Cytokine mRNA Expression Profile in Target Organs of IFNAR (-/-) Mice Infected with African Horse Sickness Virus
Abstract
:1. Introduction
2. Results
2.1. Viremia and Clinical Signs after Infection of IFNAR (-/-) Mice with AHSV-3 and AHSV-4
2.2. Measurement of Viral Burden in Organs after AHSV Infection
2.3. Signature of Pro-Inflammatory Cytokines mRNA in Targets Organs of AHSV
2.4. AHSV Infection Increased Levels of Circulating Pro-Inflammatory Cytokines
3. Discussion
4. Materials and Methods
4.1. Virus and Cells
4.2. Animals and Ethics Statement
4.3. Measurement of Viral Burden in Target Organs and Blood by Real Time RT PCR
4.4. Analysis of Inflammatory Cytokines mRNA
4.5. Cytokine Analysis in Serum
4.6. Statistical Analysis
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Matthijnssens, J.; Attoui, H.; Bányai, K.; Brussaard, C.P.D.; Danthi, P.; Del Vas, M.; Dermody, T.S.; Duncan, R.; Fāng, Q.; Johne, R.; et al. ICTV Virus Taxonomy Profile: Sedoreoviridae 2022. J. Gen. Virol. 2022, 103, 001782. [Google Scholar] [CrossRef]
- Belhouchet, M.; Mohd Jaafar, F.; Firth, A.E.; Grimes, J.M.; Mertens, P.P.C.; Attoui, H. Detection of a Fourth Orbivirus Non-Structural Protein. PLoS ONE 2011, 6, e25697. [Google Scholar] [CrossRef]
- Van Vuuren, M.; Penzhorn, B.L. Geographic range of vector-borne infections and their vectors: The role of African wildlife. Rev. Sci. Tech. 2015, 34, 139. [Google Scholar] [CrossRef] [PubMed]
- Castillo-Olivares, J. African Horse Sickness in Thailand: Challenges of Controlling an Outbreak by Vaccination. Equine Vet. J. 2021, 53, 9–14. [Google Scholar] [CrossRef] [PubMed]
- Mellor, P.S.; Boned, J.; Hamblin, C.; Graham, S. Isolations of African Horse Sickness Virus from Vector Insects Made during the 1988 Epizootic in Spain. Epidemiol. Infect. 1990, 105, 447–454. [Google Scholar] [CrossRef] [PubMed]
- Meiswinkel, R.; Paweska, J.T. Evidence for a New Field Culicoides Vector of African Horse Sickness in South Africa. Prev. Vet. Med. 2003, 60, 243–253. [Google Scholar] [CrossRef] [PubMed]
- Mellor, P.S.; Hamblin, C. African Horse Sickness. Vet. Res. 2004, 35, 445–466. [Google Scholar] [CrossRef] [PubMed]
- Castillo-Olivares, J.; Calvo-Pinilla, E.; Casanova, I.; Bachanek-Bankowska, K.; Chiam, R.; Maan, S.; Nieto, J.M.; Ortego, J.; Mertens, P.P.C. A Modified Vaccinia Ankara Virus (MVA) Vaccine Expressing African Horse Sickness Virus (AHSV) VP2 Protects Against AHSV Challenge in an IFNAR −/− Mouse Model. PLoS ONE 2011, 6, e16503. [Google Scholar] [CrossRef] [PubMed]
- Alberca, B.; Bachanek-Bankowska, K.; Cabana, M.; Calvo-Pinilla, E.; Viaplana, E.; Frost, L.; Gubbins, S.; Urniza, A.; Mertens, P.; Castillo-Olivares, J. Vaccination of Horses with a Recombinant Modified Vaccinia Ankara Virus (MVA) Expressing African Horse Sickness (AHS) Virus Major Capsid Protein VP2 Provides Complete Clinical Protection against Challenge. Vaccine 2014, 32, 3670–3674. [Google Scholar] [CrossRef] [PubMed]
- Calvo-Pinilla, E.; de la Poza, F.; Gubbins, S.; Mertens, P.P.C.; Ortego, J.; Castillo-Olivares, J. Vaccination of Mice with a Modified Vaccinia Ankara (MVA) Virus Expressing the African Horse Sickness Virus (AHSV) Capsid Protein VP2 Induces Virus Neutralising Antibodies That Confer Protection against AHSV upon Passive Immunisation. Virus Res. 2014, 180, 23–30. [Google Scholar] [CrossRef] [PubMed]
