DNA and RNA Stability of Marine Microalgae in Cold-Stored Sediments and Its Implications in Metabarcoding Analyses
Abstract
:1. Introduction
2. Results
2.1. Stability of DNA and RNA of Three Marine Microalgae in Cold-Stored Type I Sediments
2.2. Interference of Relic Vegetative Cell DNA with the Detection of Resting Cysts via Metabarcoding Analyses
2.2.1. An Overview of the Metabarcoding Sequences
2.2.2. Composition and Structure of the Communities
2.2.3. Stability of DNA in the Vegetative Cells of Two Kareniaceae Species in Type II Sediments Measured via qPCR
3. Discussion
3.1. The Stability of Relic DNA/RNA in the Vegetative Cells of Microalgae in Sediments
3.2. Assessing Possible Interference of relic DNA of Microalgal Vegetative Cells in Metabarcoding Surveys of Resting Cyst Communities in Marine Sediments
4. Materials and Methods
4.1. Microalgal Cultures
4.2. Preparation of Artificial (Facsimile) Sediments
4.3. DNA/RNA Extraction, Primer Design, and Quantitative Real-Time PCR
4.4. Metabarcoding Sequencing
4.4.1. Primer Design, DNA Extraction, and Sequencing
4.4.2. Sequencing and Bioinformatics Analyses
4.5. Statistical Analyses
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Daniel, R. The metagenomics of soil. Nat. Rev. Microbiol. 2005, 3, 470–478. [Google Scholar] [CrossRef] [PubMed]
- de Vargas, C.; Audic, S.; Henry, N.; Decelle, J.; Mahe, F.; Logares, R.; Lara, E.; Berney, C.; Le Bescot, N.; Probert, I.; et al. Eukaryotic plankton diversity in the sunlit ocean. Science 2015, 348, 1261605. [Google Scholar] [CrossRef]
- Dzhembekova, N.; Urusizaki, S.; Moncheva, S.; Ivanova, P.; Nagai, S. Applicability of massively parallel sequencing on monitoring harmful algae at Varna Bay in the Black Sea. Harmful Algae 2017, 68, 40–51. [Google Scholar] [CrossRef] [PubMed]
- Nielsen, K.M.; Johnsen, P.J.; Bensasson, D.; Daffonchio, D. Release and persistence of extracellular DNA in the environment. Environ. Biosaf. Res. 2007, 6, 37–53. [Google Scholar] [CrossRef] [PubMed]
- Carini, P.; Marsden, P.J.; Leff, J.; Morgan, E.E.; Strickland, M.S.; Fierer, N. Relic DNA is abundant in soil and obscures estimates of soil microbial diversity. Nat. Microbiol. 2017, 2, 16242. [Google Scholar] [CrossRef]
- Dell’Anno, A.; Danovaro, R. Extracellular DNA plays a key role in deep-sea ecosystem functioning. Science 2005, 309, 2179. [Google Scholar] [CrossRef]
- Frostegard, A.; Courtois, S.; Ramisse, V.; Clerc, S.; Bernillon, D.; Le Gall, F.; Jeannin, P.; Nesme, X.; Simonet, P. Quantification of bias related to the extraction of DNA directly from soils. Appl. Environ. Microbiol. 1999, 65, 5409–5420. [Google Scholar] [CrossRef]
- Corinaldesi, C.; Danovaro, R.; Dell’Anno, A. Simultaneous recovery of extracellular and intracellular DNA suitable for molecular studies from marine sediments. Appl. Environ. Microbiol. 2005, 71, 46–50. [Google Scholar] [CrossRef]
- Brettar, I.; Christen, R.; Hoefle, M.G. Analysis of bacterial core communities in the central Baltic by comparative RNA-DNA-based fingerprinting provides links to structure-function relationships. ISME J. 2012, 6, 195–212. [Google Scholar] [CrossRef]
