Exploring the Influence of Zinc Ions on the Conformational Stability and Activity of Protein Disulfide Isomerase
Abstract
:1. Introduction
2. Results
2.1. Oxidation of PDIA1 Reduces the Stoichiometry of Zinc Binding
2.2. PDIA1 Thermal Denaturation in Different Redox States
2.3. Impact of Zinc Ions on Thermal Denaturation of PDIA1
2.4. Effect of Zinc on PDIA1 Activity
3. Discussion
3.1. Stoichiometry of Zinc Binding to PDIA1
3.2. Conformational Differences between Oxidized and Reduced PDIA1
3.3. Impact of Zinc on PDIA1 Conformation
3.4. Zinc Impact on PDIA1 Activity
4. Materials and Methods
4.1. Protein Purification
4.2. Detection of Free Protein Thiols by the DTNB Assay
4.3. Isothermal Titration Calorimetry (ITC)
4.4. Differential Scanning Calorimetry (DSC)
4.5. Di-Eosin-Glutathione Disulfide (Di-E-GSSG) Assay
4.6. Insulin Precipitation Assay
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Okumura, M.; Kadokura, H.; Hashimoto, S.; Yutani, K.; Kanemura, S.; Hikima, T.; Hidaka, Y.; Ito, L.; Shiba, K.; Masui, S.; et al. Inhibition of the Functional Interplay between Endoplasmic Reticulum (ER) Oxidoreduclin-1α (Ero1α) and Protein-Disulfide Isomerase (PDI) by the Endocrine Disruptor Bisphenol A. J. Biol. Chem. 2014, 289, 27004–27018. [Google Scholar] [CrossRef]
- Wang, C.; Yu, J.; Huo, L.; Wang, L.; Feng, W.; Wang, C.-C. Human Protein-Disulfide Isomerase Is a Redox-Regulated Chaperone Activated by Oxidation of Domain a’. J. Biol. Chem. 2012, 287, 1139–1149. [Google Scholar] [CrossRef]
- Perri, E.R.; Thomas, C.J.; Parakh, S.; Spencer, D.M.; Atkin, J.D. The Unfolded Protein Response and the Role of Protein Disulfide Isomerase in Neurodegeneration. Front. Cell Dev. Biol. 2015, 3, 80. [Google Scholar] [CrossRef]
- Parakh, S.; Perri, E.R.; Vidal, M.; Sultana, J.; Shadfar, S.; Mehta, P.; Konopka, A.; Thomas, C.J.; Spencer, D.M.; Atkin, J.D. Protein Disulphide Isomerase (PDI) Is Protective against Amyotrophic Lateral Sclerosis (ALS)-Related Mutant Fused in Sarcoma (FUS) in in Vitro Models. Sci. Rep. 2021, 11, 17557. [Google Scholar] [CrossRef]
- Yang, S.; Wang, X.; Cui, L.; Ding, X.; Niu, L.; Yang, F.; Wang, C.; Wang, C.-C.; Lou, J. Compact Conformations of Human Protein Disulfide Isomerase. PLoS ONE 2014, 9, e103472. [Google Scholar] [CrossRef]
- Bekendam, R.H.; Bendapudi, P.K.; Lin, L.; Nag, P.P.; Pu, J.; Kennedy, D.R.; Feldenzer, A.; Chiu, J.; Cook, K.M.; Furie, B.; et al. A Substrate-Driven Allosteric Switch That Enhances PDI Catalytic Activity. Nat. Commun. 2016, 7, 12579. [Google Scholar] [CrossRef] [PubMed]
- Karamzadeh, R.; Karimi-Jafari, M.H.; Sharifi-Zarchi, A.; Chitsaz, H.; Salekdeh, G.H.; Moosavi-Movahedi, A.A. Machine Learning and Network Analysis of Molecular Dynamics Trajectories Reveal Two Chains of Red/Ox-Specific Residue Interactions in Human Protein Disulfide Isomerase. Sci. Rep. 2017, 7, 3666. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Chen, S.; Wang, X.; Wang, L.; Wallis, A.K.; Freedman, R.B.; Wang, C.-C. Plasticity of Human Protein Disulfide Isomerase: Evidence for Mobility around the X-Linker Region and Its Functional Significance. J. Biol. Chem. 2010, 285, 26788–26797. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Li, W.; Ren, J.; Fang, J.; Ke, H.; Gong, W.; Feng, W.; Wang, C.-C. Structural Insights into the Redox-Regulated Dynamic Conformations of Human Protein Disulfide Isomerase. Antioxid. Redox Signal. 2013, 19, 36–45. [Google Scholar] [CrossRef] [PubMed]
