Two-Photon-Excited FLIM of NAD(P)H and FAD—Metabolic Activity of Fibroblasts for the Diagnostics of Osteoimplant Survival
Abstract
:1. Introduction
2. Results
2.1. Fluorescence Microscopy of NAD(P)H and FAD
2.2. Determining Fibroblast Viability Using the MTT Test
2.3. Light Microscopy and SEM Images of the Surface Ceramic Samples
3. Materials and Methods
3.1. Ceramic Preparation
3.2. Cell Culture
3.3. Cell Viability Analysis
3.4. Fixation of Fibroblast Culture on Ceramic
3.5. Fibroblast Morphology
3.6. FLIM Data Examination and Analysis
3.7. Statistical Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Eldeeb, A.E.; Salah, S.; Elkasabgy, N.A. Biomaterials for Tissue Engineering Applications and Current Updates in the Field: A Comprehensive Review. AAPS PharmSciTech 2022, 23, 267. [Google Scholar] [CrossRef] [PubMed]
- Hashim, D.; Cionca, N.; Courvoisier, D.S.; Mombelli, A. A Systematic Review of the Clinical Survival of Zirconia Implants. Clin. Oral. Investig. 2016, 20, 1403–1417. [Google Scholar] [CrossRef]
- Cai, S.; Wu, C.; Yang, W.; Liang, W.; Yu, H.; Liu, L. Recent Advance in Surface Modification for Regulating Cell Adhesion and Behaviors. Nanotechnol. Rev. 2020, 9, 971–989. [Google Scholar] [CrossRef]
- Rozhnova, O.M.; Pavlov, V.V.; Sadovoy, M.A. Biocompatibility of Medical Devices Based on Metals, Causes Formation of Pathological Reactivity (a Review of Foreign Literature). Bull. Sib. Med. 2015, 14, 110–118. [Google Scholar] [CrossRef]
- Lozhkomoev, A.S.; Buyakov, A.S.; Kazantsev, S.O.; Senkina, E.I.; Krinitcyn, M.G.; Ivanyuk, V.A.; Sharipova, A.F.; Lerner, M.I. Preparation and Properties of Iron Nanoparticle-Based Macroporous Scaffolds for Biodegradable Implants. Materials 2022, 15, 4900. [Google Scholar] [CrossRef] [PubMed]
- Gunatillake, P.A.; Adhikari, R.; Gadegaard, N. Biodegradable Synthetic Polymers for Tissue Engineering. eCM 2003, 5, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Holzapfel, B.M.; Reichert, J.C.; Schantz, J.-T.; Gbureck, U.; Rackwitz, L.; Nöth, U.; Jakob, F.; Rudert, M.; Groll, J.; Hutmacher, D.W. How Smart Do Biomaterials Need to Be? A Translational Science and Clinical Point of View. Adv. Drug Deliv. Rev. 2013, 65, 581–603. [Google Scholar] [CrossRef]
- Hench, L.L. Bioceramics. J. Am. Ceram. Soc. 1998, 81, 1705–1728. [Google Scholar] [CrossRef]
- Vaiani, L.; Boccaccio, A.; Uva, A.E.; Palumbo, G.; Piccininni, A.; Guglielmi, P.; Cantore, S.; Santacroce, L.; Charitos, I.A.; Ballini, A. Ceramic Materials for Biomedical Applications: An Overview on Properties and Fabrication Processes. JFB 2023, 14, 146. [Google Scholar] [CrossRef]
- Maccauro, G.; Cittadini, A.; Magnani, G.; Sangiorgi, S.; Muratori, F.; Manicone, P.F.; Iommetti, P.R.; Marotta, D.; Chierichini, A.; Raffaelli, L.; et al. In Vivo Characterization of Zirconia Toughened Alumina Material: A Comparative Animal Study. Int. J. Immunopathol. Pharmacol. 2010, 23, 841–846. [Google Scholar] [CrossRef]