- Coetzer, J.A.W.; Thomson, G.R.; Tustin, R.C. Infectious Diseases of Livestock with Special Reference to Southern Africa; Oxford University Press: Cape Town, South Africa, 1994; ISBN 978-0-19-570506-5. [Google Scholar]
- Marín-López, A.; Barreiro-Piñeiro, N.; Utrilla-Trigo, S.; Barriales, D.; Benavente, J.; Nogales, A.; Martínez-Costas, J.; Ortego, J.; Calvo-Pinilla, E. Cross-Protective Immune Responses against African Horse Sickness Virus after Vaccination with Protein NS1 Delivered by Avian Reovirus MuNS Microspheres and Modified Vaccinia Virus Ankara. Vaccine 2020, 38, 882–889. [Google Scholar] [CrossRef] [PubMed]
- Jones, L.M.; Hawes, P.C.; Salguero, F.J.; Castillo-Olivares, J. Pathological Features of African Horse Sickness Virus Infection in IFNAR-/- Mice. Front. Vet. Sci. 2023, 10, 1114240. [Google Scholar] [CrossRef]
- Calvo-Pinilla, E.; Gubbins, S.; Mertens, P.; Ortego, J.; Castillo-Olivares, J. The Immunogenicity of Recombinant Vaccines Based on Modified Vaccinia Ankara (MVA) Viruses Expressing African Horse Sickness Virus VP2 Antigens Depends on the Levels of Expressed VP2 Protein Delivered to the Host. Antiviral Res. 2018, 154, 132–139. [Google Scholar] [CrossRef] [PubMed]
- Mohd Jaafar, F.; Monsion, B.; Belhouchet, M.; Mertens, P.P.C.; Attoui, H. Inhibition of Orbivirus Replication by Fluvastatin and Identification of the Key Elements of the Mevalonate Pathway Involved. Viruses 2021, 13, 1437. [Google Scholar] [CrossRef] [PubMed]
- O’Kennedy, M.M.; Coetzee, P.; Koekemoer, O.; du Plessis, L.; Lourens, C.W.; Kwezi, L.; du Preez, I.; Mamputha, S.; Mokoena, N.B.; Rutkowska, D.A.; et al. Protective Immunity of Plant-Produced African Horse Sickness Virus Serotype 5 Chimaeric Virus-like Particles (VLPs) and Viral Protein 2 (VP2) Vaccines in IFNAR-/- Mice. Vaccine 2022, 40, 5160–5169. [Google Scholar] [CrossRef] [PubMed]
- Janowicz, A.; Caporale, M.; Shaw, A.; Gulletta, S.; Di Gialleonardo, L.; Ratinier, M.; Palmarini, M. Multiple Genome Segments Determine Virulence of Bluetongue Virus Serotype 8. J. Virol. 2015, 89, 5238–5249. [Google Scholar] [CrossRef] [PubMed]
- Fay, P.C.; Attoui, H.; Batten, C.; Mohd Jaafar, F.; Lomonossoff, G.P.; Daly, J.M.; Mertens, P.P.C. Bluetongue Virus Outer-Capsid Protein VP2 Expressed in Nicotiana Benthamiana Raises Neutralising Antibodies and a Protective Immune Response in IFNAR-/- Mice. Vaccine X 2019, 2, 100026. [Google Scholar] [CrossRef]
- Attoui, H.; Mohd Jaafar, F.; Monsion, B.; Klonjkowski, B.; Reid, E.; Fay, P.C.; Saunders, K.; Lomonossoff, G.; Haig, D.; Mertens, P.P.C. Increased Clinical Signs and Mortality in IFNAR(−/−) Mice Immunised with the Bluetongue Virus Outer-Capsid Proteins VP2 or VP5, after Challenge with an Attenuated Heterologous Serotype. Pathogens 2023, 12, 602. [Google Scholar] [CrossRef]
- Rojas, J.M.; Barba-Moreno, D.; Avia, M.; Sevilla, N.; Martín, V. Vaccination with Recombinant Adenoviruses Expressing the Bluetongue Virus Subunits VP7 and VP2 Provides Protection Against Heterologous Virus Challenge. Front. Vet. Sci. 2021, 8, 645561. [Google Scholar] [CrossRef]
- Rojas, J.M.; Peña, L.; Martín, V.; Sevilla, N. Ovine and Murine T Cell Epitopes from the Non-Structural Protein 1 (NS1) of Bluetongue Virus Serotype 8 (BTV-8) Are Shared among Viral Serotypes. Vet. Res. 2014, 45, 30. [Google Scholar] [CrossRef] [PubMed]
