Mesocellular Silica Foam as Immobilization Carrier for Production of Statin Precursors
Abstract
:1. Introduction
2. Results
2.1. Characterization of Mesocellular Silica Foams
2.2. Influence of Functionalization and Activation Agents on Immobilization Parameters
2.3. Immobilized DERA024 Kinetics
2.4. Influence of MCF Pore Size on Immobilization Parameters
2.5. Operational Stability in Batch Reactor
3. Discussion
4. Materials and Methods
4.1. Chemicals
4.2. Synthesis of Mesocellular Silica Foams
4.3. MCF Characterization
4.4. Functionalization and Activation of Immobilization Carriers
4.5. Immobilization of the Enzyme and Protein Concentration Measurements
4.6. Enzyme Assay
4.7. HPLC Analysis
4.8. Measurements of Stability and Retained Activity
4.9. Kinetic Analysis
4.10. Data Processing
4.11. Batch Reactor Recycling Stability Measurements
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Endo, A. A historical perspective on the discovery of statins. Proc. Jpn. Acad. Ser. B 2010, 86, 484–493. [Google Scholar] [CrossRef] [PubMed]
- Liljeblad, A.; Kallinen, A.; Kanerva, L. Biocatalysis in the preparation of the statin side chain. Curr. Org. Synth. 2009, 6, 362–379. [Google Scholar] [CrossRef]
- Reiner, Z. Primary prevention of cardiovascular disease with statins in the elderly. Curr. Atheroscler. Rep. 2014, 16, 85–94. [Google Scholar] [CrossRef] [PubMed]
- Patel, A. Statins as potentially neuroprotective agents: A review. J. Anesth. Clin. Res. 2012, 3, 1–5. [Google Scholar] [CrossRef]
- Maji, D.; Shaikh, S.; Solanki, D.; Gaurav, K. Safety of statins. Indian J. Endocrinol. Metab. 2013, 17, 636. [Google Scholar] [CrossRef] [PubMed]
- Buhaescu, I.; Izzedine, H. Mevalonate pathway: A review of clinical and therapeutical implications. Clin. Biochem. 2007, 40, 575–584. [Google Scholar] [CrossRef]
- Tao, J.; Xu, J.-H. Biocatalysis in development of green pharmaceutical processes. Curr. Opin. Chem. Biol. 2009, 13, 43–50. [Google Scholar] [CrossRef]
- Patel, J.M. Biocatalytic synthesis of atorvastatin intermediates. J. Mol. Catal. B Enzym. 2009, 61, 123–128. [Google Scholar] [CrossRef]
- Zhang, M.; Su, X.; Ang, E.; Zhao, H. Recent advances in biocatalyst development in the pharmaceutical industry. Pharm. Bioprocess. 2013, 1, 179–196. [Google Scholar] [CrossRef]
- Vajdič, T.; Ošlaj, M.; Kopitar, G.; Mrak, P. Engineered, highly productive biosynthesis of artificial, lactonized statin side-chain building blocks: The hidden potential of Escherichia coli unleashed. Metab. Eng. 2014, 24, 160–172. [Google Scholar] [CrossRef]
- Schürmann, M.; Wolberg, M.; Panke, S.; Kierkels, H. Green Chemistry in the Pharmaceutical Industry; Dunn, P.J., Wells, A.S., Williams, M.T., Eds.; Wiley: New York, NY, USA, 2010; Chapter 6; pp. 127–144. [Google Scholar]
- Luo, Y.; Chen, Y.; Ma, H.; Tian, Z.; Zhang, Y.; Zhang, J. Enhancing the biocatalytic manufacture of the Key intermediate of atorvastatin by focused directed evolution of halohydrin dehalogenase. Sci. Rep. 2017, 7, srep42064. [Google Scholar] [CrossRef] [PubMed]
- Jiao, X.-C.; Zhang, Y.-J.; Chen, Q.; Pan, J.; Xu, J.-H. A green-by-design system for efficient bio-oxidation of an unnatural hexapyranose into chiral lactone for building statin side-chains. Catal. Sci. Technol. 2016, 6, 7094–7100. [Google Scholar] [CrossRef]