- Gil, J.; Delgado-García-Menocal, J.A.; Velasco-Ortega, E.; Bosch, B.; Delgado, L.; Pérez-Antoñanzas, R.; Fernández-Fairén, M. Comparison of Zirconia Degradation in Dental Implants and Femoral Balls: An X-Ray Diffraction and Nanoindentation Study. Int. J. Implant. Dent. 2021, 7, 103. [Google Scholar] [CrossRef]
- Chang, H.-I.; Wang, Y. Cell Responses to Surface and Architecture of Tissue Engineering Scaffolds. In Regenerative Medicine and Tissue Engineering-Cells and Biomaterials; Eberli, D., Ed.; InTechOpen: London, UK, 2011; ISBN 978-953-307-663-8. [Google Scholar]
- Surguchenko, V.; Ponomareva, A.; Efimov, A.; Nemets, E.; Agapov, I.; Sevastianov, V. Characteristics of Adhesion and Proliferation of Mouse Nih/3t3 Fibroblasts on the Poly(3-Hydroxybutyrate-Co-3-Hydroxyvalerate) Films with Different Surface Roughness Values. Russ. J. Transplantol. Artif. Organs 2012, 14, 72–77. [Google Scholar]
- Schwartz, Z.; Raz, P.; Zhao, G.; Barak, Y.; Tauber, M.; Yao, H.; Boyan, B.D. Effect of Micrometer-Scale Roughness of the Surface of Ti6Al4V Pedicle Screws in Vitro and in Vivo. J. Bone Jt. Surg.-Am. Vol. 2008, 90, 2485–2498. [Google Scholar] [CrossRef]
- Darvin, M.E.; Lademann, J.; Von Hagen, J.; Lohan, S.B.; Kolmar, H.; Meinke, M.C.; Jung, S. Carotenoids in Human Skin In Vivo: Antioxidant and Photo-Protectant Role against External and Internal Stressors. Antioxidants 2022, 11, 1451. [Google Scholar] [CrossRef]
- Galliera, E.; Massaccesi, L.; Banfi, G.; De Vecchi, E.; Ragone, V.; Corsi Romanelli, M.M. Effect of Oxidative Stress on Bone Remodeling in Periprosthetic Osteolysis. Clin. Rev. Bone Min. Metab. 2021, 19, 14–23. [Google Scholar] [CrossRef]
- Sharick, J.T.; Favreau, P.F.; Gillette, A.A.; Sdao, S.M.; Merrins, M.J.; Skala, M.C. Protein-Bound NAD(P)H Lifetime Is Sensitive to Multiple Fates of Glucose Carbon. Sci. Rep. 2018, 8, 5456. [Google Scholar] [CrossRef]
- Bartolomé, F.; Abramov, A.Y. Measurement of Mitochondrial NADH and FAD Autofluorescence in Live Cells. In Mitochondrial Medicine; Weissig, V., Edeas, M., Eds.; Methods in Molecular Biology; Springer: New York, NY, USA, 2015; Volume 1264, pp. 263–270. ISBN 978-1-4939-2256-7. [Google Scholar]
- Keisuke, Y.; Keisuke, O.; Takashi, N. NAD Metabolism: Implications in Aging and Longevity. Ageing Res. Rev. 2018, 47, 1–17. [Google Scholar] [CrossRef]
- Huang, S.; Heikal, A.A.; Webb, W.W. Two-Photon Fluorescence Spectroscopy and Microscopy of NAD(P)H and Flavoprotein. Biophys. J. 2002, 82, 2811–2825. [Google Scholar] [CrossRef]
- Chance, B.; Schoener, B.; Oshino, R.; Itshak, F.; Nakase, Y. Oxidation-Reduction Ratio Studies of Mitochondria in Freeze-Trapped Samples. NADH and Flavoprotein Fluorescence Signals. J. Biol. Chem. 1979, 254, 4764–4771. [Google Scholar] [CrossRef]
