Recent Trends in Non-Invasive Methods of Diagnosis and Evaluation of Inflammatory Bowel Disease: A Short Review
Abstract
:1. Introduction
2. Material and Methods
3. Results and Discussion
3.1. Scoring Systems in Inflammatory Bowel Disease
3.2. Serological Markers
3.3. Blood Inflammatory Markers
3.4. Fecal Markers
3.5. Other Non-Invasive Methods of Evaluating IBD
3.6. Imaging Methods in Inflammatory Bowel Diseases
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Carrière, J.; Darfeuille-Michaud, A.; Nguyen, H.T.T. Infectious etiopathogenesis of Crohn’s disease. World J. Gastroenterol. 2014, 20, 12102–12117. [Google Scholar] [CrossRef] [PubMed]
- Borowitz, S.M. The epidemiology of inflammatory bowel disease: Clues to pathogenesis? Front. Pediatr. 2023, 10, 1103713. [Google Scholar] [CrossRef] [PubMed]
- Rani, R.A.; Ali, R.A.R.; Lee, Y.Y. Irritable bowel syndrome and inflammatory bowel disease overlap syndrome: Pieces of the puzzle are falling into place. Intest. Res. 2016, 14, 297–304. [Google Scholar] [CrossRef]
- Porter, C.K.; Cash, B.D.; Pimentel, M.; Akinseye, A.; Riddle, M.S. Risk of inflammatory bowel disease following a diagnosis of irritable bowel syndrome. BMC Gastroenterol. 2012, 12, 55. [Google Scholar] [CrossRef]
- Molodecky, N.A.; Soon, I.S.; Rabi, D.M.; Ghali, W.A.; Ferris, M.; Chernoff, G.; Benchimol, E.I.; Panaccione, R.; Ghosh, S.; Barkema, H.W.; et al. Increasing Incidence and Prevalence of the Inflammatory Bowel Diseases With Time, Based on Systematic Review. Gastroenterology 2012, 142, 46–54.e42. [Google Scholar] [CrossRef]
- Park, S.J.; Kim, W.H.; Cheon, J.H. Clinical characteristics and treatment of inflammatory bowel disease: A comparison of Eastern and Western perspectives. World J. Gastroenterol. 2014, 20, 11525–11537. [Google Scholar] [CrossRef]
- Best, W.R.; Becktel, J.M.; Singleton, J.W.; Kern, F. Development of a Crohns disease activity index: National Cooperative Crohn’s Disease Study. Gastroenterology 1976, 70, 439–444. [Google Scholar] [CrossRef] [PubMed]
- Su, C.; Lewis, J.D.; Goldberg, B.; Brensinger, C.; Lichtenstein, G.R. A Meta-Analysis of the Placebo Rates of Remission and Response in Clinical Trials of Active Ulcerative Colitis. Gastroenterology 2007, 132, 516–526. [Google Scholar] [CrossRef]
- Harvey, R.; Bradshaw, J. A simple index of Crohn’s-Disease activity. Lancet 1980, 315, 514. [Google Scholar] [CrossRef]
- Vermeire, S.; Schreiber, S.; Sandborn, W.J.; Dubois, C.; Rutgeerts, P. Correlation Between the Crohn’s Disease Activity and Harvey–Bradshaw Indices in Assessing Crohn’s Disease Severity. Clin. Gastroenterol. Hepatol. 2010, 8, 357–363. [Google Scholar] [CrossRef]
- Echarri, A.; Vera, I.; Ollero, V.; Arajol, C.; Riestra, S.; Robledo, P.; Calvo, M.; Gallego, F.; Ceballos, D.; Castro, B.; et al. The Harvey–Bradshaw Index Adapted to a Mobile Application Compared with In-Clinic Assessment: The MediCrohn Study. Telemed. e-Health 2020, 26, 78–86. [Google Scholar] [CrossRef]
- Evertsz’, F.B.; Hoeks, C.C.M.Q.; Nieuwkerk, P.T.; Stokkers, P.C.F.; Ponsioen, C.Y.; Bockting, C.L.H.; Sanderman, R.; Sprangers, M.A.G. Development of the Patient Harvey Bradshaw Index and a Comparison with a Clinician-based Harvey Bradshaw Index Assessment of Crohn’s Disease Activity. J. Clin. Gastroenterol. 2013, 47, 850–856. [Google Scholar] [CrossRef]
- Peyrin-Biroulet, L.; Reinisch, W.; Colombel, J.-F.; Mantzaris, G.J.; Kornbluth, A.; Diamond, R.; Rutgeerts, P.; Tang, L.K.; Cornillie, F.J.; Sandborn, W.J. Clinical disease activity, C-reactive protein normalisation and mucosal healing in Crohn’s disease in the SONIC trial. Gut 2013, 63, 88–95. [Google Scholar] [CrossRef] [PubMed]
- Ishida, N.; Miyazu, T.; Suzuki, T.; Tamura, S.; Tani, S.; Yamade, M.; Hamaya, Y.; Iwaizumi, M.; Osawa, S.; Furuta, T.; et al. Evaluation of the modified Crohn’s disease activity index in patients with Crohn disease with enterostomy: A single-center observational study. Medicine 2021, 100, e24717. [Google Scholar] [CrossRef] [PubMed]
- Truelove, S.C.; Witts, L.J. Cortisone in ulcerative colitis; final report on a therapeutic trial. Br. Med. J. 1955, 2, 1041–1048. [Google Scholar] [CrossRef] [PubMed]
- Peyrin-Biroulet, L.; Panés, J.; Sandborn, W.J.; Vermeire, S.; Danese, S.; Feagan, B.G.; Colombel, J.-F.; Hanauer, S.B.; Rycroft, B. Defining Disease Severity in Inflammatory Bowel Diseases: Current and Future Directions. Clin. Gastroenterol. Hepatol. 2016, 14, 348–354.e17. [Google Scholar] [CrossRef]
- Schroeder, K.W.; Tremaine, W.J.; Ilstrup, D.M. Coated Oral 5-Aminosalicylic Acid Therapy for Mildly to Moderately Active Ulcerative Colitis. N. Engl. J. Med. 1987, 317, 1625–1629. [Google Scholar] [CrossRef]
- Lewis, J.D.; Chuai, S.; Nessel, L.; Lichtenstein, G.R.; Aberra, F.N.; Ellenberg, J.H. Use of the noninvasive components of the mayo score to assess clinical response in Ulcerative Colitis. Inflamm. Bowel Dis. 2008, 14, 1660–1666. [Google Scholar] [CrossRef]
- Sandborn, W.J.; Sands, B.E.; Vermeire, S.; Leung, Y.; Guo, X.; Modesto, I.; Su, C.; Wang, W.; Panés, J. Modified Mayo score versus Mayo score for evaluation of treatment efficacy in patients with ulcerative colitis: Data from the tofacitinib OCTAVE program. Ther. Adv. Gastroenterol. 2022, 15, 17562848221136331. [Google Scholar] [CrossRef]
- Mary, J.Y.; Modigliani, R. Development and validation of an endoscopic index of the severity for Crohn’s disease: A prospective multicentre study. Groupe d’Etudes Thérapeutiques des Affections Inflammatoires du Tube Digestif (GETAID). Gut 1989, 30, 983–989. [Google Scholar] [CrossRef]
- Travis, S.P.; Schnell, D.; Krzeski, P.; Abreu, M.T.; Altman, D.G.; Colombel, J.-F.; Feagan, B.G.; Hanauer, S.B.; Lémann, M.; Lichtenstein, G.R.; et al. Developing an instrument to assess the endoscopic severity of ulcerative colitis: The Ulcerative Colitis Endoscopic Index of Severity (UCEIS). Gut 2012, 61, 535–542. [Google Scholar] [CrossRef] [PubMed]
- Ardizzone, S.; Cassinotti, A.; Duca, P.; Mazzali, C.; Penati, C.; Manes, G.; Marmo, R.; Massari, A.; Molteni, P.; Maconi, G.; et al. Mucosal Healing Predicts Late Outcomes After the First Course of Corticosteroids for Newly Diagnosed Ulcerative Colitis. Clin. Gastroenterol. Hepatol. 2011, 9, 483–489.e3. [Google Scholar] [CrossRef] [PubMed]
- Ferrante, M.; Vermeire, S.; Fidder, H.; Schnitzler, F.; Noman, M.; Van Assche, G.; De Hertogh, G.; Hoffman, I.; D’Hoore, A.; Van Steen, K.; et al. Long-term outcome after infliximab for refractory ulcerative colitis. J. Crohn’s Colitis 2008, 2, 219–225. [Google Scholar] [CrossRef]
