Involvement of M1-Activated Macrophages and Perforin/Granulysin Expressing Lymphocytes in IgA Vasculitis Nephritis
Abstract
:1. Introduction
2. Results
2.1. Characteristics of the Children Recruited for the Study
2.2. Assessment of Glomerular CD68+ Cell Polarisation and Spatial Distribution with Respect to CD3+ and CD56+ Lymphocytes
2.3. Cytotoxic Phenotype of Kidney Infiltrating Lymphocytes
3. Discussion
4. Materials and Methods
4.1. Patients
4.2. Section Processing
4.3. Double Immunofluorescence Labelling
4.4. Analysis of Immunofluorescent Labelling
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jelusic, M.; Sestan, M.; Giani, T.; Cimaz, R. New Insights and Challenges Associated With IgA Vasculitis and IgA Vasculitis With Nephritis—Is It Time to Change the Paradigm of the Most Common Systemic Vasculitis in Childhood? Front. Pediatr. 2022, 10, 853724. [Google Scholar] [CrossRef] [PubMed]
- Piram, M.; Maldini, C.; Biscardi, S.; De Suremain, N.; Orzechowski, C.; Georget, E.; Regnard, D.; Koné-Paut, I.; Mahr, A. Incidence of IgA vasculitis in children estimated by four-source capture-recapture analysis: A population-based study. Rheumatology 2017, 56, 1358–1366. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; Huang, X.; Yu, G.; Qiao, J.; Cheng, J.; Wu, J.; Chen, J. Pathogenesis of IgA Vasculitis: An Up-To-Date Review. Front. Immunol. 2021, 12, 771619. [Google Scholar] [CrossRef] [PubMed]
- Jennette, J.C.; Falk, R.J.; Bacon, P.A.; Basu, N.; Cid, M.C.; Ferrario, F.; Flores-Suarez, L.F.; Gross, W.L.; Guillevin, L.; Hagen, E.C.; et al. Overview of the 2012 revised International Chapel Hill Consensus Conference Nomenclature of Vasculitides. Arthritis Rheum. 2013, 65, 603–606. [Google Scholar] [CrossRef]
- Davin, J.-C.; Coppo, R. Henoch–Schönlein Purpura Nephritis in Children. Nat. Rev. Nephrol. 2014, 10, 563–573. [Google Scholar] [CrossRef] [PubMed]
- Su, Q.; Jiang, L.; Chai, J.; Dou, Z.; Rong, Z.; Zhao, X.; Yu, B.; Wang, Y.; Wang, X. Changes of Peripheral Blood Lymphocyte Subsets and Immune Function in Children with Henoch-Schonlein Purpura Nephritis. Iran. J. Immunol. 2021, 18, 259–267. [Google Scholar] [CrossRef] [PubMed]
- Bohlson, S.S.; O’Conner, S.D.; Hulsebus, H.J.; Ho, M.-M.; Fraser, D.A. Complement, C1q, and C1q-Related Molecules Regulate Macrophage Polarization. Front. Immunol. 2014, 5, 402. [Google Scholar] [CrossRef]
- Wałajtys-Rode, E.; Dzik, J.M. Monocyte/Macrophage: NK Cell Cooperation—Old Tools for New Functions. In Results and Problems in Cell Differentiation; Springer: Cham, Switzerland, 2017; Volume 62, pp. 73–145. ISBN 9783319540900. [Google Scholar]
- Ding, Y.; Zhou, Y.; Li, H.-R.; Xiong, Y.-H.; Yin, W.; Zhao, L. Characteristics of Immune Function in the Acute Phase of Henoch-Schönlein Purpura. Clin. Rheumatol. 2021, 40, 3711–3716. [Google Scholar] [CrossRef]
- Fengyong, Z.; Zhixiang, F.; Jiajia, P.; Qin, L.; Min, Q.; Guoliang, W.; Ziyan, Z. Increased CD8+ T Cells in Patients with Henoch–Schonlein Purpura Nephritis Exhibit Suppressive Immune Activity. Immunol. Lett. 2022, 250, 23–28. [Google Scholar] [CrossRef]
- Chai, W.; Wang, X.; Wang, W.; Wang, H.; Mou, W.; Gui, J. Decreased Glycolysis Induced Dysfunction of NK Cells in Henoch-Schonlein Purpura Patients. BMC Immunol. 2020, 21, 53. [Google Scholar] [CrossRef]