- Okumura, M.; Noi, K.; Kanemura, S.; Kinoshita, M.; Saio, T.; Inoue, Y.; Hikima, T.; Akiyama, S.; Ogura, T.; Inaba, K. Dynamic Assembly of Protein Disulfide Isomerase in Catalysis of Oxidative Folding. Nat. Chem. Biol. 2019, 15, 499–509. [Google Scholar] [CrossRef] [PubMed]
- Guyette, J.; Evangelista, B.; Tatulian, S.A.; Teter, K. Stability and Conformational Resilience of Protein Disulfide Isomerase. Biochemistry 2019, 58, 3572–3584. [Google Scholar] [CrossRef]
- Woehlbier, U.; Colombo, A.; Saaranen, M.J.; Pérez, V.; Ojeda, J.; Bustos, F.J.; Andreu, C.I.; Torres, M.; Valenzuela, V.; Medinas, D.B.; et al. ALS-Linked Protein Disulfide Isomerase Variants Cause Motor Dysfunction. EMBO J. 2016, 35, 845–865. [Google Scholar] [CrossRef]
- Jeon, G.S.; Nakamura, T.; Lee, J.-S.; Choi, W.-J.; Ahn, S.-W.; Lee, K.-W.; Sung, J.-J.; Lipton, S.A. Potential Effect of S-Nitrosylated Protein Disulfide Isomerase on Mutant SOD1 Aggregation and Neuronal Cell Death in Amyotrophic Lateral Sclerosis. Mol. Neurobiol. 2014, 49, 796–807. [Google Scholar] [CrossRef]
- Uehara, T.; Nakamura, T.; Yao, D.; Shi, Z.-Q.; Gu, Z.; Ma, Y.; Masliah, E.; Nomura, Y.; Lipton, S.A. S-Nitrosylated Protein-Disulphide Isomerase Links Protein Misfolding to Neurodegeneration. Nature 2006, 441, 513–517. [Google Scholar] [CrossRef]
- Andreu, C.I.; Woehlbier, U.; Torres, M.; Hetz, C. Protein Disulfide Isomerases in Neurodegeneration: From Disease Mechanisms to Biomedical Applications. FEBS Lett. 2012, 586, 2826–2834. [Google Scholar] [CrossRef]
- Araujo, T.L.S.; Zeidler, J.D.; Oliveira, P.V.S.; Dias, M.H.; Armelin, H.A.; Laurindo, F.R.M. Protein Disulfide Isomerase Externalization in Endothelial Cells Follows Classical and Unconventional Routes. Free Radic. Biol. Med. 2017, 103, 199–208. [Google Scholar] [CrossRef] [PubMed]
- Soares Moretti, A.I.; Martins Laurindo, F.R. Protein Disulfide Isomerases: Redox Connections in and out of the Endoplasmic Reticulum. Arch. Biochem. Biophys. 2017, 617, 106–119. [Google Scholar] [CrossRef] [PubMed]
- Sobierajska, K.; Skurzynski, S.; Stasiak, M.; Kryczka, J.; Cierniewski, C.S.; Swiatkowska, M. Protein Disulfide Isomerase Directly Interacts with β-Actin Cys374 and Regulates Cytoskeleton Reorganization. J. Biol. Chem. 2014, 289, 5758–5773. [Google Scholar] [CrossRef] [PubMed]
- VanderWaal, R.P.; Spitz, D.R.; Griffith, C.L.; Higashikubo, R.; Roti Roti, J.L. Evidence That Protein Disulfide Isomerase (PDI) Is Involved in DNA-Nuclear Matrix Anchoring. J. Cell. Biochem. 2002, 85, 689–702. [Google Scholar] [CrossRef]
- Pescatore, L.A.; Bonatto, D.; Forti, F.L.; Sadok, A.; Kovacic, H.; Laurindo, F.R.M. Protein Disulfide Isomerase Is Required for Platelet-Derived Growth Factor-Induced Vascular Smooth Muscle Cell Migration, Nox1 NADPH Oxidase Expression, and RhoGTPase Activation. J. Biol. Chem. 2012, 287, 29290–29300. [Google Scholar] [CrossRef] [PubMed]
