Efficient Assessment of Tumor Vascular Shutdown by Photodynamic Therapy on Orthotopic Pancreatic Cancer Using High-Speed Wide-Field Waterproof Galvanometer Scanner Photoacoustic Microscopy
Abstract
:1. Introduction
2. Results
2.1. Western Blot Analysis for the Pancreatic Tumor Cells
2.2. Circulation of Photosensitizer
2.3. Angiogenic Sham Images of Tumor Tissues
2.4. Capturing Hemorrhage Phenomena Caused by PDT
2.5. Assessments of PAM Images by the Progress of PDT
2.6. Fluorescence Imaging for Comparison with PAM Images
2.7. Histological Validation for the Pancreatic Tumor Tissue
3. Discussion
4. Materials and Methods
4.1. Preparation of Chlorin e6-Polyvinylpyrrolidone (PVP) Complex (PHONOZEN®)
4.2. Cell Culture
4.3. Western Blot
4.4. Preparation of Orthotopic Pancreatic Cancer Mouse Model for In Vivo Imaging
4.5. Injection of Photosensitizer and Irradiation by Light-Emitting Diodes for Activation
4.6. Waterproof Galvanometer Scanner Photoacoustic Microscopy
4.7. A Timeline of the WGS-PAM Imaging with PDT
4.8. Visualization of Shams and Photodynamic Therapy Treatments
4.9. Epi-Fluorescence and Luminescence Analysis
4.10. Histopathological Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hariharan, D.; Saied, A.; Kocher, H.M. Analysis of Mortality Rates for Pancreatic Cancer across the World. HPB 2008, 10, 58–62. [Google Scholar] [CrossRef]
- Li, D.; Xie, K.; Wolff, R.; Abbruzzese, J.L. Pancreatic Cancer. Lancet 2004, 363, 1049–1057. [Google Scholar] [CrossRef] [PubMed]
- Bengtsson, A.; Andersson, R.; Ansari, D. The Actual 5-Year Survivors of Pancreatic Ductal Adenocarcinoma Based on Real-World Data. Sci. Rep. 2020, 10, 16425. [Google Scholar] [CrossRef]
- Strobel, O.; Neoptolemos, J.; Jaeger, D.; Buechler, M.W. Optimizing the outcomes of pancreatic cancer surgery. Nat. Rev. Clin. Oncol. 2019, 16, 11–26. [Google Scholar] [CrossRef]
- Beger, H.G.; Rau, B.; Gansauge, F.; Poch, B.; Link, K.H. Treatment of pancreatic cancer: Challenge of the facts. World J. Surg. 2003, 27, 1075–1084. [Google Scholar] [CrossRef]
- Loveday, B.P.; Lipton, L.; Thomson, B.N. Pancreatic Cancer: An Update on Diagnosis and Management. Aust. J. Gen. Pract. 2020, 48, 826–831. [Google Scholar] [CrossRef] [PubMed]
- Herter, F.P.; Cooperman, A.M.; Ahlborn, T.N.; Antinori, C. Surgical Experience with Pancreatic and Periampullary Cancer. Ann. Surg. 1982, 195, 274–281. [Google Scholar] [CrossRef] [PubMed]
- Kanno, Y.; Koshita, S.; Ogawa, T.; Kusunose, H.; Masu, K.; Sakai, T.; Yonamine, K.; Kawakami, Y.; Fujii, Y.; Miyamoto, K.; et al. Predictive Value of Localized Stenosis of the Main Pancreatic Duct for Early Detection of Pancreatic Cancer. Clin. Endosc. 2019, 52, 588–597. [Google Scholar] [CrossRef]
- Oberstein, P.E.; Olive, K.P. Pancreatic Cancer: Why Is It so Hard to Treat? Ther. Adv. Gastroenterol. 2013, 6, 321–337. [Google Scholar] [CrossRef]
- Neoptolemos, J.P.; Stocken, D.D.; Friess, H.; Bassi, C.; Dunn, J.A.; Hickey, H.; Beger, H.; Fernandez-Cruz, L.; Dervenis, C.; Lacaine, F.; et al. A Randomized Trial of Chemoradiotherapy and Chemotherapy after Resection of Pancreatic Cancer. N. Engl. J. Med. 2004, 350, 1200–1210. [Google Scholar] [CrossRef]