- Imai, T.; Nishiyama, K.; Ueki, K.; Tanaka, T.; Kaku, Y.; Hara, T.; Ohga, S. Involvement of Activated Cytotoxic T Lymphocytes and Natural Killer Cells in Henoch–Schönlein Purpura Nephritis. Clin. Transl. Immunol. 2020, 9, e1212. [Google Scholar] [CrossRef] [PubMed]
- Lettau, M.; Kabelitz, D.; Janssen, O. Lysosome-Related Effector Vesicles in T Lymphocytes and NK Cells. Scand. J. Immunol. 2015, 82, 235–243. [Google Scholar] [CrossRef] [PubMed]
- D’Arcy, M.S. Cell Death: A Review of the Major Forms of Apoptosis, Necrosis and Autophagy. Cell Biol. Int. 2019, 43, 582–592. [Google Scholar] [CrossRef] [PubMed]
- Drvar, V.; Ćurko-Cofek, B.; Karleuša, L.; Aralica, M.; Rogoznica, M.; Kehler, T.; Legović, D.; Rukavina, D.; Laskarin, G. Granulysin Expression and Granulysin-Mediated Apoptosis in the Peripheral Blood of Osteoarthritis Patients. Biomed. Rep. 2022, 16, 44. [Google Scholar] [CrossRef]
- Laskarin, G.; Persic, V.; Ruzic, A.; Miletic, B.; Rakic, M.; Samsa, D.T.; Raljevic, D.; Pejcinovic, V.P.; Miskulin, R.; Rukavina, D. Perforin-Mediated Cytotoxicity in Non-ST Elevation Myocardial Infarction. Scand. J. Immunol. 2011, 74, 195–204. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Yin, Z.; Yan, W.; Wang, M.; Xue, L.; Zhou, Q.; Sun, Y. Baseline Red Blood Cell Distribution Width and Perforin, Dynamic Levels of Interleukin 6 and Lactate Are Predictors of Mortality in Patients with Sepsis. J. Clin. Lab. Anal. 2023, 37, e24838. [Google Scholar] [CrossRef] [PubMed]
- Azargoon, A.; Mirrasouli, Y.; Shokrollahi Barough, M.; Barati, M.; Kokhaei, P. The State of Peripheral Blood Natural Killer Cells and Cytotoxicity in Women with Recurrent Pregnancy Loss and Unexplained Infertility. Int. J. Fertil. Steril. 2019, 13, 12–17. [Google Scholar] [CrossRef]
- Persic, V.; Ruzic, A.; Miletic, B.; Samsa, D.T.; Rakic, M.; Raljevic, D.; Pejcinovic, V.P.; Eminovic, S.; Zaputovic, L.; Laskarin, G. Granulysin Expression in Lymphocytes That Populate the Peripheral Blood and the Myocardium after an Acute Coronary Event. Scand. J. Immunol. 2012, 75, 231–242. [Google Scholar] [CrossRef]
- Ichikawa, T.; Negishi, Y.; Kasano, S.; Yokote, R.; Yonezawa, M.; Ouchi, N.; Kuwabara, Y.; Suzuki, S.; Takeshita, T. Upregulated Serum Granulysin Levels in Women with Antiphospholipid Antibody-associated Recurrent Miscarriage Are Downregulated by Heparin Treatment. Reprod. Med. Biol. 2022, 21, e12460. [Google Scholar] [CrossRef]
- Sarwal, M.M.; Jani, A.; Chang, S.; Huie, P.; Wang, Z.; Salvatierra, O.; Clayberger, C.; Sibley, R.; Krensky, A.M.; Pavlakis, M. Granulysin Expression Is a Marker for Acute Rejection and Steroid Resistance in Human Renal Transplantation. Hum. Immunol. 2001, 62, 21–31. [Google Scholar] [CrossRef]
- Shapouri-Moghaddam, A.; Mohammadian, S.; Vazini, H.; Taghadosi, M.; Esmaeili, S.; Mardani, F.; Seifi, B.; Mohammadi, A.; Afshari, J.T.; Sahebkar, A. Macrophage Plasticity, Polarization, and Function in Health and Disease. J. Cell. Physiol. 2018, 233, 6425–6440. [Google Scholar] [CrossRef] [PubMed]
- Ikezumi, Y.; Kawachi, H.; Toyabe, S.; Uchiyama, M.; Shimizu, F. An anti-CD5 monoclonal antibody ameliorates proteinuria and glomerular lesions in rat mesangioproliferative glomerulonephritis. Kidney Int. 2000, 58, 100–114. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, T.; Ebihara, I.; Osada, S.; Okumura, K.; Tomino, Y.; Koide, H. Perforin gene expression in T lymphocytes correlates with disease activity in immunoglobulin A nephropathy. Clin. Sci. 1992, 82, 461–468. [Google Scholar] [CrossRef]
