Altered N6-Methyladenosine Modification Patterns and Transcript Profiles Contributes to Cognitive Dysfunction in High-Fat Induced Diabetic Mice
Abstract
:1. Introduction
2. Results
2.1. Changes in Body Weight and Fasting Blood Glucose Levels between the Two Groups of Mice
2.2. Results of the Morris Water Maze Test
2.3. H&E Staining of the Hippocampus in the Two Groups of Mice
2.4. GO and KEGG Pathway Analyses of Differentially Expressed Genes (DEGs) in the Hippocampus of DCI Mice
2.5. Altered m6A Modification of Genes in the Hippocampus of DCI Mice
2.6. Differential m6A-Modification and Expression of Genes in the Cerebral Cortex Result from Altered m6A Methyltransferase and Demethylase Levels
2.7. Conjoint Analysis for m6A MeRIP-Seq and RNA-Seq Data
3. Discussion
4. Materials and Methods
4.1. Animals
4.2. Behavioural Test
4.3. Tissue Sectioning and Staining
4.4. High-Throughput m6A-Seq and RNA-Seq
4.5. Sequencing Data Processing
4.6. Identification of DEGs and DMMSs
4.7. Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) Analysis of DEGs and DMMSs
4.8. Protein–Protein Interaction (PPI) Network Analysis
4.9. Validation of Gene Expression Levels
4.10. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Van der Heide, L.P.; Kamal, A.; Artola, A.; Gispen, W.H.; Ramakers, G.M. Insulin modulates hippocampal activity-dependent synaptic plasticity in a N-methyl-d-aspartate receptor and phosphatidyl-inositol-3-kinase-dependent manner. J. Neurochem. 2005, 94, 1158–1166. [Google Scholar] [CrossRef] [PubMed]
- Kamal, A.; Biessels, G.J.; Gispen, W.H.; Ramakers, G.M. Synaptic transmission changes in the pyramidal cells of the hippocampus in streptozotocin-induced diabetes mellitus in rats. Brain Res. 2006, 1073–1074, 276–280. [Google Scholar] [CrossRef] [PubMed]
- Kamal, A.; Ramakers, G.M.; Gispen, W.H.; Biessels, G.J. Hyperinsulinemia in rats causes impairment of spatial memory and learning with defects in hippocampal synaptic plasticity by involvement of postsynaptic mechanisms. Exp. Brain Res. 2013, 226, 45–51. [Google Scholar] [CrossRef] [PubMed]
- Li, X.L.; Aou, S.; Oomura, Y.; Hori, N.; Fukunaga, K.; Hori, T. Impairment of long-term potentiation and spatial memory in leptin receptor-deficient rodents. Neuroscience 2002, 113, 607–615. [Google Scholar] [CrossRef] [PubMed]
- Taupin, P.; Gage, F.H. Adult neurogenesis and neural stem cells of the central nervous system in mammals. J. Neurosci. Res. 2002, 69, 745–749. [Google Scholar] [CrossRef]
- Zillich, L.; Frank, J.; Streit, F.; Friske, M.M.; Foo, J.C.; Sirignano, L.; Heilmann-Heimbach, S.; Dukal, H.; Degenhardt, F.; Hoffmann, P.; et al. Epigenome-wide association study of alcohol use disorder in five hippocampus regions. Neuropsychopharmacology 2022, 47, 832–839. [Google Scholar] [CrossRef]
- Villeda, S.A.; Luo, J.; Mosher, K.I.; Zou, B.; Britschgi, M.; Bieri, G.; Stan, T.M.; Fainberg, N.; Ding, Z.; Eggel, A.; et al. The ageing systemic milieu negatively regulates neurogenesis and cognitive function. Nature 2011, 477, 90–94. [Google Scholar] [CrossRef]
