L. The placenta: A multifaceted, transient organ. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2015, 370, 20140066. [Google Scholar] [CrossRef]
- Dimasuay, K.G.; Boeuf, P.; Powell, T.L.; Jansson, T. Placental Responses to Changes in the Maternal Environment Determine Fetal Growth. Front. Physiol. 2016, 7, 12. [Google Scholar] [CrossRef]
- Yu, J.; Flatley, C.; Greer, R.M.; Kumar, S. Birth-weight centiles and the risk of serious adverse neonatal outcomes at term. J. Perinat. Med. 2018, 46, 1048–1056. [Google Scholar] [CrossRef]
- Clifton, V.L. Review: Sex and the human placenta: Mediating differential strategies of fetal growth and survival. Placenta 2010, 31, S33–S39. [Google Scholar] [CrossRef]
- Meakin, A.S.; Saif, Z.; Tuck, A.R.; Clifton, V.L. Human placental androgen receptor variants: Potential regulators of male fetal growth. Placenta 2019, 80, 18–26. [Google Scholar] [CrossRef] [PubMed]
- Meakin, A.S.; Morrison, J.L.; Bradshaw, E.L.; Holman, S.L.; Saif, Z.; Gatford, K.L.; Wallace, M.J.; Bischof, R.J.; Moss, T.J.; Clifton, V.L. Identification of placental androgen receptor isoforms in a sheep model of maternal allergic asthma. Placenta 2021, 104, 232–235. [Google Scholar] [CrossRef] [PubMed]
- Wilson, S.; Qi, J.; Filipp, F.V. Refinement of the androgen response element based on ChIP-Seq in androgen-insensitive and androgen-responsive prostate cancer cell lines. Sci. Rep. 2016, 6, 32611. [Google Scholar] [CrossRef]
- Meakin, A.S.; Gough, M.; Saif, Z.; Clifton, V.L. An ex vivo approach to understanding sex-specific differences in placental androgen signalling in the presence and absence of inflammation. Placenta 2022, 120, 49–58. [Google Scholar] [CrossRef] [PubMed]
- Beckett, E.M.; Astapova, O.; Steckler, T.L.; Veiga-Lopez, A.; Padmanabhan, V. Developmental programing: Impact of testosterone on placental differentiation. Reproduction 2014, 148, 199–209. [Google Scholar] [CrossRef] [PubMed]
- Maliqueo, M.; Echiburú, B.; Crisosto, N. Sex Steroids Modulate Uterine-Placental Vasculature: Implications for Obstetrics and Neonatal Outcomes. Front. Physiol. 2016, 7, 152. [Google Scholar] [CrossRef] [PubMed]
- Sun, M.; Maliqueo, M.; Benrick, A.; Johansson, J.; Shao, R.; Hou, L.; Jansson, T.; Wu, X.; Stener-Victorin, E. Maternal androgen excess reduces placental and fetal weights, increases placental steroidogenesis, and leads to long-term health effects in their female offspring. Am. J. Physiol.-Endocrinol. Metab. 2012, 303, E1373–E1385. [Google Scholar] [CrossRef] [PubMed]
- Sun, M.; Sun, B.; Qiao, S.; Feng, X.; Li, Y.; Zhang, S.; Lin, Y.; Hou, L. Elevated maternal androgen is associated with dysfunctional placenta and lipid disorder in newborns of mothers with polycystic ovary syndrome. Fertil. Steril. 2020, 113, 1275–1285.e2. [Google Scholar] [CrossRef]
- Carlsen, S.M.; Jacobsen, G.; Romundstad, P. Maternal testosterone levels during pregnancy are associated with offspring size at birth. Eur. J. Endocrinol. 2006, 155, 365–370. [Google Scholar] [CrossRef]