- DeAngelis, K.M.; Silver, W.L.; Thompson, A.W.; Firestone, M.K. Microbial communities acclimate to recurring changes in soil redox potential status. Environ. Microbiol. 2010, 12, 3137–3149. [Google Scholar] [CrossRef]
- Duineveld, B.M.; Kowalchuk, G.A.; Keijzer, A.; van Elsas, J.D.; van Veen, J.A. Analysis of bacterial communities in the rhizosphere of chrysanthemum via denaturing gradient gel electrophoresis of PCR-amplified 16S rRNA as well as DNA fragments coding for 16S rRNA. Appl. Environ. Microbiol. 2001, 67, 172–178. [Google Scholar] [CrossRef] [PubMed]
- Egert, M.; Schmidt, I.; Höhne, H.M.; Lachnit, T.; Schmitz, R.A.; Breves, R. Ribosomal RNA-based profiling of bacteria in the axilla of healthy males suggests right-left asymmetry in bacterial activity. FEMS Microbiol. Ecol. 2011, 77, 146–153. [Google Scholar] [CrossRef]
- Gaidos, E.; Rusch, A.; Ilardo, M. Ribosomal tag pyrosequencing of DNA and RNA from benthic coral reef microbiota: Community spatial structure, rare members and nitrogen-cycling guilds. Environ. Microbiol. 2011, 13, 1138–1152. [Google Scholar] [CrossRef]
- Gentile, G.; Giuliano, L.; D’Auria, G.; Smedile, F.; Azzaro, M.; De Domenico, M.; Yakimov, M.M. Study of bacterial communities in Antarctic coastal waters by a combination of 16S rRNA and 16S rDNA sequencing. Environ. Microbiol. 2006, 8, 2150–2161. [Google Scholar] [CrossRef] [PubMed]
- Hunt, D.E.; Lin, Y.; Church, M.J.; Karl, D.M.; Tringe, S.G.; Izzo, L.K.; Johnson, Z.I. Relationship between abundance and specific activity of bacterioplankton in open ocean surface waters. Appl. Environ. Microbiol. 2013, 79, 177–184. [Google Scholar] [CrossRef]
- Jones, S.E.; Lennon, J.T. Dormancy contributes to the maintenance of microbial diversity. Proc. Natl. Acad. Sci. USA 2010, 107, 5881–5886. [Google Scholar] [CrossRef]
- Mannisto, M.K.; Kurhela, E.; Tiirola, M.; Haggblom, M.M. Acidobacteria dominate the active bacterial communities of Arctic tundra with widely divergent winter-time snow accumulation and soil temperatures. FEMS Microbiol. Ecol. 2013, 84, 47–59. [Google Scholar] [CrossRef]
- Mills, H.J.; Martinez, R.J.; Story, S.; Sobecky, P.A. Characterization of microbial community structure in Gulf of Mexico gas hydrates: Comparative analysis of DNA- and RNA-derived clone libraries. Appl. Environ. Microbiol. 2005, 71, 3235–3247. [Google Scholar] [CrossRef]
- Muttray, A.F.; Mohn, W.W. Quantitation of the Population Size and Metabolic Activity of a Resin Acid Degrading Bacterium in Activated Sludge Using Slot-Blot Hybridization to Measure the rRNA:rDNA Ratio. Microb. Ecol. 1999, 38, 348–357. [Google Scholar] [CrossRef]
- Schippers, A.; Neretin, L.N.; Kallmeyer, J.; Ferdelman, T.G.; Cragg, B.A.; Parkes, R.J.; Jorgensen, B.B. Prokaryotic cells of the deep sub-seafloor biosphere identified as living bacteria. Nature 2005, 433, 861–864. [Google Scholar] [CrossRef]
- Wüst, P.K.; Horn, M.A.; Drake, H.L. Clostridiaceae and Enterobacteriaceae as active fermenters in earthworm gut content. ISME J. 2011, 5, 92–106. [Google Scholar] [CrossRef]
- Yarwood, S.; Brewer, E.; Yarwood, R.; Lajtha, K.; Myrold, D. Soil microbe active community composition and capability of responding to litter addition after 12 years of no inputs. Appl. Environ. Microbiol. 2013, 79, 1385–1392. [Google Scholar] [CrossRef]