- Jiménez-Cabello, L.; Utrilla-Trigo, S.; Barreiro-Piñeiro, N.; Pose-Boirazian, T.; Martínez-Costas, J.; Marín-López, A.; Ortego, J. Nanoparticle- and Microparticle-Based Vaccines against Orbiviruses of Veterinary Importance. Vaccines 2022, 10, 1124. [Google Scholar] [CrossRef]
- Pourcelot, M.; da Silva Moraes, R.A.; Lacour, S.; Fablet, A.; Caignard, G.; Vitour, D. Activation of Inflammasome during Bluetongue Virus Infection. Pathogens 2023, 12, 801. [Google Scholar] [CrossRef]
- Clift, S.J.; Penrith, M.-L. Tissue and Cell Tropism of African Horse Sickness Virus Demonstrated by Immunoperoxidase Labeling in Natural and Experimental Infection in Horses in South Africa. Vet. Pathol. 2010, 47, 690–697. [Google Scholar] [CrossRef]
- Faber, E.; Tshilwane, S.I.; Kleef, M.V.; Pretorius, A. Virulent African Horse Sickness Virus Serotype 4 Interferes with the Innate Immune Response in Horse Peripheral Blood Mononuclear Cells in Vitro. Infect. Genet. Evol. 2021, 91, 104836. [Google Scholar] [CrossRef]
- Calvo-Pinilla, E.; de la Poza, F.; Gubbins, S.; Mertens, P.P.C.; Ortego, J.; Castillo-Olivares, J. Antiserum from Mice Vaccinated with Modified Vaccinia Ankara Virus Expressing African Horse Sickness Virus (AHSV) VP2 Provides Protection When It Is Administered 48h before, or 48h after Challenge. Antiviral Res. 2015, 116, 27–33. [Google Scholar] [CrossRef]
- House, J.A. African Horse Sickness. Vet. Clin. N. Am. Equine Pract. 1993, 9, 355–364. [Google Scholar] [CrossRef] [PubMed]
- Stern, A.W. African Horse Sickness. Compend. Contin. Educ. Vet. 2011, 33, E1–E5. [Google Scholar] [PubMed]
- Carrasco, L.; Sánchez, C.; Gómez-Villamandos, J.C.; Laviada, M.D.; Bautista, M.J.; Martínez-Torrecuadrada, J.; Sánchez-Vizcaíno, J.M.; Sierra, M.A. The Role of Pulmonary Intravascular Macrophages in the Pathogenesis of African Horse Sickness. J. Comp. Pathol. 1999, 121, 25–38. [Google Scholar] [CrossRef] [PubMed]
- Takeuchi, O.; Akira, S. Pattern Recognition Receptors and Inflammation. Cell 2010, 140, 805–820. [Google Scholar] [CrossRef] [PubMed]
- Romagnani, S. T-Cell Subsets (Th1 versus Th2). Ann. Allergy Asthma Immunol. 2000, 85, 9–18, quiz 18, 21. [Google Scholar] [CrossRef] [PubMed]
- DeMaula, C.D.; Leutenegger, C.M.; Bonneau, K.R.; MacLachlan, N.J. The Role of Endothelial Cell-Derived Inflammatory and Vasoactive Mediators in the Pathogenesis of Bluetongue. Virology 2002, 296, 330–337. [Google Scholar] [CrossRef]
- DeMaula, C.D.; Jutila, M.A.; Wilson, D.W.; MacLachlan, N.J. Infection Kinetics, Prostacyclin Release and Cytokine-Mediated Modulation of the Mechanism of Cell Death during Bluetongue Virus Infection of Cultured Ovine and Bovine Pulmonary Artery and Lung Microvascular Endothelial Cells. J. Gen. Virol. 2001, 82, 787–794. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Cordón, P.J.; Pedrera, M.; Risalde, M.A.; Molina, V.; Rodríguez-Sánchez, B.; Núñez, A.; Sánchez-Vizcaíno, J.M.; Gómez-Villamandos, J.C. Potential Role of Proinflammatory Cytokines in the Pathogenetic Mechanisms of Vascular Lesions in Goats Naturally Infected with Bluetongue Virus Serotype 1. Transbound. Emerg. Dis. 2013, 60, 252–262. [Google Scholar] [CrossRef]
- Dhanasekaran, S.; Vignesh, A.R.; Raj, G.D.; Reddy, Y.K.M.; Raja, A.; Tirumurugaan, K.G. Comparative Analysis of Innate Immune Response Following In Vitro Stimulation of Sheep and Goat Peripheral Blood Mononuclear Cells with Bluetongue Virus—Serotype 23. Vet. Res. Commun. 2013, 37, 319–327. [Google Scholar] [CrossRef]