- Roberts, D.J.; Miyamoto, S. Hexokinase II integrates energy metabolism and cellular protection: Akting on mitochondria and TORCing to autophagy. Cell Death Differ. 2015, 22, 248–257. [Google Scholar] [CrossRef]
- Dai, W.; Meng, X.; Mo, S.; Xiang, W.; Xu, Y.; Zhang, L.; Wang, R.; Li, Q.; Cai, G. FOXE1 represses cell proliferation and Warburg effect by inhibiting HK2 in colorectal cancer. Cell Commun. Signal. 2020, 18, 7. [Google Scholar] [CrossRef]
- Chen, J.; Zhang, S.; Li, Y.; Tang, Z.; Kong, W. Hexokinase 2 overexpression promotes the proliferation and survival of laryngeal squamous cell carcinoma. Tumour Biol. 2014, 35, 3743–3753. [Google Scholar] [CrossRef]
- Liu, W.; Li, W.; Liu, H.; Yu, X. Xanthohumol inhibits colorectal cancer cells via downregulation of Hexokinases II-mediated glycolysis. Int. J. Biol. Sci. 2019, 15, 2497–2508. [Google Scholar] [CrossRef]
- Moon, J.S.; Jin, W.J.; Kwak, J.H.; Kim, H.J.; Yun, M.J.; Kim, J.W.; Park, S.W.; Kim, K.S. Androgen stimulates glycolysis for de novo lipid synthesis by increasing the activities of hexokinase 2 and 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 2 in prostate cancer cells. Biochem. J. 2011, 433, 225–233. [Google Scholar] [CrossRef]
- Riddle, S.R.; Ahmad, A.; Ahmad, S.; Deeb, S.S.; Malkki, M.; Schneider, B.K.; Allen, C.B.; White, C.W. Hypoxia induces hexokinase II gene expression in human lung cell line A549. Am. J. Physiol. Lung Cell. Mol. Physiol. 2000, 278, L407–L416. [Google Scholar] [CrossRef]
- Meng, X.; Grötsch, B.; Luo, Y.; Knaup, K.X.; Wiesener, M.S.; Chen, X.-X.; Jantsch, J.; Fillatreau, S.; Schett, G.; Bozec, A. Hypoxia-inducible factor-1α is a critical transcription factor for IL-10-producing B cells in autoimmune disease. Nat. Commun. 2018, 9, 251. [Google Scholar] [CrossRef]
- Gopalakrishnan, K.; Mishra, J.S.; Chinnathambi, V.; Vincent, K.L.; Patrikeev, I.; Motamedi, M.; Saade, G.R.; Hankins, G.D.; Sathishkumar, K. Elevated testosterone reduces uterine blood flow, spiral artery elongation and placental oxygenation in pregnant rats. Hypertension 2016, 67, 630–639. [Google Scholar] [CrossRef] [PubMed]
- Sathishkumar, K.; Elkins, R.; Chinnathambi, V.; Gao, H.; Hankins, G.D.; Yallampalli, C. Prenatal testosterone-induced fetal growth restriction is associated with down-regulation of rat placental amino acid transport. Reprod. Biol. Endocrinol. 2011, 9, 110. [Google Scholar] [CrossRef] [PubMed]
- Hermans, R.H.; Longo, L.D.; Mcgivern, R.F. Decreased postnatal testosterone and corticosterone concentrations in rats following acute intermittent prenatal hypoxia without alterations in adult male sex behavior. Neurotoxicol. Teratol. 1994, 16, 201–206. [Google Scholar] [CrossRef] [PubMed]
- Viana, A., Jr.; Daflon, A.C.; Couto, A.; Neves, D.; De Araujo-Melo, M.H.; Capasso, R. Nocturnal Hypoxemia is Associated With Low Testosterone Levels in Overweight Males and Older Men With Normal Weight. J. Clin. Sleep. Med. 2017, 13, 1395–1401. [Google Scholar] [CrossRef] [PubMed]