- Rück, A.; Hauser, C.; Mosch, S.; Kalinina, S. Spectrally Resolved Fluorescence Lifetime Imaging to Investigate Cell Metabolism in Malignant and Nonmalignant Oral Mucosa Cells. J. Biomed. Opt. 2014, 19, 096005. [Google Scholar] [CrossRef]
- Shirshin, E.A.; Yakimov, B.P.; Darvin, M.E.; Omelyanenko, N.P.; Rodionov, S.A.; Gurfinkel, Y.I.; Lademann, J.; Fadeev, V.V.; Priezzhev, A.V. Label-Free Multiphoton Microscopy: The Origin of Fluorophores and Capabilities for Analyzing Biochemical Processes. Biochem. Mosc. 2019, 84, 69–88. [Google Scholar] [CrossRef]
- Skala, M.C.; Riching, K.M.; Bird, D.K.; Gendron-Fitzpatrick, A.; Eickhoff, J.; Eliceiri, K.W.; Keely, P.J.; Ramanujam, N. In Vivo Multiphoton Fluorescence Lifetime Imaging of Protein-Bound and Free Nicotinamide Adenine Dinucleotide in Normal and Precancerous Epithelia. J. Biomed. Opt. 2007, 12, 024014. [Google Scholar] [CrossRef]
- Lakowicz, J.R. Fluorescence Lifetime Imaging of Free and.Protein-Bound NADH. Biochemistry 1992, 89, 1271–1275. [Google Scholar]
- Jameson, D.M.; Thomas, V.; Zhou, D. Time-Resolved Fluorescence Studies on NADH Bound to Mitochondrial Malate Dehydrogenase. Biochim. Biophys. Acta (BBA)-Protein Struct. Mol. Enzymol. 1989, 994, 187–190. [Google Scholar] [CrossRef]
- Lukina, M.M.; Shirmanova, M.V.; Sergeeva, T.F.; Zagaynova, E.V. Metabolic Imaging in the Study of Oncological Processes (Review). Sovrem. Teh. Med. 2016, 8, 113–126. [Google Scholar] [CrossRef]
- Skala, M.C.; Riching, K.M.; Gendron-Fitzpatrick, A.; Eickhoff, J.; Eliceiri, K.W.; White, J.G.; Ramanujam, N. In Vivo Multiphoton Microscopy of NADH and FAD Redox States, Fluorescence Lifetimes, and Cellular Morphology in Precancerous Epithelia. Proc. Natl. Acad. Sci. USA 2007, 104, 19494–19499. [Google Scholar] [CrossRef] [PubMed]
- Zoumi, A.; Yeh, A.; Tromberg, B.J. Imaging Cells and Extracellular Matrix in Vivo by Using Second-Harmonic Generation and Two-Photon Excited Fluorescence. Proc. Natl. Acad. Sci. USA 2002, 99, 11014–11019. [Google Scholar] [CrossRef] [PubMed]
- Yu, F.; Zhuo, S.; Qu, Y.; Choudhury, D.; Wang, Z.; Iliescu, C.; Yu, H. On Chip Two-Photon Metabolic Imaging for Drug Toxicity Testing. Biomicrofluidics 2017, 11, 034108. [Google Scholar] [CrossRef] [PubMed]
- Alhallak, K.; Rebello, L.G.; Muldoon, T.J.; Quinn, K.P.; Rajaram, N. Optical Redox Ratio Identifies Metastatic Potential-Dependent Changes in Breast Cancer Cell Metabolism. Biomed. Opt. Express 2016, 7, 4364. [Google Scholar] [CrossRef] [PubMed]
- Patterson, G.H.; Knobel, S.M.; Arkhammar, P.; Thastrup, O.; Piston, D.W. Separation of the Glucose-Stimulated Cytoplasmic and Mitochondrial NAD(P)H Responses in Pancreatic Islet Beta Cells. Proc. Natl. Acad. Sci. USA 2000, 97, 5203–5207. [Google Scholar] [CrossRef]