- Yang, Y.; Hsu, P.J.; Chen, Y.S.; Yang, Y.G. Dynamic transcriptomic m(6]A decoration: Writers, erasers, readers and functions in RNA metabolism. Cell Res. 2018, 28, 616–624. [Google Scholar] [CrossRef]
- Wu, J.; Frazier, K.; Zhang, J.; Gan, Z.; Wang, T.; Zhong, X. Emerging role of m(6] A RNA methylation in nutritional physiology and metabolism. Obes. Rev. 2020, 21, e12942. [Google Scholar] [CrossRef]
- Roundtree, I.A.; Evans, M.E.; Pan, T.; He, C. Dynamic RNA Modifications in Gene Expression Regulation. Cell 2017, 169, 1187–1200. [Google Scholar] [CrossRef] [PubMed]
- Shen, F.; Huang, W.; Huang, J.-T.; Xiong, J.; Yang, Y.; Wu, K.; Jia, G.-F.; Chen, J.; Feng, Y.-Q.; Yuan, B.-F.; et al. Decreased N(6]-methyladenosine in peripheral blood RNA from diabetic patients is associated with FTO expression rather than ALKBH5. J. Clin. Endocrinol. Metab. 2015, 100, E148–E154. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Yi, Y.; Miao, Y.; Long, W.; Long, T.; Chen, S.; Cheng, W.; Zou, C.; Zheng, Y.; Wu, X.; et al. N(6]-Methyladenosine Modulates Nonsense-Mediated mRNA Decay in Human Glioblastoma. Cancer Res. 2019, 79, 5785–5798. [Google Scholar] [CrossRef]
- Wang, Y.; Mao, J.; Wang, X.; Lin, Y.; Hou, G.; Zhu, J.; Xie, B. Genome-wide screening of altered m6A-tagged transcript profiles in the hippocampus after traumatic hippocampus injury in mice. Epigenomics 2019, 11, 805–819. [Google Scholar] [CrossRef]
- Chen, X.; Yu, C.; Guo, M.; Zheng, X.; Ali, S.; Huang, H.; Zhang, L.; Wang, S.; Huang, Y.; Qie, S.; et al. Down-Regulation of m6A mRNA Methylation Is Involved in Dopaminergic Neuronal Death. ACS Chem. Neurosci. 2019, 10, 2355–2363. [Google Scholar] [CrossRef]
- Chokkalla, A.K.; Mehta, S.L.; Kim, T.; Chelluboina, B.; Kim, J.; Vemuganti, R. Transient Focal Ischemia Significantly Alters the m(6]A Epitranscriptomic Tagging of RNAs in the hippocampus. Stroke 2019, 50, 2912–2921. [Google Scholar] [CrossRef] [PubMed]
- Merkurjev, D.; Hong, W.-T.; Iida, K.; Oomoto, I.; Goldie, B.J.; Yamaguti, H.; Ohara, T.; Kawaguchi, S.-Y.; Hirano, T.; Martin, K.C.; et al. Synaptic N(6]-methyladenosine[m(6]A] epitranscriptome reveals functional partitioning of localized transcripts. Nat. Neurosci. 2018, 21, 1004–1014. [Google Scholar] [CrossRef] [PubMed]
- Weng, Y.-L.; Wang, X.; An, R.; Cassin, J.; Vissers, C.; Liu, Y.; Liu, Y.; Xu, T.; Wang, X.; Wong, S.Z.H.; et al. Epitranscriptomic m(6]A Regulation of Axon Regeneration in the Adult Mammalian Nervous System. Neuron 2018, 97, 313–325.e6. [Google Scholar] [CrossRef]
- Chen, J.; Zhang, Y.-C.; Huang, C.; Shen, H.; Sun, B.; Cheng, X.; Zhang, Y.-J.; Yang, Y.-G.; Shu, Q.; Yang, Y.; et al. m(6]A Regulates Neurogenesis and Neuronal Development by Modulating Histone Methyltransferase Ezh2. Genom. Proteom. Bioinform. 2019, 17, 154–168. [Google Scholar] [CrossRef]
