Genetic Update and Treatment for Dystonia
Abstract
:1. Introduction
2. Classification and Comorbidities in Dystonia
3. The Genetic Background of Dystonia
- (a)
- TOR1A (torsin 1A—related to endoplasmic reticulum stress response)TOR1A, the initially identified dystonia gene, was discovered about 25 years ago on human chromosome 9q34. A distinct 3-bp deletion results in the loss of one of a pair of glutamic-acid residues in the conserved C-terminus of torsinA. Generalized dystonia affecting the lower limbs that begins in childhood is linked to the GAG deletion in TOR1A [40]. A meta-analysis has shown that the TOR1A variants rs1182 and rs1801968 have a significant influence on the development of the writer’s cramp and focal dystonia, respectively. A functional missense variant known as rs1801968 exists in exon 4 of the TOR1A gene, where histidine is substituted by aspartic acid at position 216. On the other hand, the precise functional effect of rs1182 on primary dystonia is still unknown, as there is no known functional effect of rs1182 on TOR1A expression and function [41].
- (b)
- THAP1 (THAP domain-containing protein 1—participates in neurodevelopment)Most known mutations in the thanatos-associated protein 1 (THAP1) gene are missense or out-of-frame deletions, while intronic or splice site alterations are rare [42]. Many THAP1 variants, including truncating mutations, have been classified as possibly harmful since they have only been reported in individuals with no information on segregation. Although truncating mutations normally cause a loss of function, they are not always associated with disease. Mutations of the THAP1 gene are characterized by juvenile-onset global dystonia, and the condition is mostly linked to missense variants in the gene [43].
- (c)
- KMT2B (lysine-specific methyltransferase 2B—participates in neurodevelopment)KMT2B-related dystonia is a movement condition that typically begins in childhood. It is characterized by a progressive course, often starting as focal dystonia in the lower limbs and advancing to generalized dystonia with significant involvement of the cervical, cranial, and laryngeal regions. A proband with either a heterozygous pathogenic variation in KMT2B or a heterozygous interstitial deletion of 19q13.12, which includes a KMTB2 whole-gene deletion, is a candidate for diagnosis of this disease. [44].
- (d)
- GNAL (guanine nucleotide-binding protein alpha-activating activity polypeptide—involved in striatal dopamine signaling)Previous reports suggest that GNAL variations have been detected in less than 2% of dystonia cases of European origin and contribute to disease in late adulthood [45]. However, in the Hungarian cohort study, it was found in a higher prevalence than previously reported. All three mutations identified there (c.677G>T (p.Cys226Phe), c.1315G>A (p.Val439Met) and c.1288G>A (p.Ala430Thr)) are thought to be pathogenic, and the clinical profile fits the characteristics already linked with GNAL variants [46].
- (e)
- ANO3 (anoctamin—engaged in calcium homeostasis)ANO3-linked dystonia has an autosomal-dominant inheritance pattern, yet only heterozygous variations have been identified. The mutation is connected with a very broad phenotypic spectrum with a severe childhood-onset disease (often due to de novo variants) and late-onset focal forms, often with tremors. Most individuals experienced multifocal or segmental dystonia, with focal or generalized distribution being less prevalent. The most common onset was cervical dystonia, followed by upper limb dystonia. Lower limb onset has also been recorded in several cases and appears to relate to a younger age (under 20) [43].
- (f)
- VPS16 (PS16 core subunit of corvet and homotypic fusion and vacuole protein sorting (HOPS) complexes—participates in autophagy)VPS16 variations were discovered in the context of early-onset generalized dystonia accompanied by lysosomal dysfunction [47]. Nevertheless, VPS16 variations have recently been discovered among patients suffering from focal dystonia [48]. Furthermore, these results imply that VPS16 variations should be evaluated in cases of focal dystonia. It is also noteworthy that a positive family history has been linked to the spread of dystonia from one body location to another [21].
- (g)
- TSPOAP1 (TSPO Associated Protein 1- involved in the regulation of presynaptic calcium ion concentration)Homozygous frameshift, nonsense, and missense mutations in TSPOAP1, the gene that encodes the active-zone Rab3 interacting molecule-binding protein 1 (RIMBP1) are connected to autosomal recessive dystonia. Individuals with loss-of-function mutations displayed progressive generalized dystonia with juvenile-onset, along with cerebellar atrophy and intellectual impairment. On the other hand, individuals with p.Gly1808Ser, a pathogenic missense mutation, displayed isolated focal dystonia that developed in adulthood. Complete deletion of RIMBP1 impedes neurotransmission via the link between presynaptic action potentials and the exocytosis of synaptic vesicles, as well as via presynaptic voltage-gated Ca2+ channels (VGCCs). This results in lower numbers of cerebellar synapses, decreased Purkinje cell dendritic arborization, and motor disorders resembling dystonia in mice [49].