- Colombel, J.F.; Rutgeerts, P.; Reinisch, W.; Esser, D.; Wang, Y.; Lang, Y.; Marano, C.W.; Strauss, R.; Oddens, B.J.; Feagan, B.G.; et al. Early Mucosal Healing With Infliximab Is Associated With Improved Long-term Clinical Outcomes in Ulcerative Colitis. Gastroenterology 2011, 141, 1194–1201. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.M.; Lee, K.-M. Endoscopic Diagnosis and Differentiation of Inflammatory Bowel Disease. Clin. Endosc. 2016, 49, 370–375. [Google Scholar] [CrossRef] [PubMed]
- Travis, S.P.; Schnell, D.; Krzeski, P.; Abreu, M.T.; Altman, D.G.; Colombel, J.; Feagan, B.G.; Hanauer, S.B.; Lichtenstein, G.R.; Marteau, P.R.; et al. Reliability and Initial Validation of the Ulcerative Colitis Endoscopic Index of Severity. Gastroenterology 2013, 145, 987–995. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.S.; Kim, E.S.; Moon, W. Chronological Review of Endoscopic Indices in Inflammatory Bowel Disease. Clin. Endosc. 2019, 52, 129–136. [Google Scholar] [CrossRef]
- Papp, M.; Altorjay, I.; Norman, G.L.; Shums, Z.; Palatka, K.; Vitalis, Z.; Ildikó, F.; Gabriella, L.; Judit, T.; Miklós, L.U.; et al. Seroreactivity to microbial components in Crohn’s disease is associated with ileal involvement, noninflammatory disease behavior and NOD2/CARD15 genotype, but not with risk for surgery in a Hungarian cohort of IBD patients. Inflamm. Bowel Dis. 2007, 13, 984–992. [Google Scholar] [CrossRef]
- Kuna, A.T. Serological markers of inflammatory bowel disease. Biochem. Medica 2013, 23, 28–42. [Google Scholar] [CrossRef]
- Rump, J.A.; Schölmerich, J.; Gross, V.; Roth, M.; Helfesrieder, R.; Rautmann, A.; Lüdemann, J.; Gross, W.L.; Peter, H.H. A New Type of Perinuclear Anti-Neutrophil Cytoplasmic Antibody (p-ANCA) in Active Ulcerative Colitis but not in Crohn’s Disease. Immunobiology 1990, 181, 406–413. [Google Scholar] [CrossRef]
- Austin, G.L.; Shaheen, N.J.; Sandler, R.S. Positive and Negative Predictive Values: Use of Inflammatory Bowel Disease Serologic Markers. Am. J. Gastroenterol. 2006, 101, 413–416. [Google Scholar] [CrossRef] [PubMed]
- Lawrance, I.C.; Murray, K.; Hall, A.; Sung, J.J.; Leong, R. A Prospective Comparative Study of ASCA and pANCA in Chinese and Caucasian IBD Patients. Am. J. Gastroenterol. 2004, 99, 2186–2194. [Google Scholar] [CrossRef] [PubMed]
- Reese, G.E.; Constantinides, V.A.; Simillis, C.; Darzi, A.W.; Orchard, T.R.; Fazio, V.W.; Tekkis, P.P. Diagnostic precision of anti-Saccharomyces cerevisiae antibodies and perinuclear antineutrophil cytoplasmic antibodies in inflammatory bowel disease. Am. J. Gastroenterol. 2006, 101, 2410–2422. [Google Scholar] [CrossRef] [PubMed]
- Mitsuyama, K.; Niwa, M.; Takedatsu, H.; Yamasaki, H.; Kuwaki, K.; Yoshioka, S.; Yamauchi, R.; Fukunaga, S.; Torimura, T. Antibody markers in the diagnosis of inflammatory bowel disease. World J. Gastroenterol. 2016, 22, 1304–1310. [Google Scholar] [CrossRef] [PubMed]
- Joossens, S.; Reinisch, W.; Vermeire, S.; Sendid, B.; Poulain, D.; Peeters, M.; Geboes, K.; Bossuyt, X.; Vandewalle, P.; Oberhuber, G.; et al. The value of serologic markers in indeterminate colitis: A prospective follow-up study. Gastroenterology 2002, 122, 1242–1247. [Google Scholar] [CrossRef] [PubMed]
- Saxon, A.; Shanahan, F.; Landers, C.; Ganz, T.; Targan, S. A Distinct Subset of Antineutrophil Cytoplasmic Antibodies Is Associated with Inflammatory Bowel Disease. J. Allergy Clin. Immunol. 1990, 86, 202–210. [Google Scholar] [CrossRef] [PubMed]
- Bossuyt, X. Serologic Markers in Inflammatory Bowel Disease. Clin. Chem. 2006, 52, 171–181. [Google Scholar] [CrossRef]
- Mokrowiecka, A.; Daniel, P.; Słomka, M.; Majak, P.; Malecka-Panas, E. Clinical utility of serological markers in inflammatory bowel disease. Hepatogastroenterology 2009, 56, 162–166. [Google Scholar]
- Zhou, G.; Song, Y.; Yang, W.; Guo, Y.; Fang, L.; Chen, Y.; Liu, Z. ASCA, ANCA, ALCA and Many More: Are They Useful in the Diagnosis of Inflammatory Bowel Disease? Dig. Dis. 2016, 34, 90–97. [Google Scholar] [CrossRef]
- Dotan, I.; Fishman, S.; Dgani, Y.; Schwartz, M.; Karban, A.; Lerner, A.; Weishauss, O.; Spector, L.; Shtevi, A.; Altstock, R.T.; et al. Antibodies Against Laminaribioside and Chitobioside Are Novel Serologic Markers in Crohn’s Disease. Gastroenterology 2006, 131, 366–378. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Conklin, L.; Alex, P. New serological biomarkers of inflammatory bowel disease. World J. Gastroenterol. 2008, 14, 5115–5124. [Google Scholar] [CrossRef]
- Seow, C.H.; Stempak, J.M.; Xu, W.; Lan, H.; Griffiths, A.M.; Greenberg, G.R.; Steinhart, A.H.; Dotan, N.; Silverberg, M.S. Novel anti-glycan antibodies related to inflammatory bowel disease diagnosis and phenotype. Am. J. Gastroenterol. 2009, 104, 1426–1434. [Google Scholar] [CrossRef]
- Rieder, F.; Schleder, S.; Wolf, A.; Dirmeier, A.; Strauch, U.; Obermeier, F.; Lopez, R.; Spector, L.; Fire, E.; Yarden, J.; et al. Association of the novel serologic anti-glycan antibodies anti-laminarin and anti-chitin with complicated Crohn’s disease behavior. Inflamm. Bowel Dis. 2010, 16, 263–274. [Google Scholar] [CrossRef] [PubMed]
- Bonneau, J.; Dumestre-Perard, C.; Rinaudo-Gaujous, M.; Genin, C.; Sparrow, M.; Roblin, X.; Paul, S. Systematic review: New serological markers (anti-glycan, anti-GP2, anti-GM-CSF Ab) in the prediction of IBD patient outcomes. Autoimmun. Rev. 2015, 14, 231–245. [Google Scholar] [CrossRef] [PubMed]
- Joossens, M.; Van Steen, K.; Branche, J.; Sendid, B.; Rutgeerts, P.; Vasseur, F.; Poulain, D.; Broly, F.; Colombel, J.-F.; Vermeire, S.; et al. Familial aggregation and antimicrobial response dose-dependently affect the risk for Crohn’s disease. Inflamm. Bowel Dis. 2010, 16, 58–67. [Google Scholar] [CrossRef] [PubMed]
- Paul, S.; Boschetti, G.; Rinaudo-Gaujous, M.; Moreau, A.; Del Tedesco, E.; Bonneau, J.; Presles, E.; Mounsef, F.; Clavel, L.; Genin, C.; et al. Association of Anti-glycan Antibodies and Inflammatory Bowel Disease Course. J. Crohn’s Colitis 2015, 9, 445–451. [Google Scholar] [CrossRef] [PubMed]
- Kaul, A.; Hutfless, S.; Liu, L.; Bayless, T.M.; Marohn, M.R.; Li, X. Serum anti-glycan antibody biomarkers for inflammatory bowel disease diagnosis and progression: A systematic review and meta-analysis. Inflamm. Bowel Dis. 2012, 18, 1872–1884. [Google Scholar] [CrossRef]
- Cohavy, O.; Bruckner, D.; Gordon, L.K.; Misra, R.; Wei, B.; Eggena, M.E.; Targan, S.R.; Braun, J. Colonic Bacteria Express an Ulcerative Colitis pANCA-Related Protein Epitope. Infect. Immun. 2000, 68, 1542–1548. [Google Scholar] [CrossRef] [PubMed]
- Prideaux, L.; De Cruz, P.; Ng, S.C.; Kamm, M.A. Serological antibodies in inflammatory bowel disease: A systematic review. Inflamm. Bowel Dis. 2012, 18, 1340–1355. [Google Scholar] [CrossRef]
- Barahona-Garrido, J.; Sarti, H.M.; Barahona-Garrido, M.K.; Hernández-Calleros, J.; Coss-Adame, E.; Garcia-Saenz, S.M.; Yamamoto-Furusho, J.K. Serological markers in inflammatory bowel disease: A review of their clinical utility. Rev. Gastroenterol. Mex. 2009, 74, 230–237. [Google Scholar]
