Dark under the Lamp: Neglected Biological Pollutants in the Environment Are Closely Linked to Lung Cancer
Abstract
:1. Introduction
2. Air Pollution and Lung Cancer
3. Virus and Lung Cancer
3.1. SARS-CoV-2
3.2. HIV
3.3. HPV
3.4. EBV
4. Bacteria and Lung Cancer
4.1. H. pylori
4.2. S. pneumoniae
4.3. M.tb
4.4. C. pneumoniae
4.5. Nontypeable Haemophilus influenzae
5. Allergen in Lung Cancer
6. Discussion
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Santibáñez-Andrade, M.; Chirino, Y.I.; González-Ramírez, I.; Sánchez-Pérez, Y.; García-Cuellar, C.M. Deciphering the Code between Air Pollution and Disease: The Effect of Particulate Matter on Cancer Hallmarks. Int. J. Mol. Sci. 2019, 21, 136. [Google Scholar] [CrossRef]
- Lagunas-Rangel, F.A.; Liu, W.; Schiöth, H.B. Can Exposure to Environmental Pollutants Be Associated with Less Effective Chemotherapy in Cancer Patients? Int. J. Environ. Res. Public Health 2022, 19, 2064. [Google Scholar] [CrossRef] [PubMed]
- Goodson, W.H., 3rd; Lowe, L.; Carpenter, D.O.; Gilbertson, M.; Manaf Ali, A.; Lopez de Cerain Salsamendi, A.; Lasfar, A.; Carnero, A.; Azqueta, A.; Amedei, A.; et al. Assessing the carcinogenic potential of low-dose exposures to chemical mixtures in the environment: The challenge ahead. Carcinogenesis 2015, 36 (Suppl. 1), S254–S296. [Google Scholar] [CrossRef]
- Ochieng, J.; Nangami, G.N.; Ogunkua, O.; Miousse, I.R.; Koturbash, I.; Odero-Marah, V.; McCawley, L.J.; Nangia-Makker, P.; Ahmed, N.; Luqmani, Y.; et al. The impact of low-dose carcinogens and environmental disruptors on tissue invasion and metastasis. Carcinogenesis 2015, 36 (Suppl. 1), S128–S159. [Google Scholar] [CrossRef]
- Orellana, C. Environmental pollutants that cause cancer. Lancet Oncol. 2001, 2, 650. [Google Scholar] [CrossRef]
- Eskenazi, B.; Warner, M.; Brambilla, P.; Signorini, S.; Ames, J.; Mocarelli, P. The Seveso accident: A look at 40 years of health research and beyond. Environ. Int. 2018, 121, 71–84. [Google Scholar] [CrossRef]
- Berenblum, I.; Shubik, P. A new, quantitative, approach to the study of the stages of chemical cartinogenesis in the mouse’s skin. Br. J. Cancer 1947, 1, 383–391. [Google Scholar] [CrossRef]
- Samet, J.M.; Cohen, A.J. Air Pollution. In Cancer Epidemiology and Prevention; Thun, M., Linet, M.S., Cerhan, J.R., Haiman, C.A., Schottenfeld, D., Eds.; Oxford University Press: Oxford, UK, 2017. [Google Scholar]
- Turner, M.C.; Andersen, Z.J.; Baccarelli, A.; Diver, W.R.; Gapstur, S.M.; Pope, C.A., 3rd; Prada, D.; Samet, J.; Thurston, G.; Cohen, A. Outdoor air pollution and cancer: An overview of the current evidence and public health recommendations. CA Cancer J. Clin. 2020, 70, 460–479. [Google Scholar] [CrossRef] [PubMed]
- Hill, W.; Lim, E.L.; Weeden, C.E.; Lee, C.; Augustine, M.; Chen, K.; Kuan, F.-C.; Marongiu, F.; Evans, E.J.; Moore, D.A.; et al. Lung adenocarcinoma promotion by air pollutants. Nature 2023, 616, 159–167. [Google Scholar] [CrossRef]
- Cheng, Z.; Cui, H.; Wang, Y.; Yang, J.; Lin, C.; Shi, X.; Zou, Y.; Chen, J.; Jia, X.; Su, L. The advance of the third-generation EGFR-TKI in the treatment of non-small cell lung cancer. Oncol. Rep. 2024, 51, 16. [Google Scholar] [CrossRef]
- Zhang, F.; Wang, Z.; Vijver, M.G.; Peijnenburg, W. Theoretical investigation on the interactions of microplastics with a SARS-CoV-2 RNA fragment and their potential impacts on viral transport and exposure. Sci. Total Environ. 2022, 842, 156812. [Google Scholar] [CrossRef]