- (h)
- ATP1A3 (Na(+)/K(+)-ATPase alpha3 catalytic subunit- maintaining the Na and K ion electrochemical gradients throughout the plasma membrane)In addition to the originally identified phenotypes of rapid-onset dystonia-parkinsonism, alternating hemiplegia of childhood, cerebellar ataxia, areflexia, pes cavus, optic atrophy, and sensorineural hearing loss syndrome, ATP1A3 is linked to a wide range of primarily neurologic disorders. It is difficult to determine the pathogenicity of an ATP1A3 variation discovered in an undiagnosed patient due to this phenotypic heterogeneity. Exons 8, 14, 17, and 18 are the specific rapid-onset dystonia parkinsonism-related mutation hotspots for ATP1A3, with T613M and I578S being the most common variations [50]. A813V (2438C>T), a novel mutation in ATP1A3, was discovered. In the ATP1A3 A813V mutation, the initial alanine was changed to valine. Crystallography showed that the side chain of valine was significantly larger than that of alanine, which changed the shape of the ATP1A3 protein and reduced its biological activity [51].
- (i)
- GCH1 (guanosine triphosphate cyclohydrolase I gene—biosynthesis of neurotransmitters)The GCH1 gene codes for the expression of the enzyme GTP cyclohydrolase 1. This enzyme is involved in the first of three steps in the formation of a compound known as tetrahydrobiopterin (BH4). For the synthesis of important neurotransmitters like dopamine, serotonin, and nitric oxide synthases, BH4 is a necessary component. Neuropsychiatric disorders such as depression, hyperalaninemia, Parkinson’s disease, and dopa-responsive dystonia are caused by a lack of BH4, whose synthesis is hampered by GCH1 deficiency [52].
- (j)
- SGCE (Epsilon-sarcoglycan—stability of striated muscle)A movement condition called myoclonus-dystonia syndrome is linked to abnormalities in the SGCE gene. The gene produces the transmembrane protein ε-sarcoglycan, which has an isoform unique to the brain. Because of maternal imprinting, this genetic abnormality has reduced penetrance and is transmitted autosomally and dominantly [53]. Leg involvement is less likely in the myoclonic jerks typical of SGCE myoclonus-dystonia (SGCE-M-D), which typically impact the neck, trunk, and upper limbs. The writer’s cramp and/or cervical dystonia are symptoms of further focal or segmental dystonia in about half of the affected patients [54].The hereditary basis of dystonia is not yet fully understood. A 2020 exome-wide sequencing study provides support for this view. This study has established a link between dystonia and 11 genes associated with neurodevelopmental disorders. These genes include AUTS2, CHD8, and ZEB2, whose associated trait manifestations have been more thoroughly characterized, as well as DHCR24, MORC2, GRID2, MSL3, PAK1, TECPR2, PPP2R5D, and ZMYND11, for which only a small number of families with pathogenic variants have been reported. Out of the 13 cases with mutations in these genes, 12 presented combined dystonia, and all of them had comorbidities that were not related to movement disorders [55].
4. Diagnostic of Dystonia
5. Treatment for Dystonia
6. Personal Approach to Dystonia Therapy
7. Conclusions and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Jinnah, H.A. The Dystonias. Contin. Lifelong Learn. Neurol. 2019, 25, 976–1000. [Google Scholar] [CrossRef]
- Robottom, B.J.; Weiner, W.J.; Comella, C.L. Early-Onset Primary Dystonia. In Handbook of Clinical Neurology; Elsevier: Amsterdam, The Netherlands, 2011; Volume 100, pp. 465–479. ISBN 978-0-444-52014-2. [Google Scholar]
- Jinnah, H.A.; Berardelli, A.; Comella, C.; DeFazio, G.; DeLong, M.R.; Factor, S.; Galpern, W.R.; Hallett, M.; Ludlow, C.L.; Perlmutter, J.S.; et al. The Focal Dystonias: Current Views and Challenges for Future Research. Mov. Disord. 2013, 28, 926–943. [Google Scholar] [CrossRef]
- Balint, B.; Mencacci, N.E.; Valente, E.M.; Pisani, A.; Rothwell, J.; Jankovic, J.; Vidailhet, M.; Bhatia, K.P. Dystonia. Nat. Rev. Dis. Primer 2018, 4, 25. [Google Scholar] [CrossRef]