- Papp, M.; Norman, G.L.; Altorjay, I.; Lakatos, P.L. Utility of serological markers in inflammatory bowel diseases: Gadget or magic? World J. Gastroenterol. 2007, 13, 2028–2036. [Google Scholar] [CrossRef] [PubMed]
- Mow, W.S.; Vasiliauskas, E.A.; Lin, Y.C.; Fleshner, P.R.; Papadakis, K.A.; Taylor, K.D.; Landers, C.J.; Abreu-Martin, M.T.; Rotter, J.I.; Yang, H.; et al. Association of antibody responses to microbial antigens and complications of small bowel Crohn’s disease. Gastroenterology 2004, 126, 414–424. [Google Scholar] [CrossRef]
- Joossens, S.; Colombel, J.-F.; Landers, C.; Poulain, D.; Geboes, K.; Bossuyt, X.; Targan, S.; Rutgeerts, P.; Reinisch, W. Anti-outer membrane of porin C and anti-I2 antibodies in indeterminate colitis. Gut 2006, 55, 1667–1669. [Google Scholar] [CrossRef]
- Hui, T.; Landers, C.; Vasiliauskas, E.; Abreu, M.; Dubinsky, M.; Papadakis, K.A.; Price, J.; Lin, Y.-C.; Huiying, Y.; Targan, S.; et al. Serologic Responses in Indeterminate Colitis Patients Before Ileal Pouch-Anal Anastomosis May Determine Those at Risk for Continuous Pouch Inflammation. Dis. Colon Rectum 2005, 48, 1254–1262. [Google Scholar] [CrossRef]
- Lodes, M.J.; Cong, Y.; Elson, C.O.; Mohamath, R.; Landers, C.J.; Targan, S.R.; Fort, M.; Hershberg, R.M. Bacterial flagellin is a dominant antigen in Crohn disease. J. Clin. Investig. 2004, 113, 1296–1306. [Google Scholar] [CrossRef]
- Xiong, Y.; Wang, G.Z.; Zhou, J.Q.; Xia, B.Q.; Wang, X.Y.; Jiang, B. Serum antibodies to microbial antigens for Crohn’s disease progression: A meta-analysis. Eur. J. Gastroenterol. Hepatol. 2014, 26, 733–742. [Google Scholar] [CrossRef]
- Kevans, D.; Waterman, M.; Milgrom, R.; Xu, W.; Van Assche, G.; Silverberg, M. Serological markers associated with disease behavior and response to anti-tumor necrosis factor therapy in ulcerative colitis. J. Gastroenterol. Hepatol. 2015, 30, 64–70. [Google Scholar] [CrossRef]
- Elkadri, A.A.; Stempak, J.M.; Walters, T.D.; Lal, S.; Griffiths, A.M.; Steinhart, A.H.; Silverberg, M.S. Serum Antibodies Associated with Complex Inflammatory Bowel Disease. Inflamm. Bowel Dis. 2013, 19, 1499–1505. [Google Scholar] [CrossRef]
- Caneparo, V.; Pastorelli, L.; Pisani, L.F.; Bruni, B.; Prodam, F.; Boldorini, R.; Roggenbuck, D.; Vecchi, M.; Landolfo, S.; Gariglio, M.; et al. Distinct Anti-IFI16 and Anti-GP2 Antibodies in Inflammatory Bowel Disease and Their Variation with Infliximab Therapy. Inflamm. Bowel Dis. 2016, 22, 2977–2987. [Google Scholar] [CrossRef]
- Rosen, M.J.; Dhawan, A.; Saeed, S.A. Inflammatory Bowel Disease in Children and Adolescents. JAMA Pediatr. 2015, 169, 1053–1060. [Google Scholar] [CrossRef]
- Lomazi, E.A.; Oba, J.; Rodrigues, M.; Marmo, M.C.D.R.; Sandy, N.S.; Sdepanian, V.L.; Imbrizi, M.; Baima, J.P.; Magro, D.O.; Albuquerque, I.C.; et al. Brazilian Consensus on the management of inflammatory bowel diseases in pediatric patients: A Consensus of the Brazilian Organization for Crohn’s disease and colitis (GEDIIB). Arq. Gastroenterol. 2023, 59, 85–124. [Google Scholar] [CrossRef]
- Hamilton, A.L.; Kamm, M.A.; De Cruz, P.; Wright, E.K.; Selvaraj, F.; Princen, F.; Gorelik, A.; Liew, D.; Lawrance, I.C.; Andrews, J.M.; et al. Serologic antibodies in relation to outcome in postoperative Crohn’s disease. J. Gastroenterol. Hepatol. 2017, 32, 1195–1203. [Google Scholar] [CrossRef]
- Stöcker, W.; Otte, M.; Ulrich, S.; Normann, D.; Finkbeiner, H.; Stöcker, K.; Jantschek, G.; Scriba, P.C. Autoimmunity to Pancreatic Juice in Crohn’s Disease Results of an Autoantibody Screening in Patients with Chronic Inflammatory Bowel Disease. Scand. J. Gastroenterol. 1987, 22 (Suppl. S139), 41–52. [Google Scholar] [CrossRef]
- Schulte-Pelkum, J.; Radice, A.; Norman, G.L.; Hoyos, M.L.; Lakos, G.; Buchner, C.; Musset, L.; Miyara, M.; Stinton, L.; Mahler, M. Novel Clinical and Diagnostic Aspects of Antineutrophil Cytoplasmic Antibodies. J. Immunol. Res. 2014, 2014, 185416. [Google Scholar] [CrossRef]
- Komorowski, L.; Teegen, B.; Probst, C.; Aulinger-Stöcker, K.; Sina, C.; Fellermann, K.; Stöcker, W. Autoantibodies against exocrine pancreas in Crohn’s disease are directed against two antigens: The glycoproteins CUZD1 and GP2. J. Crohn’s Colitis 2013, 7, 780–790. [Google Scholar] [CrossRef]
- Werner, L.; Paclik, D.; Fritz, C.; Reinhold, D.; Roggenbuck, D.; Sturm, A. Identification of Pancreatic Glycoprotein 2 as an Endogenous Immunomodulator of Innate and Adaptive Immune Responses. J. Immunol. 2012, 189, 2774–2783. [Google Scholar] [CrossRef]
- Ohno, H.; Hase, K. Glycoprotein 2 (GP2) grabbing the FimH+ bacteria into M cells for mucosal immunity. Gut Microbes. 2010, 1, 407–410. [Google Scholar] [CrossRef]
- Somma, V.; Ababneh, H.; Ababneh, A.; Gatti, S.; Romagnoli, V.; Bendia, E.; Conrad, K.; Bogdanos, D.P.; Roggenbuck, D.; Ciarrocchi, G. The novel Crohn’s disease marker anti-GP2 antibody is associated with ileocolonic location of disease. Gastroenterol. Res. Pract. 2013, 2013, 683824. [Google Scholar] [CrossRef]
- Pavlidis, P.; Komorowski, L.; Teegen, B.; Liaskos, C.; Koutsoumpas, A.L.; Smyk, D.S.; Perricone, C.; Mytilinaiou, M.G.; Stocker, W.; Forbes, A.; et al. Diagnostic and clinical significance of Crohn’s disease-specific pancreatic anti-GP2 and anti-CUZD1 antibodies. Clin. Chem. Lab. Med. 2016, 54, 249–256. [Google Scholar] [CrossRef] [PubMed]
- Jendrek, S.T.; Gotthardt, D.; Nitzsche, T.; Widmann, L.; Korf, T.; Michaels, M.A.; Weiss, K.-H.; Liaskou, E.; Vesterhus, M.; Karlsen, T.H.; et al. Anti-GP2 IgA autoantibodies are associated with poor survival and cholangiocarcinoma in primary sclerosing cholangitis. Gut 2017, 66, 137–144. [Google Scholar] [CrossRef] [PubMed]
- Jung, H.C.; Eckmann, L.; Yang, S.K.; Panja, A.; Fierer, J.; Morzycka-Wroblewska, E.; Kagnoff, M.F. A distinct array of proinflammatory cytokines is expressed in human colon epithelial cells in response to bacterial invasion. J. Clin. Invest. 1995, 95, 55–65. [Google Scholar] [CrossRef] [PubMed]
- Jurickova, I.; Collins, M.H.; Chalk, C.; Seese, A.; Bezold, R.; Lake, K.; von Allmen, D.; Frischer, J.S.; Falcone, R.A.; Trapnell, B.C.; et al. Paediatric Crohn disease patients with structuring behaviour exhibit ileal granulocyte-macrophage colony-stimulating factor (GM-CSF) autoantibody production and reduced neutrophil bacterial killing and GM-CSF bioactivity. Clin. Exp. Immunol. 2013, 172, 455–465. [Google Scholar] [CrossRef] [PubMed]
- O’Brien, J.; Hayder, H.; Zayed, Y.; Peng, C. Overview of MicroRNA Biogenesis, Mechanisms of Actions, and Circulation. Front. Endocrinol. 2018, 9, 402. [Google Scholar] [CrossRef] [PubMed]