- Chuong, M.D.; Springett, G.M.; Freilich, J.M.; Park, C.K.; Weber, J.M.; Mellon, E.A.; Hodul, P.J.; Malafa, M.P.; Meredith, K.L.; Hoffe, S.E.; et al. Stereotactic Body Radiation Therapy for Locally Advanced and Borderline Resectable Pancreatic Cancer Is Effective and Well Tolerated. Int. J. Radiat. Oncol. 2013, 86, 516–522. [Google Scholar] [CrossRef] [PubMed]
- Wason, M.S.; Colon, J.; Das, S.; Seal, S.; Turkson, J.; Zhao, J.; Baker, C.H. Sensitization of Pancreatic Cancer Cells to Radiation by Cerium Oxide Nanoparticle-Induced ROS Production. Nanomed. Nanotechnol. Biol. Med. 2013, 9, 558–569. [Google Scholar] [CrossRef]
- Kelly, P.; Balter, P.A.; Rebueno, N.; Sharp, H.J.; Liao, Z.; Komaki, R.; Chang, J.Y. Stereotactic Body Radiation Therapy for Patients with Lung Cancer Previously Treated with Thoracic Radiation. Int. J. Radiat. Oncol. 2010, 78, 1387–1393. [Google Scholar] [CrossRef]
- Stathis, A.; Moore, M.J. Advanced Pancreatic Carcinoma: Current Treatment and Future Challenges. Nat. Rev. Clin. Oncol. 2010, 7, 163–172. [Google Scholar] [CrossRef]
- Brullé, L.; Vandamme, M.; Riès, D.; Martel, E.; Robert, E.; Lerondel, S.; Trichet, V.; Richard, S.; Pouvesle, J.-M.; Pape, A.L. Effects of a Non Thermal Plasma Treatment Alone or in Combination with Gemcitabine in a MIA PaCa2-Luc Orthotopic Pancreatic Carcinoma Model. PLoS ONE 2012, 7, e52653. [Google Scholar] [CrossRef]
- Monsuez, J.-J.; Charniot, J.-C.; Vignat, N.; Artigou, J.-Y. Cardiac Side-Effects of Cancer Chemotherapy. Int. J. Cardiol. 2010, 144, 3–15. [Google Scholar] [CrossRef]
- Neoptolemos, J.P.; Stocken, D.D.; Bassi, C.; Ghaneh, P.; Cunningham, D.; Goldstein, D.; Padbury, R.; Moore, M.J.; Gallinger, S.; Mariette, C.; et al. Adjuvant Chemotherapy with Fluorouracil Plus Folinic Acid vs Gemcitabine Following Pancreatic Cancer Resection: A Randomized Controlled Trial. JAMA 2010, 304, 1073–1081. [Google Scholar] [CrossRef]
- Burris, H.A.; Moore, M.J.; Andersen, J.; Green, M.R.; Rothenberg, M.L.; Modiano, M.R.; Cripps, M.C.; Portenoy, R.K.; Storniolo, A.M.; Tarassoff, P.; et al. Improvements in Survival and Clinical Benefit with Gemcitabine as First-Line Therapy for Patients with Advanced Pancreas Cancer: A Randomized Trial. J. Clin. Oncol. 1997, 15, 2403–2413. [Google Scholar] [CrossRef]
- Klinkenbijl, J.H.; Jeekel, J.; Sahmoud, T.; van Pel, R.; Couvreur, M.L.; Veenhof, C.H.; Arnaud, J.P.; Gonzalez, D.G.; de Wit, L.T.; Hennipman, A.; et al. Adjuvant Radiotherapy and 5-Fluorouracil after Curative Resection of Cancer of the Pancreas and Periampullary Region. Ann. Surg. 1999, 230, 776. [Google Scholar] [CrossRef]
- Huggett, M.T.; Jermyn, M.; Gillams, A.; Illing, R.; Mosse, S.; Novelli, M.; Kent, E.; Bown, S.G.; Hasan, T.; Pogue, B.W.; et al. Phase I/II Study of Verteporfin Photodynamic Therapy in Locally Advanced Pancreatic Cancer. Br. J. Cancer 2014, 110, 1698–1704. [Google Scholar] [CrossRef]
- Lee, D.Y.; Kim, J.Y.; Lee, Y.; Lee, S.; Miao, W.; Kim, H.S.; Min, J.-J.; Jon, S. Black Pigment Gallstone Inspired Platinum-Chelated Bilirubin Nanoparticles for Combined Photoacoustic Imaging and Photothermal Therapy of Cancers. Angew. Chem. 2017, 129, 13872–13876. [Google Scholar] [CrossRef]