- Pașatu Cornea, A.-M.; Ciciu, E.; Tuță, L.-A. Perforin: An Intriguing Protein in Allograft Rejection Immunology (Review). Exp. Ther. Med. 2022, 24, 519. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.-X.; Wang, S.; Huang, X.; Min, W.-P.; Sun, H.; Liu, W.; Garcia, B.; Jevnikar, A.M. NK Cells Induce Apoptosis in Tubular Epithelial Cells and Contribute to Renal Ischemia-Reperfusion Injury. J. Immunol. 2008, 181, 7489–7498. [Google Scholar] [CrossRef] [PubMed]
- Huang, Z.; Fu, B.; Zheng, S.G.; Li, X.; Sun, R.; Tian, Z.; Wei, H. Involvement of CD226+ NK cells in immunopathogenesis of systemic lupus erythematosus. J. Immunol. 2011, 186, 3421–3431. [Google Scholar] [CrossRef] [PubMed]
- Henriques, A.; Teixeira, L.; Inês, L.; Carvalheiro, T.; Gonçalves, A.; Martinho, A.; Pais, M.L.; da Silva, J.A.; Paiva, A. NK cells dysfunction in systemic lupus erythematosus: Relation to disease activity. Clin. Rheumatol. 2013, 32, 805–813. [Google Scholar] [CrossRef] [PubMed]
- Spada, R.; Rojas, J.M.; Barber, D.F. Recent findings on the role of natural killer cells in the pathogenesis of systemic lupus erythematosus. J. Leukoc. Biol. 2015, 98, 479–487. [Google Scholar] [CrossRef]
- Fogazzi, G.B.; Imbasciati, E.; Moroni, G.; Scalia, A.; Mihatsch, M.J.; Ponticelli, C. Reversible Acute Renal Failure from Gross Haematuria Due to Glomerulonephritis: Not Only in IgA Nephropathy and Not Associated with Intratubular Obstruction. Nephrol. Dial. Transplant. 1995, 10, 624–629. [Google Scholar]
- Li, B.; Hartono, C.; Ding, R.; Sharma, V.K.; Ramaswamy, R.; Qian, B.; Serur, D.; Mouradian, J.; Schwartz, J.E.; Suthanthiran, M. Noninvasive Diagnosis of Renal-Allograft Rejection by Measurement of Messenger RNA for Perforin and Granzyme B in Urine. N. Engl. J. Med. 2001, 344, 947–954. [Google Scholar] [CrossRef]
- Uchida, T.; Seki, S.; Oda, T. Infections, Reactions of Natural Killer T Cells and Natural Killer Cells, and Kidney Injury. Int. J. Mol. Sci. 2022, 23, 479. [Google Scholar] [CrossRef]
- Fernando Nolasco, E.B.; Cameron, J.S.; Hartley, B.; Coelho, A.; Hildreth, G.; Reuben, R. Intraglomerular T Cells and Monocytes in Nephritis: Study with Monoclonal Antibodies. Kidney Int. 1987, 31, 1160–1166. [Google Scholar] [CrossRef]
- Audemard-Verger, A.; Pillebout, E.; Jamin, A.; Berthelot, L.; Aufray, C.; Martin, B.; Sannier, A.; Daugas, E.; Déchanet-Merville, J.; Richard, Y.; et al. Recruitment of CXCR3+ T Cells into Injured Tissues in Adult IgA Vasculitis Patients Correlates with Disease Activity. J. Autoimmun. 2019, 99, 73–80. [Google Scholar] [CrossRef]
- Krensky, A.M.; Clayberger, C. Biology and Clinical Relevance of Granulysin. Tissue Antigens 2009, 73, 193–198. [Google Scholar] [CrossRef] [PubMed]
- Ogawa, K.; Takamori, Y.; Suzuki, K.; Nagasawa, M.; Takano, S.; Kasahara, Y.; Nakamura, Y.; Kondo, S.; Sugamura, K.; Nakamura, M.; et al. Granulysin in Human Serum as a Marker of Cell-Mediated Immunity. Eur. J. Immunol. 2003, 33, 1925–1933. [Google Scholar] [CrossRef] [PubMed]