- Page, D.; Butler, A.; Jahanshahi, M. Quality of Life in Focal, Segmental, and Generalized Dystonia. Mov. Disord. 2007, 22, 341–347. [Google Scholar] [CrossRef]
- Tyślerowicz, M.; Kiedrzyńska, W.; Adamkiewicz, B.; Jost, W.H.; Sławek, J. Cervical Dystonia—Improving the Effectiveness of Botulinum Toxin Therapy. Neurol. Neurochir. Pol. 2020, 54, 232–242. [Google Scholar] [CrossRef]
- Rosales, R.L.; Cuffe, L.; Regnault, B.; Trosch, R.M. Pain in Cervical Dystonia: Mechanisms, Assessment and Treatment. Expert Rev. Neurother. 2021, 21, 1125–1134. [Google Scholar] [CrossRef]
- Ma, H.; Qu, J.; Ye, L.; Shu, Y.; Qu, Q. Blepharospasm, Oromandibular Dystonia, and Meige Syndrome: Clinical and Genetic Update. Front. Neurol. 2021, 12, 630221. [Google Scholar] [CrossRef]
- Titi-Lartey, O.A.; Patel, B.C. Benign Essential Blepharospasm. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2023. [Google Scholar]
- Aramideh, M.; Ongerboer De Visser, B.W.; Brans, J.W.; Koelman, J.H.; Speelman, J.D. Pretarsal Application of Botulinum Toxin for Treatment of Blepharospasm. J. Neurol. Neurosurg. Psychiatry 1995, 59, 309–311. [Google Scholar] [CrossRef]
- Manzo, N.; Ginatempo, F.; Belvisi, D.; Defazio, G.; Conte, A.; Deriu, F.; Berardelli, A. Pathophysiological Mechanisms of Oromandibular Dystonia. Clin. Neurophysiol. 2022, 134, 73–80. [Google Scholar] [CrossRef]
- Balasubramaniam, R.; Ram, S. Orofacial Movement Disorders. Oral Maxillofac. Surg. Clin. N. Am. 2008, 20, 273–285. [Google Scholar] [CrossRef]
- Lin, J.; Sadoughi, B. Spasmodic Dysphonia. In Advances in Oto-Rhino-Laryngology; S. Karger AG: Berlin, Germany, 2020; Volume 85, pp. 133–143. ISBN 978-3-318-06627-2. [Google Scholar]
- Huber, L.; Kassavetis, P.; Gulban, O.F.; Hallett, M.; Horovitz, S.G. Laminar VASO fMRI in Focal Hand Dystonia Patients. Dystonia 2023, 2, 10806. [Google Scholar] [CrossRef]
- Aránguiz, R.; Chana-Cuevas, P.; Alburquerque, D.; León, M. Distonía focales en los músicos. Neurología 2011, 26, 45–52. [Google Scholar] [CrossRef]
- O’Flynn, L.C.; Simonyan, K. Short- and Long-Term Central Action of Botulinum Neurotoxin Treatment in Laryngeal Dystonia. Neurology 2022, 99, e1178–e1190. [Google Scholar] [CrossRef]
- Lee, A.; Altenmüller, E. Heavy Metal Curse: A Task-Specific Dystonia in the Proximal Lower Limb of a Professional Percussionist. In Medical Problems of Performing Artists; Science & Medicine, Inc.: Menlo Park, CA, USA, 2014. [Google Scholar]
- Frucht, S.J.; Fahn, S.; Greene, P.E.; O’Brien, C.; Gelb, M.; Truong, D.D.; Welsh, J.; Factor, S.; Ford, B. The Natural History of Embouchure Dystonia. Mov. Disord. 2001, 16, 899–906. [Google Scholar] [CrossRef]
- Ray, S.; Pal, P.K. Dystonia in Performing Artists: Beyond Focal Hand Dystonia. Can. J. Neurol. Sci. 2022, 49, 29–37. [Google Scholar] [CrossRef]
- Lenka, A.; Jankovic, J. Sports-Related Dystonia. Tremor Hyperkinetic Mov. 2021, 11, 54. [Google Scholar] [CrossRef] [PubMed]
- Berman, B.D.; Groth, C.L.; Sillau, S.H.; Pirio Richardson, S.; Norris, S.A.; Junker, J.; Brüggemann, N.; Agarwal, P.; Barbano, R.L.; Espay, A.J.; et al. Risk of Spread in Adult-Onset Isolated Focal Dystonia: A Prospective International Cohort Study. J. Neurol. Neurosurg. Psychiatry 2020, 91, 314–320. [Google Scholar] [CrossRef] [PubMed]
- Kilic-Berkmen, G.; Pirio Richardson, S.; Perlmutter, J.S.; Hallett, M.; Klein, C.; Wagle-Shukla, A.; Malaty, I.A.; Reich, S.G.; Berman, B.D.; Feuerstein, J.; et al. Current Guidelines for Classifying and Diagnosing Cervical Dystonia: Empirical Evidence and Recommendations. Mov. Disord. Clin. Pract. 2022, 9, 183–190. [Google Scholar] [CrossRef] [PubMed]
- Dagostino, S.; Ercoli, T.; Gigante, A.F.; Pellicciari, R.; Fadda, L.; Defazio, G. Sensory Trick in Upper Limb Dystonia. Parkinsonism Relat. Disord. 2019, 63, 221–223. [Google Scholar] [CrossRef] [PubMed]