- Blazewicz, S.J.; Barnard, R.L.; Daly, R.A.; Firestone, M.K. Evaluating rRNA as an indicator of microbial activity in environmental communities: Limitations and uses. ISME J. 2013, 7, 2061–2068. [Google Scholar] [CrossRef]
- Loozen, G.; Boon, N.; Pauwels, M.; Quirynen, M.; Teughels, W. Live/dead real-time polymerase chain reaction to assess new therapies against dental plaque-related pathologies. Mol. Oral. Microbiol. 2011, 26, 253–261. [Google Scholar] [CrossRef]
- Nocker, A.; Sossa-Fernandez, P.; Burr, M.D.; Camper, A.K. Use of propidium monoazide for live/dead distinction in microbial ecology. Appl. Environ. Microbiol. 2007, 73, 5111–5117. [Google Scholar] [CrossRef]
- Pan, Y.; Breidt, F., Jr. Enumeration of viable Listeria monocytogenes cells by real-time PCR with propidium monoazide and ethidium monoazide in the presence of dead cells. Appl. Environ. Microbiol. 2007, 73, 8028–8031. [Google Scholar] [CrossRef] [PubMed]
- Fittipaldi, M.; Nocker, A.; Codony, F. Progress in understanding preferential detection of live cells using viability dyes in combination with DNA amplification. J. Microbiol. Methods 2012, 91, 276–289. [Google Scholar] [CrossRef] [PubMed]
- Ramírez, G.A.; Jørgensen, S.L.; Zhao, R.; D’Hondt, S. Minimal Influence of Extracellular DNA on Molecular Surveys of Marine Sedimentary Communities. Front. Microbiol. 2018, 9, 2969. [Google Scholar] [CrossRef] [PubMed]
- Taylor, M.J.; Bentham, R.H.; Ross, K.E. Limitations of Using Propidium Monoazide with qPCR to Discriminate between Live and Dead Legionella in Biofilm Samples. Microbiol. Insights 2014, 7, 15–24. [Google Scholar] [CrossRef]
- Løvdal, T.; Hovda, M.B.; Björkblom, B.; Møller, S.G. Propidium monoazide combined with real-time quantitative PCR underestimates heat-killed Listeria innocua. J. Microbiol. Methods 2011, 85, 164–169. [Google Scholar] [CrossRef]
- Sánchez, M.C.; Marín, M.J.; Figuero, E.; Llama-Palacios, A.; León, R.; Blanc, V.; Herrera, D.; Sanz, M. Quantitative real-time PCR combined with propidium monoazide for the selective quantification of viable periodontal pathogens in an in vitro subgingival biofilm model. J. Periodontal Res. 2014, 49, 20–28. [Google Scholar] [CrossRef]
- Pinheiro, E.T.; Neves, V.D.; Reis, C.C.; Longo, P.L.; Mayer, M.P.A. Evaluation of the Propidium Monoazide–quantitative Polymerase Chain Reaction Method for the Detection of Viable Enterococcus faecalis. J. Endod. 2016, 42, 1089–1092. [Google Scholar] [CrossRef] [PubMed]
- Lennon, J.T.; Muscarella, M.E.; Placella, S.A.; Lehmkuhl, B.K. How, When, and Where Relic DNA Affects Microbial Diversity. mBio 2018, 9, e00637-18. [Google Scholar] [CrossRef]
- Encarnação, T.; Ramos, P.; Mohammed, D.; McDonald, J.; Lizzul, M.; Nicolau, N.; da Graça Campos, M.; Sobral, A.J.F.N. Bioremediation Using Microalgae and Cyanobacteria and Biomass Valorisation. In Marine Organisms: A Solution to Environmental Pollution? Uses in Bioremediation and in Biorefinery; Encarnação, T., Canelas Pais, A., Eds.; Springer International Publishing: Cham, Switzerland, 2023; pp. 5–28. [Google Scholar]
- Anderson, D.M.; Cembella, A.D.; Hallegraeff, G.M. Progress in understanding harmful algal blooms: Paradigm shifts and new technologies for research, monitoring, and management. Annu. Rev. Mar. Sci. 2012, 4, 143–176. [Google Scholar] [CrossRef]