- Cao, Y.; Chen, M.; Dong, D.; Xie, S.; Liu, M. Environmental pollutants damage airway epithelial cell cilia: Implications for the prevention of obstructive lung diseases. Thorac. Cancer 2020, 11, 505–510. [Google Scholar] [CrossRef]
- Tran, V.V.; Park, D.; Lee, Y.C. Indoor Air Pollution, Related Human Diseases, and Recent Trends in the Control and Improvement of Indoor Air Quality. Int. J. Environ. Res. Public Health 2020, 17, 2927. [Google Scholar] [CrossRef]
- Khiali, S.; Rezagholizadeh, A.; Entezari-Maleki, T. SARS-CoV-2 and probable lung cancer risk. Bioimpacts 2022, 12, 291–292. [Google Scholar] [CrossRef]
- Sadigov, A.; Akhundov, S.; Agayeva, A. Risk Factors for Lung Cancer in Individuals with COVID-19 without Cancer History. Respir. Care 2021, 66, 3566906. [Google Scholar]
- Sigel, K.; Makinson, A.; Thaler, J. Lung cancer in persons with HIV. Curr. Opin. HIV AIDS 2017, 12, 31–38. [Google Scholar] [CrossRef] [PubMed]
- Karnosky, J.; Dietmaier, W.; Knuettel, H.; Freigang, V.; Koch, M.; Koll, F.; Zeman, F.; Schulz, C. HPV and lung cancer: A systematic review and meta-analysis. Cancer Rep. 2021, 4, e1350. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Liu, T.; Xu, Z.; Dong, M. Association of Epstein-Barr virus (EBV) with lung cancer: Meta-analysis. Front. Oncol. 2023, 13, 1177521. [Google Scholar] [CrossRef] [PubMed]
- Mounika, P. Helicobacter pylori Infection and Risk of Lung Cancer: A Meta-Analysis. Lung Cancer Int. 2013, 2013, 131869. [Google Scholar] [CrossRef] [PubMed]
- Li, N.; Zhou, H.; Holden, V.K.; Deepak, J.; Dhilipkannah, P.; Todd, N.W.; Stass, S.A.; Jiang, F. Streptococcus pneumoniae promotes lung cancer development and progression. iScience 2023, 26, 105923. [Google Scholar] [CrossRef]
- Qin, Y.; Chen, Y.; Chen, J.; Xu, K.; Xu, F.; Shi, J. The relationship between previous pulmonary tuberculosis and risk of lung cancer in the future. Infect. Agents Cancer 2022, 17, 20. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Zhang, N.; Gao, L. Association between Chlamydia pneumoniae infection and lung cancer: A meta-analysis. Transl. Cancer Res. 2019, 8, 2813–2819. [Google Scholar] [CrossRef]
- Wang, D.; Li, W.; Albasha, N.; Griffin, L.; Chang, H.; Amaya, L.; Ganguly, S.; Zeng, L.; Keum, B.; González-Navajas, J.M.; et al. Long-term exposure to house dust mites accelerates lung cancer development in mice. J. Exp. Clin. Cancer Res. 2023, 42, 26. [Google Scholar] [CrossRef]
- Wang, Y.; Sun, Y.; Hu, Y.; Xiao, Z. Bibliometric Analysis of Anesthetic Drugs’ Effects on Immune Function-Current Knowledge, Hotspots and Future Perspectives. Drug Des. Dev. Ther. 2023, 17, 3219–3230. [Google Scholar] [CrossRef] [PubMed]
- Pranckutė, R. Web of Science (WoS) and Scopus: The Titans of Bibliographic Information in Today’s Academic World. Publications 2021, 9, 12. [Google Scholar] [CrossRef]
- Guo, B.; Gao, Q.; Pei, L.; Guo, T.; Wang, Y.; Wu, H.; Zhang, W.; Chen, M. Exploring the association of PM2.5 with lung cancer incidence under different climate zones and socioeconomic conditions from 2006 to 2016 in China. Environ. Sci. Pollut. Res. Int. 2023, 30, 126165–126177. [Google Scholar] [CrossRef] [PubMed]
- Ledford, H. Viruses found in lung tumours. Nature 2008. [Google Scholar] [CrossRef]
- Luo, J.; Rizvi, H.; Preeshagul, I.R.; Egger, J.V.; Hoyos, D.; Bandlamudi, C.; McCarthy, C.G.; Falcon, C.J.; Schoenfeld, A.J.; Arbour, K.C.; et al. COVID-19 in patients with lung cancer. Ann. Oncol. 2020, 31, 1386–1396. [Google Scholar] [CrossRef]