- Leonetti, A.M.; Chu, M.Y.; Ramnaraign, F.O.; Holm, S.; Walters, B.J. An Emerging Role of m6A in Memory: A Case for Translational Priming. Int. J. Mol. Sci. 2020, 21, 7447. [Google Scholar] [CrossRef]
- Wei, J.; Liu, F.; Lu, Z.; Fei, Q.; Ai, Y.; He, P.C.; Shi, H.; Cui, X.; Su, R.; Klungland, A.; et al. Differential m(6]A, m(6]A(m], and m(1]A Demethylation Mediated by FTO in the Cell Nucleus and Cytoplasm. Mol. Cell 2018, 71, 973–985.e5. [Google Scholar] [CrossRef]
- Willing, J.; Drzewiecki, C.M.; Cuenod, B.A.; Cortes, L.R.; Juraska, J.M. A role for puberty in water maze performance in male and female rats. Behav. Neurosci. 2016, 130, 422–427. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Mao, L.; Liu, Q.; Chen, X.; Tang, X.; An, D. Cognitive impairment in type 2 diabetes patients with and without diabetic peripheral neuropathy: A mismatch negativity study. Neuroreport 2021, 32, 1223–1228. [Google Scholar] [CrossRef] [PubMed]
- Garsmeur, O.; Droc, G.; Antonise, R.; Grimwood, J.; Potier, B.; Aitken, K.; Jenkins, J.; Martin, G.; Charron, C.; Hervouet, C.; et al. A mosaic monoploid reference sequence for the highly complex genome of sugarcane. Nat. Commun. 2018, 9, 2638. [Google Scholar] [CrossRef] [PubMed]
- Heinz, S.; Benner, C.; Spann, N.; Bertolino, E.; Lin, Y.C.; Laslo, P.; Cheng, J.X.; Murre, C.; Singh, H.; Glass, C.K. Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. Mol. Cell 2010, 38, 576–589. [Google Scholar] [CrossRef] [PubMed]
- Gaspar, J.M.; Baptista, F.I.; Macedo, M.P.; Ambrosio, A.F. Inside the Diabetic hippocampus: Role of Different Players Involved in Cognitive Decline. ACS Chem. Neurosci. 2016, 7, 131–142. [Google Scholar] [CrossRef] [PubMed]
- Heni, M.; Schöpfer, P.; Peter, A.; Sartorius, T.; Fritsche, A.; Synofzik, M.; Häring, H.-U.; Maetzler, W.; Hennige, A.M. Evidence for altered transport of insulin across the blood-hippocampus barrier in insulin-resistant humans. Acta Diabetol. 2014, 51, 679–681. [Google Scholar] [CrossRef] [PubMed]
- McCrimmon, R.J.; Ryan, C.M.; Frier, B.M. Diabetes and cognitive dysfunction. Lancet 2012, 379, 2291–2299. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Z.; Liu, S.; Li, Z.; Cui, J.; Wang, H.; Wang, Z.; Ren, Q.; Xia, L.; Wang, Z.; Li, Y. The Maternal Microbiome Programs the m(6]A Epitranscriptome of the Mouse Fetal hippocampus and Intestine. Front. Cell Dev. Biol. 2022, 10, 882994. [Google Scholar] [CrossRef]
- Chokkalla, A.K.; Mehta, S.L.; Vemuganti, R. Epitranscriptomic regulation by m(6]A RNA methylation in hippocampus development and diseases. J. Cereb. Blood Flow. Metab. 2020, 40, 2331–2349. [Google Scholar] [CrossRef]
- Soligo, M.; Piccinin, S.; Protto, V.; Gelfo, F.; De Stefano, M.E.; Florenzano, F.; Berretta, E.; Petrosini, L.; Nisticò, R.; Manni, L. Recovery of hippocampal functions and modulation of muscarinic response by electroacupuncture in young diabetic rats. Sci. Rep. 2017, 7, 9077. [Google Scholar] [CrossRef]