- Anderson, D.M.; Morel, F.M.M. The seeding of two red tide blooms by the germination of benthic Gonyaulax tamarensis hypnocysts. Estuar. Coast. Shelf Sci. 1979, 8, 279–293. [Google Scholar] [CrossRef]
- Anderson, D.M.; Wall, D. Potential importance of benthic cysts of Gonyaulax tamarensis and G. excavata in initiating toxic dinoflagellate blooms. J. Phycol. 1978, 14, 224–234. [Google Scholar] [CrossRef]
- Hu, Z.; Song, X.; Wang, J.; Tao, Z.; Sun, Y.; Li, Y.; Liu, Y.; Deng, Y.; Shang, L.; Chai, Z.; et al. Reviving and characterizing three species of dinoflagellate cysts dormant for about 70 years in the East China Sea: Biecheleria brevisulcata, Biecheleriopsis adriatica, and Scrippsiella donghaienis. J. Oceanol. Limnol. 2022, 40, 2292–2311. [Google Scholar] [CrossRef]
- Hallegraeff, G.M. A review of harmful algal blooms and their apparent global increase. Phycologia 1993, 32, 79–99. [Google Scholar] [CrossRef]
- Hallegraeff, G.M.; Bolch, C.J. Transport of toxic dinoflagellate cysts via ships’ ballast water. Mar. Pollut. Bull. 1991, 22, 27–30. [Google Scholar] [CrossRef]
- Bravo, I.; Figueroa, R.I. Towards an ecological understanding of dinoflagellate cyst functions. Microorganisms 2014, 2, 11–32. [Google Scholar] [CrossRef]
- Dale, B. Dinoflagellate resting cysts: “benthic plankton”. In Survival Strategies of the Algae; Fryxell, G.A., Ed.; Cambridge University Press: Cambridge, UK, 1983; pp. 69–136. [Google Scholar]
- Head, M.J. Modern dinoflagellate cysts and their biological affinities. In Palynology: Principles and Applications; Jansonius, J., McGregor, D.C., Eds.; The American Association of Stratigraphic Palynologists: Dallas, TX, USA, 1996; pp. 1197–1248. [Google Scholar]
- Matsuoka, K.; Fukuyo, Y. Taxonomy of cysts. In Manual on Harmful Marine Microalgae; Hallegraeff, G.M., Anderson, D.M., Cembella, A.D., Eds.; Manual and Guides IOC, UNESCO: Paris, France, 2003; pp. 563–592. [Google Scholar]
- Tang, Y.Z.; Hu, Z.X.; Deng, Y.Y. Characteristic life history (resting cyst) provides a mechanism for recurrence and geographic expansion of harmful algal blooms of dinoflagellates: A Review. Stud. Mar. Sin. 2016, 51, 132–154. [Google Scholar]
- Tang, Y.Z.; Gu, H.; Wang, Z.; Liu, D.; Wang, Y.; Lu, D.; Hu, Z.; Deng, Y.; Shang, L.; Qi, Y. Exploration of resting cysts (stages) and their relevance for possibly HABs-causing species in China. Harmful Algae 2021, 107, 102050. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Peng, L.; Xie, C.; Wang, W.; Zhang, Y.; Xiao, L.; Tang, Y.; Yang, Y. Metabarcoding of harmful algal bloom species in sediments from four coastal areas of the southeast China. Front. Microbiol. 2022, 13, 999886. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Liu, Y.; Chai, Z.; Hu, Z.; Tang, Y.Z. A combined approach detected novel species diversity and distribution of dinoflagellate cysts in the Yellow Sea, China. Mar. Pollut. Bull. 2023, 187, 114567. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Dong, Y.; Li, H.; Zhan, A. Influence of environmental factors on spatial–temporal distribution patterns of dinoflagellate cyst communities in the South China Sea. Mar. Biodivers. 2018, 49, 769–781. [Google Scholar] [CrossRef]