- Ercoli, T.; Erro, R.; Fabbrini, G.; Pellicciari, R.; Girlanda, P.; Terranova, C.; Avanzino, L.; Di Biasio, F.; Barone, P.; Esposito, M.; et al. Spread of Segmental/Multifocal Idiopathic Adult-Onset Dystonia to a Third Body Site. Parkinsonism Relat. Disord. 2021, 87, 70–74. [Google Scholar] [CrossRef] [PubMed]
- Albanese, A.; Bhatia, K.; Bressman, S.B.; DeLong, M.R.; Fahn, S.; Fung, V.S.C.; Hallett, M.; Jankovic, J.; Jinnah, H.A.; Klein, C.; et al. Phenomenology and Classification of Dystonia: A Consensus Update. Mov. Disord. 2013, 28, 863–873. [Google Scholar] [CrossRef]
- Grütz, K.; Klein, C. Dystonia Updates: Definition, Nomenclature, Clinical Classification, and Etiology. J. Neural Transm. 2021, 128, 395–404. [Google Scholar] [CrossRef]
- Steel, D.; Reid, K.M.; Pisani, A.; Hess, E.J.; Fox, S.; Kurian, M.A. Advances in Targeting Neurotransmitter Systems in Dystonia. In International Review of Neurobiology; Elsevier: Amsterdam, The Netherlands, 2023; Volume 169, pp. 217–258. ISBN 978-0-323-99026-4. [Google Scholar]
- Jinnah, H.A.; Hess, E.J. Evolving Concepts in the Pathogenesis of Dystonia. Parkinsonism Relat. Disord. 2018, 46 (Suppl. S1), S62–S65. [Google Scholar] [CrossRef] [PubMed]
- Hernández, I.H.; Cabrera, J.R.; Santos-Galindo, M.; Sánchez-Martín, M.; Domínguez, V.; García-Escudero, R.; Pérez-Álvarez, M.J.; Pintado, B.; Lucas, J.J. Pathogenic SREK1 Decrease in Huntington’s Disease Lowers TAF1 Mimicking X-Linked Dystonia Parkinsonism. Brain 2020, 143, 2207–2219. [Google Scholar] [CrossRef] [PubMed]
- MacFarlane, D.G.; Dieppe, P.A. Pseudo-Rheumatoid Deformity in Elderly Osteoarthritic Hands. J. Rheumatol. 1983, 10, 489–490. [Google Scholar] [PubMed]
- Ishikawa, A.; Miyatake, T. A Family with Hereditary Juvenile Dystonia-parkinsonism. Mov. Disord. 1995, 10, 482–488. [Google Scholar] [CrossRef] [PubMed]
- Haggstrom, L.; Darveniza, P.; Tisch, S. Mild Parkinsonian Features in Dystonia: Literature Review, Mechanisms and Clinical Perspectives. Parkinsonism Relat. Disord. 2017, 35, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Calabresi, P.; Standaert, D.G. Dystonia and Levodopa-Induced Dyskinesias in Parkinson’s Disease: Is There a Connection? Neurobiol. Dis. 2019, 132, 104579. [Google Scholar] [CrossRef]
- Dhaenens, C.; Krystkowiak, P.; Douay, X.; Charpentier, P.; Bele, S.; Destée, A.; Sablonnière, B. Clinical and Genetic Evaluation in a French Population Presenting with Primary Focal Dystonia. Mov. Disord. 2005, 20, 822–825. [Google Scholar] [CrossRef]
- Leube, B.; Kessler, K.R.; Goecke, T.; Auburger, G.; Benecke, R. Frequency of Familial Inheritance among 488 Index Patients with Idiopathic Focal Dystonia and Clinical Variability in a Large Family. Mov. Disord. 1997, 12, 1000–1006. [Google Scholar] [CrossRef]
- Williams, L.; McGovern, E.; Kimmich, O.; Molloy, A.; Beiser, I.; Butler, J.S.; Molloy, F.; Logan, P.; Healy, D.G.; Lynch, T.; et al. Epidemiological, Clinical and Genetic Aspects of Adult Onset Isolated Focal Dystonia in Ireland. Eur. J. Neurol. 2017, 24, 73–81. [Google Scholar] [CrossRef] [PubMed]
- Loens, S.; Hamami, F.; Lohmann, K.; Odorfer, T.; Ip, C.W.; Zittel, S.; Zeuner, K.E.; Everding, J.; Becktepe, J.; Marth, K.; et al. Tremor Is Associated with Familial Clustering of Dystonia. Parkinsonism Relat. Disord. 2023, 110, 105400. [Google Scholar] [CrossRef] [PubMed]
- Thomsen, M.; Lange, L.M.; Zech, M.; Lohmann, K. Genetics and Pathogenesis of Dystonia. Annu. Rev. Pathol. Mech. Dis. 2024, 19, 321932111. [Google Scholar] [CrossRef] [PubMed]
- Domingo, A.; Yadav, R.; Ozelius, L.J. Isolated Dystonia: Clinical and Genetic Updates. J. Neural Transm. 2021, 128, 405–416. [Google Scholar] [CrossRef] [PubMed]
- Ozelius, L.J.; Hewett, J.W.; Page, C.E.; Bressman, S.B.; Kramer, P.L.; Shalish, C.; De Leon, D.; Brin, M.F.; Raymond, D.; Corey, D.P.; et al. The Early-Onset Torsion Dystonia Gene (DYT1) Encodes an ATP-Binding Protein. Nat. Genet. 1997, 17, 40–48. [Google Scholar] [CrossRef] [PubMed]