- Deng, A.; Chen, S.; Li, Q.; Lyu, S.; Clayberger, C.; Krensky, A.M. Granulysin, a Cytolytic Molecule, Is Also a Chemoattractant and Proinflammatory Activator. J. Immunol. 2005, 174, 5243–5248. [Google Scholar] [CrossRef] [PubMed]
- Clayberger, C.; Finn, M.W.; Wang, T.; Saini, R.; Wilson, C.; Barr, V.A.; Sa-batino, M.; Castiello, L.; Stroncek, D.; Krensky, A.M. 15 KDa Granulysin Causes Differentiation of Monocytes to Dendritic Cells but Lacks Cytotoxic Activity. J. Immunol. 2012, 188, 6119–6126. [Google Scholar] [CrossRef] [PubMed]
- Pulford, K.A.F.; Slpos, A.; Cordell, J.L.; Stross, W.P.; Mason, D.Y. Distribution of the CD68 Macrophagr/Myeloid Associated Antigen. Int. Immunol. 1990, 2, 973–980. [Google Scholar] [CrossRef] [PubMed]
- Nikolic-Paterson, D.J.; Atkins, R.C. The Role of Macrophages in Glomerulonephritis. Nephrol. Dial. Transplant. 2001, 16, 3–7. [Google Scholar] [CrossRef] [PubMed]
- Ruperto, N.; Ozen, S.; Pistorio, A.; Dolezalova, P.; Brogan, P.; Cabral, D.A.; Cuttica, R.; Khubchandani, R.; Lovell, D.J.; O’Neil, K.M.; et al. EULAR/PRINTO/PRES criteria for Henoch-Schönlein purpura, childhood polyarteritis nodosa, childhood Wegener granulomatosis, and childhood Takayasu arteritis: Ankara 2008. Part I: Overall methodology and clinical characterisation. Ann. Rheum. Dis. 2010, 69, 790–797. [Google Scholar] [CrossRef]
- Ozen, S.; Pistorio, A.; Iusan, S.M.; Bakkaloglu, A.; Herlin, T.; Brik, R.; Buoncompagni, A.; Lazar, C.; Bilge, I.; Uziel, Y.; et al. EULAR/PRINTO/PRES criteria for Henoch-Schonlein purpura, childhood polyarteritis nodosa, childhood Wegener granulomatosis and childhood Takayasu arteritis: Ankara 2008. Part II: Final classification criteria. Ann. Rheum. Dis. 2010, 69, 798–806. [Google Scholar] [CrossRef]
- Jelusic, M.; Sestan, M.; Cimaz, R.; Ozen, S. Different Histological Classifications for Henoch-Schönlein Purpura Nephritis: Which One Should Be Used? Pediatr. Rheumatol. 2019, 17, 10. [Google Scholar] [CrossRef]
- Ozen, S.; Marks, S.D.; Brogan, P.; Groot, N.; de Graeff, N.; Avcin, T.; Ba-der-Meunier, B.; Dolezalova, P.; Feldman, B.M.; Kone-Paut, I.; et al. European Consensus-Based Recommendations for Diagnosis and Treatment of Immunoglobulin A Vasculitis—The SHARE Initiative. Rheumatology 2019, 58, 1607–1616. [Google Scholar] [CrossRef]
- Aziz, S.J.; Zeman-Pocrnich, C.E. Tissue Processing. In Immunohistochemistry and Immunocytochemistry. Methods in Molecular Biology; Del Valle, L., Ed.; Humana: New York, NY, USA, 2022; Volume 2422, pp. 47–63. [Google Scholar]
- Gulic, T.; Laskarin, G.; Glavan, L.; Grubić Kezele, T.; Haller, H.; Rukavina, D. Human Decidual CD1a+ Dendritic Cells Undergo Functional Maturation Program Mediated by Gp 96. Int. J. Mol. Sci. 2023, 24, 2278. [Google Scholar] [CrossRef]
- Fujinaka, H.; Yamamoto, T.; Feng, L.; Nameta, M.; Garcia, G.; Chen, S.; El-shemi, A.G.A.; Ohshiro, K.; Katsuyama, K.; Yoshida, Y.; et al. Anti-Perforin Antibody Treatment Ameliorates Experimental Crescentic Glomerulonephritis in WKY Rats. Kidney Int. 2007, 72, 823–830. [Google Scholar] [CrossRef]
- Schindelin, J.; Arganda-Carreras, I.; Frise, E.; Kaynig, V.; Longair, M.; Pietzsch, T.; Preibisch, S.; Rueden, C.; Saalfeld, S.; Schmid, B.; et al. Fiji: An open-source platform for biological-image analysis. Nat. Methods 2012, 9, 676–682. [Google Scholar] [CrossRef] [PubMed]
Demographic Characteristics | |
---|---|
Female (%) | 47 |