- Jung, H.; Kim, J.S.; Lee, K.H.; Tizaoui, K.; Terrazzino, S.; Cargnin, S.; Smith, L.; Koyanagi, A.; Jacob, L.; Li, H.; et al. Roles of microRNAs in inflammatory bowel disease. Int. J. Biol. Sci. 2021, 17, 2112–2123. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Zhang, S.; Yu, Q.; Yang, G.; Guo, J.; Li, M.; Zeng, Z.; He, Y.; Chen, B.; Chen, M. Circulating MicroRNA223 is a New Biomarker for Inflammatory Bowel Disease. Medicine 2016, 95, e2703. [Google Scholar] [CrossRef]
- Zahm, A.M.; Thayu, M.; Hand, N.J.; Horner, A.; Leonard, M.B.; Friedman, J.R. Circulating MicroRNA Is a Biomarker of Pediatric Crohn Disease. J. Pediatr. Gastroenterol. Nutr. 2011, 53, 26–33. [Google Scholar] [CrossRef] [PubMed]
- Nijhuis, A.; Biancheri, P.; Lewis, A.; Bishop, C.L.; Giuffrida, P.; Chan, C.; Feakins, R.; Poulsom, R.; Di Sabatino, A.; Corazza, G.R.; et al. In Crohn’s disease fibrosis-reduced expression of the miR-29 family enhances collagen expression in intestinal fibroblasts. Clin. Sci. 2014, 127, 341–350. [Google Scholar] [CrossRef] [PubMed]
- Lewis, A.; Mehta, S.; Hanna, L.N.; Rogalski, L.A.; Jeffery, R.; Nijhuis, A.; Kumagai, T.; Biancheri, P.; Bundy, J.G.; Bishop, C.L.; et al. Low Serum Levels of MicroRNA-19 Are Associated with a Stricturing Crohnʼs Disease Phenotype. Inflamm. Bowel Dis. 2015, 21, 1926–1934. [Google Scholar] [CrossRef]
- Paraskevi, A.; Theodoropoulos, G.; Papaconstantinou, I.; Mantzaris, G.; Nikiteas, N.; Gazouli, M. Circulating MicroRNA in inflammatory bowel disease. J. Crohn’s Colitis 2012, 6, 900–904. [Google Scholar] [CrossRef]
- Wu, F.; Guo, N.J.; Tian, H.; Marohn, M.; Gearhart, S.; Bayless, T.M.; Brant, S.R.; Kwon, J.H. Peripheral blood MicroRNAs distinguish active ulcerative colitis and Crohnʼs disease. Inflamm. Bowel Dis. 2011, 17, 241–250. [Google Scholar] [CrossRef]
- Oliveira, E.C.S.d.; Quaglio, A.E.V.; Magro, D.O.; Di Stasi, L.C.; Sassaki, L.Y. Intestinal Microbiota and miRNA in IBD: A Narrative Review about Discoveries and Perspectives for the Future. Int. J. Mol. Sci. 2023, 24, 7176. [Google Scholar] [CrossRef]
- Nehring, S.M.; Goyal, A.; Patel, B.C. C Reactive Protein. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2023. [Google Scholar]
- Osada, T.; Ohkusa, T.; Okayasu, I.; Yoshida, T.; Hirai, S.; Beppu, K.; Shibuya, T.; Sakamoto, N.; Kobayashi, O.; Nagahara, A.; et al. Correlations among total colonoscopic findings, clinical symptoms, and laboratory markers in ulcerative colitis. J. Gastroenterol. Hepatol. 2008, 23, S262–S267. [Google Scholar] [CrossRef]
- Lewis, J.D. The Utility of Biomarkers in the Diagnosis and Therapy of Inflammatory Bowel Disease. Gastroenterology 2011, 140, 1817–1826.e2. [Google Scholar] [CrossRef]
- Fengming, Y.; Jianbing, W. Biomarkers of inflammatory bowel disease. Dis. Markers 2014, 2014, 710915. [Google Scholar] [CrossRef] [PubMed]
- Alper, A.; Zhang, L.; Pashankar, D.S. Correlation of Erythrocyte Sedimentation Rate and C-Reactive Protein with Pediatric Inflammatory Bowel Disease Activity. J. Pediatr. Gastroenterol. Nutr. 2017, 65, e25–e27. [Google Scholar] [CrossRef] [PubMed]
- Krzystek-Korpacka, M.; Kempiński, R.; Bromke, M.; Neubauer, K. Biochemical Biomarkers of Mucosal Healing for Inflammatory Bowel Disease in Adults. Diagnostics 2020, 10, 367. [Google Scholar] [CrossRef] [PubMed]
- Roblin, X.; Marotte, H.; Leclerc, M.; Del Tedesco, E.; Phelip, J.; Peyrin-Biroulet, L.; Paul, S. Combination of C-reactive Protein, Infliximab Trough Levels, and Stable but Not Transient Antibodies to Infliximab Are Associated with Loss of Response to Infliximab in Inflammatory Bowel Disease. J. Crohn’s Colitis 2015, 9, 525–531. [Google Scholar] [CrossRef]
- Boschetti, G.; Garnero, P.; Moussata, D.; Cuerq, C.; Préaudat, C.; Duclaux-Loras, R.; Mialon, A.; Drai, J.; Flourié, B.; Nancey, S. Accuracies of Serum and Fecal S100 Proteins (Calprotectin and Calgranulin C) to Predict the Response to TNF Antagonists in Patients with Crohnʼs Disease. Inflamm. Bowel Dis. 2015, 21, 331–336. [Google Scholar] [CrossRef] [PubMed]
- Iwasa, R.; Yamada, A.; Sono, K.; Furukawa, R.; Takeuchi, K.; Suzuki, Y. C-reactive protein level at 2 weeks following initiation of infliximab induction therapy predicts outcomes in patients with ulcerative colitis: A 3 year follow-up study. BMC Gastroenterol. 2015, 15, 103. [Google Scholar] [CrossRef]
- Cornillie, F.; Hanauer, S.B.; Diamond, R.H.; Wang, J.; Tang, K.L.; Xu, Z.; Rutgeerts, P.; Vermeire, S. Postinduction serum infliximab trough level and decrease of C-reactive protein level are associated with durable sustained response to infliximab: A retrospective analysis of the ACCENT I trial. Gut 2014, 63, 1721–1727. [Google Scholar] [CrossRef]
- Ha, J.S.; Lee, J.S.; Kim, H.J.; Moon, T.G.; Chang, D.K.; Lee, J.H.; Kim, Y.H.; Rhee, P.L.; Kim, J.J.; Rhee, J.C. Comparative usefulness of erythrocyte sedimentation rate and C-reactive protein in assessing the severity of ulcerative colitis. Korean J. Gastroenterol. 2006, 48, 313–320. [Google Scholar]
- Szkaradkiewicz, A.; Marciniak, R.; Chudzicka-Strugała, I.; Wasilewska, A.; Drews, M.; Majewski, P.; Karpiński, T.; Zwoździak, B. Proinflammatory cytokines and IL-10 in inflammatory bowel disease and colorectal cancer patients. Arch. Immunol. Ther. Exp. 2009, 57, 291–294. [Google Scholar] [CrossRef]
- Marafini, I.; Sedda, S.; Dinallo, V.; Monteleone, G. Inflammatory cytokines: From discoveries to therapies in IBD. Expert Opin. Biol. Ther. 2019, 19, 1207–1217. [Google Scholar] [CrossRef] [PubMed]
- Billiet, T.; Cleynen, I.; Ballet, V.; Claes, K.; Princen, F.; Singh, S.; Ferrante, M.; Van Assche, G.; Gils, A.; Vermeire, S. Evolution of cytokines and inflammatory biomarkers during infliximab induction therapy and the impact of inflammatory burden on primary response in patients with Crohn’s disease. Scand. J. Gastroenterol. 2017, 52, 1086–1092. [Google Scholar] [CrossRef] [PubMed]
- Feng, T.; Chen, B.; Li, L.; Huang, S.; Ben-Horin, S.; Qiu, Y.; Feng, R.; Li, M.; Mao, R.; He, Y.; et al. Serum Interleukin 9 Levels Predict Disease Severity and the Clinical Efficacy of Infliximab in Patients with Crohn’s Disease. Inflamm. Bowel Dis. 2017, 23, 1817–1824. [Google Scholar] [CrossRef]
- Bertani, L.; Baglietto, L.; Antonioli, L.; Fornai, M.; Tapete, G.; Albano, E.; Ceccarelli, L.; Mumolo, M.G.; Pellegrini, C.; Lucenteforte, E.; et al. Assessment of serum cytokines predicts clinical and endoscopic outcomes to vedolizumab in ulcerative colitis patients. Br. J. Clin. Pharmacol. 2020, 86, 1296–1305. [Google Scholar] [CrossRef]
- Desai, D.; Faubion, W.A.; Sandborn, W.J. Review article: Biological activity markers in inflammatory bowel disease. Aliment. Pharmacol. Ther. 2007, 25, 247–255. [Google Scholar] [CrossRef] [PubMed]