- Siokas, V.; Dardiotis, E.; Tsironi, E.E.; Tsivgoulis, G.; Rikos, D.; Sokratous, M.; Koutsias, S.; Paterakis, K.; Deretzi, G.; Hadjigeorgiou, G.M. The Role of TOR1A Polymorphisms in Dystonia: A Systematic Review and Meta-Analysis. PLoS ONE 2017, 12, e0169934. [Google Scholar] [CrossRef]
- Holla, V.V.; Prasad, S.; Neeraja, K.; Kamble, N.; Yadav, R.; Pal, P.K. Late Adulthood Onset DYT-THAP1 Secondary to a Novel Splice Site Mutation-A Report from India. Parkinsonism Relat. Disord. 2020, 78, 36–37. [Google Scholar] [CrossRef] [PubMed]
- Lange, L.M.; Junker, J.; Loens, S.; Baumann, H.; Olschewski, L.; Schaake, S.; Madoev, H.; Petkovic, S.; Kuhnke, N.; Kasten, M.; et al. Genotype–Phenotype Relations for Isolated Dystonia Genes: MDSGene Systematic Review. Mov. Disord. 2021, 36, 1086–1103. [Google Scholar] [CrossRef]
- Closas, A.M.F.D.; Lohmann, K.; Tan, A.H.; Ibrahim, N.M.; Lim, J.L.; Tay, Y.W.; Muthusamy, K.A.; Ahmad-Annuar, A.B.; Klein, C.; Lim, S.-Y. A KMT2B Frameshift Variant Causing Focal Dystonia Restricted to the Oromandibular Region After Long-Term Follow-Up. J. Mov. Disord. 2023, 16, 91–94. [Google Scholar] [CrossRef]
- Erro, R.; Bhatia, K.P.; Hardy, J. GNAL Mutations and Dystonia. JAMA Neurol. 2014, 71, 1052. [Google Scholar] [CrossRef]
- Salamon, A.; Nagy, Z.F.; Pál, M.; Szabó, M.; Csősz, Á.; Szpisjak, L.; Gárdián, G.; Zádori, D.; Széll, M.; Klivényi, P. Genetic Screening of a Hungarian Cohort with Focal Dystonia Identified Several Novel Putative Pathogenic Gene Variants. Int. J. Mol. Sci. 2023, 24, 10745. [Google Scholar] [CrossRef]
- Steel, D.; Zech, M.; Zhao, C.; Barwick, K.E.S.; Burke, D.; Demailly, D.; Kumar, K.R.; Zorzi, G.; Nardocci, N.; Kaiyrzhanov, R.; et al. Loss-of-Function Variants in HOPS Complex Genes VPS16 and VPS41 Cause Early Onset Dystonia Associated with Lysosomal Abnormalities. Ann. Neurol. 2020, 88, 867–877. [Google Scholar] [CrossRef] [PubMed]
- Li, L.-X.; Jiang, L.-T.; Liu, Y.; Zhang, X.-L.; Pan, Y.-G.; Pan, L.-Z.; Nie, Z.-Y.; Wan, X.-H.; Jin, L.-J. Mutation Screening of VPS16 Gene in Patients with Isolated Dystonia. Parkinsonism Relat. Disord. 2021, 83, 63–65. [Google Scholar] [CrossRef] [PubMed]
- Mencacci, N.E.; Brockmann, M.M.; Dai, J.; Pajusalu, S.; Atasu, B.; Campos, J.; Pino, G.; Gonzalez-Latapi, P.; Patzke, C.; Schwake, M.; et al. Biallelic Variants in TSPOAP1, Encoding the Active-Zone Protein RIMBP1, Cause Autosomal Recessive Dystonia. J. Clin. Investig. 2021, 131, e140625. [Google Scholar] [CrossRef] [PubMed]
- Vezyroglou, A.; Akilapa, R.; Barwick, K.; Koene, S.; Brownstein, C.A.; Holder-Espinasse, M.; Fry, A.E.; Németh, A.H.; Tofaris, G.K.; Hay, E.; et al. The Phenotypic Continuum of ATP1A3 -Related Disorders. Neurology 2022, 99, e1511–e1526. [Google Scholar] [CrossRef]
- Yu, L.; Peng, G.; Yuan, Y.; Tang, M.; Liu, P.; Liu, X.; Ni, J.; Li, Y.; Ji, C.; Fan, Z.; et al. ATP1A3 Mutation in Rapid-Onset Dystonia Parkinsonism: New Data and Genotype-Phenotype Correlation Analysis. Front. Aging Neurosci. 2022, 14, 933893. [Google Scholar] [CrossRef]
- Gupta, P.; Kumar, R. GTP Cyclohydroxylase1 (GCH1): Role in Neurodegenerative Diseases. Gene 2023, 888, 147749. [Google Scholar] [CrossRef]
- Correa-Vela, M.; Carvalho, J.; Ferrero-Turrion, J.; Cazurro-Gutiérrez, A.; Vanegas, M.; Gonzalez, V.; Alvárez, R.; Marcé-Grau, A.; Moreno, A.; Macaya-Ruiz, A.; et al. Early Recognition of SGCE -myoclonus–Dystonia in Children. Dev. Med. Child Neurol. 2023, 65, 207–214. [Google Scholar] [CrossRef]
- Raymond, D.; Saunders-Pullman, R.; Ozelius, L. SGCE Myoclonus-Dystonia. In GeneReviews®; Adam, M.P., Feldman, J., Mirzaa, G.M., Pagon, R.A., Wallace, S.E., Bean, L.J., Gripp, K.W., Amemiya, A., Eds.; University of Washington: Seattle, WA, USA, 1993. [Google Scholar]
- Zech, M.; Jech, R.; Boesch, S.; Škorvánek, M.; Weber, S.; Wagner, M.; Zhao, C.; Jochim, A.; Necpál, J.; Dincer, Y.; et al. Monogenic Variants in Dystonia: An Exome-Wide Sequencing Study. Lancet Neurol. 2020, 19, 908–918. [Google Scholar] [CrossRef]