- Fernandez, E.V.; Reece, K.M.; Ley, A.M.; Troutman, S.M.; Sissung, T.M.; Price, D.K.; Chau, C.H.; Figg, W.D. Dual targeting of the androgen receptor and hypoxia-inducible factor 1α pathways synergistically inhibits castration-resistant prostate cancer cells. Mol. Pharmacol. 2015, 87, 1006–1012. [Google Scholar] [CrossRef] [PubMed]
- Mitani, T.; Harada, N.; Nakano, Y.; Inui, H.; Yamaji, R. Coordinated Action of Hypoxia-inducible Factor-1α and β-Catenin in Androgen Receptor Signaling. J. Biol. Chem. 2012, 287, 33594–33606. [Google Scholar] [CrossRef] [PubMed]
- Mitani, T.; Yamaji, R.; Higashimura, Y.; Harada, N.; Nakano, Y.; Inui, H. Hypoxia enhances transcriptional activity of androgen receptor through hypoxia-inducible factor-1α in a low androgen environment. J. Steroid Biochem. Mol. Biol. 2011, 123, 58–64. [Google Scholar] [CrossRef] [PubMed]
- Park, S.-Y.; Kim, Y.-J.; Gao, A.C.; Mohler, J.L.; Onate, S.A.; Hidalgo, A.A.; Ip, C.; Park, E.-M.; Yoon, S.Y.; Park, Y.-M. Hypoxia Increases Androgen Receptor Activity in Prostate Cancer Cells. Cancer Res. 2006, 66, 5121–5129. [Google Scholar] [CrossRef] [PubMed]
- Sebastian, K.; Detro-Dassen, S.; Rinis, N.; Fahrenkamp, D.; Müller-Newen, G.; Merk, H.F.; Schmalzing, G.; Zwadlo-Klarwasser, G.; Baron, J.M. Characterization of SLCO5A1/OATP5A1, a solute carrier transport protein with non-classical function. PLoS ONE 2013, 8, e83257. [Google Scholar] [CrossRef] [PubMed]
- Alsinnawi, M.; Zhang, A.; Bianchi-Frias, D.; Burns, J.; Cho, E.; Zhang, X.; Sowalsky, A.; Ye, H.; Slee, A.E.; True, L.; et al. Association of prostate cancer SLCO gene expression with Gleason grade and alterations following androgen deprivation therapy. Prostate Cancer Prostatic Dis. 2019, 22, 560–568. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.B.; Shao, C.; Li, X.; Shi, C.; Li, Q.; Hu, P.; Chen, Y.-T.; Dou, X.; Sahu, D.; Li, W.; et al. Near-infrared fluorescence imaging of cancer mediated by tumor hypoxia and HIF1α/OATPs signaling axis. Biomaterials 2014, 35, 8175–8185. [Google Scholar] [CrossRef] [PubMed]
- De Gendt, K.; Verhoeven, G. Tissue- and cell-specific functions of the androgen receptor revealed through conditional knockout models in mice. Mol. Cell. Endocrinol. 2012, 352, 13–25. [Google Scholar] [CrossRef] [PubMed]
- Flouri, D.; Darby, J.R.T.; Holman, S.L.; Cho, S.K.S.; Dimasi, C.G.; Perumal, S.R.; Ourselin, S.; Aughwane, R.; Mufti, N.; Macgowan, C.K.; et al. Placental MRI Predicts Fetal Oxygenation and Growth Rates in Sheep and Human Pregnancy. Adv. Sci. 2022, 9, 2203738. [Google Scholar] [CrossRef] [PubMed]
- Napso, T.; Lean, S.C.; Lu, M.; Mort, E.J.; Desforges, M.; Moghimi, A.; Bartels, B.; El-Bacha, T.; Fowden, A.L.; Camm, E.J.; et al. Diet-induced maternal obesity impacts feto-placental growth and induces sex-specific alterations in placental morphology, mitochondrial bioenergetics, dynamics, lipid metabolism and oxidative stress in mice. Acta Physiol. 2022, 234, e13795. [Google Scholar] [CrossRef] [PubMed]