- Samkoe, K.S.; Chen, A.; Rizvi, I.; O’Hara, J.A.; Hoopes, P.J.; Pereira, S.P.; Hasan, T.; Pogue, B.W. Imaging Tumor Variation in Response to Photodynamic Therapy in Pancreatic Cancer Xenograft Models. Int. J. Radiat. Oncol. 2010, 76, 251–259. [Google Scholar] [CrossRef]
- Thapa Magar, T.B.; Lee, J.; Lee, J.H.; Jeon, J.; Gurung, P.; Lim, J.; Kim, Y.-W. Novel Chlorin E6-Curcumin Derivatives as a Potential Photosensitizer: Synthesis, Characterization, and Anticancer Activity. Pharmaceutics 2023, 15, 1577. [Google Scholar] [CrossRef]
- Thapa Magar, T.B.; Shrestha, R.; Gurung, P.; Lim, J.; Kim, Y.-W. Improved Pilot-Plant-Scale Synthesis of Chlorin E6 and Its Efficacy as a Photosensitizer for Photodynamic Therapy and Photoacoustic Contrast Agent. Processes 2022, 10, 2215. [Google Scholar] [CrossRef]
- Dolmans, D.E.J.G.J.; Fukumura, D.; Jain, R.K. Photodynamic Therapy for Cancer. Nat. Rev. Cancer 2003, 3, 380–387. [Google Scholar] [CrossRef]
- Yue, C.; Zhang, C.; Alfranca, G.; Yang, Y.; Jiang, X.; Yang, Y.; Pan, F.; de la Fuente, J.M.; Cui, D. Near-Infrared Light Triggered ROS-Activated Theranostic Platform Based on Ce6-CPT-UCNPs for Simultaneous Fluorescence Imaging and Chemo-Photodynamic Combined Therapy. Theranostics 2016, 6, 456–469. [Google Scholar] [CrossRef] [PubMed]
- Donohoe, C.; Senge, M.O.; Arnaut, L.G.; Gomes-da-Silva, L.C. Cell Death in Photodynamic Therapy: From Oxidative Stress to Anti-Tumor Immunity. Biochim. Biophys. Acta BBA—Rev. Cancer 2019, 1872, 188308. [Google Scholar] [CrossRef] [PubMed]
- Lara-Pardo, A.; Mancuso, A.; Simón-Fuente, S.; Bonaccorsi, P.M.; Gangemi, C.M.A.; Moliné, M.Á.; Puntoriero, F.; Ribagorda, M.; Barattucci, A.; Sanz-Rodriguez, F. Amino-OPE Glycosides and Blue Light: A Powerful Synergy in Photodynamic Therapy. Org. Biomol. Chem. 2023, 21, 386–396. [Google Scholar] [CrossRef] [PubMed]
- Debefve, E.; Pegaz, B.; van den Bergh, H.; Wagnières, G.; Lange, N.; Ballini, J.-P. Video Monitoring of Neovessel Occlusion Induced by Photodynamic Therapy with Verteporfin (Visudyne®), in the CAM Model. Angiogenesis 2008, 11, 235–243. [Google Scholar] [CrossRef] [PubMed]
- Chen, B.; Pogue, B.W.; Luna, J.M.; Hardman, R.L.; Hoopes, P.J.; Hasan, T. Tumor Vascular Permeabilization by Vascular-Targeting Photosensitization: Effects, Mechanism, and Therapeutic Implications. Clin. Cancer Res. 2006, 12, 917–923. [Google Scholar] [CrossRef] [PubMed]
- Zhen, Z.; Tang, W.; Chuang, Y.-J.; Todd, T.; Zhang, W.; Lin, X.; Niu, G.; Liu, G.; Wang, L.; Pan, Z.; et al. Tumor Vasculature Targeted Photodynamic Therapy for Enhanced Delivery of Nanoparticles. ACS Nano 2014, 8, 6004–6013. [Google Scholar] [CrossRef] [PubMed]
- Fingar, V.H. Vascular Effects of Photodynamic Therapy. J. Clin. Laser Med. Surg. 1996, 14, 323–328. [Google Scholar] [CrossRef] [PubMed]
- Longo, R.; Sarmiento, R.; Fanelli, M.; Capaccetti, B.; Gattuso, D.; Gasparini, G. Anti-Angiogenic Therapy: Rationale, Challenges and Clinical Studies. Angiogenesis 2002, 5, 237–256. [Google Scholar] [CrossRef] [PubMed]
- Berard, V.; Lecomte, R.; van Lier, J.E. Positron Emission Tomography Imaging of Tumor Response after Photodynamic Therapy. J. Environ. Pathol. Toxicol. Oncol. 2006, 25, 239–249. [Google Scholar] [CrossRef] [PubMed]