- Centen, L.M.; Van Egmond, M.E.; Tijssen, M.A.J. New Developments in Diagnostics and Treatment of Adult-Onset Focal Dystonia. Curr. Opin. Neurol. 2023, 36, 317–323. [Google Scholar] [CrossRef]
- Romano, M.; Bagnato, S.; Altavista, M.C.; Avanzino, L.; Belvisi, D.; Bologna, M.; Bono, F.; Carecchio, M.; Castagna, A.; Ceravolo, R.; et al. Diagnostic and Therapeutic Recommendations in Adult Dystonia: A Joint Document by the Italian Society of Neurology, the Italian Academy for the Study of Parkinson’s Disease and Movement Disorders, and the Italian Network on Botulinum Toxin. Neurol. Sci. 2022, 43, 6929–6945. [Google Scholar] [CrossRef]
- Stephen, C.D. The Dystonias. Contin. Lifelong Learn. Neurol. 2022, 28, 1435–1475. [Google Scholar] [CrossRef]
- Albanese, A.; Lalli, S. Is This Dystonia? Mov. Disord. 2009, 24, 1725–1731. [Google Scholar] [CrossRef]
- Frucht, L.; Perez, D.L.; Callahan, J.; MacLean, J.; Song, P.C.; Sharma, N.; Stephen, C.D. Functional Dystonia: Differentiation From Primary Dystonia and Multidisciplinary Treatments. Front. Neurol. 2021, 11, 605262. [Google Scholar] [CrossRef]
- Ercoli, T.; Defazio, G.; Geroin, C.; Marcuzzo, E.; Fabbrini, G.; Bono, F.; Mechelli, A.; Ceravolo, R.; Romito, L.M.; Albanese, A.; et al. Sudden Onset, Fixed Dystonia and Acute Peripheral Trauma as Diagnostic Clues for Functional Dystonia. Mov. Disord. Clin. Pract. 2021, 8, 1107–1111. [Google Scholar] [CrossRef]
- Morales-Briceno, H.; Fung, V.S.C.; Bhatia, K.P.; Balint, B. Parkinsonism and Dystonia: Clinical Spectrum and Diagnostic Clues. J. Neurol. Sci. 2022, 433, 120016. [Google Scholar] [CrossRef]
- Lalli, S.; Albanese, A. The Diagnostic Challenge of Primary Dystonia: Evidence from Misdiagnosis. Mov. Disord. 2010, 25, 1619–1626. [Google Scholar] [CrossRef] [PubMed]
- Postuma, R.B.; Berg, D.; Stern, M.; Poewe, W.; Olanow, C.W.; Oertel, W.; Obeso, J.; Marek, K.; Litvan, I.; Lang, A.E.; et al. MDS Clinical Diagnostic Criteria for Parkinson’s Disease: MDS-PD Clinical Diagnostic Criteria. Mov. Disord. 2015, 30, 1591–1601. [Google Scholar] [CrossRef] [PubMed]
- Hok, P.; Veverka, T.; Hluštík, P.; Nevrlý, M.; Kaňovský, P. The Central Effects of Botulinum Toxin in Dystonia and Spasticity. Toxins 2021, 13, 155. [Google Scholar] [CrossRef]
- Zakin, E.; Simpson, D.M. Botulinum Toxin Therapy in Writer’s Cramp and Musician’s Dystonia. Toxins 2021, 13, 899. [Google Scholar] [CrossRef] [PubMed]
- Duarte, G.S.; Rodrigues, F.B.; Marques, R.E.; Castelão, M.; Ferreira, J.; Sampaio, C.; Moore, A.P.; Costa, J. Botulinum Toxin Type A Therapy for Blepharospasm. Cochrane Database Syst. Rev. 2020, 2020, CD004900. [Google Scholar] [CrossRef]
- Ramirez-Castaneda, J.; Jankovic, J. Long-Term Efficacy, Safety, and Side Effect Profile of Botulinum Toxin in Dystonia: A 20-Year Follow-Up. Toxicon 2014, 90, 344–348. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, F.B.; Duarte, G.S.; Marques, R.E.; Castelão, M.; Ferreira, J.; Sampaio, C.; Moore, A.P.; Costa, J. Botulinum Toxin Type A Therapy for Cervical Dystonia. Cochrane Database Syst. Rev. 2020, 2020, CD003633. [Google Scholar] [CrossRef]
- Simpson, D.M.; Hallett, M.; Ashman, E.J.; Comella, C.L.; Green, M.W.; Gronseth, G.S.; Armstrong, M.J.; Gloss, D.; Potrebic, S.; Jankovic, J.; et al. Practice Guideline Update Summary: Botulinum Neurotoxin for the Treatment of Blepharospasm, Cervical Dystonia, Adult Spasticity, and Headache: Report of the Guideline Development Subcommittee of the American Academy of Neurology. Neurology 2016, 86, 1818–1826. [Google Scholar] [CrossRef] [PubMed]
- Erro, R.; Picillo, M.; Pellecchia, M.T.; Barone, P. Improving the Efficacy of Botulinum Toxin for Cervical Dystonia: A Scoping Review. Toxins 2023, 15, 391. [Google Scholar] [CrossRef] [PubMed]
- Jinnah, H.A.; Comella, C.L.; Perlmutter, J.; Lungu, C.; Hallett, M. Longitudinal Studies of Botulinum Toxin in Cervical Dystonia: Why Do Patients Discontinue Therapy? Toxicon 2018, 147, 89–95. [Google Scholar] [CrossRef]