- Song, H.; Telugu, B.P.; Thompson, L.P. Sexual dimorphism of mitochondrial function in the hypoxic guinea pig placenta. Biol. Reprod. 2019, 100, 208–216. [Google Scholar] [CrossRef]
- Meakin, A.S.; Cuffe, J.S.M.; Darby, J.R.T.; Morrison, J.L.; Clifton, V.L. Let’s Talk about Placental Sex, Baby: Understanding Mechanisms That Drive Female- and Male-Specific Fetal Growth and Developmental Outcomes. Int. J. Mol. Sci. 2021, 22, 6386. [Google Scholar] [CrossRef]
- Ahmad, I.; Newell-Fugate, A.E. Role of androgens and androgen receptor in control of mitochondrial function. Am. J. Physiol.-Cell Physiol. 2022, 323, C835–C846. [Google Scholar] [CrossRef]
- Parsons, A.M.; Rajendran, R.R.; Whitcomb, L.A.; Bouma, G.J.; Chicco, A.J. Characterization of trophoblast mitochondrial function and responses to testosterone treatment in ACH-3P cells. Placenta 2023, 137, 70–77. [Google Scholar] [CrossRef] [PubMed]
- Holland, O.; Nitert, M.D.; Gallo, L.A.; Vejzovic, M.; Fisher, J.J.; Perkins, A.V. Review: Placental mitochondrial function and structure in gestational disorders. Placenta 2017, 54, 2–9. [Google Scholar] [CrossRef] [PubMed]
- Koster, M.P.; de Wilde, M.A.; Veltman-Verhulst, S.M.; Houben, M.L.; Nikkels, P.G.; van Rijn, B.B.; Fauser, B.C. Placental characteristics in women with polycystic ovary syndrome. Human. Reprod. 2015, 30, 2829–2837. [Google Scholar] [CrossRef] [PubMed]
- Kelley, A.S.; Puttabyatappa, M.; Ciarelli, J.N.; Zeng, L.; Smith, Y.R.; Lieberman, R.; Pennathur, S.; Padmanabhan, V. Prenatal Testosterone Excess Disrupts Placental Function in a Sheep Model of Polycystic Ovary Syndrome. Endocrinology 2019, 160, 2663–2672. [Google Scholar] [CrossRef] [PubMed]
- Lim, W.F.; Forouhan, M.; Roberts, T.C.; Dabney, J.; Ellerington, R.; Speciale, A.A.; Manzano, R.; Lieto, M.; Sangha, G.; Banerjee, S.; et al. Gene therapy with AR isoform 2 rescues spinal and bulbar muscular atrophy phenotype by modulating AR transcriptional activity. Sci. Adv. 2021, 7, eabi6896. [Google Scholar] [CrossRef]
- Ahrens-Fath, I.; Politz, O.; Geserick, C.; Haendler, B. Androgen receptor function is modulated by the tissue-specific AR45 variant. FEBS J. 2005, 272, 74–84. [Google Scholar]
- Costanzo, V.; Bardelli, A.; Siena, S.; Abrignani, S. Exploring the links between cancer and placenta development. Open Biol. 2018, 8, 180081. [Google Scholar] [CrossRef]
- Burton, G.; Sebire, N.; Myatt, L.; Tannetta, D.; Wang, Y.-L.; Sadovsky, Y.; Staff, A.; Redman, C. Optimising sample collection for placental research. Placenta 2014, 35, 9–22. [Google Scholar] [CrossRef]
- Liao, Y.; Smyth, G.K.; Shi, W. The R package Rsubread is easier, faster, cheaper and better for alignment and quantification of RNA sequencing reads. Nucleic Acids Res. 2019, 47, e47. [Google Scholar] [CrossRef]
- Robinson, M.D.; McCarthy, D.J.; Smyth, G.K. edgeR: A Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 2010, 26, 139–140. [Google Scholar] [CrossRef] [PubMed]