- Collingridge, D.R.; Carroll, V.A.; Glaser, M.; Aboagye, E.O.; Osman, S.; Hutchinson, O.C.; Barthel, H.; Luthra, S.K.; Brady, F.; Bicknell, R.; et al. The Development of [124I]Iodinated-VG76e: A Novel Tracer for Imaging Vascular Endothelial Growth Factor in Vivo Using Positron Emission Tomography1. Cancer Res. 2002, 62, 5912–5919. [Google Scholar] [PubMed]
- Li, P.; Wang, D.; Hu, J.; Yang, X. The Role of Imaging in Targeted Delivery of Nanomedicine for Cancer Therapy. Adv. Drug Deliv. Rev. 2022, 189, 114447. [Google Scholar] [CrossRef] [PubMed]
- Zou, R.; Gao, Y.; Zhang, Y.; Jiao, J.; Wong, K.-L.; Wang, J. 68Ga-Labeled Magnetic-NIR Persistent Luminescent Hybrid Mesoporous Nanoparticles for Multimodal Imaging-Guided Chemotherapy and Photodynamic Therapy. ACS Appl. Mater. Interfaces 2021, 13, 9667–9680. [Google Scholar] [CrossRef]
- Major, A.; Kimel, S.; Mee, S.; Milner, T.E.; Smithies, D.J.; Srinivas, S.M.; Chen, Z.; Nelson, J.S. Microvascular Photodynamic Effects Determined in Vivo Using Optical Doppler Tomography. IEEE J. Sel. Top. Quantum Electron. 1999, 5, 1168–1175. [Google Scholar] [CrossRef]
- Tyrrell, J.; Thorn, C.; Shore, A.; Campbell, S.; Curnow, A. Oxygen Saturation and Perfusion Changes during Dermatological Methylaminolaevulinate Photodynamic Therapy. Br. J. Dermatol. 2011, 165, 1323–1331. [Google Scholar] [CrossRef]
- Ding, Z.; Zhao, Y.; Ren, H.; Nelson, J.S.; Chen, Z. Real-Time Phase-Resolved Optical Coherence Tomography and Optical Doppler Tomography. Opt. Express 2002, 10, 236–245. [Google Scholar] [CrossRef] [PubMed]
- Shao, P.; Chapman, D.W.; Moore, R.B.; Zemp, R.J. Monitoring Photodynamic Therapy with Photoacoustic Microscopy. J. Biomed. Opt. 2015, 20, 106012. [Google Scholar] [CrossRef]
- Srivatsan, A.; Jenkins, S.V.; Jeon, M.; Wu, Z.; Kim, C.; Chen, J.; Pandey, R.K. Gold Nanocage-Photosensitizer Conjugates for Dual-Modal Image-Guided Enhanced Photodynamic Therapy. Theranostics 2014, 4, 163–174. [Google Scholar] [CrossRef]
- Baik, J.W.; Kim, H.; Son, M.; Choi, J.; Kim, K.G.; Baek, J.H.; Park, Y.H.; An, J.; Choi, H.Y.; Ryu, S.Y.; et al. Intraoperative Label-Free Photoacoustic Histopathology of Clinical Specimens. Laser Photonics Rev. 2021, 15, 2100124. [Google Scholar] [CrossRef]
- Siphanto, R.I.; Thumma, K.K.; Kolkman, R.G.M.; van Leeuwen, T.G.; de Mul, F.F.M.; van Neck, J.W.; van Adrichem, L.N.A.; Steenbergen, W. Serial Noninvasive Photoacoustic Imaging of Neovascularization in Tumor Angiogenesis. Opt. Express 2005, 13, 89–95. [Google Scholar] [CrossRef]
- Staley, J.; Grogan, P.; Samadi, A.K.; Cui, H.; Cohen, M.S.; Yang, X. Growth of Melanoma Brain Tumors Monitored by Photoacoustic Microscopy. J. Biomed. Opt. 2010, 15, 040510. [Google Scholar] [CrossRef]
- Zafar, M.; Manwar, R.; Avanaki, K. High-Fidelity Compression for High-Throughput Photoacoustic Microscopy Systems. J. Biophotonics 2022, 15, e202100350. [Google Scholar] [CrossRef]
- Zhang, H.F.; Maslov, K.; Stoica, G.; Wang, L.V. Functional Photoacoustic Microscopy for High-Resolution and Noninvasive in Vivo Imaging. Nat. Biotechnol. 2006, 24, 848–851. [Google Scholar] [CrossRef]