- Wang, L.; Wang, Y.; Cheng, X.; Li, X.; Li, J. Impact of coronavirus disease 2019 on lung cancer patients: A meta-analysis. Transl. Oncol. 2023, 28, 101605. [Google Scholar] [CrossRef]
- Aramini, B.; Masciale, V.; Samarelli, A.V.; Tonelli, R.; Cerri, S.; Clini, E.; Stella, F.; Dominici, M. Biological effects of COVID-19 on lung cancer: Can we drive our decisions. Front. Oncol. 2022, 12, 1029830. [Google Scholar] [CrossRef]
- Gupta, I.; Rizeq, B.; Elkord, E.; Vranic, S.; Al Moustafa, A.E. SARS-CoV-2 Infection and Lung Cancer: Potential Therapeutic Modalities. Cancers 2020, 12, 2186. [Google Scholar] [CrossRef]
- Xu, J.; Xu, X.; Jiang, L.; Dua, K.; Hansbro, P.M.; Liu, G. SARS-CoV-2 induces transcriptional signatures in human lung epithelial cells that promote lung fibrosis. Respir. Res. 2020, 21, 182. [Google Scholar] [CrossRef] [PubMed]
- Stewart, C.A.; Gay, C.M.; Ramkumar, K.; Cargill, K.R.; Cardnell, R.J.; Nilsson, M.B.; Heeke, S.; Park, E.M.; Kundu, S.T.; Diao, L.; et al. Lung Cancer Models Reveal Severe Acute Respiratory Syndrome Coronavirus 2–Induced Epithelial-to-Mesenchymal Transition Contributes to Coronavirus Disease 2019 Pathophysiology. J. Thorac. Oncol. 2021, 16, 1821–1839. [Google Scholar] [CrossRef] [PubMed]
- Ai, Y.; Wang, H.; Zheng, Q.; Li, S.; Liu, J.; Huang, J.; Tang, J.; Meng, X. Add fuel to the fire: Inflammation and immune response in lung cancer combined with COVID-19. Front. Immunol. 2023, 14, 1174184. [Google Scholar] [CrossRef] [PubMed]
- Wendisch, D.; Dietrich, O.; Mari, T.; von Stillfried, S.; Ibarra, I.L.; Mittermaier, M.; Mache, C.; Chua, R.L.; Knoll, R.; Timm, S.; et al. SARS-CoV-2 infection triggers profibrotic macrophage responses and lung fibrosis. Cell 2021, 184, 6243–6261.e27. [Google Scholar] [CrossRef] [PubMed]
- Malkani, N.; Rashid, M.U. SARS-COV-2 infection and lung tumor microenvironment. Mol. Biol. Rep. 2021, 48, 1925–1934. [Google Scholar] [CrossRef] [PubMed]
- Jeganathan, N.; Cleland, D.; Sathananthan, M. The association of lung cancer with pulmonary fibrosis. ERJ Open Res. 2022, 8, 00505–02021. [Google Scholar] [CrossRef] [PubMed]
- Kirk, G.D.; Merlo, C.; O’Driscoll, P.; Mehta, S.H.; Galai, N.; Vlahov, D.; Samet, J.; Engels, E.A. HIV Infection Is Associated with an Increased Risk for Lung Cancer, Independent of Smoking. Clin. Infect. Dis. 2007, 45, 103–110. [Google Scholar] [CrossRef]
- Winstone, T.A.; Man, S.F.P.; Hull, M.; Montaner, J.S.; Sin, D.D. Epidemic of lung cancer in patients with HIV infection. Chest 2013, 143, 305–314. [Google Scholar] [CrossRef]
- Hleyhel, M.; Hleyhel, M.; Bouvier, A.M.; Belot, A.; Tattevin, P.; Pacanowski, J.; Genet, P.; De Castro, N.; Berger, J.L.; Dupont, C.; et al. Risk of non-AIDS-defining cancers among HIV-1-infected individuals in France between 1997 and 2009: Results from a French cohort. Aids 2014, 28, 2109–2118. [Google Scholar] [CrossRef]
- Borges, Á.H.; Silverberg, M.J.; Wentworth, D.; Grulich, A.E.; Fätkenheuer, G.; Mitsuyasu, R.; Tambussi, G.; Sabin, C.A.; Neaton, J.D.; Lundgren, J.D. Predicting risk of cancer during HIV infection: The role of inflammatory and coagulation biomarkers. Aids 2013, 27, 1433–1441. [Google Scholar] [CrossRef]