- De Bessa, T.C.; Pagano, A.; Moretti, A.I.S.; Oliveira, P.V.S.; Mendonça, S.A.; Kovacic, H.; Laurindo, F.R.M. Subverted Regulation of Nox1 NADPH Oxidase-Dependent Oxidant Generation by Protein Disulfide Isomerase A1 in Colon Carcinoma Cells with Overactivated KRas. Cell Death Dis. 2019, 10, 143. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, L.Y.; Araújo, H.A.; Hironaka, G.K.; Araujo, T.L.S.; Takimura, C.K.; Rodriguez, A.I.; Casagrande, A.S.; Gutierrez, P.S.; Lemos-Neto, P.A.; Laurindo, F.R.M. Peri/Epicellular Protein Disulfide Isomerase Sustains Vascular Lumen Caliber Through an Anticonstrictive Remodeling Effect. Hypertension 2016, 67, 613–622. [Google Scholar] [CrossRef] [PubMed]
- Bowley, S.R.; Fang, C.; Merrill-Skoloff, G.; Furie, B.C.; Furie, B. Protein Disulfide Isomerase Secretion Following Vascular Injury Initiates a Regulatory Pathway for Thrombus Formation. Nat. Commun. 2017, 8, 14151. [Google Scholar] [CrossRef] [PubMed]
- Cho, J.; Furie, B.C.; Coughlin, S.R.; Furie, B. A Critical Role for Extracellular Protein Disulfide Isomerase during Thrombus Formation in Mice. J. Clin. Investig. 2008, 118, 1123–1131. [Google Scholar] [CrossRef] [PubMed]
- Jasuja, R.; Passam, F.H.; Kennedy, D.R.; Kim, S.H.; van Hessem, L.; Lin, L.; Bowley, S.R.; Joshi, S.S.; Dilks, J.R.; Furie, B.; et al. Protein Disulfide Isomerase Inhibitors Constitute a New Class of Antithrombotic Agents. J. Clin. Investig. 2012, 122, 2104–2113. [Google Scholar] [CrossRef] [PubMed]
- Gallina, A.; Hanley, T.M.; Mandel, R.; Trahey, M.; Broder, C.C.; Viglianti, G.A.; Ryser, H.J.-P. Inhibitors of Protein-Disulfide Isomerase Prevent Cleavage of Disulfide Bonds in Receptor-Bound Glycoprotein 120 and Prevent HIV-1 Entry. J. Biol. Chem. 2002, 277, 50579–50588. [Google Scholar] [CrossRef]
- Söderberg, A.; Hossain, A.; Rosén, A. A Protein Disulfide Isomerase/thioredoxin-1 Complex Is Physically Attached to Exofacial Membrane Tumor Necrosis Factor Receptors: Overexpression in Chronic Lymphocytic Leukemia Cells. Antioxid. Redox Signal. 2013, 18, 363–375. [Google Scholar] [CrossRef]
- Reiser, K.; François, K.O.; Schols, D.; Bergman, T.; Jörnvall, H.; Balzarini, J.; Karlsson, A.; Lundberg, M. Thioredoxin-1 and Protein Disulfide Isomerase Catalyze the Reduction of Similar Disulfides in HIV gp120. Int. J. Biochem. Cell Biol. 2012, 44, 556–562. [Google Scholar] [CrossRef]
- Krossa, S.; Scheidig, A.J.; Grötzinger, J.; Lorenzen, I. Redundancy of Protein Disulfide Isomerases in the Catalysis of the Inactivating Disulfide Switch in A Disintegrin and Metalloprotease 17. Sci. Rep. 2018, 8, 1103. [Google Scholar] [CrossRef]
- Tanaka, L.Y.; Araujo, T.L.S.; Rodriguez, A.I.; Ferraz, M.S.; Pelegati, V.B.; Morais, M.C.C.; Santos, A.M.D.; Cesar, C.L.; Ramos, A.F.; Alencar, A.M.; et al. Peri/epicellular Protein Disulfide Isomerase-A1 Acts as an Upstream Organizer of Cytoskeletal Mechanoadaptation in Vascular Smooth Muscle Cells. Am. J. Physiol. Heart Circ. Physiol. 2019, 316, H566–H579. [Google Scholar] [CrossRef]