- Kim, J.; Kim, J.Y.; Jeon, S.; Baik, J.W.; Cho, S.H.; Kim, C. Super-Resolution Localization Photoacoustic Microscopy Using Intrinsic Red Blood Cells as Contrast Absorbers. Light Sci. Appl. 2019, 8, 103. [Google Scholar] [CrossRef]
- Xu, M.; Wang, L.V. Photoacoustic Imaging in Biomedicine. Rev. Sci. Instrum. 2006, 77, 041101. [Google Scholar] [CrossRef]
- Yao, J.; Wang, L.V. Photoacoustic Microscopy. Laser Photonics Rev. 2013, 7, 758–778. [Google Scholar] [CrossRef] [PubMed]
- Gong, Z.; Tao, C.; Liu, X.; Deng, M. Numerical Investigation on Improving Photoacoustic Imaging Contrast Based on Temperature Difference Effect in Biological Tissues. Appl. Acoust. 2023, 212, 109585. [Google Scholar] [CrossRef]
- Xie, Z.; Jiao, S.; Zhang, H.F.; Puliafito, C.A. Laser-Scanning Optical-Resolution Photoacoustic Microscopy. Opt. Lett. 2009, 34, 1771–1773. [Google Scholar] [CrossRef]
- Haedicke, K.; Agemy, L.; Omar, M.; Berezhnoi, A.; Roberts, S.; Longo-Machado, C.; Skubal, M.; Nagar, K.; Hsu, H.-T.; Kim, K.; et al. High-Resolution Optoacoustic Imaging of Tissue Responses to Vascular-Targeted Therapies. Nat. Biomed. Eng. 2020, 4, 286–297. [Google Scholar] [CrossRef]
- Lakshman, M.; Needles, A. Screening and Quantification of the Tumor Microenvironment with Micro-Ultrasound and Photoacoustic Imaging. Nat. Methods 2015, 12, iii–v. [Google Scholar] [CrossRef]
- Hester, S.C.; Kuriakose, M.; Nguyen, C.D.; Mallidi, S. Role of Ultrasound and Photoacoustic Imaging in Photodynamic Therapy for Cancer. Photochem. Photobiol. 2020, 96, 260–279. [Google Scholar] [CrossRef]
- Mai, T.T.; Yoo, S.W.; Park, S.; Kim, J.Y.; Choi, K.-H.; Kim, C.; Kwon, S.Y.; Min, J.-J.; Lee, C. In Vivo Quantitative Vasculature Segmentation and Assessment for Photodynamic Therapy Process Monitoring Using Photoacoustic Microscopy. Sensors 2021, 21, 1776. [Google Scholar] [CrossRef]
- Jang, Y.; Kim, H.; Yoon, S.; Lee, H.; Hwang, J.; Jung, J.; Chang, J.H.; Choi, J.; Kim, H. Exosome-Based Photoacoustic Imaging Guided Photodynamic and Immunotherapy for the Treatment of Pancreatic Cancer. J. Control. Release 2021, 330, 293–304. [Google Scholar] [CrossRef]
- Jalde, S.S.; Chauhan, A.K.; Lee, J.H.; Chaturvedi, P.K.; Park, J.-S.; Kim, Y.-W. Synthesis of Novel Chlorin E6-Curcumin Conjugates as Photosensitizers for Photodynamic Therapy against Pancreatic Carcinoma. Eur. J. Med. Chem. 2018, 147, 66–76. [Google Scholar] [CrossRef]
- Ryu, A.-R.; Kim, Y.-W.; Lee, M.-Y. Chlorin E6-Mediated Photodynamic Therapy Modulates Adipocyte Differentiation and Lipogenesis in 3T3-L1 Cells. Photodiagn. Photodyn. Ther. 2020, 31, 101917. [Google Scholar] [CrossRef]
- Ryu, A.-R.; Kim, Y.-W.; Lee, M.-Y. Chlorin E6 and Halogen Light as a Sebostatic Photomedicine Modulates Linoleic Acid-Induced Lipogenesis. Mol. Cell. Toxicol. 2019, 15, 49–56. [Google Scholar] [CrossRef]
- Sundaram, P.; Abrahamse, H. Effective Photodynamic Therapy for Colon Cancer Cells Using Chlorin E6 Coated Hyaluronic Acid-Based Carbon Nanotubes. Int. J. Mol. Sci. 2020, 21, 4745. [Google Scholar] [CrossRef]