- Mani, D.; Haigentz, M., Jr.; Aboulafia, D.M. Lung cancer in HIV Infection. Clin. Lung Cancer 2012, 13, 6–13. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.-Y.; Lin, C.; Tsai, S.C.-S.; Lin, F.C.-F. Human Papillomavirus Is Associated With Adenocarcinoma of Lung: A Population-Based Cohort Study. Front. Med. 2022, 9, 932196. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, Z.; Cao, H.; Niu, W.; Li, M.; Xi, X.e.; Wang, J. Human papillomavirus type 16 E6 oncoprotein promotes proliferation and invasion of non-small cell lung cancer cells through Toll-like receptor 3 signaling pathway. J. Med. Virol. 2017, 89, 1852–1860. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Z.; Wu, X.; Zhan, R.; Li, X.; Cheng, D.; Chen, L.; Wang, T.; Yu, H.; Zhang, G.; Tang, X. Exosomal epidermal growth factor receptor is involved in HPV-16 E7-induced epithelial-mesenchymal transition of non-small cell lung cancer cells: A driver of signaling in vivo. Cancer Biol. Ther. 2022, 23, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Prabhu, P.R.; Jayalekshmi, D.; Pillai, M.R. Lung Cancer and Human Papilloma Viruses (HPVs): Examining the Molecular Evidence. J. Oncol. 2012, 2012, 750270. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Ren, S.; He, Y.; Wang, L.; Chen, C.; Tang, J.; Liu, W.; Yu, F. Possible Oncogenic Viruses Associated with Lung Cancer. Onco Targets Ther. 2020, 13, 10651–10666. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Ling, Y.; Hu, L.; Zhang, L.; Lin, S.; Zhang, X.; Zang, S. Detection of Human Papillomavirus DNA, E6/E7 Messenger RNA, and p16INK4a in Lung Cancer: A Systematic Review and Meta-analysis. J. Infect. Dis. 2023, 228, 1137–1145. [Google Scholar] [CrossRef] [PubMed]
- Argyri, E.; Tsimplaki, E.; Marketos, C.; Politis, G.; Panotopoulou, E. Investigating the role of human papillomavirus in lung cancer. Papillomavirus Res. 2017, 3, 7–10. [Google Scholar] [CrossRef]
- Silva, E.M.; Mariano, V.S.; Pastrez, P.R.A.; Pinto, M.C.; Nunes, E.M.; Sichero, L.; Villa, L.L.; Scapulatempo-Neto, C.; Syrjanen, K.J.; Longatto-Filho, A. Human papillomavirus is not associated to non-small cell lung cancer: Data from a prospective cross-sectional study. Infect. Agents Cancer 2019, 14, 18. [Google Scholar] [CrossRef]
- Lin, F.C.-F.; Huang, J.-Y.; Tsai, S.C.-S.; Nfor, O.N.; Chou, M.-C.; Wu, M.-F.; Lee, C.-T.; Jan, C.-F.; Liaw, Y.-P. The association between human papillomavirus infection and female lung cancer: A population-based cohort study. Medicine 2016, 95, e3856. [Google Scholar] [CrossRef]
- Xie, M.; Wu, X.; Wang, F.; Zhang, J.; Ben, X.; Zhang, J.; Li, X. Clinical Significance of Plasma Epstein-Barr Virus DNA in Pulmonary Lymphoepithelioma-like Carcinoma (LELC) Patients. J. Thorac. Oncol. 2018, 13, 218–227. [Google Scholar] [CrossRef]
- Kheir, F.; Zhao, M.; Strong, M.J.; Yu, Y.; Nanbo, A.; Flemington, E.K.; Morris, G.F.; Reiss, K.; Li, L.; Lin, Z. Detection of Epstein-Barr Virus Infection in Non-Small Cell Lung Cancer. Cancers 2019, 11, 759. [Google Scholar] [CrossRef]
- Becnel, D.; Abdelghani, R.; Nanbo, A.; Avilala, J.; Kahn, J.; Li, L.; Lin, Z. Pathogenic Role of Epstein-Barr Virus in Lung Cancers. Viruses 2021, 13, 877. [Google Scholar] [CrossRef] [PubMed]
- Donkor, E.S. Understanding the pneumococcus: Transmission and evolution. Front. Cell Infect. Microbiol. 2013, 3, 7. [Google Scholar] [CrossRef] [PubMed]
- Elghannam, M.T.; Hassanien, M.H.; Ameen, Y.A.; Turky, E.A.; Elattar, G.M.; Elray, A.A.; Eltalkawy, M.D. Helicobacter pylori and oral–gut microbiome: Clinical implications. Infection, 2023; Epub ahead of print. [Google Scholar] [CrossRef]