- Ručigaj, A.; Krajnc, M. Optimization of a Crude Deoxyribose-5-Phosphate Aldolase Lyzate-Catalyzed Process in Synthesis of Statin Intermediates. Org. Prcoess. Res. Dev. 2013, 17, 854–862. [Google Scholar] [CrossRef]
- Jiao, X.-C.; Pan, J.; Xu, G.-C.; Kong, X.-D.; Chen, Q.; Zhang, Z.-J.; Xu, J.-H. Efficient synthesis of a statin precursor in high space-time yield by a new aldehyde-tolerant aldolase identified from Lactobacillus Brevis. Catal. Sci. Technol. 2015, 5, 4048–4054. [Google Scholar] [CrossRef]
- Ošlaj, M.; Cluzeau, J.; Orkić, D.; Kopitar, G.; Mrak, P.; Časar, Z. A highly productive, whole-cell DERA chemoenzymatic process for production of key lactonized side-chain intermediates in statin synthesis. PLoS ONE 2013, 8, 62250. [Google Scholar] [CrossRef] [PubMed]
- Švarc, A.; Fekete, M.; Hernandez, K.; Clapés, P.; Findrik Blažević, Z.; Szekrenyi, A.; Skendrović, D.; Vasić-Rački, Đ.; Charnock, S.J.; Presečki, A.V. An innovative route for the production of atorvastatin side-chain precursor by DERA-catalysed double aldol addition. Chem. Eng. Sci. 2021, 231, 116312. [Google Scholar] [CrossRef]
- Schürmann, M. Industrial Enzyme Applications; Vogel, A., May, O., Eds.; Wiley: New York, NY, USA, 2019; Chapter 5.2; pp. 385–401. [Google Scholar]
- Švarc, A.; Findrik, Z.; Vasic-Racki, D.; Szekrenyi, A.; Fessner, W.; Charnock, S.; Presečki, A. 2-deoxyribose-5-phosphate aldolase from Thermotoga Maritima in the synthesis of a statin side-chain precursor: Characterization, modeling and optimization. J. Chem. Technol. Biotechnol. 2019, 94, 1832–1842. [Google Scholar] [CrossRef]
- Rouvinen, J.; Andberg, M.; Pääkkönen, J.; Hakulinen, N.; Koivula, A. Current state of and need for enzyme engineering of 2-deoxy-D-ribose 5-phosphate aldolases and its impact. Appl. Microbiol. Biotechnol. 2021, 105, 6215–6228. [Google Scholar] [CrossRef]
- Jennewein, S.; Schürmann, M.; Wolberg, M.; Hilker, I.; Luiten, R.; Wubbolts, M.; Mink, D. Directed evolution of an industrial biocatalyst: 2-deoxy-D-ribose 5-phosphate aldolase. Biotechnol. J. 2006, 1, 537–548. [Google Scholar] [CrossRef]
- Voutilainen, S.; Heinonen, M.; Andberg, M.; Jokinen, E.; Maaheimo, H.; Pääkkönen, J.; Hakulinen, N.; Rouvinen, J.; Lähdesmäki, H.; Kaski, S.; et al. Substrate specificity of 2-deoxy-D-ribose 5-phosphate aldolase (DERA) assessed by different protein engineering and machine learning methods. Appl. Microbiol. Biotechnol. 2020, 104, 10515–10529. [Google Scholar] [CrossRef]
- Aragon, C.C.; Palomo, J.M.; Filice, M.; Mateo, C. Immobilization of aldolase for C-C bond formation. Curr. Org. Chem. 2016, 20, 1243–1251. [Google Scholar] [CrossRef]
- Cavalcante, F.T.T.; Cavalcante, A.L.G.; de Sousa, I.G.; Neto, F.S.; dos Santos, J.C.S. Current status and future perspectives of supports and protocols for enzyme immobilization. Catalysts 2021, 11, 1222. [Google Scholar] [CrossRef]
- Federsel, H.-J.; Moody, T.S.; Taylor, S.J.C. Recent trends in enzyme immobilization—Concepts for expanding the biocatalysis toolbox. Molecules 2021, 26, 2822. [Google Scholar] [CrossRef] [PubMed]