- Zhao, L.; Yang, H.; Amano, T.; Qin, H.; Zheng, L.; Takahashi, A.; Zhao, S.; Tooyama, I.; Murakami, T.; Komatsu, N. Efficient Delivery of Chlorin E6 into Ovarian Cancer Cells with Octalysine Conjugated Superparamagnetic Iron Oxide Nanoparticles for Effective Photodynamic Therapy. J. Mater. Chem. B 2016, 4, 7741–7748. [Google Scholar] [CrossRef]
- Dos Santos, A.F.; Inague, A.; Arini, G.S.; Terra, L.F.; Wailemann, R.A.M.; Pimentel, A.C.; Yoshinaga, M.Y.; Silva, R.R.; Severino, D.; de Almeida, D.R.Q.; et al. Distinct Photo-Oxidation-Induced Cell Death Pathways Lead to Selective Killing of Human Breast Cancer Cells. Cell Death Dis. 2020, 11, 1070. [Google Scholar] [CrossRef]
- Dabkeviciene, D.; Sasnauskiene, A.; Leman, E.; Kvietkauskaite, R.; Daugelaviciene, N.; Stankevicius, V.; Jurgelevicius, V.; Juodka, B.; Kirveliene, V. mTHPC-Mediated Photodynamic Treatment Up-Regulates the Cytokines VEGF and IL-1alpha. Photochem. Photobiol. 2012, 88, 432–439. [Google Scholar] [CrossRef]
- Ma, J.; Lai, G.; Lu, Z. Effect of 410 Nm Photodynamic Therapy with Hemoporfin on the Expression of Vascular Endothelial Growth Factor (VEGF) in Cultured Human Vascular Endothelial Cells. Lasers Med. Sci. 2019, 34, 149–155. [Google Scholar] [CrossRef]
- Ma, Q.-L.; Shen, M.-O.; Han, N.; Xu, H.-Z.; Peng, X.-C.; Li, Q.-R.; Yu, T.-T.; Li, L.-G.; Xu, X.; Liu, B.; et al. Chlorin E6 Mediated Photodynamic Therapy Triggers Resistance through ATM-Related DNA Damage Response in Lung Cancer Cells. Photodiagn. Photodyn. Ther. 2022, 37, 102645. [Google Scholar] [CrossRef]
- Lee, C.-H.; Lai, P.-S.; Lu, Y.-P.; Chen, H.-Y.; Chai, C.-Y.; Tsai, R.-K.; Fang, K.-T.; Tsai, M.-H.; Hsu, C.-Y.; Hung, C.-C.; et al. Real-Time Vascular Imaging and Photodynamic Therapy Efficacy with Micelle-Nanocarrier Delivery of Chlorin E6 to the Microenvironment of Melanoma. J. Dermatol. Sci. 2015, 80, 124–132. [Google Scholar] [CrossRef]
- Beard, P. Biomedical Photoacoustic Imaging. Interface Focus 2011, 1, 602–631. [Google Scholar] [CrossRef]
- Cao, R.; Li, J.; Ning, B.; Sun, N.; Wang, T.; Zuo, Z.; Hu, S. Functional and Oxygen-Metabolic Photoacoustic Microscopy of the Awake Mouse Brain. NeuroImage 2017, 150, 77–87. [Google Scholar] [CrossRef]
- Mallidi, S.; Luke, G.P.; Emelianov, S. Photoacoustic Imaging in Cancer Detection, Diagnosis, and Treatment Guidance. Trends Biotechnol. 2011, 29, 213–221. [Google Scholar] [CrossRef]
- Madar-Balakirski, N.; Tempel-Brami, C.; Kalchenko, V.; Brenner, O.; Varon, D.; Scherz, A.; Salomon, Y. Permanent Occlusion of Feeding Arteries and Draining Veins in Solid Mouse Tumors by Vascular Targeted Photodynamic Therapy (VTP) with Tookad. PLoS ONE 2010, 5, e10282. [Google Scholar] [CrossRef]
- Olivo, M.; Bhuvaneswari, R.; Lucky, S.S.; Dendukuri, N.; Soo-Ping Thong, P. Targeted Therapy of Cancer Using Photodynamic Therapy in Combination with Multi-Faceted Anti-Tumor Modalities. Pharmaceuticals 2010, 3, 1507–1529. [Google Scholar] [CrossRef]
- Senge, M.O.; Radomski, M.W. Platelets, Photosensitizers, and PDT. Photodiagn. Photodyn. Ther. 2013, 10, 1–16. [Google Scholar] [CrossRef]
- Tozer, G.M.; Kanthou, C.; Baguley, B.C. Disrupting Tumour Blood Vessels. Nat. Rev. Cancer 2005, 5, 423–435. [Google Scholar] [CrossRef]