- Deng, B.; Li, Y.; Zhang, Y.; Bai, L.; Yang, P. Helicobacter pylori infection and lung cancer: A review of an emerging hypothesis. Carcinogenesis 2013, 34, 1189–1195. [Google Scholar] [CrossRef] [PubMed]
- Yoon, H.-S.; Shu, X.-O.; Cai, H.; Zheng, W.; Wu, J.; Wen, W.; Courtney, R.; Shidal, C.; Waterboer, T.; Blot, W.J.; et al. Associations of lung cancer risk with biomarkers of Helicobacter pylori infection. Carcinogenesis 2022, 43, 538–546. [Google Scholar] [CrossRef] [PubMed]
- Gocyk, W.; Nikliński, T.; Olechnowicz, H.; Duda, A.; Bielański, W.; Konturek, P.C.; Konturek, S.J. Helicobacter pylori, gastrin and cyclooxygenase-2 in lung cancer. Med. Sci. Monit. 2000, 6, 1085–1092. [Google Scholar] [PubMed]
- Wei, L.; Yang, Y.; Zhang, X.; Yu, Q. Anchorage-independent phosphorylation of p130Cas protects lung adenocarcinoma cells from anoikis. J. Cell Biochem. 2002, 87, 439–449. [Google Scholar] [CrossRef]
- Huang, W.; Deng, B.; Wang, R.W.; Tan, Q.Y.; He, Y.; Jiang, Y.G.; Zhou, J.H. BCAR1 protein plays important roles in carcinogenesis and predicts poor prognosis in non-small-cell lung cancer. PLoS ONE 2012, 7, e36124. [Google Scholar] [CrossRef]
- Arnold, I.C.; Dehzad, N.; Reuter, S.; Martin, H.; Becher, B.; Taube, C.; Müller, A. Helicobacter pylori infection prevents allergic asthma in mouse models through the induction of regulatory T cells. J. Clin. Investig. 2011, 121, 3088–3093. [Google Scholar] [CrossRef] [PubMed]
- Jackson, L.; Britton, J.; Lewis, S.A.; McKeever, T.M.; Atherton, J.; Fullerton, D.; Fogarty, A.W. A population-based epidemiologic study of Helicobacter pylori infection and its association with systemic inflammation. Helicobacter 2009, 14, 108–113. [Google Scholar] [CrossRef] [PubMed]
- Oster, P.; Vaillant, L.; Riva, E.; McMillan, B.; Begka, C.; Truntzer, C.; Richard, C.; Leblond, M.M.; Messaoudene, M.; Machremi, E.; et al. Helicobacter pylori infection has a detrimental impact on the efficacy of cancer immunotherapies. Gut 2022, 71, 457–466. [Google Scholar] [CrossRef] [PubMed]
- Bello, S.; Vengoechea, J.J.; Ponce-Alonso, M.; Figueredo, A.L.; Mincholé, E.; Rezusta, A.; Gambó, P.; Pastor, J.M.; del Campo, R. Core Microbiota in Central Lung Cancer with Streptococcal Enrichment as a Possible Diagnostic Marker. Arch. Bronconeumol. 2021, 57, 681–689. [Google Scholar] [CrossRef] [PubMed]
- Song, X.; Liu, B.; Zhao, G.; Pu, X.; Liu, B.; Ding, M.; Xue, Y. Streptococcus pneumoniae promotes migration and invasion of A549 cells in vitro by activating mTORC2/AKT through up-regulation of DDIT4 expression. Front. Microbiol. 2022, 13, 1046226. [Google Scholar] [CrossRef]
- Hwang, S.Y.; Kim, J.Y.; Lee, H.S.; Lee, S.; Kim, D.; Kim, S.; Hyun, J.H.; Shin, J.I.; Lee, K.H.; Han, S.H.; et al. Pulmonary Tuberculosis and Risk of Lung Cancer: A Systematic Review and Meta-Analysis. J. Clin. Med. 2022, 11, 765. [Google Scholar] [CrossRef] [PubMed]
- Malik, A.A.; Sheikh, J.A.; Ehtesham, N.Z.; Hira, S.; Hasnain, S.E. Can Mycobacterium tuberculosis infection lead to cancer? Call for a paradigm shift in understanding TB and cancer. Int. J. Med. Microbiol. 2022, 312, 151558. [Google Scholar] [CrossRef]
- Ho, L.-J.; Yang, H.-Y.; Chung, C.-H.; Chang, W.-C.; Yang, S.-S.; Sun, C.-A.; Chien, W.-C.; Su, R.-Y. Increased risk of secondary lung cancer in patients with tuberculosis: A nationwide, population-based cohort study. PLoS ONE 2021, 16, e0250531. [Google Scholar] [CrossRef]
- Liao, K.-M.; Lee, C.-S.; Wu, Y.-C.; Shu, C.-C.; Ho, C.-H. Prior treated tuberculosis and mortality risk in lung cancer. Front. Med. 2023, 10, 1121257. [Google Scholar] [CrossRef]