- Kessler, K.R.; Skutta, M.; Benecke, R. Long-Term Treatment of Cervical Dystonia with Botulinum Toxin A: Efficacy, Safety, and Antibody Frequency. J. Neurol. 1999, 246, 265–274. [Google Scholar] [CrossRef]
- Rahman, E.; Banerjee, P.S.; Asghar, A.; Gupta, N.K.; Mosahebi, A. Botulinum Toxin Type A Immunogenicity across Multiple Indications: An Overview Systematic Review. Plast. Reconstr. Surg. 2022, 149, 837–848. [Google Scholar] [CrossRef]
- Bellows, S.; Jankovic, J. Immunogenicity Associated with Botulinum Toxin Treatment. Toxins 2019, 11, 491. [Google Scholar] [CrossRef] [PubMed]
- Albanese, A.; Asmus, F.; Bhatia, K.P.; Elia, A.E.; Elibol, B.; Filippini, G.; Gasser, T.; Krauss, J.K.; Nardocci, N.; Newton, A.; et al. EFNS Guidelines on Diagnosis and Treatment of Primary Dystonias. Eur. J. Neurol. 2011, 18, 5–18. [Google Scholar] [CrossRef] [PubMed]
- Fan, H.; Zheng, Z.; Yin, Z.; Zhang, J.; Lu, G. Deep Brain Stimulation Treating Dystonia: A Systematic Review of Targets, Body Distributions and Etiology Classifications. Front. Hum. Neurosci. 2021, 15, 757579. [Google Scholar] [CrossRef] [PubMed]
- Filip, P.; Jech, R.; Fečíková, A.; Havránková, P.; Růžička, F.; Mueller, K.; Urgošík, D. Restoration of Functional Network State towards More Physiological Condition as the Correlate of Clinical Effects of Pallidal Deep Brain Stimulation in Dystonia. Brain Stimulat. 2022, 15, 1269–1278. [Google Scholar] [CrossRef] [PubMed]
- Volkmann, J.; Mueller, J.; Deuschl, G.; Kühn, A.A.; Krauss, J.K.; Poewe, W.; Timmermann, L.; Falk, D.; Kupsch, A.; Kivi, A.; et al. Pallidal Neurostimulation in Patients with Medication-Refractory Cervical Dystonia: A Randomised, Sham-Controlled Trial. Lancet Neurol. 2014, 13, 875–884. [Google Scholar] [CrossRef] [PubMed]
- Kupsch, A.; Benecke, R.; Müller, J.; Trottenberg, T.; Schneider, G.-H.; Poewe, W.; Eisner, W.; Wolters, A.; Müller, J.-U.; Deuschl, G.; et al. Pallidal Deep-Brain Stimulation in Primary Generalized or Segmental Dystonia. N. Engl. J. Med. 2006, 355, 1978–1990. [Google Scholar] [CrossRef] [PubMed]
- Vidailhet, M.; Vercueil, L.; Houeto, J.-L.; Krystkowiak, P.; Benabid, A.-L.; Cornu, P.; Lagrange, C.; Tézenas Du Montcel, S.; Dormont, D.; Grand, S.; et al. Bilateral Deep-Brain Stimulation of the Globus Pallidus in Primary Generalized Dystonia. N. Engl. J. Med. 2005, 352, 459–467. [Google Scholar] [CrossRef]
- Yin, F.; Zhao, M.; Yan, X.; Li, T.; Chen, H.; Li, J.; Cao, S.; Guo, H.; Liu, S. Bilateral Subthalamic Nucleus Deep Brain Stimulation for Refractory Isolated Cervical Dystonia. Sci. Rep. 2022, 12, 7678. [Google Scholar] [CrossRef]
- Lee, D.J.; Lozano, C.S.; Dallapiazza, R.F.; Lozano, A.M. Current and Future Directions of Deep Brain Stimulation for Neurological and Psychiatric Disorders: JNSPG 75th Anniversary Invited Review Article. J. Neurosurg. 2019, 131, 333–342. [Google Scholar] [CrossRef]
- Hock, A.N.; Jensen, S.R.; Svaerke, K.W.; Brennum, J.; Jespersen, B.; Bergdal, O.; Karlsborg, M.; Hjermind, L.E.; Lokkegaard, A. A Randomised Double-Blind Controlled Study of Deep Brain Stimulation for Dystonia in STN or GPi—A Long Term Follow-up after up to 15 Years. Parkinsonism Relat. Disord. 2022, 96, 74–79. [Google Scholar] [CrossRef]
- Pirio Richardson, S.; Jinnah, H.A. New Approaches to Discovering Drugs That Treat Dystonia. Expert Opin. Drug Discov. 2019, 14, 893–900. [Google Scholar] [CrossRef]
- Horisawa, S.; Ochiai, T.; Goto, S.; Nakajima, T.; Takeda, N.; Fukui, A.; Hanada, T.; Kawamata, T.; Taira, T. Safety and Long-Term Efficacy of Ventro-Oral Thalamotomy for Focal Hand Dystonia: A Retrospective Study of 171 Patients. Neurology 2019, 92, e371–e377. [Google Scholar] [CrossRef]
- Horisawa, S.; Yamaguchi, T.; Abe, K.; Hori, H.; Fukui, A.; Iijima, M.; Sumi, M.; Hodotsuka, K.; Konishi, Y.; Kawamata, T.; et al. Magnetic Resonance-Guided Focused Ultrasound Thalamotomy for Focal Hand Dystonia: A Pilot Study. Mov. Disord. 2021, 36, 1955–1959. [Google Scholar] [CrossRef] [PubMed]