- Love, M.I.; Huber, W.; Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014, 15, 550. [Google Scholar] [CrossRef]
- Wickham, H. ggplot2: Elegant Graphics for Data Analysis; Springer: New York, NY, USA, 2016. [Google Scholar]
- Subramanian, A.; Tamayo, P.; Mootha, V.K.; Mukherjee, S.; Ebert, B.L.; Gillette, M.A.; Paulovich, A.; Pomeroy, S.L.; Golub, T.R.; Lander, E.S.; et al. Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. USA 2005, 102, 15545–15550. [Google Scholar] [CrossRef] [PubMed]
- Mootha, V.K.; Lindgren, C.M.; Eriksson, K.-F.; Subramanian, A.; Sihag, S.; Lehar, J.; Puigserver, P.; Carlsson, E.; Ridderstråle, M.; Laurila, E.; et al. PGC-1α-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nat. Genet. 2003, 34, 267–273. [Google Scholar] [CrossRef] [PubMed]
- Liberzon, A.; Birger, C.; Thorvaldsdóttir, H.; Ghandi, M.; Mesirov, J.P.; Tamayo, P. The Molecular Signatures Database (MSigDB) hallmark gene set collection. Cell Syst. 2015, 1, 417–425. [Google Scholar] [CrossRef] [PubMed]
BWC | ||||
---|---|---|---|---|
<10th | 10th–30th | >30th | ||
n = 16 | n = 12 | n = 9 | p | |
Maternal age (yrs) | 32.0 (29.5–34.5) | 33.5 (30.0–35.0) | 32.0 (29.0–33.0) | 0.638 |
BMI | 20.9 (19.3–21.6) | 26.5 (21.9–33.2) | 21.6 (21.1–31.5) | 0.097 |
Parity | 1.0 (0.0–1.0) | 2.0 (1.0–2.0) | 1.0 (1.0–2.0) | 0.106 |
Gestation (days) | 262.5 (260.5–267.0) a | 277.5 (268.0–283.5) b | 274.0 (267.0–278.0) b | 0.004 |
BWC (%) | 2.5 (2.5–5.2) a | 20.0 (17.6–25.1) b | 91.1 (79.2–95.6) b | 0.000 |
Birthweight (g) | 2468.0 (2232.5–2542.5) a | 3225.0 (3035.0–3375.0) b | 3900.0 (3760.0–4196.0) b | 0.000 |
Placenta weight (g) | 520.0 (380.0–576.4) a | 550.0 (510.0–592.0) ab | 729.5 (600.0–890.0) b | 0.000 |
% Asthma | 12.5 | 16.7 | 11.1 | - |
% GDM | 6.3 | 0 | 0 | - |
% Pre-eclampsia | 6.3 | 0 | 0 | - |
BWC | Transcript | log2 Fold Change (Relative to <10th) | Adjusted p-Value | ARE Full Site | ARE Half Site |
---|---|---|---|---|---|
10th–30th | LEP | −3.50 | 3.49 × 10−3 | ✓ | ✓ |
LOC105370135 | −3.43 | 5.79 × 10−3 | × | × | |
SLCO5A1 1 | −3.41 | 2.91 × 10−2 | ✓ | ✓ | |
HK2P1 | −3.01 | 3.49 × 10−3 | × | × | |
HK2 1 | −2.70 | 1.84 × 10−3 | ✓ | ✓ | |
AOX3P-AOX2P | −2.60 | 4.50 × 10−2 | × | × | |
FSTL3 | −2.40 | 2.91 × 10−2 | ✓ | × | |
PNCK | −2.01 | 1.27 × 10−2 | × | × | |
ARHGAP45 | −1.74 | 9.99 × 10−3 | × | × | |
PDZD7 | −1.71 | 1.30 × 10−2 | × | × | |
ARNT2 | −1.67 | 2.23 × 10−2 | × | ✓ | |
SPAG4 | −1.49 | 2.90 × 10−3 | ✓ | ✓ | |
FLT1 | −1.37 | 2.91 × 10−2 | ✓ | ✓ | |
CORO2A | −1.37 | 4.61 × 10−2 | ✓ | ✓ | |
HILPDA | −1.37 | 3.49 × 10−3 | ✓ | ✓ | |
PLIN2 | −1.24 | 2.23 × 10−2 | × | × | |
LOC100506358 | −1.23 | 1.30 × 10−2 | × | × | |
SFXN3 | −1.20 | 3.30 × 10−3 | × | × | |
TPBG | −1.18 | 2.76 × 10−3 | ✓ | ✓ | |
LOC102724660 | −1.14 | 1.27 × 10−2 | × | × | |
NDRG1 | −1.12 | 2.91 × 10−2 | ✓ | ✓ | |
MGAT3 | −1.03 | 1.30 × 10−2 | ✓ | ✓ | |
LIMD1 | −1.01 | 1.27 × 10−2 | ✓ | ✓ | |
RH13 | −1.01 | 2.91 × 10−2 | × | × | |