- Zucca, P.; Sanjust, E. Inorganic materials as supports for covalent enzyme immobilization: Methods and mechanisms. Molecules 2014, 19, 14139–14194. [Google Scholar] [CrossRef]
- Mcnaught, A.; Wilkinson, A. IUPAC Compendium of Chemical Terminology; Blackwell Scientific Publications: Hoboken, NJ, USA, 1997. [Google Scholar]
- Jeelani, P.G.; Mulay, P.; Venkat, R.; Ramalingam, C. Multifaceted application of silica nanoparticles. A review. Silicon 2019, 12, 1337–1354. [Google Scholar] [CrossRef]
- Narayan, R.; Nayak, U.Y.; Raichur, A.M.; Garg, S. Mesoporous silica nanoparticles: A comprehensive review on synthesis and recent advances. Pharmaceutics 2018, 10, 118. [Google Scholar] [CrossRef]
- Moritz, M.; Geszke-Moritz, M. Mesoporous materials as multifunctional tools in biosciences: Principles and applications. Mater. Sci. Eng C 2015, 49, 114–151. [Google Scholar] [CrossRef] [PubMed]
- Sun, B.; Zhou, G.; Zhang, H. Synthesis, functionalization, and applications of morphology-controllable silica-based nanostructures: A review. Prog. Solid State Chem. 2016, 44, 1–19. [Google Scholar] [CrossRef]
- Schmidt-Winkel, P.; Lukens Wayne, W.; Zhao, D.; Yang, P.; Chmelka, B.F.; Stucky, G.D. Mesocellular siliceous foams with uniformly sized cells and windows. J. Am. Chem. Soc. 1999, 121, 254–255. [Google Scholar] [CrossRef]
- Chrzanowska, A.; Derylo-Marczewska, A.; Wasilewska, M. Mesocellular silica foams (MCFs) with tunable pore size as a support for lysozyme immobilization: Adsorption equilibrium and kinetics, bocomposite properties. Int. J. Mol. Sci. 2020, 21, 5479. [Google Scholar] [CrossRef]
- Pandya, P.H.; Jasra, R.V.; Newalkar, B.L.; Bhatt, P.N. Studies on the activity and stability of immobilized α-amylase in ordered mesoporous silicas. Microporous Mesoporous Mater. 2005, 77, 67–77. [Google Scholar] [CrossRef]
- Bayne, L.; Ulijn, R.V.; Halling, P.J. Effect of pore size on the performance of immobilised enzymes. Chem. Soc. Rev. 2013, 42, 9000–9010. [Google Scholar] [CrossRef]
- Wang, A.; Wang, M.; Wang, Q.; Chen, F.; Zhang, F.; Li, H.; Zeng, Z.; Xie, T. Stable and efficient immobilization technique of aldolase under consecutive microwave irradiation at low temperature. Bioresour. Technol. 2011, 102, 469–474. [Google Scholar] [CrossRef]
- Wang, A.; Gao, W.; Zhang, F.; Chen, F.; Du, F.; Yin, X. Amino acid-mediated aldolase immobilisation for enhanced catalysis and thermostability. Bioprocess Biosyst. Eng. 2012, 35, 857–863. [Google Scholar] [CrossRef]
- Sing, K.S.W. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984). Pure Appl. Chem. 1985, 57, 603–619. [Google Scholar] [CrossRef]
- Sing, K.S.W.; Williams, R.T. Physisorption hysteresis Loops and the characterization of nanoporous materials. Adsorpt. Sci. Technol. 2004, 22, 773–782. [Google Scholar] [CrossRef]
- Groen, J.C.; Peffer, L.A.A.; Pérez-Ramírez, J. Pore size determination in modified micro- and mesoporous materials. Pitfalls and limitations in gas adsorption data analysis. Microporous Mesoporous Mater. 2003, 60, 1–17. [Google Scholar] [CrossRef]
- RCSB PDB-3R13: Crystal Structure of a Deoxyribose-Phosphate Aldolase (TM_1559) from THERMOTOGA MARITIMA at 1.83 A Resolution. Available online: https://www.rcsb.org/structure/3r13 (accessed on 29 December 2023).