- Salmon, J.-M.; Kohen, E.; Viallet, P.; Hirschberg, J.G.; Wouters, A.W.; Kohen, C.; Thorell, B. Microspectrofluorometric Approach to the Study of Free/Bound NAD(P)H Ratio as Metabolic Indicator in Various Cell Types. Photochem. Photobiol. 1982, 36, 585–593. [Google Scholar] [CrossRef] [PubMed]
- Monici, M. Cell and Tissue Autofluorescence Research and Diagnostic Applications. In Biotechnology Annual Review; Elsevier: Amsterdam, The Netherlands, 2005; Volume 11, pp. 227–256. ISBN 978-0-444-51952-8. [Google Scholar]
- Shirmanova, M.V.; Druzhkova, I.N.; Lukina, M.M.; Dudenkova, V.V.; Ignatova, N.I.; Snopova, L.B.; Shcheslavskiy, V.I.; Belousov, V.V.; Zagaynova, E.V. Chemotherapy with Cisplatin: Insights into Intracellular pH and Metabolic Landscape of Cancer Cells in Vitro and in Vivo. Sci. Rep. 2017, 7, 8911. [Google Scholar] [CrossRef] [PubMed]
- De Freitas, B.X.; Alves, M.F.R.P.; Santos, C.; Ramos, A.S.; Ramos, E.C.T.; Strecker, K. Mechanical Properties of Biocompatible Y-TZP/Al2O3 Composites Obtained from Mechanically Alloyed Powders. J. Braz. Soc. Mech. Sci. Eng. 2020, 42, 353. [Google Scholar] [CrossRef]
- Borges, H.; Correia, A.; Castilho, R.; Fernandes, G. Zirconia Implants and Marginal Bone Loss: A Systematic Review and Meta-Analysis of Clinical Studies. Int. J. Oral. Maxillofac. Implant. 2020, 35, 707–720. [Google Scholar] [CrossRef]
- Hadjicharalambous, C.; Prymak, O.; Loza, K.; Buyakov, A.; Kulkov, S.; Chatzinikolaidou, M. Effect of Porosity of Alumina and Zirconia Ceramics toward Pre-Osteoblast Response. Front. Bioeng. Biotechnol. 2015, 3, 175. [Google Scholar] [CrossRef]
- Piconi, C.; Porporati, A.A. Bioinert Ceramics: Zirconia and Alumina. In Handbook of Bioceramics and Biocomposites; Antoniac, I.V., Ed.; Springer International Publishing: Cham, Switzerland, 2016; pp. 59–89. ISBN 978-3-319-12459-9. [Google Scholar]
- Todaro, G.J.; Green, H. Quantitative Studies of the Growth of Mouse Embryo Cells in Culture and Their Development into Established Lines. J. Cell Biol. 1963, 17, 299–313. [Google Scholar] [CrossRef] [PubMed]
- Lewinski, N.; Colvin, V.; Drezek, R. Cytotoxicity of Nanoparticles. Small 2008, 4, 26–49. [Google Scholar] [CrossRef]
- Singh, H.; Bishen, K.A.; Garg, D.; Sukhija, H.; Sharma, D.; Tomar, U. Fixation and Fixatives: Roles and Functions—A Short Review. Dent. J. Adv. Stud. 2019, 07, 051–055. [Google Scholar] [CrossRef]
- Bhat, A.H.; Hussein, S. Fixation and Different Types of Fixatives: Their Role and Functions: A Review. Int. J. Clin. Diagn. Pathol. 2021, 4, 113–119. [Google Scholar] [CrossRef]
- McKenzie, A.T. Glutaraldehyde: A Review of Its Fixative Effects on Nucleic Acids, Proteins, Lipids, and Carbohydrates; Open Science Framework: Charlotteville, VA, USA, 2019. [Google Scholar]