- Cao, S.; Li, J.; Lu, J.; Zhong, R.; Zhong, H. Mycobacterium tuberculosis antigens repress Th1 immune response suppression and promotes lung cancer metastasis through PD-1/PDl-1 signaling pathway. Cell Death Dis. 2019, 10, 44. [Google Scholar] [CrossRef]
- Zhou, Y.; Hu, Z.; Cao, S.; Yan, B.; Qian, J.; Zhong, H. Concomitant Mycobacterium tuberculosis infection promotes lung tumor growth through enhancing Treg development. Oncol. Rep. 2017, 38, 685–692. [Google Scholar] [CrossRef] [PubMed]
- Xiong, K.; Sun, W.; He, Y.; Fan, L. Advances in molecular mechanisms of interaction between Mycobacterium tuberculosis and lung cancer: A narrative review. Transl. Lung Cancer Res. 2021, 10, 4012–4026. [Google Scholar] [CrossRef] [PubMed]
- Kwiatkowska, S.; Szkudlarek, U.; Luczyńska, M.; Nowak, D.; Zieba, M. Elevated exhalation of hydrogen peroxide and circulating IL-18 in patients with pulmonary tuberculosis. Respir. Med. 2007, 101, 574–580. [Google Scholar] [CrossRef] [PubMed]
- Chung, Y.W.; Jeong, D.W.; Won, J.Y.; Choi, E.J.; Choi, Y.H.; Kim, I.Y. H2O2-induced AP-1 activation and its effect on p21(WAF1/CIP1)-mediated G2/M arrest in a p53-deficient human lung cancer cell. Biochem. Biophys. Res. Commun. 2002, 293, 1248–1253. [Google Scholar] [CrossRef] [PubMed]
- Benoit, M.; Desnues, B.; Mege, J.L. Macrophage polarization in bacterial infections. J. Immunol. 2008, 181, 3733–3739. [Google Scholar] [CrossRef]
- Boutilier, A.J.; Elsawa, S.F. Macrophage Polarization States in the Tumor Microenvironment. Int. J. Mol. Sci. 2021, 22, 6995. [Google Scholar] [CrossRef]
- Columba-Cabezas, S.; Serafini, B.; Ambrosini, E.; Sanchez, M.; Penna, G.; Adorini, L.; Aloisi, F. Induction of macrophage-derived chemokine/CCL22 expression in experimental autoimmune encephalomyelitis and cultured microglia: Implications for disease regulation. J. Neuroimmunol. 2002, 130, 10–21. [Google Scholar] [CrossRef]
- Schmidt, S.M.; Müller, C.E.; Bruns, R.; Wiersbitzky, S.K. Bronchial Chlamydia pneumoniae infection, markers of allergic inflammation and lung function in children. Pediatr. Allergy Immunol. 2001, 12, 257–265. [Google Scholar] [CrossRef]
- Xu, X.; Liu, Z.; Xiong, W.; Qiu, M.; Kang, S.; Xu, Q.; Cai, L.; He, F. Combined and interaction effect of chlamydia pneumoniae infection and smoking on lung cancer: A case-control study in Southeast China. BMC Cancer 2020, 20, 903. [Google Scholar] [CrossRef]
- Zhan, P.; Suo, L.-j.; Qian, Q.; Shen, X.-k.; Qiu, L.-X.; Yu, L.-k.; Song, Y. Chlamydia pneumoniae infection and lung cancer risk: A meta-analysis. Eur. J. Cancer 2011, 47, 742–747. [Google Scholar] [CrossRef]
- Liu, Z.; Yin, Z.-h.; Liang, H.-y.; Jia, Z.-f.; Zhou, B.-s. Association between Chlamydia pneumoniae Antibodies and Lung Cancer: A Meta-Analysis. Curr. Respir. Med. Rev. 2010, 6, 201–206. [Google Scholar] [CrossRef]
- Drokow, E.K.; Effah, C.Y.; Agboyibor, C.; Budu, J.T.; Arboh, F.; Kyei-Baffour, P.A.; Xiao, Y.; Zhang, F.; Wu, I.X.Y. Microbial infections as potential risk factors for lung cancer: Investigating the role of human papillomavirus and chlamydia pneumoniae. AIMS Public Health 2023, 10, 627–646. [Google Scholar] [CrossRef]
- Gaydos, C.A. Growth in vascular cells and cytokine production by Chlamydia pneumoniae. J. Infect. Dis. 2000, 181 (Suppl. 3), S473–S478. [Google Scholar] [CrossRef]