- Siano, R.; Lassudrie, M.; Cuzin, P.; Briant, N.; Loizeau, V.; Schmidt, S.; Ehrhold, A.; Mertens, K.N.; Lambert, C.; Quintric, L.; et al. Sediment archives reveal irreversible shifts in plankton communities after World War II and agricultural pollution. Curr. Biol. 2021, 31, 2682–2689. [Google Scholar] [CrossRef]
- Dungan, A.M.; Geissler, L.; Williams, A.S.; Gotze, C.R.; Flynn, E.C.; Blackall, L.L.; van Oppen, M.J.H. DNA from non-viable bacteria biases diversity estimates in the corals Acropora loripes and Pocillopora acuta. Environ. Microbiome 2023, 18, 86. [Google Scholar] [CrossRef]
- Loeblich, A.R. Dinoflagellate Evolution: Speculation and Evidence. J. Protozool. 1976, 23, 13–28. [Google Scholar] [CrossRef]
- Kretschmann, J.; Elbrächter, M.; Zinssmeister, C.; Soehner, S.; Kirsch, M.; Kusber, W.-H.; Gottschling, M. Taxonomic clarification of the dinophyte Peridinium acuminatum Ehrenb., ≡ Scrippsiella acuminata, comb. nov. (Thoracosphaeraceae, Peridiniales). Phytotaxa 2015, 220, 239–256. [Google Scholar] [CrossRef]
- Wylezich, C.; Nies, G.; Mylnikov, A.P.; Tautz, D.; Arndt, H. An Evaluation of the Use of the LSU rRNA D1-D5 Domain for DNA-based Taxonomy of Eukaryotic Protists. Protist 2010, 161, 342–352. [Google Scholar] [CrossRef]
- Daugbjerg, N.; Hansen, G.; Larsen, J.; Moestrup, Ø. Phylogeny of some of the major genera of dinoflagellates based on ultrastructure and partial LSU rDNA sequence data, including the erection of three new genera of unarmored dinoflagellates. Phycologia 2000, 39, 302–317. [Google Scholar] [CrossRef]
- Liu, Y.; Hu, Z.; Deng, Y.; Shang, L.; Gobler, C.J.; Tang, Y.Z. Dependence of genome size and copy number of rRNA gene on cell volume in dinoflagellates. Harmful Algae 2021, 109, 102108. [Google Scholar] [CrossRef]
- Jørgensen, N.O.G.; Jacobsen, C.S. Bacterial uptake and utilization of dissolved DNA. Aquat. Microb. Ecol. 1996, 11, 263–270. [Google Scholar] [CrossRef]
- Corinaldesi, C.; Dell’Anno, A.; Danovaro, R. Early diagenesis and trophic role of extracellular DNA in different benthic ecosystems. Limnol. Oceanogr. 2007, 52, 1710–1717. [Google Scholar] [CrossRef]
- Torti, A.; Jorgensen, B.B.; Lever, M.A. Preservation of microbial DNA in marine sediments: Insights from extracellular DNA pools. Environ. Microbiol. 2018, 20, 4526–4542. [Google Scholar] [CrossRef] [PubMed]
- Wasmund, K.; Pelikan, C.; Schintlmeister, A.; Wagner, M.; Watzka, M.; Richter, A.; Bhatnagar, S.; Noel, A.; Hubert, C.R.J.; Rattei, T.; et al. Genomic insights into diverse bacterial taxa that degrade extracellular DNA in marine sediments. Nat. Microbiol. 2021, 6, 885–898. [Google Scholar] [CrossRef] [PubMed]
- Smith, D.P.; Peay, K.G. Sequence Depth, Not PCR Replication, Improves Ecological Inference from Next Generation DNA Sequencing. PLoS ONE 2014, 9, e90234. [Google Scholar] [CrossRef] [PubMed]
- Alberdi, A.; Aizpurua, O.; Gilbert, M.T.P.; Bohmann, K.; Mahon, A. Scrutinizing key steps for reliable metabarcoding of environmental samples. Methods Ecol. Evol. 2017, 9, 134–147. [Google Scholar] [CrossRef]
- Shirazi, S.; Meyer, R.S.; Shapiro, B. Revisiting the effect of PCR replication and sequencing depth on biodiversity metrics in environmental DNA metabarcoding. Ecol. Evol. 2021, 11, 15766–15779. [Google Scholar] [CrossRef] [PubMed]