- Laurindo, F.R.M.; Pescatore, L.A.; de Castro Fernandes, D. Protein Disulfide Isomerase in Redox Cell Signaling and Homeostasis. Free Radic. Biol. Med. 2012, 52, 1954–1969. [Google Scholar] [CrossRef]
- Primm, T.P.; Gilbert, H.F. Hormone Binding by Protein Disulfide Isomerase, a High Capacity Hormone Reservoir of the Endoplasmic Reticulum. J. Biol. Chem. 2001, 276, 281–286. [Google Scholar] [CrossRef] [PubMed]
- Wajih, N.; Hutson, S.M.; Wallin, R. Disulfide-Dependent Protein Folding Is Linked to Operation of the Vitamin K Cycle in the Endoplasmic Reticulum. A Protein Disulfide Isomerase-VKORC1 Redox Enzyme Complex Appears to Be Responsible for Vitamin K1 2,3-Epoxide Reduction. J. Biol. Chem. 2007, 282, 2626–2635. [Google Scholar] [CrossRef]
- Muller, C.; Bandemer, J.; Vindis, C.; Camaré, C.; Mucher, E.; Guéraud, F.; Larroque-Cardoso, P.; Bernis, C.; Auge, N.; Salvayre, R.; et al. Protein Disulfide Isomerase Modification and Inhibition Contribute to ER Stress and Apoptosis Induced by Oxidized Low Density Lipoproteins. Antioxid. Redox Signal. 2013, 18, 731–742. [Google Scholar] [CrossRef] [PubMed]
- Lebeche, D.; Lucero, H.A.; Kaminer, B. Calcium Binding Properties of Rabbit Liver Protein Disulfide Isomerase. Biochem. Biophys. Res. Commun. 1994, 202, 556–561. [Google Scholar] [CrossRef] [PubMed]
- Narindrasorasak, S.; Yao, P.; Sarkar, B. Protein Disulfide Isomerase, a Multifunctional Protein Chaperone, Shows Copper-Binding Activity. Biochem. Biophys. Res. Commun. 2003, 311, 405–414. [Google Scholar] [CrossRef] [PubMed]
- Solovyov, A.; Gilbert, H.F. Zinc-Dependent Dimerization of the Folding Catalyst, Protein Disulfide Isomerase. Protein Sci. 2004, 13, 1902–1907. [Google Scholar] [CrossRef] [PubMed]
- Bin, B.-H.; Bhin, J.; Seo, J.; Kim, S.-Y.; Lee, E.; Park, K.; Choi, D.-H.; Takagishi, T.; Hara, T.; Hwang, D.; et al. Requirement of Zinc Transporter SLC39A7/ZIP7 for Dermal Development to Fine-Tune Endoplasmic Reticulum Function by Regulating Protein Disulfide Isomerase. J. Investig. Dermatol. 2017, 137, 1682–1691. [Google Scholar] [CrossRef] [PubMed]
- Maret, W. Analyzing Free zinc(II) Ion Concentrations in Cell Biology with Fluorescent Chelating Molecules. Metallomics 2015, 7, 202–211. [Google Scholar] [CrossRef]
- Maret, W. Zinc Biochemistry: From a Single Zinc Enzyme to a Key Element of Life. Adv. Nutr. 2013, 4, 82–91. [Google Scholar] [CrossRef]
- Maret, W. Zinc Coordination Environments in Proteins as Redox Sensors and Signal Transducers. Antioxid. Redox Signal. 2006, 8, 1419–1441. [Google Scholar] [CrossRef] [PubMed]
- Colvin, R.A.; Holmes, W.R.; Fontaine, C.P.; Maret, W. Cytosolic Zinc Buffering and Muffling: Their Role in Intracellular Zinc Homeostasis. Metallomics 2010, 2, 306–317. [Google Scholar] [CrossRef]
- Raturi, A.; Mutus, B. Characterization of Redox State and Reductase Activity of Protein Disulfide Isomerase under Different Redox Environments Using a Sensitive Fluorescent Assay. Free Radic. Biol. Med. 2007, 43, 62–70. [Google Scholar] [CrossRef] [PubMed]