- Mayer, J.; Woods, M.L.; Vavrin, Z.; Hibbs, J.B., Jr. Gamma interferon-induced nitric oxide production reduces Chlamydia trachomatis infectivity in McCoy cells. Infect. Immun. 1993, 61, 491–497. [Google Scholar] [CrossRef]
- Geng, Y.; Shane, R.B.; Berencsi, K.; Gonczol, E.; Zaki, M.H.; Margolis, D.J.; Trinchieri, G.; Rook, A.H. Chlamydia pneumoniae inhibits apoptosis in human peripheral blood mononuclear cells through induction of IL-10. J. Immunol. 2000, 164, 5522–5529. [Google Scholar] [CrossRef] [PubMed]
- Jungnickel, C.; Schnabel, P.A.; Bohle, R.; Wiewrodt, R.; Herr, C.; Bals, R.; Beisswenger, C. Nontypeable Haemophilus influenzae-Promoted Proliferation of Kras-Induced Early Adenomatous Lesions Is Completely Dependent on Toll-Like Receptor Signaling. Am. J. Pathol. 2017, 187, 973–979. [Google Scholar] [CrossRef] [PubMed]
- Velasco, W.V.; Khosravi, N.; Castro-Pando, S.; Torres-Garza, N.; Grimaldo, M.T.; Krishna, A.; Clowers, M.J.; Umer, M.; Tariq Amir, S.; Del Bosque, D.; et al. Toll-like receptors 2, 4, and 9 modulate promoting effect of COPD-like airway inflammation on K-ras-driven lung cancer through activation of the MyD88/NF-ĸB pathway in the airway epithelium. Front. Immunol. 2023, 14, 1118721. [Google Scholar] [CrossRef]
- Sriram, K.B.; Cox, A.J.; Sivakumaran, P.; Singh, M.; Watts, A.M.; West, N.P.; Cripps, A.W. Non-typeable Haemophilus Influenzae detection in the lower airways of patients with lung cancer and chronic obstructive pulmonary disease. Multidiscip. Respir. Med. 2018, 13, 11. [Google Scholar] [CrossRef]
- Putra, B.P.; Putra, F.N. 40P Revealing the association between lung cancer and allergic respiratory diseases: Meta-analysis of cohort studies. J. Thorac. Oncol. 2021, 16, S715. [Google Scholar] [CrossRef]
- Jiang, L.; Sun, Y.-Q.; Langhammer, A.; Brumpton, B.M.; Chen, Y.; Nilsen, T.I.L.; Leivseth, L.; Wahl, S.G.F.; Mai, X.-M. Asthma and asthma symptom control in relation to incidence of lung cancer in the HUNT study. Sci. Rep. 2021, 11, 4539. [Google Scholar] [CrossRef]
- Bekaert, S.; Rocks, N.; Vanwinge, C.; Noël, A.; Cataldo, D. Asthma-related inflammation promotes lung metastasis of breast cancer cells through CCL11–CCR3 pathway. Respir. Res. 2021, 22, 61. [Google Scholar] [CrossRef]
- LaMarche, N.M.; Hegde, S.; Park, M.D.; Maier, B.B.; Troncoso, L.; Le Berichel, J.; Hamon, P.; Belabed, M.; Mattiuz, R.; Hennequin, C.; et al. An IL-4 signalling axis in bone marrow drives pro-tumorigenic myelopoiesis. Nature 2024, 625, 166–174. [Google Scholar] [CrossRef] [PubMed]
- Koh, W.-P.; Yuan, J.-M.; Wang, R.; Seow, A.; Lee, H.-P.; Yu, M.C. Chronic rhinosinusitis and risk of lung cancer in the Singapore Chinese Health Study. Int. J. Cancer 2008, 123, 1398–1402. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.-R.; Yu, I.T.; Chiu, Y.L.; Qiu, H.; Fu, Z.; Goggins, W.; Au, J.S.; Tse, L.-A.; Wong, T.-W. Previous pulmonary disease and family cancer history increase the risk of lung cancer among Hong Kong women. Cancer Causes Control 2009, 20, 757–763. [Google Scholar] [CrossRef]
- Hwang, C.-Y.; Chen, Y.-J.; Lin, M.-W.; Chen, T.-J.; Chu, S.-Y.; Chen, C.-C.; Lee, D.-D.; Chang, Y.-T.; Wang, W.-J.; Liu, H.-N. Cancer risk in patients with allergic rhinitis, asthma and atopic dermatitis: A nationwide cohort study in Taiwan. Int. J. Cancer 2012, 130, 1160–1167. [Google Scholar] [CrossRef]