Age at diagnosis, years (median, q1- q3) | 11.9 (7.7–13) |
Laboratory parameters | |
Creatinine, µmol/L (median, q1- q3) | 52 (39–74) |
Urea, mmol/L (median, q1- q3) | 4.5 (3.5–5.2) |
Haematuria (%) | 93 |
24-h proteinuria, g/dU (median, q1- q3) | 0.92 (0.33–1.97) |
eGFR, ml/min/1.73 m2 (median, q1- q3) | 114.1 (78.4–133.3) |
ESR, mm/h (median, q1- q3) | 17 (12–22) |
C3 (median, q1- q3) | 1.26 (1.132–1.332) |
C4 (median, q1- q3) | 0.24 (0.187–0.292) |
Therapy | |
NSAIDs (%) | 39 |
Glucocorticoids (%) | 96 |
Immunosuppressives (%) | 43 |
Biologic therapy (%) | 0 |
Antihypertensives (%) | 65 |
Outcome | |
normal physical examination, normal urinary and renal function (%) | 36 |
normal physical examination, with microscopic haematuria and/or proteinuria < 1 g/day (or < 40 mg/h/m2), eGFR > 60 mL/min/1.73 m2 (%) | 60 |
proteinuria > 1 g/day (or < 40 mg/h/m2) and/or hypertension, and eGFR > 60 mL/min/1.73 m2 (%) | 4 |
eGFR < 60 mL/min/1.73 m2 or ESRD requiring dialysis and/or renal transplantation or death (%) | 0 |
Results | |
---|---|
1. | CD68+ macrophage numbers fluctuated in the glomeruli and were mostly labelled with iNOs in patients with IgAVN. |
2. | CD68+/arginase-1+ cells were more frequently found in the tubules than in glomeruli of patients with IgAVN. |
3. | CD56+ cells, enclosed by CD68+ cells, were more frequently found in the glomeruli and co-expressed NKp44, whereas the arrangement of CD68+ and CD3+ cells in the glomeruli was less close. |
4. | The glomerular and intratubular CD56+ cells expressed perforin and granulysin, whereas glomerular and intratubular CD3+ cells expressed granulysin in a patient with IgAVN. |
5. | CD56+ and CD3+ cells in the kidney interstitium showed neither perforin nor granulysin expression in patients with IgAVN. |
6. | Epithelial cells of damaged and irregular tubules bound more antiperforin and antigranulysin mAbs. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Laskarin, G.; Babarovic, E.; Kifer, N.; Bulimbasic, S.; Sestan, M.; Held, M.; Frkovic, M.; Gagro, A.; Coric, M.; Jelusic, M. Involvement of M1-Activated Macrophages and Perforin/Granulysin Expressing Lymphocytes in IgA Vasculitis Nephritis. Int. J. Mol. Sci. 2024, 25, 2253. https://doi.org/10.3390/ijms25042253
Laskarin G, Babarovic E, Kifer N, Bulimbasic S, Sestan M, Held M, Frkovic M, Gagro A, Coric M, Jelusic M. Involvement of M1-Activated Macrophages and Perforin/Granulysin Expressing Lymphocytes in IgA Vasculitis Nephritis. International Journal of Molecular Sciences. 2024; 25(4):2253. https://doi.org/10.3390/ijms25042253
Chicago/Turabian StyleLaskarin, Gordana, Emina Babarovic, Nastasia Kifer, Stela Bulimbasic, Mario Sestan, Martina Held, Marijan Frkovic, Alenka Gagro, Marijana Coric, and Marija Jelusic. 2024. "Involvement of M1-Activated Macrophages and Perforin/Granulysin Expressing Lymphocytes in IgA Vasculitis Nephritis" International Journal of Molecular Sciences 25, no. 4: 2253. https://doi.org/10.3390/ijms25042253
APA StyleLaskarin, G., Babarovic, E., Kifer, N., Bulimbasic, S., Sestan, M., Held, M., Frkovic, M., Gagro, A., Coric, M., & Jelusic, M. (2024). Involvement of M1-Activated Macrophages and Perforin/Granulysin Expressing Lymphocytes in IgA Vasculitis Nephritis. International Journal of Molecular Sciences, 25(4), 2253. https://doi.org/10.3390/ijms25042253