NCOR2 | −0.98 | 4.61 × 10−2 | ✓ | ✓ | |
LOC107987470 | −0.93 | 3.51 × 10−2 | × | × | |
MXI1 | −0.90 | 3.69 × 10−2 | ✓ | ✓ | |
SYDE1 | −0.87 | 4.61 × 10−2 | × | × | |
EPS8L1 | −0.82 | 2.19 × 10−2 | ✓ | ✓ | |
DGKZ | −0.66 | 3.55 × 10−2 | × | ✓ | |
OBSL1 | −0.63 | 1.84 × 10−3 | × | ✓ | |
LOC107984244 | 1.15 | 4.19 × 10−2 | × | × | |
LOC105378842 | 2.02 | 2.91 × 10−2 | × | × | |
XIST | 3.53 | 9.76 × 10−9 | ✓ | × | |
>30th | PTGS2 | −2.78 | 1.35 × 10−2 | ✓ | ✓ |
BTNL9 | −2.38 | 4.92 × 10−2 | × | ✓ | |
PNCK | −2.10 | 3.29 × 10−2 | × | × | |
PROK1 | −1.90 | 4.92 × 10−2 | ✓ | ✓ | |
IGF2 | −1.65 | 3.29 × 10−2 | ✓ | ✓ | |
ACTG2 | −1.61 | 4.92 × 10−2 | ✓ | ✓ | |
ARNT2 | −1.61 | 4.92 × 10−2 | × | ✓ | |
PFKP | −1.60 | 4.92 × 10−2 | ✓ | ✓ | |
AFAP1 | −1.46 | 2.67 × 10−2 | ✓ | ✓ | |
MRC2 | −1.41 | 4.55 × 10−2 | ✓ | ✓ | |
TUBB2A | −1.40 | 4.92 × 10−2 | × | ✓ | |
NUAK1 | −1.38 | 3.39 × 10−2 | ✓ | ✓ | |
P2RX1 | −1.35 | 3.45 × 10−2 | × | × | |
NMUR1 | −1.26 | 4.92 × 10−2 | × | ✓ | |
SYNPO2 | −1.21 | 4.92 × 10−2 | ✓ | ✓ | |
SALL1 | −1.17 | 4.92 × 10−2 | ✓ | ✓ | |
MXI1 | −0.99 | 3.46 × 10−2 | ✓ | ✓ | |
PRKD3 | −0.94 | 4.92 × 10−2 | ✓ | × | |
SEMA3G | −0.94 | 4.92 × 10−2 | × | ✓ | |
RUSC2 | −0.88 | 4.92 × 10−2 | ✓ | ✓ | |
FGD1 | −0.85 | 4.92 × 10−2 | ✓ | ✓ | |
S100A16 | −0.65 | 4.92 × 10−2 | ✓ | ✓ | |
PIP4K2A | −0.56 | 4.92 × 10−2 | ✓ | ✓ | |
MYH9 | −0.41 | 4.92 × 10−2 | ✓ | ✓ | |
DARS1 | −0.37 | 3.39 × 10−2 | × | × | |
LOC112268056 | 0.79 | 4.92 × 10−2 | × | × |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Meakin, A.S.; Smith, M.; Morrison, J.L.; Roberts, C.T.; Lappas, M.; Ellery, S.J.; Holland, O.; Perkins, A.; McCracken, S.A.; Flenady, V.; et al. Placenta-Specific Transcripts Containing Androgen Response Elements Are Altered In Silico by Male Growth Outcomes. Int. J. Mol. Sci. 2024, 25, 1688. https://doi.org/10.3390/ijms25031688
Meakin AS, Smith M, Morrison JL, Roberts CT, Lappas M, Ellery SJ, Holland O, Perkins A, McCracken SA, Flenady V, et al. Placenta-Specific Transcripts Containing Androgen Response Elements Are Altered In Silico by Male Growth Outcomes. International Journal of Molecular Sciences. 2024; 25(3):1688. https://doi.org/10.3390/ijms25031688
Chicago/Turabian StyleMeakin, Ashley S., Melanie Smith, Janna L. Morrison, Claire T. Roberts, Martha Lappas, Stacey J. Ellery, Olivia Holland, Anthony Perkins, Sharon A. McCracken, Vicki Flenady, and et al. 2024. "Placenta-Specific Transcripts Containing Androgen Response Elements Are Altered In Silico by Male Growth Outcomes" International Journal of Molecular Sciences 25, no. 3: 1688. https://doi.org/10.3390/ijms25031688
APA StyleMeakin, A. S., Smith, M., Morrison, J. L., Roberts, C. T., Lappas, M., Ellery, S. J., Holland, O., Perkins, A., McCracken, S. A., Flenady, V., & Clifton, V. L. (2024). Placenta-Specific Transcripts Containing Androgen Response Elements Are Altered In Silico by Male Growth Outcomes. International Journal of Molecular Sciences, 25(3), 1688. https://doi.org/10.3390/ijms25031688