- Ben-Hur, E.; Heldman, E.; Crane, S.W.; Rosenthal, I. Release of Clotting Factors from Photosensitized Endothelial Cells: A Possible Trigger for Blood Vessel Occlusion by Photodynamic Therapy. FEBS Lett. 1988, 236, 105–108. [Google Scholar] [CrossRef] [PubMed]
- Schuster, A.; Oishi, H.; Bény, J.-L.; Stergiopulos, N.; Meister, J.-J. Simultaneous Arterial Calcium Dynamics and Diameter Measurements: Application to Myoendothelial Communication. Am. J. Physiol.-Heart Circ. Physiol. 2001, 280, H1088–H1096. [Google Scholar] [CrossRef] [PubMed]
- West, C.M.L.; West, D.C.; Kumar, S.; Moore, J.V. A Comparison of the Sensitivity to Photodynamic Treatment of Endothelial and Tumour Cells in Different Proliferative States. Int. J. Radiat. Biol. 1990, 58, 145–156. [Google Scholar] [CrossRef]
- Foster, T.H.; Primavera, M.C.; Marder, V.J.; Hilf, R.; Sporn, L.A. Photosensitized Release of von Willebrand Factor from Cultured Human Endothelial Cells1. Cancer Res. 1991, 51, 3261–3266. [Google Scholar]
- Schmidt-Erfurth, U.; Schlötzer-Schrehard, U.; Cursiefen, C.; Michels, S.; Beckendorf, A.; Naumann, G.O.H. Influence of Photodynamic Therapy on Expression of Vascular Endothelial Growth Factor (VEGF), VEGF Receptor 3, and Pigment Epithelium–Derived Factor. Investig. Ophthalmol. Vis. Sci. 2003, 44, 4473–4480. [Google Scholar] [CrossRef]
- André, P.; Denis, C.V.; Ware, J.; Saffaripour, S.; Hynes, R.O.; Ruggeri, Z.M.; Wagner, D.D. Platelets Adhere to and Translocate on von Willebrand Factor Presented by Endothelium in Stimulated Veins. Blood 2000, 96, 3322–3328. [Google Scholar] [CrossRef] [PubMed]
- Tozer, G.M.; Prise, V.E.; Wilson, J.; Cemazar, M.; Shan, S.; Dewhirst, M.W.; Barber, P.R.; Vojnovic, B.; Chaplin, D.J. Mechanisms Associated with Tumor Vascular Shut-Down Induced by Combretastatin A-4 Phosphate: Intravital Microscopy and Measurement of Vascular Permeability1. Cancer Res. 2001, 61, 6413–6422. [Google Scholar] [PubMed]
- Dowlati, A.; Robertson, K.; Cooney, M.; Petros, W.P.; Stratford, M.; Jesberger, J.; Rafie, N.; Overmoyer, B.; Makkar, V.; Stambler, B.; et al. A Phase I Pharmacokinetic and Translational Study of the Novel Vascular Targeting Agent Combretastatin A-4 Phosphate on a Single-Dose Intravenous Schedule in Patients with Advanced Cancer1. Cancer Res. 2002, 62, 3408–3416. [Google Scholar]
- Kanthou, C.; Tozer, G.M. The Tumor Vascular Targeting Agent Combretastatin A–4-Phosphate Induces Reorganization of the Actin Cytoskeleton and Early Membrane Blebbing in Human Endothelial Cells. Blood 2002, 99, 2060–2069. [Google Scholar] [CrossRef]
- Juarranz, Á.; Jaén, P.; Sanz-Rodríguez, F.; Cuevas, J.; González, S. Photodynamic Therapy of Cancer. Basic Principles and Applications. Clin. Transl. Oncol. 2008, 10, 148–154. [Google Scholar] [CrossRef]
- Triesscheijn, M.; Baas, P.; Schellens, J.H.M.; Stewart, F.A. Photodynamic Therapy in Oncology. Oncologist 2006, 11, 1034–1044. [Google Scholar] [CrossRef]
- Hak, A.; Ali, M.S.; Sankaranarayanan, S.A.; Shinde, V.R.; Rengan, A.K. Chlorin E6: A Promising Photosensitizer in Photo-Based Cancer Nanomedicine. ACS Appl. Bio Mater. 2023, 6, 349–364. [Google Scholar] [CrossRef] [PubMed]
- Rehders, A.; Stoecklein, N.H.; Güray, A.; Riediger, R.; Alexander, A.; Knoefel, W.T. Vascular Invasion in Pancreatic Cancer: Tumor Biology or Tumor Topography? Surgery 2012, 152, S143–S151. [Google Scholar] [CrossRef] [PubMed]