- Montreuil, J.; Tonnelat, J.; Mullet, S. Preparation and properties oflactosiderophilin (lactotransferrin) of human milk. Biochim. Biophys. Acta 1960, 45, 413–421. [Google Scholar] [CrossRef]
- Røseth, A.G.; Fagerhol, M.K.; Aadland, E.; Schjønsby, H. Assessment of the Neutrophil Dominating Protein Calprotectin in Feces: A Methodologic Study. Scand. J. Gastroenterol. 1992, 27, 793–798. [Google Scholar] [CrossRef] [PubMed]
- Langhorst, J.; Elsenbruch, S.; Mueller, T.; Rueffer, A.; Spahn, G.; Michalsen, A.; Dobos, G.J. Comparison of 4 neutrophilderive proteins in feces as indicators of disease activity in ulcerative colitis. Inflamm. Bowel. Dis. 2005, 11, 1085–1091. [Google Scholar] [CrossRef]
- Adeyemi, E.O.; Hodgson, H.J.F. Faecal Elastase Reflects Disease Activity in Active Ulcerative Colitis. Scand. J. Gastroenterol. 1992, 27, 139–142. [Google Scholar] [CrossRef] [PubMed]
- Sugi, K.S.; Hiarata, I.; Katsu, K. Faecal lactoferrin as a marker of disease activity in inflammatory bowel disease: Comparison with other neutrophil derived proteins. Am. J. Gastroenterol. 1996, 91, 927–934. [Google Scholar] [PubMed]
- Schoepfer, A.M.; Trummler, M.; Seeholzer, P.; Seibold-Schmid, B.; Seibold, F. Discriminating IBD from IBS: Comparison of the test performance of fecal markers, blood leukocytes, CRP, and IBD antibodies. Inflamm. Bowel Dis. 2008, 14, 32–39. [Google Scholar] [CrossRef] [PubMed]
- Lehmann, F.S.; Burri, E.; Beglinger, C. The role and utility of faecal markers in inflammatory bowel disease. Ther. Adv. Gastroenterol. 2015, 8, 23–36. [Google Scholar] [CrossRef] [PubMed]
- Konikoff, M.R.; Denson, L.A. Role of fecal calprotectin as a biomarker of intestinal inflammation in inflammatory bowel disease. Inflamm. Bowel Dis. 2006, 12, 524–534. [Google Scholar] [CrossRef] [PubMed]
- Sutherland, A.D.; Gearry, R.B.; Frizelle, F.A. Review of Fecal Biomarkers in Inflammatory Bowel Disease. Dis. Colon Rectum 2008, 51, 1283–1291. [Google Scholar] [CrossRef]
- Nakashige, T.G.; Zygiel, E.M.; Drennan, C.L.; Nolan, E.M. Nickel Sequestration by the Host-Defense Protein Human Calprotectin. J. Am. Chem. Soc. 2017, 139, 8828–8836. [Google Scholar] [CrossRef] [PubMed]
- Besold, A.N.; Gilston, B.A.; Radin, J.N.; Ramsoomair, C.; Culbertson, E.M.; Li, C.X.; Cormack, B.P.; Chazin, W.J.; Kehl-Fie, T.E.; Culotta, V.C. Role of Calprotectin in Withholding Zinc and Copper from Candida albicans. Infect. Immun. 2018, 86, e00779-17. [Google Scholar] [CrossRef]
- Maaser, C.; Sturm, A.; Vavricka, S.R.; Kucharzik, T.; Fiorino, G.; Annese, V.; Calabrese, E.; Baumgart, D.C.; Bettenworth, D.; Nunes, P.B.; et al. ECCO-ESGAR guideline for diagnostic assessment in IBD part 1: Initial diagnosis, monitoring of known IBD, detection of complications. J. Crohn’s Colitis 2019, 13, 144–164. [Google Scholar] [CrossRef]
- D’amico, F.; Nancey, S.; Danese, S.; Peyrin-Biroulet, L. A Practical Guide for Faecal Calprotectin Measurement: Myths and Realities. J. Crohn’s Colitis 2020, 15, 152–161. [Google Scholar] [CrossRef]
- Lin, J.F.; Chen, J.M.; Zuo, J.H.; Yu, A.; Xiao, Z.J.; Deng, F.H.; Nie, B.; Jiang, B. Meta-analysis: Fecal calprotectin for assessment of inflammatory bowel disease activity. Inflamm. Bowel Dis. 2014, 20, 1407–1415. [Google Scholar] [CrossRef]
- Menees, S.B.; Powell, C.; Kurlander, J.; Goel, A.; Chey, W.D. A Meta-Analysis of the Utility of C-Reactive Protein, Erythrocyte Sedimentation Rate, Fecal Calprotectin, and Fecal Lactoferrin to Exclude Inflammatory Bowel Disease in Adults With IBS. Am. J. Gastroenterol. 2015, 110, 444–454. [Google Scholar] [CrossRef]
- Limburg, P.J.; Ahlquist, D.A.; Sandborn, W.J.; Mahoney, D.W.; Devens, M.E.; Harrington, J.J.; Zinsmeister, A.R. Fecal calprotectin levels predict colorectal inflammation among patients with chronic diarrhea referred for colonoscopy. Am. J. Gastroenterol. 2000, 95, 2831–2837. [Google Scholar] [CrossRef]
- D’Haens, G.; Ferrante, M.; Vermeire, S.; Baert, F.; Noman, M.; Moortgat, L.; Geens, P.; Iwens, D.; Aerden, I.; Van Assche, G.; et al. Fecal calprotectin is a surrogate marker for endoscopic lesions in inflammatory bowel disease. Inflamm. Bowel Dis. 2012, 18, 2218–2224. [Google Scholar] [CrossRef] [PubMed]
- Sipponen, T.; Savilahti, E.; Kolho, K.L.; Nuutinen, H.; Turunen, U.; Färkkilä, M. Crohn’s disease activity assessed by fecal calprotectin and lactoferrin: Correlation with Crohn’s disease activity index and endoscopic findings. Inflamm. Bowel Dis. 2008, 14, 40–46. [Google Scholar] [CrossRef] [PubMed]
- Kittanakom, S.; Shajib, S.; Garvie, K.; Turner, J.; Brooks, D.; Odeh, S.; Issenman, R.; Chetty, V.T.; Macri, J.; Khan, W.I. Comparison of Fecal Calprotectin Methods for Predicting Relapse of Pediatric Inflammatory Bowel Disease. Can. J. Gastroenterol. Hepatol. 2017, 2017, 1450970. [Google Scholar] [CrossRef]
- Rokkas, T.; Portincasa, P.; Koutroubakis, I.E. Fecal Calprotectin in Assessing Inflammatory Bowel Disease Endoscopic Activity: A Diagnostic Accuracy Meta-analysis. J. Gastrointest. Liver Dis. 2018, 27, 299–300. [Google Scholar] [CrossRef] [PubMed]
- Mao, R.; Xiao, Y.-L.; Gao, X.; Chen, B.-L.; He, Y.; Yang, L.; Hu, P.-J.; Chen, M.-H. Fecal calprotectin in predicting relapse of inflammatory bowel diseases: A meta-analysis of prospective studies. Inflamm. Bowel Dis. 2012, 18, 1894–1899. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.; Lee, S.A.; Riordan, S.M.; Zhang, L.; Zhu, L. Global Studies of Using Fecal Biomarkers in Predicting Relapse in Inflammatory Bowel Disease. Front. Med. 2020, 7, 580803. [Google Scholar] [CrossRef] [PubMed]
- Piekkala, M.; Alfthan, H.; Merras-Salmio, L.; Wikström, A.P.; Heiskanen, K.; Jaakkola, T.; Klemetti, P.; Färkkilä, M.; Kolho, K. Fecal calprotectin test performed at home—A prospective study of pediatric patients with inflammatory bowel disease. J. Pediatr. Gastroenterol. Nutr. 2017, 66, 926–931. [Google Scholar] [CrossRef] [PubMed]
- Legrand, D.; Pierce, A.; Elass, E.; Carpentier, M.; Mariller, C.; Mazurier, J. Lactoferrin Structure and Functions. In Bioactive Components of Milk; Bösze, Z., Ed.; Springer: New York, NY, USA, 2008; pp. 163–194. [Google Scholar]
- Dai, J.; Liu, W.-Z.; Zhao, Y.-P.; Hu, Y.-B.; Ge, Z.-Z. Relationship between fecal lactoferrin and inflammatory bowel disease. Scand. J. Gastroenterol. 2007, 42, 1440–1444. [Google Scholar] [CrossRef]
- Langhorst, J.; Boone, J.; Lauche, R.; Rueffer, A.; Dobos, G. Faecal Lactoferrin, Calprotectin, PMN-elastase, CRP, and White Blood Cell Count as Indicators for Mucosal Healing and Clinical Course of Disease in Patients with Mild to Moderate Ulcerative Colitis: Post Hoc Analysis of a Prospective Clinical Trial. J. Crohn’s Colitis 2016, 10, 786–794. [Google Scholar] [CrossRef]