- Pretorius, A.; Faber, F.E.; van Kleef, M. Immune Gene Expression Profiling of PBMC Isolated from Horses Vaccinated with Attenuated African Horsesickness Virus Serotype 4. Immunobiology 2016, 221, 236–244. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, T.; Narazaki, M.; Kishimoto, T. IL-6 in Inflammation, Immunity, and Disease. Cold Spring Harb. Perspect. Biol. 2014, 6, a016295. [Google Scholar] [CrossRef]
- Dinarello, C.A. Interleukin-1beta. Crit. Care Med. 2005, 33, S460–S462. [Google Scholar] [CrossRef]
- Rouault, C.; Pellegrinelli, V.; Schilch, R.; Cotillard, A.; Poitou, C.; Tordjman, J.; Sell, H.; Clément, K.; Lacasa, D. Roles of Chemokine Ligand-2 (CXCL2) and Neutrophils in Influencing Endothelial Cell Function and Inflammation of Human Adipose Tissue. Endocrinology 2013, 154, 1069–1079. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Liu, J.; Yang, X.; Jiang, M.; Wang, Q.; Zhang, L.; Ma, Y.; Shen, Z.; Tian, Z.; Cao, X. Cis-Acting Lnc-Cxcl2 Restrains Neutrophil-Mediated Lung Inflammation by Inhibiting Epithelial Cell CXCL2 Expression in Virus Infection. Proc. Natl. Acad. Sci. USA 2021, 118, e2108276118. [Google Scholar] [CrossRef]
- Zhang, J.-M.; An, J. Cytokines, Inflammation and Pain. Int. Anesthesiol. Clin. 2007, 45, 27–37. [Google Scholar] [CrossRef]
- Yang, J.; Zhang, L.; Yu, C.; Yang, X.-F.; Wang, H. Monocyte and Macrophage Differentiation: Circulation Inflammatory Monocyte as Biomarker for Inflammatory Diseases. Biomark. Res. 2014, 2, 1. [Google Scholar] [CrossRef] [PubMed]
- Karlmark, K.R.; Tacke, F.; Dunay, I.R. Monocytes in Health and Disease—Minireview. Eur. J. Microbiol. Immunol. 2012, 2, 97–102. [Google Scholar] [CrossRef] [PubMed]
- Agüero, M.; Gómez-Tejedor, C.; Angeles Cubillo, M.; Rubio, C.; Romero, E.; Jiménez-Clavero, A. Real-Time Fluorogenic Reverse Transcription Polymerase Chain Reaction Assay for Detection of African Horse Sickness Virus. J. Vet. Diagn. Investig. 2008, 20, 325–328. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Calvo-Pinilla, E.; Jiménez-Cabello, L.; Utrilla-Trigo, S.; Illescas-Amo, M.; Ortego, J. Cytokine mRNA Expression Profile in Target Organs of IFNAR (-/-) Mice Infected with African Horse Sickness Virus. Int. J. Mol. Sci. 2024, 25, 2065. https://doi.org/10.3390/ijms25042065
Calvo-Pinilla E, Jiménez-Cabello L, Utrilla-Trigo S, Illescas-Amo M, Ortego J. Cytokine mRNA Expression Profile in Target Organs of IFNAR (-/-) Mice Infected with African Horse Sickness Virus. International Journal of Molecular Sciences. 2024; 25(4):2065. https://doi.org/10.3390/ijms25042065
Chicago/Turabian StyleCalvo-Pinilla, Eva, Luis Jiménez-Cabello, Sergio Utrilla-Trigo, Miguel Illescas-Amo, and Javier Ortego. 2024. "Cytokine mRNA Expression Profile in Target Organs of IFNAR (-/-) Mice Infected with African Horse Sickness Virus" International Journal of Molecular Sciences 25, no. 4: 2065. https://doi.org/10.3390/ijms25042065
APA StyleCalvo-Pinilla, E., Jiménez-Cabello, L., Utrilla-Trigo, S., Illescas-Amo, M., & Ortego, J. (2024). Cytokine mRNA Expression Profile in Target Organs of IFNAR (-/-) Mice Infected with African Horse Sickness Virus. International Journal of Molecular Sciences, 25(4), 2065. https://doi.org/10.3390/ijms25042065