- Budgett, R.F.; Bakker, G.; Sergeev, E.; Bennett, K.A.; Bradley, S.J. Targeting the Type 5 Metabotropic Glutamate Receptor: A Potential Therapeutic Strategy for Neurodegenerative Diseases? Front. Pharmacol. 2022, 13, 893422. [Google Scholar] [CrossRef] [PubMed]
- Abu-hadid, O.; Jimenez-Shahed, J. An Overview of the Pharmacotherapeutics for Dystonia: Advances over the Past Decade. Expert Opin. Pharmacother. 2022, 23, 1927–1940. [Google Scholar] [CrossRef]
- Batla, A.; Stamelou, M.; Bhatia, K.P. Treatment of Focal Dystonia. Curr. Treat. Options Neurol. 2012, 14, 213–229. [Google Scholar] [CrossRef]
- Benson, M.; Albanese, A.; Bhatia, K.P.; Cavillon, P.; Cuffe, L.; König, K.; Reinhard, C.; Graessner, H. Development of a Patient Journey Map for People Living with Cervical Dystonia. Orphanet J. Rare Dis. 2022, 17, 130. [Google Scholar] [CrossRef]
- Bradnam, L.V.; Meiring, R.M.; Boyce, M.; McCambridge, A. Neurorehabilitation in Dystonia: A Holistic Perspective. J. Neural Transm. 2021, 128, 549–558. [Google Scholar] [CrossRef]
- Prudente, C.N.; Zetterberg, L.; Bring, A.; Bradnam, L.; Kimberley, T.J. Systematic Review of Rehabilitation in Focal Dystonias: Classification and Recommendations. Mov. Disord. Clin. Pract. 2018, 5, 237–245. [Google Scholar] [CrossRef]
- Tassorelli, C.; Mancini, F.; Balloni, L.; Pacchetti, C.; Sandrini, G.; Nappi, G.; Martignoni, E. Botulinum Toxin and Neuromotor Rehabilitation: An Integrated Approach to Idiopathic Cervical Dystonia. Mov. Disord. 2006, 21, 2240–2243. [Google Scholar] [CrossRef]
- De Pauw, J.; Van Der Velden, K.; Meirte, J.; Van Daele, U.; Truijen, S.; Cras, P.; Mercelis, R.; De Hertogh, W. The Effectiveness of Physiotherapy for Cervical Dystonia: A Systematic Literature Review. J. Neurol. 2014, 261, 1857–1865. [Google Scholar] [CrossRef]
- Szewczyk-Roszczenko, O.; Barlev, N.A. The Role of P53 in Nanoparticle-Based Therapy for Cancer. Cells 2023, 12, 2803. [Google Scholar] [CrossRef]
- Lundstrom, K. Viral Vectors in Gene Therapy: Where Do We Stand in 2023? Viruses 2023, 15, 698. [Google Scholar] [CrossRef] [PubMed]
- Zeimet, A.G.; Marth, C. Why Did P53 Gene Therapy Fail in Ovarian Cancer. Lancet Oncol. 2003, 4, 415–422. [Google Scholar] [CrossRef] [PubMed]
- Szewczyk, O.K.; Roszczenko, P.; Czarnomysy, R.; Bielawska, A.; Bielawski, K. An Overview of the Importance of Transition-Metal Nanoparticles in Cancer Research. Int. J. Mol. Sci. 2022, 23, 6688. [Google Scholar] [CrossRef]
Treatment | Cervical Dystonia | Oromandibular Dystonia | Blepharospasm | Spasmodic Dysphonia | Focal Hand Dystonia |
---|---|---|---|---|---|
BoNT | ++ | ++ | ++ | ++ | ++ |
DBS | ++ | + | + | – | ++ |
Trihexyphenidyl | ++ | – | – | – | ++ |
Tetrabenazine | ++ | – | – | – | – |
Clonazepam | ++ | – | ++ | – | – |
Baclofen | – | ++ | – | – | ++ |
Levodopa | – | – | – | – | – |
Amantadine | + | – | – | – | – |
Haloperidol | – | – | – | – | – |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Koptielow, J.; Szyłak, E.; Szewczyk-Roszczenko, O.; Roszczenko, P.; Kochanowicz, J.; Kułakowska, A.; Chorąży, M. Genetic Update and Treatment for Dystonia. Int. J. Mol. Sci. 2024, 25, 3571. https://doi.org/10.3390/ijms25073571
Koptielow J, Szyłak E, Szewczyk-Roszczenko O, Roszczenko P, Kochanowicz J, Kułakowska A, Chorąży M. Genetic Update and Treatment for Dystonia. International Journal of Molecular Sciences. 2024; 25(7):3571. https://doi.org/10.3390/ijms25073571
Chicago/Turabian StyleKoptielow, Jan, Emilia Szyłak, Olga Szewczyk-Roszczenko, Piotr Roszczenko, Jan Kochanowicz, Alina Kułakowska, and Monika Chorąży. 2024. "Genetic Update and Treatment for Dystonia" International Journal of Molecular Sciences 25, no. 7: 3571. https://doi.org/10.3390/ijms25073571
APA StyleKoptielow, J., Szyłak, E., Szewczyk-Roszczenko, O., Roszczenko, P., Kochanowicz, J., Kułakowska, A., & Chorąży, M. (2024). Genetic Update and Treatment for Dystonia. International Journal of Molecular Sciences, 25(7), 3571. https://doi.org/10.3390/ijms25073571