- Awaya, A.; Kuroiwa, Y. The Relationship between Annual Airborne Pollen Levels and Occurrence of All Cancers, and Lung, Stomach, Colorectal, Pancreatic and Breast Cancers: A Retrospective Study from the National Registry Database of Cancer Incidence in Japan, 1975–2015. Int. J. Environ. Res. Public Health 2020, 17, 3950. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Chen, Y.; Wang, Y.; Dong, X.; Wang, J.; Tang, J.; Sundquist, K.; Sundquist, J.; Ji, J. Cancer risk in patients with hepatitis C virus infection: A population-based study in Sweden. Cancer Med. 2017, 6, 1135–1140. [Google Scholar] [CrossRef]
- Ponvilawan, B.; Charoenngam, N.; Rujirachun, P.; Wattanachayakul, P.; Tornsatitkul, S.; Rittiphairoj, T.; Ungprasert, P. Chronic Hepatitis C Virus Infection is Associated with an Increased Risk of Lung Cancer: A Systematic Review and Meta-analysis. Lung 2020, 198, 705–714. [Google Scholar] [CrossRef]
- Lan, K.H.; Sheu, M.L.; Hwang, S.J.; Yen, S.H.; Chen, S.Y.; Wu, J.C.; Wang, Y.J.; Kato, N.; Omata, M.; Chang, F.Y.; et al. HCV NS5A interacts with p53 and inhibits p53-mediated apoptosis. Oncogene 2002, 21, 4801–4811. [Google Scholar] [CrossRef]
- Ghosh, A.K.; Majumder, M.; Steele, R.; Meyer, K.; Ray, R.; Ray, R.B. Hepatitis C virus NS5A protein protects against TNF-alpha mediated apoptotic cell death. Virus Res. 2000, 67, 173–178. [Google Scholar] [CrossRef]
- Crotta, S.; Stilla, A.; Wack, A.; D’Andrea, A.; Nuti, S.; D’Oro, U.; Mosca, M.; Filliponi, F.; Brunetto, R.M.; Bonino, F.; et al. Inhibition of natural killer cells through engagement of CD81 by the major hepatitis C virus envelope protein. J. Exp. Med. 2002, 195, 35–41. [Google Scholar] [CrossRef]
- Amin, J.; Dore, G.J.; O’Connell, D.L.; Bartlett, M.; Tracey, E.; Kaldor, J.M.; Law, M.G. Cancer incidence in people with hepatitis B or C infection: A large community-based linkage study. J. Hepatol. 2006, 45, 197–203. [Google Scholar] [CrossRef] [PubMed]
- Omland, L.H.; Farkas, D.K.; Jepsen, P.; Obel, N.; Pedersen, L. Hepatitis C virus infection and risk of cancer: A population-based cohort study. Clin. Epidemiol. 2010, 2, 179–186. [Google Scholar] [CrossRef] [PubMed]
- Min, Y.; Wei, X.; Xia, X.; Wei, Z.; Li, R.; Jin, J.; Liu, Z.; Hu, X.; Peng, X. Hepatitis B virus infection: An insight into the clinical connection and molecular interaction between hepatitis B virus and host extrahepatic cancer risk. Front. Immunol. 2023, 14, 1141956. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, D.; Chan, B.C.-L.; Zhang, B.; Wong, K.C.-Y.; Kan, L.L.-Y.; Wong, C.-K. Dark under the Lamp: Neglected Biological Pollutants in the Environment Are Closely Linked to Lung Cancer. Int. J. Mol. Sci. 2024, 25, 3081. https://doi.org/10.3390/ijms25063081
Wang D, Chan BC-L, Zhang B, Wong KC-Y, Kan LL-Y, Wong C-K. Dark under the Lamp: Neglected Biological Pollutants in the Environment Are Closely Linked to Lung Cancer. International Journal of Molecular Sciences. 2024; 25(6):3081. https://doi.org/10.3390/ijms25063081
Chicago/Turabian StyleWang, Dongjie, Ben Chung-Lap Chan, Bitian Zhang, Katie Ching-Yau Wong, Lea Ling-Yu Kan, and Chun-Kwok Wong. 2024. "Dark under the Lamp: Neglected Biological Pollutants in the Environment Are Closely Linked to Lung Cancer" International Journal of Molecular Sciences 25, no. 6: 3081. https://doi.org/10.3390/ijms25063081
APA StyleWang, D., Chan, B. C. -L., Zhang, B., Wong, K. C. -Y., Kan, L. L. -Y., & Wong, C. -K. (2024). Dark under the Lamp: Neglected Biological Pollutants in the Environment Are Closely Linked to Lung Cancer. International Journal of Molecular Sciences, 25(6), 3081. https://doi.org/10.3390/ijms25063081