- Weetall, H.H. Preparation of immobilized proteins covalently coupled through silane coupling agents to inorganic supports. Appl. Biochem. Biotechnol. 1993, 41, 157–188. [Google Scholar] [CrossRef] [PubMed]
- Ortiz-Bustos, J.; Martin, A.; Morales, V.; Sanz, R.; García-Muñoz, R.A. Surface-functionalization of mesoporous SBA-15 silica materials for controlled release of methylprednisolone sodium hemisuccinate: Influence of functionality type and strategies of incorporation. Microporous Mesoporous Mater. 2017, 240, 236–245. [Google Scholar] [CrossRef]
- Fei, H.; Xu, G.; Wu, J.P.; Yang, L.R. Improvement of the thermal stability and aldehyde tolerance of deoxyriboaldolase via immobilization on nano-magnet material. J. Mol. Catal. B Enzym. 2014, 101, 87–91. [Google Scholar] [CrossRef]
- Guo, H.; Tang, Y.; Yu, Y.; Xue, L.; Qian, J.Q. Covalent immobilization of α-amylase on magnetic particles as catalyst for hydrolysis of high-amylose starch. Int. J. Biol. Macromol. 2016, 87, 537–544. [Google Scholar] [CrossRef]
- Skendrović, D.; Švarc, A.; Rezić, T.; Chernev, A.; Rađenović, A.; Vrsalović Presečki, A. Improvement of DERA activity and stability in the synthesis of statin precursors by immobilization on magnetic nanoparticles. React. Chem. Eng. 2024, 9, 82–90. [Google Scholar] [CrossRef]
- Migneault, I.; Dartiguenave, C.; Bertrand, M.J.; Waldron, K.C. Glutaraldehyde: Behavior in aqueous solution, reaction with proteins, and application to enzyme crosslinking. Biotechniques 2004, 37, 790–802. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, R.; Ortiz, C.; Berenguer-Murcia, A.; Torres Sáez, R.; Fernández-Lafuente, R. Modifying enzyme activity and selectivity by immobilization. Chem. Soc. Rev. 2012, 42, 6290–6307. [Google Scholar] [CrossRef]
- Haridas, M.; Abdelraheem, E.M.M.; Hanefeld, U. 2-deoxy-d-ribose-5-phosphate aldolase (DERA): Applications and modifications. Appl. Microbiol. Biotechnol. 2018, 102, 9959–9971. [Google Scholar] [CrossRef]
- Danait-Nabar, S.; Singhal, R.S. Chemical modification of Laccase using phthalic and 2-octenyl succinic anhydrides: Enzyme characterization, stability, and its potential for clarification of cashew apple juice. Process. Biochem. 2022, 122, 181–195. [Google Scholar] [CrossRef]
- Švarc, A.; Findrik Blažević, Z.; Vasić-Rački, Đ.; Charnock, S.J.; Vrsalović Presečki, A. A multi-enzyme strategy for the production of a highly valuable lactonized statin side-chain precursor. Chem. Eng. Res. Des. 2020, 164, 35–45. [Google Scholar] [CrossRef]
- Hudson, S.; Cooney, J.; Magner, E. Proteins in mesoporous silicates. Angnew. Chem. Int. Ed. 2008, 47, 8582–8594. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Galan, C.; Berenguer-Murcia, Á.; Fernandez-Lafuente, R.; Rodrigues, R.C. Potential of different enzyme immobilization strategies to improve enzyme performance. Adv. Synth. Catal. 2011, 353, 2885–2904. [Google Scholar] [CrossRef]
- Polizzi, K.M.; Bommarius, A.S.; Broering, J.M.; Chaparro-Riggers, J.F. Stability of Biocatalysts. Curr. Opin. Chem. Biol. 2007, 11, 220–225. [Google Scholar] [CrossRef]
- Zhang, S.; Bramski, J.; Tutus, M.; Pietruszka, J.; Böker, A.; Reinicke, S. A biocatalytically active membrane obtained from immobilization of 2-deoxy-d-ribose-5-phosphate aldolase on a porous support. ACS Appl. Mater. Interfaces 2019, 11, 34441–34453. [Google Scholar] [CrossRef] [PubMed]