- Elbrecht, V.; Peinert, B.; Leese, F. Sorting things out: Assessing effects of unequal specimen biomass on DNA metabarcoding. Ecol. Evol. 2017, 7, 6918–6926. [Google Scholar] [CrossRef] [PubMed]
- Gu, H.; Liu, T.; Lan, D. Progress of dinoflagellate cyst research in the China seas. Biodivers. Sci. 2011, 19, 779–786. [Google Scholar]
- Takahashi, K.; Sarai, C.; Iwataki, M. Morphology of two marine woloszynskioid dinoflagellates, Biecheleria brevisulcata sp. nov and Biecheleriopsis adriatica (Suessiaceae, Dinophyceae), from Japanese coasts. Phycologia 2014, 53, 52–65. [Google Scholar] [CrossRef]
- Tang, Y.Z.; Gobler, C.J. Sexual resting cyst production by the dinoflagellate Akashiwo sanguinea: A potential mechanism contributing to the ubiquitous distribution of a harmful alga. J. Phycol. 2015, 51, 298–309. [Google Scholar] [CrossRef]
- Ellegaard, M.; Moestrup, O. Fine structure of the flagellar apparatus and morphological details of Gymnodinium nolleri sp. nov (Dinophyceae), an unarmored dinoflagellate producing a microreticulate cyst. Phycologia 1999, 38, 289–300. [Google Scholar] [CrossRef]
- Dzhembekova, N.; Rubino, F.; Nagai, S.; Zlateva, I.; Slabakova, N.; Ivanova, P.; Slabakova, V.; Moncheva, S. Comparative analysis of morphological and molecular approaches integrated into the study of the dinoflagellate biodiversity within the recently deposited Black Sea sediments-benefits and drawbacks. Biodivers. Data J. 2020, 8, 20. [Google Scholar] [CrossRef]
- Shang, L.X.; Hu, Z.X.; Deng, Y.Y.; Liu, Y.Y.; Zhai, X.Y.; Chai, Z.Y.; Liu, X.H.; Zhan, Z.F.; Dobbs, F.C.; Tang, Y.Z. Metagenomic Sequencing Identifies Highly Diverse Assemblages of Dinoflagellate Cysts in Sediments from Ships’ Ballast Tanks. Microorganisms 2019, 7, 250. [Google Scholar] [CrossRef] [PubMed]
- Fu, Z.X.; Piumsomboon, A.; Punnarak, P.; Uttayarnmanee, P.; Leaw, C.P.; Lim, P.T.; Wang, A.J.; Gu, H.F. Diversity and distribution of harmful microalgae in the Gulf of Thailand assessed by DNA metabarcoding. Harmful Algae 2021, 106, 11. [Google Scholar] [CrossRef] [PubMed]
- Deng, Y.; Wang, K.; Hu, Z.; Tang, Y.Z. Abundant Species Diversity and Essential Functions of Bacterial Communities Associated with Dinoflagellates as Revealed from Metabarcoding Sequencing for Laboratory-Raised Clonal Cultures. Int. J. Environ. Res. Public Health 2022, 19, 4446. [Google Scholar] [CrossRef] [PubMed]
- Chai, Z.Y.; He, Z.L.; Deng, Y.Y.; Yang, Y.F.; Tang, Y.Z. Cultivation of seaweed Gracilaria lemaneiformis enhanced biodiversity in an eukaryotic plankton community as revealed via metagenomic analyses. Mol. Ecol. 2018, 27, 1081–1093. [Google Scholar] [CrossRef] [PubMed]
- Yue, C.; Chai, Z.; Hu, Z.; Shang, L.; Deng, Y.; Tang, Y.Z. Deficiency of nitrogen but not phosphorus triggers the life cycle transition of the dinoflagellate Scrippsiella acuminata from vegetative growth to resting cyst formation. Harmful Algae 2022, 118, 102312. [Google Scholar] [CrossRef]
- Callahan, B.J.; McMurdie, P.J.; Rosen, M.J.; Han, A.W.; Johnson, A.J.; Holmes, S.P. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 2016, 13, 581–583. [Google Scholar] [CrossRef] [PubMed]