- Sun, P.; Ortega, G.; Tan, Y.; Hua, Q.; Riederer, P.F.; Deckert, J.; Schmitt-Böhrer, A.G. Streptozotocin Impairs Proliferation and Differentiation of Adult Hippocampal Neural Stem Cells in Vitro-Correlation with Alterations in the Expression of Proteins Associated with the Insulin System. Front. Aging Neurosci. 2018, 10, 145. [Google Scholar] [CrossRef]
- Osier, N.; Dixon, C.E. The Controlled Cortical Impact Model of Experimental hippocampus Trauma: Overview, Research Applications, and Protocol. Methods Mol. Biol. 2016, 1462, 177–192. [Google Scholar] [CrossRef]
- Zhuo, Z.; Lu, H.; Zhu, J.; Hua, R.-X.; Li, Y.; Yang, Z.; Zhang, J.; Cheng, J.; Zhou, H.; Li, S.; et al. METTL14 Gene Polymorphisms Confer Neuroblastoma Susceptibility: An Eight-Center Case-Control Study. Mol. Ther. Nucleic Acids 2020, 22, 17–26. [Google Scholar] [CrossRef]
- Corkrum, M.; Covelo, A.; Lines, J.; Bellocchio, L.; Pisansky, M.; Loke, K.; Quintana, R.; Rothwell, P.E.; Lujan, R.; Marsicano, G.; et al. Dopamine-Evoked Synaptic Regulation in the Nucleus Accumbens Requires Astrocyte Activity. Neuron 2020, 105, 1036–1047.e5. [Google Scholar] [CrossRef]
- Gu, X.; Zhang, Y.; Li, D.; Cai, H.; Cai, L.; Xu, Q. N6-methyladenosine demethylase FTO promotes M1 and M2 macrophage activation. Cell Signal 2020, 69, 109553. [Google Scholar] [CrossRef]
- Mateen, B.A.; Hill, C.S.; Biddie, S.C.; Menon, D.K. DNA Methylation: Basic Biology and Application to Traumatic hippocampus Injury. J. Neurotrauma 2017, 34, 2379–2388. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; Wang, Q.; Li, L.; Chen, S.; Zhao, Y.; Gao, L. Comprehensive epigenetic analysis of m6A modification in the hippocampal injury of diabetic rats. Epigenomics 2020, 12, 1811–1824. [Google Scholar] [CrossRef] [PubMed]
- Wefers, A.K.; Stichel, D.; Schrimpf, D.; Coras, R.; Pages, M.; Tauziède-Espariat, A.; Varlet, P.; Schwarz, D.; Söylemezoglu, F.; Pohl, U.; et al. Isomorphic diffuse glioma is a morphologically and molecularly distinct tumour entity with recurrent gene fusions of MYBL1 or MYB and a benign disease course. Acta Neuropathol. 2020, 139, 193–209. [Google Scholar] [CrossRef] [PubMed]
- Shen, K.; Rogala, K.B.; Chou, H.T.; Huang, R.K.; Yu, Z.; Sabatini, D.M. Cryo-EM Structure of the Human FLCN-FNIP2-Rag-Ragulator Complex. Cell 2019, 179, 1319–1329.e8. [Google Scholar] [CrossRef]
- Burillo, J.; Marques, P.; Jimenez, B.; Gonzalez-Blanco, C.; Benito, M.; Guillen, C. Insulin Resistance and Diabetes Mellitus in Alzheimer’s Disease. Cells 2021, 10, 1236. [Google Scholar] [CrossRef]
- Hao, P.; Huang, Y.; Peng, J.; Yu, J.; Guo, X.; Bao, F.; Dian, Z.; An, S.; Xu, T.-R. IRS4 promotes the progression of non-small cell lung cancer and confers resistance to EGFR-TKI through the activation of PI3K/Akt and Ras-MAPK pathways. Exp. Cell Res. 2021, 403, 112615. [Google Scholar] [CrossRef] [PubMed]