- Huang, P.; Taghian, A.; Allam, A.; Freeman, J.; Duffy, M.; Suit, H.D. The Effect of Whole-Body Irradiation of Nude Mice on the Tumor Transplantability and Control Probability of a Human Soft Tissue Sarcoma Xenograft. Radiat. Res. 1996, 145, 337–342. [Google Scholar] [CrossRef]
- Wang, W.; Moriyama, L.T.; Bagnato, V.S. Photodynamic Therapy Induced Vascular Damage: An Overview of Experimental PDT. Laser Phys. Lett. 2012, 10, 023001. [Google Scholar] [CrossRef]
- Folkman, J. Angiogenesis and Apoptosis. Semin. Cancer Biol. 2003, 13, 159–167. [Google Scholar] [CrossRef]
- Seong, D.; Yi, S.; Han, S.; Lee, J.; Park, S.; Hwang, Y.-H.; Kim, J.; Kim, H.K.; Jeon, M. Target Ischemic Stroke Model Creation Method Using Photoacoustic Microscopy with Simultaneous Vessel Monitoring and Dynamic Photothrombosis Induction. Photoacoustics 2022, 27, 100376. [Google Scholar] [CrossRef]
- Zhu, H.; He, Y.; Huang, S.; Tian, J.; Wang, L.; Hao, J.; Xie, B.; Ling, J. Chlorin E6-Loaded Sonosensitive Magnetic Nanoliposomes Conjugated with the Magnetic Field for Enhancing Anti-Tumor Effect of Sonodynamic Therapy. Pharm. Dev. Technol. 2020, 25, 1249–1259. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Han, S.; Seong, D.; Lee, J.; Park, S.; Wijesinghe, R.E.; Jeon, M.; Kim, J. Fully Waterproof Two-Axis Galvanometer Scanner for Enhanced Wide-Field Optical-Resolution Photoacoustic Microscopy. Opt. Lett. 2020, 45, 865–868. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, J.; Han, S.; Thapa Magar, T.B.; Gurung, P.; Lee, J.; Seong, D.; Park, S.; Kim, Y.-W.; Jeon, M.; Kim, J. Efficient Assessment of Tumor Vascular Shutdown by Photodynamic Therapy on Orthotopic Pancreatic Cancer Using High-Speed Wide-Field Waterproof Galvanometer Scanner Photoacoustic Microscopy. Int. J. Mol. Sci. 2024, 25, 3457. https://doi.org/10.3390/ijms25063457
Lee J, Han S, Thapa Magar TB, Gurung P, Lee J, Seong D, Park S, Kim Y-W, Jeon M, Kim J. Efficient Assessment of Tumor Vascular Shutdown by Photodynamic Therapy on Orthotopic Pancreatic Cancer Using High-Speed Wide-Field Waterproof Galvanometer Scanner Photoacoustic Microscopy. International Journal of Molecular Sciences. 2024; 25(6):3457. https://doi.org/10.3390/ijms25063457
Chicago/Turabian StyleLee, Jaeyul, Sangyeob Han, Til Bahadur Thapa Magar, Pallavi Gurung, Junsoo Lee, Daewoon Seong, Sungjo Park, Yong-Wan Kim, Mansik Jeon, and Jeehyun Kim. 2024. "Efficient Assessment of Tumor Vascular Shutdown by Photodynamic Therapy on Orthotopic Pancreatic Cancer Using High-Speed Wide-Field Waterproof Galvanometer Scanner Photoacoustic Microscopy" International Journal of Molecular Sciences 25, no. 6: 3457. https://doi.org/10.3390/ijms25063457
APA StyleLee, J., Han, S., Thapa Magar, T. B., Gurung, P., Lee, J., Seong, D., Park, S., Kim, Y. -W., Jeon, M., & Kim, J. (2024). Efficient Assessment of Tumor Vascular Shutdown by Photodynamic Therapy on Orthotopic Pancreatic Cancer Using High-Speed Wide-Field Waterproof Galvanometer Scanner Photoacoustic Microscopy. International Journal of Molecular Sciences, 25(6), 3457. https://doi.org/10.3390/ijms25063457