- Grant, P.T.; Coombs, T.L.; Frank, B.H. Differences in the Nature of the Interaction of Insulin and Proinsulin with Zinc. Biochem. J. 1972, 126, 433–440. [Google Scholar] [CrossRef]
- Emdin, S.O.; Dodson, G.G.; Cutfield, J.M.; Cutfield, S.M. Role of Zinc in Insulin Biosynthesis. Some Possible Zinc-Insulin Interactions in the Pancreatic B-Cell. Diabetologia 1980, 19, 174–182. [Google Scholar] [CrossRef]
- Watanabe, S.; Amagai, Y.; Sannino, S.; Tempio, T.; Anelli, T.; Harayama, M.; Masui, S.; Sorrentino, I.; Yamada, M.; Sitia, R.; et al. Zinc Regulates ERp44-Dependent Protein Quality Control in the Early Secretory Pathway. Nat. Commun. 2019, 10, 603. [Google Scholar] [CrossRef]
- Bastos-Aristizabal, S.; Kozlov, G.; Gehring, K. Structural insight into the dimerization of human protein disulfide isomerase. Protein Sci. 2014, 23, 618–626. [Google Scholar] [CrossRef] [PubMed]
- Lafitte, D.; Tsvetkov, P.O.; Devred, F.; Toci, R.; Barras, F.; Briand, C.; Makarov, A.A.; Haiech, J. Cation Binding Mode of Fully Oxidised Calmodulin Explained by the Unfolding of the Apostate. Biochim. Biophys. Acta 2002, 1600, 105–110. [Google Scholar] [CrossRef]
- Baladi, S.; Tsvetkov, P.O.; Petrova, T.V.; Takagi, T.; Sakamoto, H.; Lobachov, V.M.; Makarov, A.A.; Cox, J.A. Folding Units in Calcium Vector Protein of Amphioxus: Structural and Functional Properties of Its Amino- and Carboxy-Terminal Halves. Protein Sci. 2001, 10, 771–778. [Google Scholar] [CrossRef]
- Garnier, C.; Protasevich, I.; Gilli, R.; Tsvetkov, P.; Lobachov, V.; Peyrot, V.; Briand, C.; Makarov, A. The Two-State Process of the Heat Shock Protein 90 Thermal Denaturation: Effect of Calcium and Magnesium. Biochem. Biophys. Res. Commun. 1998, 249, 197–201. [Google Scholar] [CrossRef]
- Seelig, J.; Schönfeld, H.-J. Thermal Protein Unfolding by Differential Scanning Calorimetry and Circular Dichroism Spectroscopy Two-State Model versus Sequential Unfolding. Q. Rev. Biophys. 2016, 49, e9. [Google Scholar] [CrossRef]
- Rahman, N.S.A.; Zahari, S.; Syafruddin, S.E.; Firdaus-Raih, M.; Low, T.Y.; Mohtar, M.A. Functions and Mechanisms of Protein Disulfide Isomerase Family in Cancer Emergence. Cell Biosci. 2022, 12, 129. [Google Scholar] [CrossRef]
- Baksheeva, V.E.; Roman, A.Y.; Villard, C.; Devred, F.; Byrne, D.; Yatoui, D.; Zalevsky, A.O.; Vologzhannikova, A.A.; Sokolov, A.S.; Permyakov, S.E.; et al. Mechanism of Zn2+ and Ca2+ Binding to Human S100A1. Biomolecules 2021, 11, 1823. [Google Scholar] [CrossRef]
- Garnier, C.; Devred, F.; Byrne, D.; Puppo, R.; Roman, A.Y.; Malesinski, S.; Golovin, A.V.; Lebrun, R.; Ninkina, N.N.; Tsvetkov, P.O. Zinc Binding to RNA Recognition Motif of TDP-43 Induces the Formation of Amyloid-like Aggregates. Sci. Rep. 2017, 7, 6812. [Google Scholar] [CrossRef] [PubMed]
- Maret, W. Molecular Aspects of Human Cellular Zinc Homeostasis: Redox Control of Zinc Potentials and Zinc Signals. Biometals 2009, 22, 149–157. [Google Scholar] [CrossRef]
- Baksheeva, V.E.; Tsvetkov, P.O.; Zalevsky, A.O.; Vladimirov, V.I.; Gorokhovets, N.V.; Zinchenko, D.V.; Permyakov, S.E.; Devred, F.; Zernii, E.Y. Zinc Modulation of Neuronal Calcium Sensor Proteins: Three Modes of Interaction with Different Structural Outcomes. Biomolecules 2022, 12, 956. [Google Scholar] [CrossRef]