- Cui, X.; Qian, D.W.; Jiang, S.; Shang, E.X.; Zhu, Z.H.; Duan, J.A. Scutellariae Radix and Coptidis Rhizoma Improve Glucose and Lipid Metabolism in T2DM Rats via Regulation of the Metabolic Profiling and MAPK/PI3K/Akt Signaling Pathway. Int. J. Mol. Sci. 2018, 19, 3634. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.; Chen, S.; Fan, H.; Ji, D.; Chen, C.; Sheng, W. GINS2 promotes EMT in pancreatic cancer via specifically stimulating ERK/MAPK signaling. Cancer Gene Ther. 2021, 28, 839–849. [Google Scholar] [CrossRef] [PubMed]
Gene | Description | Chromosome | log2FC | p-Value | Pattern |
---|---|---|---|---|---|
Ndufa12 | NADH:ubiquinone oxidoreductase subunit A12 [Mus musculus (house mouse)] | 10 | 21.70 | 0.034 | up |
Klc1 | kinesin light chain 1 [Mus musculus (house mouse)] | 12 | 18.19 | 0.020 | up |
Map7d1 | MAP7 domain containing 1 [Mus musculus (house mouse)] | 4 | 18.01 | 0.043 | up |
Ccdc124 | coiled-coil domain containing 124 [Mus musculus (house mouse)] | 8 | 15.51 | 0.017 | up |
Gtf2f1 | general transcription factor IIF, polypeptide 1 [Mus musculus (house mouse)] | 17 | 13.92 | 0.026 | up |
Dbn1 | drebrin 1 [Mus musculus (house mouse)] | 13 | 12.82 | 0.023 | up |
Palm | paralemmin [Mus musculus (house mouse)] | 3 | 12.30 | 0.018 | up |
Rrp1 | ribosomal RNA processing 1 [Mus musculus (house mouse)] | 1 | 11.72 | 0.038 | up |
Sfpq | splicing factor proline/glutamine rich (polypyrimidine tract binding protein associated) [Mus musculus (house mouse)] | 4 | 11.36 | 0.013 | up |
Trir | telomerase RNA component interacting RNase [Mus musculus (house mouse)] | 8 | 9.92 | 0.015 | up |
Gabarapl1 | GABA type A receptor associated protein like 1 [Mus musculus (house mouse)] | 6 | −21.73 | 0.001 | down |
Eef1a1 | eukaryotic translation elongation factor 1 alpha 1 [Mus musculus (house mouse)] | 9 | −20.84 | 0.006 | down |
Septin4 | septin 4 [Mus musculus (house mouse)] | 11 | −14.17 | 0.014 | down |
Cox6b1 | cytochrome c oxidase, subunit 6B1 [Mus musculus (house mouse)] | 7 | −10.71 | 0.002 | down |
Atf4 | activating transcription factor 4 [Mus musculus (house mouse)] | 15 | −10.46 | 0.023 | down |
Nsg1 | neuron specific gene family member 1 [Mus musculus (house mouse)] | 5 | −9.15 | 0.008 | down |
Fos | FBJ osteosarcoma oncogene [Mus musculus (house mouse)] | 12 | −7.36 | 0.026 | down |
Eif1 | eukaryotic translation initiation factor 1 [Mus musculus (house mouse)] | 18 | −7.32 | 0.034 | down |
Tuba1b | tubulin, alpha 1B [Mus musculus (house mouse)] | 15 | −7.21 | 0.007 | down |
Mdh1 | malate dehydrogenase 1, NAD (soluble) [Mus musculus (house mouse)] | 1 | −7.13 | 0.043 | down |
Gene | Official Full Name | Chromosome | log2FC | p-Value | Peak Region | Pattern |
---|---|---|---|---|---|---|
Foxb2 | forkhead box B2 [Mus musculus (house mouse)] | 19 | 5.68 | 0.006 | CDS | up |
Tex15 | testis expressed 15 [Mus musculus (house mouse)] | 8 | 5.65 | 0.035 | CDS | up |
Angpt2 | angiopoietin 2 [Mus musculus (house mouse)] | 8 | 5.40 | 7.60 × 10−5 | 3′UTR | up |