- Yamamoto, T.; Shiraki, M.; Bamba, T.; Umegae, S.; Matsumoto, K. Fecal calprotectin and lactoferrin as predictors of relapse in patients with quiescent ulcerative colitis during maintenance therapy. Int. J. Color. Dis. 2014, 29, 485–491. [Google Scholar] [CrossRef]
- Gisbert, J.P.; Bermejo, F.; Pérez-Calle, J.-L.; Taxonera, C.; Vera, I.; McNicholl, A.G.; Algaba, A.; López, P.; López-Palacios, N.; Calvo, M.; et al. Fecal calprotectin and lactoferrin for the prediction of inflammatory bowel disease relapse. Inflamm. Bowel Dis. 2009, 15, 1190–1198. [Google Scholar] [CrossRef] [PubMed]
- Walker, T.R.; Land, M.L.; Kartashov, A.; Saslowsky, T.M.; Lyerly, D.M.; Boone, J.H.; Rufo, P.A. Fecal Lactoferrin Is a Sensitive and Specific Marker of Disease Activity in Children and Young Adults with Inflammatory Bowel Disease. J. Pediatr. Gastroenterol. Nutr. 2007, 44, 414–422. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Pei, F.; Wang, X.; Sun, Z.; Hu, C.; Dou, H. Diagnostic accuracy of fecal lactoferrin for inflammatory bowel disease: A meta-analysis. Int. J. Clin. Exp. Pathol. 2015, 8, 12319–12332. [Google Scholar] [PubMed]
- Swaminathan, A.; Borichevsky, G.M.; Edwards, T.S.; Hirschfeld, E.; Mules, T.C.; Frampton, C.M.A.; Day, A.S.; Hampton, M.B.; Kettle, A.J.; Gearry, R.B. Faecal Myeloperoxidase as a Biomarker of Endoscopic Activity in Inflammatory Bowel Disease. J. Crohn’s Colitis 2022, 16, 1862–1873. [Google Scholar] [CrossRef] [PubMed]
- Foell, D.; Kucharzik, T.; Kraft, M.; Vogl, T.; Sorg, C.; Domschke, W.; Roth, J. Neutrophil derived human S100A12 (EN-RAGE) is strongly expressed during chronic active inflammatory bowel disease. Gut 2003, 52, 847–853. [Google Scholar] [CrossRef] [PubMed]
- Foell, D.; Wittkowski, H.; Kessel, C.; Lüken, A.; Weinhage, T.; Varga, G.; Vogl, T.; Wirth, T.; Viemann, D.; Björk, P.; et al. Proinflammatory S100A12 Can Activate Human Monocytes via Toll-like Receptor 4. Am. J. Respir. Crit. Care Med. 2013, 187, 1324–1334. [Google Scholar] [CrossRef]
- Kaiser, T.; Langhorst, J.; Wittkowski, H.; Becker, K.; Friedrich, A.W.; Rueffer, A.; Dobos, G.J.; Roth, J.; Foell, D. Faecal S100A12 as a non-invasive marker distinguishing inflammatory bowel disease from irritable bowel syndrome. Gut 2007, 56, 1706–1713. [Google Scholar] [CrossRef]
- Body-Malapel, M.; Djouina, M.; Waxin, C.; Langlois, A.; Gower-Rousseau, C.; Zerbib, P.; Schmidt, A.-M.; Desreumaux, P.; Boulanger, E.; Vignal, C. The RAGE signaling pathway is involved in intestinal inflammation and represents a promising therapeutic target for Inflammatory Bowel Diseases. Mucosal Immunol. 2019, 12, 468–478. [Google Scholar] [CrossRef]
- Däbritz, J.; Langhorst, J.; Lügering, A.; Heidemann, J.; Mohr, M.; Wittkowski, H.; Krummenerl, T.; Foell, D. Improving Relapse Prediction in Inflammatory Bowel Disease by Neutrophil-Derived S100A12. Inflamm. Bowel Dis. 2013, 19, 1130–1138. [Google Scholar] [CrossRef]
- Wright, E.K.; Kamm, M.A.; De Cruz, P.; Hamilton, A.L.; Ritchie, K.J.; Keenan, J.I.; Leach, S.; Burgess, L.; Aitchison, A.; Gorelik, A.; et al. Comparison of Fecal Inflammatory Markers in Crohnʼs Disease. Inflamm. Bowel Dis. 2016, 22, 1086–1094. [Google Scholar] [CrossRef]
- Steigedal, M.; Marstad, A.; Haug, M.; Damås, J.K.; Strong, R.K.; Roberts, P.L.; Himpsl, S.D.; Stapleton, A.; Hooton, T.M.; Mobley, H.L.T.; et al. Lipocalin 2 imparts selective pressure on bacterial growth in the bladder and is elevated inwomen with urinary tract infection. J. Immunol. 2014, 193, 6081–6089. [Google Scholar] [CrossRef]
- Flo, T.H.; Smith, K.D.; Sato, S.; Rodriguez, D.J.; Holmes, M.A.; Strong, R.K.; Akira, S.; Aderem, A. Lipocalin 2 mediates an innate immune response to bacterial infection by sequestrating iron. Nature 2004, 432, 917–921. [Google Scholar] [CrossRef] [PubMed]
- Schmidt-Ott, K.M.; Mori, K.; Li, J.Y.; Kalandadze, A.; Cohen, D.J.; Devarajan, P.; Barasch, J. Dual Action of Neutrophil Gelatinase–Associated Lipocalin. J. Am. Soc. Nephrol. 2007, 18, 407–413. [Google Scholar] [CrossRef] [PubMed]
- Chassaing, B.; Srinivasan, G.; Delgado, M.A.; Young, A.N.; Gewirtz, A.T.; Vijay-Kumar, M. Fecal Lipocalin 2, a Sensitive and Broadly Dynamic Non-Invasive Biomarker for Intestinal Inflammation. PLoS ONE 2012, 7, e44328. [Google Scholar] [CrossRef] [PubMed]
- Yadav, S.K.; Ito, N.; Mindur, J.E.; Kumar, H.; Youssef, M.; Suresh, S.; Kulkarni, R.; Rosario, Y.; Balashov, K.E.; Dhib-Jalbut, S.; et al. Fecal Lcn-2 level is a sensitive biological indicator for gut dysbiosis and intestinal inflammation in multiple sclerosis. Front. Immunol. 2022, 13, 1015372. [Google Scholar] [CrossRef] [PubMed]
- Nancey, S.; Boschetti, G.; Moussata, D.; Cotte, E.; Peyras, J.; Cuerq, C.; Haybrard, J.; Charlois, A.-L.; Mialon, A.; Chauvenet, M.; et al. Neopterin Is a Novel Reliable Fecal Marker as Accurate as Calprotectin for Predicting Endoscopic Disease Activity in Patients with Inflammatory Bowel Diseases. Inflamm. Bowel Dis. 2013, 19, 1043–1052. [Google Scholar] [CrossRef] [PubMed]
- Baugh, M.D.; Perry, M.J.; Hollander, A.P.; Davies, D.; Cross, S.S.; Lobo, A.J.; Taylor, C.J.; Evans, G.S. Matrix metalloproteinase levels are elevated in inflammatory bowel disease. Gastroenterology 1999, 117, 814–822. [Google Scholar] [CrossRef]
- Annahazi, A.; Molnar, T.; Farkas, K.; Rosztoczy, A.; Izbeki, F.; Gecse, K.; Inczefi, O.; Nagy, F.; Foldesi, I.; Szucs, M.; et al. Fecal MMP-9: A new noninvasive differential diagnostic and activity marker in ulcerative colitis. Inflamm. Bowel Dis. 2013, 19, 316–320. [Google Scholar] [CrossRef]
- Kolho, K.-L.; Sipponen, T.; Valtonen, E.; Savilahti, E. Fecal calprotectin, MMP-9, and human beta-defensin-2 levels in pediatric inflammatory bowel disease. Int. J. Color. Dis. 2014, 29, 43–50. [Google Scholar] [CrossRef]
- Marônek, M.; Marafini, I.; Gardlík, R.; Link, R.; Troncone, E.; Monteleone, G. Metalloproteinases in Inflammatory Bowel Diseases. J. Inflamm. Res. 2021, 14, 1029–1041. [Google Scholar] [CrossRef]
- Elzbieta, C.; Karl-heinz, H.; Jacek, B.; Urszula, G.-C.; Jaroslaw, W.; Anna, S.-P.; Karlheinz, K.; Piotr, S.; Halina, W.; Barbara, K.; et al. Fecal pyruvate kinase: A potential new marker for intestinal inflammation in children with inflammatory bowel disease. Scand. J. Gastroenterol. 2007, 42, 1147–1150. [Google Scholar]
- Turner, D.; Leach, S.T.; Mack, D.; Uusoue, K.; McLernon, R.; Hyams, J.; Leleiko, N.; Walters, T.D.; Crandall, W.; Markowitz, J.; et al. Faecal calprotectin, lactoferrin, M2-pyruvate kinase and S100A12 in severe ulcerative colitis: A prospective multicentre comparison of predicting outcomes and monitoring response. Gut 2010, 59, 1207–1212. [Google Scholar] [CrossRef]
- De Preter, V. Metabolomics in the Clinical Diagnosis of Inflammatory Bowel Disease. Dig. Dis. 2015, 33 (Suppl. S1), 2–10. [Google Scholar] [CrossRef] [PubMed]