- Bolyen, E.; Rideout, J.R.; Dillon, M.R.; Bokulich, N.A.; Abnet, C.C.; Al-Ghalith, G.A.; Alexander, H.; Alm, E.J.; Arumugam, M.; Asnicar, F.; et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 2019, 37, 852–857. [Google Scholar] [CrossRef] [PubMed]
- Dixon, P. VEGAN, a package of R functions for community ecology. J. Veg. Sci. 2003, 14, 927–930. [Google Scholar] [CrossRef]
- Wickham, H. ggplot2: Elegant Graphics for Data Analysis; Springer: New York, NY, USA, 2016. [Google Scholar]
Sediments Type | Vegetative Cells and Cell Densities (Cells g−1) | Cysts and Cell Densities (Cells g−1) | Purposes |
---|---|---|---|
Type I | Aureococcus anophagefferen, 25 × 103 Akashiwo sanguinea, 5 × 103 Scrippsiella acuminata, 10 × 103 | None | Used for a quantitative examination of the stability of DNA/RNA in relic microalgal vegetative cells |
Type II | Karenia mikimotoi, 4 × 103 Karlodinium veneficum, 10 × 103 | Alexandrium andersonii, 50 Gymnodinium microreticulatum, 50 Scrippsiella acuminata, 50 | Used for an examination of the potential interference of the stability of relic DNA in microalgal vegetative cells in the detection of resting cysts in sediments via metabarcoding analyses |
Target Gene (LSU) | Primers (5′ to 3′) and Taqman-Probes | Amplicon Length (bp) | Annealing Temperature | |
---|---|---|---|---|
Au. anophagefferens | DNA cDNA | F: CCGAACGGCAGAAGTGGTGA R: GACCTTCCCATGAACGACTCCC | 116 | 50 °C (DNA) 55 °C (cDNA) |
Ak. sanguinea | DNA cDNA | F: CACCAGCAACCGATCTGTCAACT R: CCCCTGGCTTTGCCCTACAC | 101 | 50 °C (DNA) 50 °C (cDNA) |
S. acuminata | DNA | F: TGTAGTAAGTCTTGAGCAGGACA R: ATCCACAAATGAGTTCCAGCAAACACA | 139 | 45 °C |
cDNA | F: TGATTGCTTGCTGCTTCAAC R: ATCCACAAATGAGTTCCAGCAAACACA | 167 | 50 °C | |
Kare. mikimotoi | DNA | F: GCTTCTCGCCTTGCATGTCAACGTC P: GTTCAACTGAGGACATTCAGTCACT R: TGGCACCAACAACCTTCATGCAGAG | 186 | 60 °C |
Karl. veneficum | DNA | F: CTTCTTGGTGAGATTGTTGTGCGC P: TGCGCGTCATGCTCAAAACC R: GCGAGYAATTAACCATGTCCCTAGA | 158 | 60 °C |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chai, Z.; Liu, Y.; Jia, S.; Li, F.; Hu, Z.; Deng, Y.; Yue, C.; Tang, Y.-Z. DNA and RNA Stability of Marine Microalgae in Cold-Stored Sediments and Its Implications in Metabarcoding Analyses. Int. J. Mol. Sci. 2024, 25, 1724. https://doi.org/10.3390/ijms25031724
Chai Z, Liu Y, Jia S, Li F, Hu Z, Deng Y, Yue C, Tang Y-Z. DNA and RNA Stability of Marine Microalgae in Cold-Stored Sediments and Its Implications in Metabarcoding Analyses. International Journal of Molecular Sciences. 2024; 25(3):1724. https://doi.org/10.3390/ijms25031724
Chicago/Turabian StyleChai, Zhaoyang, Yuyang Liu, Siyang Jia, Fengting Li, Zhangxi Hu, Yunyan Deng, Caixia Yue, and Ying-Zhong Tang. 2024. "DNA and RNA Stability of Marine Microalgae in Cold-Stored Sediments and Its Implications in Metabarcoding Analyses" International Journal of Molecular Sciences 25, no. 3: 1724. https://doi.org/10.3390/ijms25031724
APA StyleChai, Z., Liu, Y., Jia, S., Li, F., Hu, Z., Deng, Y., Yue, C., & Tang, Y. -Z. (2024). DNA and RNA Stability of Marine Microalgae in Cold-Stored Sediments and Its Implications in Metabarcoding Analyses. International Journal of Molecular Sciences, 25(3), 1724. https://doi.org/10.3390/ijms25031724