Snai2 | snail family transcriptional repressor 2 [Mus musculus (house mouse)] | 16 | 5.25 | 0.004 | CDS | up |
Fstl5 | follistatin like 5 [Mus musculus (house mouse)] | 3 | 5.06 | 2.73 × 10−4 | 3′UTR | up |
Tgfb2 | transforming growth factor beta 2 [Mus musculus (house mouse)] | 1 | 5.01 | 0.007 | CDS | up |
Lrrc2 | leucine rich repeat containing 2 [Mus musculus (house mouse)] | 9 | 4.98 | 7.59 × 10−9 | 3′UTR | up |
Ccdc62 | coiled-coil domain containing 62 [Mus musculus (house mouse)] | 5 | 4.98 | 0.001 | 3′UTR | up |
B3gnt3 | UDP-GlcNAc:betaGal beta-1 [Mus musculus (house mouse)] | 8 | 4.94 | 0.006 | 3′UTR | up |
4930533K18Rik | RIKEN cDNA 4930533K18 gene [Mus musculus (house mouse)] | 10 | 4.77 | 0.014 | 3′UTR | up |
Igbp1b | immunoglobulin (CD79A) binding protein 1b [Mus musculus (house mouse)] | 6 | −3.31 | 0.029 | CDS | down |
Rassf10 | Ras association (RalGDS/AF-6) domain family (N-terminal) member 10 [Mus musculus (house mouse)] | 7 | −2.88 | 2.31 × 10−5 | CDS | down |
Rhoh | ras homolog family member H [Mus musculus (house mouse)] | 5 | −2.59 | 0.037 | 3′UTR | down |
N4bp2 | NEDD4 binding protein 2 [Mus musculus (house mouse)] | 5 | −2.48 | 0.006 | CDS | down |
Txndc2 | thioredoxin domain containing 2 (spermatozoa) [Mus musculus (house mouse)] | 17 | −2.46 | 0.020 | 5′UTR | down |
Rab7b | RAB7B, member RAS oncogene family [Mus musculus (house mouse)] | 1 | −2.40 | 0.039 | 3′UTR | down |
Gm5093 | predicted gene 5093 [Mus musculus (house mouse)] | 17 | −2.40 | 4.31 × 10−5 | CDS | down |
Hist2h3c2 | H3 clustered histone 15 [Mus musculus (house mouse)] | 3 | −2.27 | 0.002 | 3′UTR | down |
P2ry1 | purinergic receptor P2Y [Mus musculus (house mouse)] | 3 | −2.24 | 0.039 | CDS | down |
Erich5 | glutamate rich 5 [Mus musculus (house mouse)] | 15 | −2.17 | 0.013 | CDS | down |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cao, Z.; An, Y.; Lu, Y. Altered N6-Methyladenosine Modification Patterns and Transcript Profiles Contributes to Cognitive Dysfunction in High-Fat Induced Diabetic Mice. Int. J. Mol. Sci. 2024, 25, 1990. https://doi.org/10.3390/ijms25041990
Cao Z, An Y, Lu Y. Altered N6-Methyladenosine Modification Patterns and Transcript Profiles Contributes to Cognitive Dysfunction in High-Fat Induced Diabetic Mice. International Journal of Molecular Sciences. 2024; 25(4):1990. https://doi.org/10.3390/ijms25041990
Chicago/Turabian StyleCao, Zhaoming, Yu An, and Yanhui Lu. 2024. "Altered N6-Methyladenosine Modification Patterns and Transcript Profiles Contributes to Cognitive Dysfunction in High-Fat Induced Diabetic Mice" International Journal of Molecular Sciences 25, no. 4: 1990. https://doi.org/10.3390/ijms25041990
APA StyleCao, Z., An, Y., & Lu, Y. (2024). Altered N6-Methyladenosine Modification Patterns and Transcript Profiles Contributes to Cognitive Dysfunction in High-Fat Induced Diabetic Mice. International Journal of Molecular Sciences, 25(4), 1990. https://doi.org/10.3390/ijms25041990