- Williams, H.R.T.; Willsmore, J.D.; Cox, I.J.; Walker, D.G.; Cobbold, J.F.L.; Taylor-Robinson, S.D.; Orchard, T.R. Serum Metabolic Profiling in Inflammatory Bowel Disease. Dig. Dis. Sci. 2012, 57, 2157–2165. [Google Scholar] [CrossRef] [PubMed]
- Aldars-García, L.; Gisbert, J.P.; Chaparro, M. Metabolomics Insights into Inflammatory Bowel Disease: A Comprehensive Review. Pharmaceuticals 2021, 14, 1190. [Google Scholar] [CrossRef] [PubMed]
- Agrawal, M.; Allin, K.H.; Petralia, F.; Colombel, J.-F.; Jess, T. Multiomics to elucidate inflammatory bowel disease risk factors and pathways. Nat. Rev. Gastroenterol. Hepatol. 2022, 19, 399–409. [Google Scholar] [CrossRef]
- Peters, L.A.; Perrigoue, J.; Mortha, A.; Iuga, A.; Song, W.-M.; Neiman, E.M.; Llewellyn, S.R.; Di Narzo, A.; Kidd, B.A.; Telesco, S.E.; et al. A functional genomics predictive network model identifies regulators of inflammatory bowel disease. Nat. Genet. 2017, 49, 1437–1449. [Google Scholar] [CrossRef] [PubMed]
- Reiman, D.; Layden, B.T.; Dai, Y. MiMeNet: Exploring microbiome-metabolome relationships using neural networks. PLoS Comput. Biol. 2021, 17, e1009021. [Google Scholar] [CrossRef]
- Argmann, C.; Tokuyama, M.; Ungaro, R.C.; Huang, R.; Hou, R.; Gurunathan, S.; Kosoy, R.; Di’narzo, A.; Wang, W.; Losic, B.; et al. Molecular Characterization of Limited Ulcerative Colitis Reveals Novel Biology and Predictors of Disease Extension. Gastroenterology 2021, 161, 1953–1968.e15. [Google Scholar] [CrossRef]
- Nguyen, N.H.; Picetti, D.; Dulai, P.S.; Jairath, V.; Sandborn, W.J.; Ohno-Machado, L.; Chen, P.L.; Singh, S. Machine Learning-based Prediction Models for Diagnosis and Prognosis in Inflammatory Bowel Diseases: A Systematic Review. J. Crohn’s Colitis 2022, 16, 398–413. [Google Scholar] [CrossRef]
- Heller, E.J.; Sundberg, R.; Tannor, D. Simple aspects of Raman scattering. J. Phys. Chem. 1982, 86, 1822–1833. [Google Scholar] [CrossRef]
- Saletnik, A.; Saletnik, B.; Puchalski, C. Overview of Popular Techniques of Raman Spectroscopy and Their Potential in the Study of Plant Tissues. Molecules 2021, 26, 1537. [Google Scholar] [CrossRef]
- Pence, I.J.; Beaulieu, D.B.; Horst, S.N.; Bi, X.; Herline, A.J.; Schwartz, D.A.; Mahadevan-Jansen, A. Clinical characterization of in vivo inflammatory bowel disease with Raman spectroscopy. Biomed. Opt. Express 2017, 8, 524–535. [Google Scholar] [CrossRef]
- Bi, X.; Walsh, A.; Mahadevan-Jansen, A.; Herline, A. Development of Spectral Markers for the Discrimination of Ulcerative Colitis and Crohn’s Disease Using Raman Spectroscopy. Dis. Colon Rectum 2011, 54, 48–53. [Google Scholar] [CrossRef]
- Bielecki, C.; Bocklitz, T.W.; Schmitt, M.; Krafft, C.; Marquardt, C.; Gharbi, A.; Knösel, T.; Stallmach, A.; Popp, J. Classification of inflammatory bowel diseases by means of Raman spectroscopic imaging of epithelium cells. J. Biomed. Opt. 2012, 17, 0760301–0760308. [Google Scholar] [CrossRef] [PubMed]
- Beleites, C.; Bonifacio, A.; Codrich, D.; Krafft, C.; Sergo, V. Raman Spectroscopy and Imaging: Promising Optical Diagnostic Tools in Pediatrics. Curr. Med. Chem. 2013, 20, 2176–2187. [Google Scholar] [CrossRef] [PubMed]
- Wood, J.J.; Kendall, C.; Hutchings, J.; Lloyd, G.R.; Stone, N.; Shepherd, N.; Day, J.; Cook, T.A. Evaluation of a confocal Raman probe for pathological diagnosis during colonoscopy. Color. Dis. 2014, 16, 732–738. [Google Scholar] [CrossRef] [PubMed]
- Palyvoda, O.; Alahwal, H.; Jovanovski, M.; Reisner, L.A.; King, B.; Poulik, J.; Klein, M.D.; Veenstra, M.A. Raman Spectroscopy in the Diagnosis of Ulcerative Colitis. Eur. J. Pediatr. Surg. 2015, 25, 56–59. [Google Scholar] [CrossRef]
- Pence, I.J.; Nguyen, Q.T.; Bi, X.; Herline, A.J.; Beaulieu, D.M.; Horst, S.N.; Schwartz, D.A.; Mahadevan-Jansen, A. Endoscopy-coupled Raman spectroscopy for in vivo discrimination of inflammatory bowel disease. In Proceedings of the SPIE 8939, Biomedical Vibrational Spectroscopy VI: Advances in Research and Industry, 89390R, San Francisco, CA, USA, 4 March 2014. [Google Scholar]
- Ding, H.; Dupont, A.W.; Singhal, S.; Scott, L.D.; Guha, S.; Younes, M.; Bi, X. In vivo analysis of mucosal lipids reveals histological disease activity in ulcerative colitis using endoscope-coupled Raman spectroscopy. Biomed. Opt. Express 2017, 8, 3426–3439. [Google Scholar] [CrossRef]
- Morasso, C.; Truffi, M.; Vanna, R.; Albasini, S.; Mazzucchelli, S.; Colombo, F.; Sorrentino, L.; Sampietro, G.; Ardizzone, S.; Corsi, F. Raman Analysis Reveals Biochemical Differences in Plasma of Crohn’s Disease Patients. J. Crohn’s Colitis 2020, 14, 1572–1580. [Google Scholar] [CrossRef]
- Kirchberger-Tolstik, T.; Pradhan, P.; Vieth, M.; Grunert, P.; Popp, J.; Bocklitz, T.W.; Stallmach, A. Towards an Interpretable Classifier for Characterization of Endoscopic Mayo Scores in Ulcerative Colitis Using Raman Spectroscopy. Anal. Chem. 2020, 92, 13776–13784. [Google Scholar] [CrossRef] [PubMed]
- Tefas, C.; Mărginean, R.; Toma, V.; Petrushev, B.; Fischer, P.; Tanțău, M.; Știufiuc, R. Surface-enhanced Raman scattering for the diagnosis of ulcerative colitis: Will it change the rules of the game? Anal. Bioanal. Chem. 2021, 413, 827–838. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Wu, Y.; Wang, Z.; Xing, M.; Xu, W.; Zhu, Y.; Du, P.; Wang, X.; Yang, H. Non-invasive diagnosis of Crohn’s disease based on SERS combined with PCA-SVM. Anal. Methods 2021, 13, 5264–5273. [Google Scholar] [CrossRef] [PubMed]
- Buchan, E.; Rickard, J.J.S.; Oppenheimer, P.G. Raman spectroscopic molecular fingerprinting of biomarkers for inflammatory bowel disease. Clin. Transl. Med. 2023, 13, e1345. [Google Scholar] [CrossRef] [PubMed]
- Smith, S.C.L.; Banbury, C.; Zardo, D.; Cannatelli, R.; Nardone, O.M.; Shivaji, U.N.; Ghosh, S.; Oppenheimer, P.G.; Iacucci, M. Raman spectroscopy accurately differentiates mucosal healing from non-healing and biochemical changes following biological therapy in inflammatory bowel disease. PLoS ONE 2021, 16, e0252210. [Google Scholar] [CrossRef]
- Acri, G.; Venuti, V.; Costa, S.; Testagrossa, B.; Pellegrino, S.; Crupi, V.; Majolino, D. Raman Spectroscopy as Noninvasive Method of Diagnosis of Pediatric Onset Inflammatory Bowel Disease. Appl. Sci. 2020, 10, 6974. [Google Scholar] [CrossRef]
- Van Assche, G.; Dignass, A.; Reinisch, W.; van der Woude, C.J.; Sturm, A.; De Vos, M.; Guslandi, M.; Oldenburg, B.; Dotan, I.; Marteau, P.; et al. The second European evidence-based consensus on the diagnosis and management of Crohn’s disease: Special situations. J. Crohn’s Colitis 2010, 4, 63–101. [Google Scholar] [CrossRef]