- Tsvetkov, P.O.; Roman, A.Y.; Baksheeva, V.E.; Nazipova, A.A.; Shevelyova, M.P.; Vladimirov, V.I.; Buyanova, M.F.; Zinchenko, D.V.; Zamyatnin, A.A., Jr.; Devred, F.; et al. Functional Status of Neuronal Calcium Sensor-1 Is Modulated by Zinc Binding. Front. Mol. Neurosci. 2018, 11, 459. [Google Scholar] [CrossRef] [PubMed]
- Baksheeva, V.E.; Baldin, A.V.; Zalevsky, A.O.; Nazipova, A.A.; Kazakov, A.S.; Vladimirov, V.I.; Gorokhovets, N.V.; Devred, F.; Philippov, P.P.; Bazhin, A.V.; et al. Disulfide Dimerization of Neuronal Calcium Sensor-1: Implications for Zinc and Redox Signaling. Int. J. Mol. Sci. 2021, 22, 12602. [Google Scholar] [CrossRef] [PubMed]
- Bossy-Wetzel, E.; Talantova, M.V.; Lee, W.D.; Schölzke, M.N.; Harrop, A.; Mathews, E.; Götz, T.; Han, J.; Ellisman, M.H.; Perkins, G.A.; et al. Crosstalk between Nitric Oxide and Zinc Pathways to Neuronal Cell Death Involving Mitochondrial Dysfunction and p38-Activated K+ Channels. Neuron 2004, 41, 351–365. [Google Scholar] [CrossRef]
- Cuajungco, M.P.; Fagét, K.Y. Zinc Takes the Center Stage: Its Paradoxical Role in Alzheimer’s Disease. Brain Res. Brain Res. Rev. 2003, 41, 44–56. [Google Scholar] [CrossRef]
- Yatoui, D.; Tsvetkov, P.O.; La Rocca, R.; Baksheeva, V.E.; Allegro, D.; Breuzard, G.; Ferracci, G.; Byrne, D.; Devred, F. Binding of Two Zinc Ions Promotes Liquid-Liquid Phase Separation of Tau. Int. J. Biol. Macromol. 2022, 223, 1223–1229. [Google Scholar] [CrossRef]
- Das, N.; Raymick, J.; Sarkar, S. Role of Metals in Alzheimer’s Disease. Metab. Brain Dis. 2021, 36, 1627–1639. [Google Scholar] [CrossRef]
- Liao, X.; Ji, P.; Chi, K.; Chen, X.; Zhou, Y.; Chen, S.; Cheng, Y.; Flaumenhaft, R.; Yuan, C.; Huang, M. Enhanced Inhibition of Protein Disulfide Isomerase and Anti-Thrombotic Activity of a Rutin Derivative: Rutin:Zn Complex. RSC Adv. 2023, 13, 11464–11471. [Google Scholar] [CrossRef] [PubMed]
- Oteiza, P.I. Zinc and the Modulation of Redox Homeostasis. Free Radic. Biol. Med. 2012, 53, 1748–1759. [Google Scholar] [CrossRef] [PubMed]
- Won, H.-S.; Low, L.Y.; Guzman, R.D.; Martinez-Yamout, M.; Jakob, U.; Dyson, H.J. The Zinc-Dependent Redox Switch Domain of the Chaperone Hsp33 Has a Novel Fold. J. Mol. Biol. 2004, 341, 893–899. [Google Scholar] [CrossRef]
- Lu, H.; Woodburn, J. Zinc Binding Stabilizes Mitochondrial Tim10 in a Reduced and Import-Competent State Kinetically. J. Mol. Biol. 2005, 353, 897–910. [Google Scholar] [CrossRef] [PubMed]
- Sliskovic, I.; Raturi, A.; Mutus, B. Characterization of the S-denitrosation activity of protein disulfide isomerase. J. Biol. Chem. 2005, 280, 8733–8741. [Google Scholar] [CrossRef]
- Karala, A.-R.; Ruddock, L.W. Bacitracin Is Not a Specific Inhibitor of Protein Disulfide Isomerase. FEBS J. 2010, 277, 2454–2462. [Google Scholar] [CrossRef]
- DSC Data Analysis in Origin® Tutorial Guide Version 7.0-January 2004. Available online: https://bif.wisc.edu/wp-content/uploads/sites/389/2017/11/DSC_Data_Analysis_in_Origin.pdf (accessed on 21 January 2024).