- Subrizi, F.; Crucianelli, M.; Grossi, V.; Passacantando, M.; Giorgia, B.; Antiochia, R.; Saladino, R. Versatile and efficient immobilization of 2-deoxyribose-5-phosphate aldolase (DERA) on multiwalled carbon nanotubes. ACS Catal. 2014, 4, 3059–3098. [Google Scholar] [CrossRef]
- Zhang, S.; Bisterfeld, C.; Bramski, J.; Vanparijs, N.; De Geest, B.G.; Pietruszka, J.; Böker, A.; Reinicke, S. Biocatalytically active thin films via self-assembly of 2-deoxy-d-ribose-5-phosphate aldolase–poly(N-Isopropylacrylamide) conjugates. Bioconjug. Chem. 2018, 29, 104–116. [Google Scholar] [CrossRef] [PubMed]
- Nara, T.Y.; Togashi, H.; Ono, S.; Egami, M.; Sekikawa, C.; Suzuki, Y.H.; Masuda, I.; Ogawa, J.; Horinouchi, N.; Shimizu, S.; et al. Improvement of aldehyde tolerance and sequential aldol condensation activity of Deoxyriboaldolase via immobilization on interparticle pore type mesoporous silica. J. Mol. Catal. B Enzym. 2011, 68, 181–186. [Google Scholar] [CrossRef]
- Bapiro, T.E.; Sykes, A.; Martin, S.; Davies, M.; Yates, J.W.T.; Hoch, M.; Rollison, H.E.; Jones, B. Complete substrate inhibition of cytochrome P450 2C8 by AZD9496, an oral selective estrogen receptor degrader. Drug Metab. Dispos. 2018, 46, 1268–1276. [Google Scholar] [CrossRef]
- Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
Name | BET Surface Area (m2/g) * | Average Pore Diameter-BJH Adsorption (nm) * | Average Pore Diameter-BJH Desorption (nm) * | Pore Volume (cm3/g) |
---|---|---|---|---|
MCF-a | 298.9 ± 4.6 | 19.8 ± 6.5 | 12.5 ± 3.3 | 1.66 |
MCF-b | 225.9 ± 4.1 | 21.8 ± 7.2 | 15.2 ± 5.4 | 1.28 |
MCF-c | 209.2 ± 4.2 | 24.5 ± 8.4 | 16.8 ± 4.1 | 1.22 |
Kinetic Equations | Parameter | Unit | Free DERA024 * | Immobilized DERA024 |
---|---|---|---|---|
First Aldol Addition | ||||
(1) | Vm1 | U mg−1 | 4.31 ± 0.63 | 12.50 ± 0.28 |
KmAA1 | mM | 11.10 ± 2.54 | 30.61 ± 2.66 | |
KmCAA | mM | 73.51 ± 9.11 | 215.04 ± 7.98 | |
KiSCAA | mM | 260.96 ± 26.31 | 233.62 ± 3.11 | |
n | mM | 20.00 ± 4.21 | 14.06 ± 3.02 | |
Second Aldol Addition | ||||
(2) | Vm2 | U mg−1 | 1.53 ± 0.26 | 1.11 ± 0.02 |
KmAA2 | mM | 2.03 ± 0.28 | 14.97 ± 1.46 | |
Km4C-Cl | mM | 86.26 ± 7.62 | 39.42 ± 11.97 | |
KisAA | mM | - | - | |
Kis4C-Cl | mM | 72.44 ± 7.54 | 123.64 ± 10.56 | |
Batch Reactor Equations | ||||
(3) | (4) | (5) | (6) | |
Name | P123/TMB Mass Ratio (g/g) | P123/TEOS Mass Ratio (g/g) | Aging Time (h) |
---|---|---|---|
MCF-a | 1:1 | 1:2 | 24 |
MCF-b | 1:2.5 | 1:2.5 | 24 |
MCF-c | 1:5 | 1:3 | 96 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Skendrović, D.; Primožič, M.; Rezić, T.; Vrsalović Presečki, A. Mesocellular Silica Foam as Immobilization Carrier for Production of Statin Precursors. Int. J. Mol. Sci. 2024, 25, 1971. https://doi.org/10.3390/ijms25041971
Skendrović D, Primožič M, Rezić T, Vrsalović Presečki A. Mesocellular Silica Foam as Immobilization Carrier for Production of Statin Precursors. International Journal of Molecular Sciences. 2024; 25(4):1971. https://doi.org/10.3390/ijms25041971
Chicago/Turabian StyleSkendrović, Dino, Mateja Primožič, Tonči Rezić, and Ana Vrsalović Presečki. 2024. "Mesocellular Silica Foam as Immobilization Carrier for Production of Statin Precursors" International Journal of Molecular Sciences 25, no. 4: 1971. https://doi.org/10.3390/ijms25041971
APA StyleSkendrović, D., Primožič, M., Rezić, T., & Vrsalović Presečki, A. (2024). Mesocellular Silica Foam as Immobilization Carrier for Production of Statin Precursors. International Journal of Molecular Sciences, 25(4), 1971. https://doi.org/10.3390/ijms25041971