- Paulsen, S.R.; Huprich, J.E.; Fletcher, J.G.; Booya, F.; Young, B.M.; Fidler, J.L.; Johnson, C.D.; Barlow, J.M.; Earnest, F. CT enterography as a diagnostic tool in evaluating small bowel disorders: Review of clinical experience with over 700 cases. Radiographics 2006, 26, 641–657; discussion 657–662. [Google Scholar] [CrossRef] [PubMed]
- Brenner, D.J. Should computed tomography be the modality of choice for imaging Crohn’s disease in children? The radiation risk perspective. Gut 2008, 57, 1489–1490. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, R.; Ajlan, A.M.; Eskander, A.A.; Alhazmi, T.A.; Khashoggi, K.; Wazzan, M.A.; Abduljabbar, A.H. Magnetic resonance imaging in the management of Crohn’s disease: A systematic review and meta-analysis. Insights Into Imaging 2021, 12, 118. [Google Scholar] [CrossRef]
- Gee, M.S.; Harisinghani, M.G. MRI in patients with inflammatory bowel disease. J. Magn. Reson. Imaging 2011, 33, 527–534. [Google Scholar] [CrossRef]
- Fujii, T.; Naganuma, M.; Kitazume, Y.; Saito, E.; Nagahori, M.; Ohtsuka, K.; Watanabe, M. Advancing Magnetic Resonance Imaging in Crohn’s Disease. Digestion 2014, 89, 24–30. [Google Scholar] [CrossRef]
- Panes, J.; Bouhnik, Y.; Reinisch, W.; Stoker, J.; Taylor, S.; Baumgart, D.; Danese, S.; Halligan, S.; Marincek, B.; Matos, C.; et al. Imaging techniques for assessment of inflammatory bowel disease: Joint ECCO and ESGAR evidence-based consensus guidelines. J. Crohn’s Colitis 2013, 7, 556–585. [Google Scholar] [CrossRef] [PubMed]
- Haas, K.; Rubesova, E.; Bass, D. Role of imaging in the evaluation of inflammatory bowel disease: How much is too much? World J. Radiol. 2016, 8, 124–131. [Google Scholar] [CrossRef] [PubMed]
Variable | Coefficient |
---|---|
Number of liquid stools each day for seven days | ×2 |
Abdominal pain each day for seven days (0–3 grade of severity) | ×5 |
General well-being each day for seven days (0–4 grading) | ×7 |
Complications | ×20 |
Use of opioids for diarrhea | ×30 |
Abdominal mass (0—none, 2—questionable, and 5—definitive) | ×10 |
Deviation in hematocrit | ×6 |
Deviation in weight | ×1 |
Parameters | Mild | Moderate | Severe |
---|---|---|---|
Bloody stools per day | <4 | 4 to 6 | >6 |
Pulse | <90 bpm | <90 bpm | >90 bpm |
Temperature | <37.5 °C | <37.8 °C | >37.8 °C |
Hemoglobin | >11.5 g/dL | >10.5 g/dL | <10.5 g/dL |
ESR | <20 mm/h | <30 mm/h | >30 mm/h |
CRP | Normal | <30 mg/dL | >30 mg/dL |
Variable | 0 | 1 | 2 | 3 |
---|---|---|---|---|
Size of ulcers | None | <0.5 cm | 0.5–2 cm | >2 cm |
Percentage of ulcerated surface | None | Less than 10% | 10–30% | More than 30% |
Percentage of affected surface | None | Less than 50% | 50–75% | More than 75% |
Presence of stenosis | None | Single, passable | Multiple, passable | Impassable |
Authors | Year | Title | Outcomes |
---|---|---|---|
Bi et al. [159] | 2011 | Development of spectral markers for the discrimination of ulcerative colitis and Crohn’s disease using Raman spectroscopy | High differentiation of nucleic acid, phenylalanine and lipid spectra between the cohorts |
Bielecki et al. [160] | 2012 | Classification of inflammatory bowel diseases by means of Raman spectroscopic imaging of epithelium cells | High degree of differentiation between IBD and healthy patients (Se = 99.07, Sp = 98.81) |
Beleites et al. [161] | 2013 | Raman spectroscopy and imaging: promising optical diagnostic tools in pediatrics | Despite small sample size, high degree of differentiation between IBD patients |
Pence et al. [164] | 2014 | Endoscopy-coupled Raman spectroscopy for in vivo discrimination of inflammatory bowel disease | Moderately high accuracy of discrimination of IBD from healthy patients (Acc = 79.7%) |
Wood et al. [162] | 2014 | Evaluation of a confocal Raman probe for pathological diagnosis during colonoscopy | High degree of separation between colo-rectal pathologies (Acc = 95%) |
Veenstra et al. [163] | 2015 | Raman spectroscopy in the diagnosis of ulcerative colitis | Good specificity and sensibility in discrimination of patients with UC (Se = 82%, Sp = 89%) |
Pence et al. [158] | 2017 | A. Clinical characterization of in vivo inflammatory bowel disease with Raman spectroscopy | High sensitivity and moderate specificity in discriminating IBD (Se = 85%, Sp = 58%) |
Ding et al. [165] | 2020 | In vivo analysis of mucosal lipids reveals histological disease activity in ulcerative colitis using endoscope-coupled Raman spectroscopy | Accurate endoscopic discrimination of UC from healthy controls (Se = 83.5%) |
Morasso et al. [166] | 2020 | Raman Analysis Reveals Biochemical Differences in Plasma of Crohn’s Disease Patients | Good classification of CD from healthy controls (Se = 80%, Sp = 85.7%) |
Kirchberger et al. [167] | 2020 | Towards an Interpretable Classifier for Characterization of Endoscopic Mayo Scores in Ulcerative Colitis Using Raman Spectroscopy | Good sensitivity and specificity in comparison with Endoscopic Mayo Scores (Se = 78%, Sp = 93%) |
Tefas et al. [168] | 2021 | Surface-enhanced Raman scattering for the diagnosis of ulcerative colitis: will it change the rules of the game? | High sensitivity, specifcity and AUC in discriminating UC from healthy patients (Se = 94%, Sp = 92%, AUC = 0.96) |
Li et al. [169] | 2021 | Non-invasive diagnosis of Crohn’s disease based on SERS combined with PCA-SVM | High sensitivity and specificity in discriminating CD from healthy patients (Se = 86%, Sp = 87.5%) |
Buchan et al. [170] | 2023 | Raman spectroscopic molecular fingerprinting of biomarkers for inflammatory bowel disease | Raman spectroscopy is a rapid, non-invasive technique for multiplex profiling, yielding an efficient combination of specific potential IBD indicators |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vălean, D.; Zaharie, R.; Țaulean, R.; Usatiuc, L.; Zaharie, F. Recent Trends in Non-Invasive Methods of Diagnosis and Evaluation of Inflammatory Bowel Disease: A Short Review. Int. J. Mol. Sci. 2024, 25, 2077. https://doi.org/10.3390/ijms25042077
Vălean D, Zaharie R, Țaulean R, Usatiuc L, Zaharie F. Recent Trends in Non-Invasive Methods of Diagnosis and Evaluation of Inflammatory Bowel Disease: A Short Review. International Journal of Molecular Sciences. 2024; 25(4):2077. https://doi.org/10.3390/ijms25042077
Chicago/Turabian StyleVălean, Dan, Roxana Zaharie, Roman Țaulean, Lia Usatiuc, and Florin Zaharie. 2024. "Recent Trends in Non-Invasive Methods of Diagnosis and Evaluation of Inflammatory Bowel Disease: A Short Review" International Journal of Molecular Sciences 25, no. 4: 2077. https://doi.org/10.3390/ijms25042077
APA StyleVălean, D., Zaharie, R., Țaulean, R., Usatiuc, L., & Zaharie, F. (2024). Recent Trends in Non-Invasive Methods of Diagnosis and Evaluation of Inflammatory Bowel Disease: A Short Review. International Journal of Molecular Sciences, 25(4), 2077. https://doi.org/10.3390/ijms25042077