PDI Forms | Ka M−1 | ∆H kcal/mol | ∆S cal/mol K | N |
---|---|---|---|---|
Reduced | (9.0 ± 0.5) × 104 | −9.1 ± 0.2 | −8.01 | 2.3 ± 0.1 |
Oxidized | (4.4 ± 0.4) × 104 | −14.0 ± 2.2 | −25.5 | 0.5 ± 0.1 |
Oxidative State | Ion | Peak | Tm | ∆Hcal | ∆HvH | ∆HvH/∆Hcal |
---|---|---|---|---|---|---|
Reduced | 1 | 39.3 | 17.0 | 110 | 6.5 | |
2 | 58.7 | 124.0 | 190 | 1.5 | ||
Oxidized | 1 | 36.5 | 7.6 | 105 | 13.8 | |
2 | 53.3 | 83.3 | 104 | 1.2 | ||
Reduced | Zn2+ | 1 | 39.0 | 10.2 | 88 | 8.8 |
2 | 45.3 | 54.1 | 81 | 1.5 | ||
3 | 49.8 | 52.9 | 125 | 2.4 | ||
Oxidized | Zn2+ | 1 | 36.8 | 10.3 | 129 | 12.5 |
2 | 54.6 | 102.0 | 105 | 1.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moretti, A.I.S.; Baksheeva, V.E.; Roman, A.Y.; De Bessa, T.C.; Devred, F.; Kovacic, H.; Tsvetkov, P.O. Exploring the Influence of Zinc Ions on the Conformational Stability and Activity of Protein Disulfide Isomerase. Int. J. Mol. Sci. 2024, 25, 2095. https://doi.org/10.3390/ijms25042095
Moretti AIS, Baksheeva VE, Roman AY, De Bessa TC, Devred F, Kovacic H, Tsvetkov PO. Exploring the Influence of Zinc Ions on the Conformational Stability and Activity of Protein Disulfide Isomerase. International Journal of Molecular Sciences. 2024; 25(4):2095. https://doi.org/10.3390/ijms25042095
Chicago/Turabian StyleMoretti, Ana Iochabel Soares, Viktoria E. Baksheeva, Andrei Yu. Roman, Tiphany Coralie De Bessa, François Devred, Hervé Kovacic, and Philipp O. Tsvetkov. 2024. "Exploring the Influence of Zinc Ions on the Conformational Stability and Activity of Protein Disulfide Isomerase" International Journal of Molecular Sciences 25, no. 4: 2095. https://doi.org/10.3390/ijms25042095
APA StyleMoretti, A. I. S., Baksheeva, V. E., Roman, A. Y., De Bessa, T. C., Devred, F., Kovacic, H., & Tsvetkov, P. O. (2024). Exploring the Influence of Zinc Ions on the Conformational Stability and Activity of Protein Disulfide Isomerase. International Journal of Molecular Sciences, 25(4), 2095. https://doi.org/10.3390/ijms25042095