- Zhu, Y.; Choe, C.-S.; Ahlberg, S.; Meinke, M.C.; Alexiev, U.; Lademann, J.; Darvin, M.E. Penetration of Silver Nanoparticles into Porcine Skin Ex Vivo Using Fluorescence Lifetime Imaging Microscopy, Raman Microscopy, and Surface-Enhanced Raman Scattering Microscopy. J. Biomed. Opt. 2014, 20, 051006. [Google Scholar] [CrossRef]
- Kröger, J.M.; Scheffel, V.V.; Nikolaev, E.A.; Shirshin, F.; Siebenhaar, J.; Schleusener, J.; Lademann, M.; Maurer, M.E. Darvin In Vivo Non–Invasive Staining–Free Visualization of Dermal Mast Cells in Healthy, Allergy and Mastocytosis Humans Using Two-Photon Fluorescence Lifetime Imaging. Sci. Rep. 2020, 10, 14930. [Google Scholar] [CrossRef]
- Meleshina, A.V.; Dudenkova, V.V.; Bystrova, A.S.; Kuznetsova, D.S.; Shirmanova, M.V.; Zagaynova, E.V. Two-Photon FLIM of NAD(P)H and FAD in Mesenchymal Stem Cells Undergoing Either Osteogenic or Chondrogenic Differentiation. Stem Cell Res. Ther. 2017, 8, 15. [Google Scholar] [CrossRef]
- Malacrida, L.; Ranjit, S.; Jameson, D.M.; Gratton, E. The Phasor Plot: A Universal Circle to Advance Fluorescence Lifetime Analysis and Interpretation. Annu. Rev. Biophys. 2021, 50, 575–593. [Google Scholar] [CrossRef]
- Lozovoy, K.A.; Douhan, R.M.H.; Dirko, V.V.; Deeb, H.; Khomyakova, K.I.; Kukenov, O.I.; Sokolov, A.S.; Akimenko, N.Y.; Kokhanenko, A.P. Silicon-Based Avalanche Photodiodes: Advancements and Applications in Medical Imaging. Nanomaterials 2023, 13, 3078. [Google Scholar] [CrossRef]
- Becker, W.; Bergmann, A.; Biscotti, G.L.; Rueck, A. Advanced Time-Correlated Single Photon Counting Techniques for Spectroscopy and Imaging in Biomedical Systems; Neev, J., Schaffer, C.B., Ostendorf, A., Eds.; SPIE: San Jose, CA, USA, 2004; p. 104. [Google Scholar]
- Hu, W.; Guo, L.; Bai, L.; Miao, X.; Ni, Y.; Wang, Q.; Zhao, H.; Xie, M.; Li, L.; Lu, X.; et al. Maximizing Aggregation of Organic Fluorophores to Prolong Fluorescence Lifetime for Two-Photon Fluorescence Lifetime Imaging. Adv. Healthc. Mater. 2018, 7, 1800299. [Google Scholar] [CrossRef]
- Digman, M.A.; Caiolfa, V.R.; Zamai, M.; Gratton, E. The Phasor Approach to Fluorescence Lifetime Imaging Analysis. Biophys. J. 2008, 94, L14–L16. [Google Scholar] [CrossRef]
- Zhou, M.; Shao, Y. A Powerful Test for Multivariate Normality. J. Appl. Stat. 2014, 41, 351–363. [Google Scholar] [CrossRef]
- Mishra, P.; Pandey, C.; Singh, U.; Gupta, A.; Sahu, C.; Keshri, A. Descriptive Statistics and Normality Tests for Statistical Data. Ann. Card. Anaesth. 2019, 22, 67. [Google Scholar] [CrossRef] [PubMed]
- MacFarland, T.W.; Yates, J.M. Introduction to Nonparametric Statistics for the Biological Sciences Using R; Springer International Publishing: Cham, Switzerland, 2016; ISBN 978-3-319-30633-9. [Google Scholar]
- Nikolaev, V.V.; Kistenev, Y.V.; Kröger, M.; Zuhayri, H.; Darvin, M.E. Review of Optical Methods for Non-invasive Imaging of Skin Fibroblasts-from in Vitro to Ex Vivo and in Vivo Visualization. J. Biophotonics 2023, 17, e202300223. [Google Scholar] [CrossRef]
- Becker, W.; Braun, L.; Suarez-Ibarrol, R.; Miernik, A. Metabolic Imaging by Simultaneous FLIM of NAD(P)H and FAD. Curr. Dir. Biomed. Eng. 2020, 6, 254–256. [Google Scholar] [CrossRef]
Optical Characteristics (Mean ± STD) | ||||||
---|---|---|---|---|---|---|
(%) | (%) | (ps) | (ps) | (ps) | ||
Control | 74 ± 11 | 26 ± 11 | 3.48 ± 2.1 | 459 ± 93 | 2595 ± 762 | 774 ± 161 |
ATZ | 75 ± 4 | 25 ± 4 | 3.82 ± 1.6 | 494 ± 110 | 2498 ± 409 | 766 ± 178 |
Y-TZP | 73 ± 9 | 27 ± 9 | 3.55 ± 1.8 | 552 ± 134 | 2728 ± 517 | 881 ± 260 |
Optical Characteristics (Mean ± STD) | ||||||
---|---|---|---|---|---|---|
(%) | (%) | (ps) | (ps) | (ps) | ||
Control | 83 ± 6 | 17 ± 5 | 4.3 ± 2.1 | 245 ± 117 | 1512 ± 491 | 438 ± 161 |
ATZ | 82 ± 13 | 18 ± 13 | 5.1 ± 2.3 | 299 ± 120 | 1804 ± 408 | 594 ± 243 |
Y-TZP | 87 ± 10 | 13 ± 9 | 4.6 ± 2.2 | 214 ± 145 | 1364 ± 538 | 434 ± 245 |
Number of Samples | Number of Measurements | Number of Cells | Cell Density on the One FLIM Image (Cells/0.1 cm2) | |||
---|---|---|---|---|---|---|
Excitation at 760 nm | Excitation at 830 nm | Excitation at 760 nm | Excitation at 830 nm | |||
Control | 10 | 56 | 56 | 1130 | 306 | 21 ± 12 |
ATZ | 5 | 17 | 17 | 185 | 81 | 19 ± 10 |
Y-TZP | 5 | 9 | 9 | 229 | 59 | 15 ± 8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lepekhina, T.B.; Nikolaev, V.V.; Darvin, M.E.; Zuhayri, H.; Snegerev, M.S.; Lozhkomoev, A.S.; Senkina, E.I.; Kokhanenko, A.P.; Lozovoy, K.A.; Kistenev, Y.V. Two-Photon-Excited FLIM of NAD(P)H and FAD—Metabolic Activity of Fibroblasts for the Diagnostics of Osteoimplant Survival. Int. J. Mol. Sci. 2024, 25, 2257. https://doi.org/10.3390/ijms25042257
Lepekhina TB, Nikolaev VV, Darvin ME, Zuhayri H, Snegerev MS, Lozhkomoev AS, Senkina EI, Kokhanenko AP, Lozovoy KA, Kistenev YV. Two-Photon-Excited FLIM of NAD(P)H and FAD—Metabolic Activity of Fibroblasts for the Diagnostics of Osteoimplant Survival. International Journal of Molecular Sciences. 2024; 25(4):2257. https://doi.org/10.3390/ijms25042257
Chicago/Turabian StyleLepekhina, Tatiana B., Viktor V. Nikolaev, Maxim E. Darvin, Hala Zuhayri, Mikhail S. Snegerev, Aleksandr S. Lozhkomoev, Elena I. Senkina, Andrey P. Kokhanenko, Kirill A. Lozovoy, and Yury V. Kistenev. 2024. "Two-Photon-Excited FLIM of NAD(P)H and FAD—Metabolic Activity of Fibroblasts for the Diagnostics of Osteoimplant Survival" International Journal of Molecular Sciences 25, no. 4: 2257. https://doi.org/10.3390/ijms25042257
APA StyleLepekhina, T. B., Nikolaev, V. V., Darvin, M. E., Zuhayri, H., Snegerev, M. S., Lozhkomoev, A. S., Senkina, E. I., Kokhanenko, A. P., Lozovoy, K. A., & Kistenev, Y. V. (2024). Two-Photon-Excited FLIM of NAD(P)H and FAD—Metabolic Activity of Fibroblasts for the Diagnostics of Osteoimplant Survival. International Journal of Molecular Sciences, 25(4), 2257. https://doi.org/10.3390/ijms25042257