Substance P Concentration in Gestational Diabetes and Excessive Gestational Weight Gain and Its Impact on Neonatal Anthropometry
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Aguayo-Guerrero, J.A.; León-Cabrera, S.; Escobedo, G. Molecular Mechanisms Involved in Fetal Programming and Disease Origin in Adulthood. J. Pediatr. Endocrinol. Metab. 2023, 36, 615–627. [Google Scholar] [CrossRef]
- Edwards, M. The Barker Hypothesis. In Handbook of Famine, Starvation, and Nutrient Deprivation: From Biology to Policy; Preedy, V., Patel, V.B., Eds.; Springer International Publishing: Cham, Switzerland, 2017; pp. 1–21. [Google Scholar]
- Ross, M.G.; Desai, M. Developmental Programming of Offspring Obesity, Adipogenesis, and Appetite. Clin. Obstet. Gynecol. 2013, 56, 529–536. [Google Scholar] [CrossRef]
- Mazur, D.; Satora, M.; Rekowska, A.K.; Kabała, Z.; Łomża, A.; Kimber-Trojnar, Ż.; Leszczyńska-Gorzelak, B. Influence of Breastfeeding on the State of Meta-Inflammation in Obesity—A Narrative Review. Curr. Issues Mol. Biol. 2023, 45, 9003–9018. [Google Scholar] [CrossRef]
- Lindsay, K.L.; Buss, C.; Wadhwa, P.D.; Entringer, S. The Interplay Between Nutrition and Stress in Pregnancy: Implications for Fetal Programming of Brain Development. Biol. Psychiatry 2019, 85, 135–149. [Google Scholar] [CrossRef]
- Faa, G.; Manchia, M.; Pintus, R.; Gerosa, C.; Marcialis, M.A.; Fanos, V. Fetal Programming of Neuropsychiatric Disorders. Birth Defects Res. C Embryo Today 2016, 108, 207–223. [Google Scholar] [CrossRef]
- Jones, R.H.; Ozanne, S.E. Fetal Programming of Glucose-Insulin Metabolism. Mol. Cell. Endocrinol. 2009, 297, 4–9. [Google Scholar] [CrossRef]
- Alexander, B.T.; Dasinger, J.H.; Intapad, S. Fetal Programming and Cardiovascular Pathology. Compr. Physiol. 2015, 5, 997–1025. [Google Scholar]
- Hjort, L.; Martino, D.; Grunnet, L.G.; Naeem, H.; Maksimovic, J.; Olsson, A.H.; Zhang, C.; Ling, C.; Olsen, S.F.; Saffery, R.; et al. Gestational Diabetes and Maternal Obesity Are Associated with Epigenome-Wide Methylation Changes in Children. JCI Insight 2018, 3, e122572. [Google Scholar] [CrossRef]
- Antoniou, M.-C.; Quansah, D.Y.; Mühlberg, S.; Gilbert, L.; Arhab, A.; Schenk, S.; Lacroix, A.; Stuijfzand, B.; Horsch, A.; Puder, J.J. Maternal and Fetal Predictors of Anthropometry in the First Year of Life in Offspring of Women with GDM. Front. Endocrinol. 2023, 14, 1144195. [Google Scholar] [CrossRef]
- Andersson-Hall, U.K.; Järvinen, E.A.J.; Bosaeus, M.H.; Gustavsson, C.E.; Hårsmar, E.J.; Niklasson, C.A.; Albertsson-Wikland, K.G.; Holmäng, A.B. Maternal Obesity and Gestational Diabetes Mellitus Affect Body Composition through Infancy: The PONCH Study. Pediatr. Res. 2019, 85, 369–377. [Google Scholar] [CrossRef]
- Hufnagel, A.; Dearden, L.; Fernandez-Twinn, D.S.; Ozanne, S.E. Programming of Cardiometabolic Health: The Role of Maternal and Fetal Hyperinsulinaemia. J. Endocrinol. 2022, 253, R47–R63. [Google Scholar] [CrossRef]
- Dessì, A.; Tognazzi, C.; Bosco, A.; Pintus, R.; Fanos, V. Metabolomic Profiles and Microbiota of GDM Offspring: The Key for Future Perspective? Front. Pediatr. 2022, 10, 941800. [Google Scholar] [CrossRef]
- Jennewein, M.F.; Abu-Raya, B.; Jiang, Y.; Alter, G.; Marchant, A. Transfer of Maternal Immunity and Programming of the Newborn Immune System. Semin. Immunopathol. 2017, 39, 605–613. [Google Scholar] [CrossRef]
- Robertson, S.A.; Chin, P.-Y.; Femia, J.G.; Brown, H.M. Embryotoxic Cytokines—Potential Roles in Embryo Loss and Fetal Programming. J. Reprod. Immunol. 2018, 125, 80–88. [Google Scholar] [CrossRef]
- Houde, A.-A.; Hivert, M.-F.; Bouchard, L. Fetal Epigenetic Programming of Adipokines. Adipocyte 2013, 2, 41–46. [Google Scholar] [CrossRef]
- Kelly, A.C.; Powell, T.L.; Jansson, T. Placental Function in Maternal Obesity. Clin. Sci. 2020, 134, 961–984. [Google Scholar] [CrossRef]
- Silva, A.F.; Abruzzese, G.A.; Ferrer, M.J.; Heber, M.F.; Ferreira, S.R.; Cerrone, G.E.; Motta, A.B. Fetal Programming by Androgen Excess Impairs Liver Lipid Content and PPARg Expression in Adult Rats. J. Dev. Orig. Health Dis. 2022, 13, 300–309. [Google Scholar] [CrossRef]
- Minatoya, M.; Itoh, S.; Araki, A.; Tamura, N.; Yamazaki, K.; Miyashita, C.; Kishi, R. Association between Fetal Adipokines and Child Behavioral Problems at Preschool Age: The Hokkaido Study on Environment and Children’s Health. Int. J. Environ. Res. Public Health 2018, 15, 120. [Google Scholar] [CrossRef]
- Thompson, L.P.; Al-Hasan, Y. Impact of Oxidative Stress in Fetal Programming. J. Pregnancy 2012, 2012, 582748. [Google Scholar] [CrossRef]
- Dimas, A.; Politi, A.; Bargiota, A.; Panoskaltsis, T.; Vlahos, N.F.; Valsamakis, G. The Gestational Effects of Maternal Bone Marker Molecules on Fetal Growth, Metabolism and Long-Term Metabolic Health: A Systematic Review. Int. J. Mol. Sci. 2022, 23, 8328. [Google Scholar] [CrossRef]
- Silva, L.; Plösch, T.; Toledo, F.; Faas, M.M.; Sobrevia, L. Adenosine Kinase and Cardiovascular Fetal Programming in Gestational Diabetes Mellitus. Biochim. Biophys. Acta Mol. Basis Dis. 2020, 1866, 165397. [Google Scholar] [CrossRef]
- Kokabi, F.; Ebrahimi, S.; Mirzavi, F.; Ghiasi Nooghabi, N.; Hashemi, S.F.; Hashemy, S.I. The Neuropeptide Substance P/Neurokinin-1 Receptor System and Diabetes: From Mechanism to Therapy. BioFactors 2023, 49, 534–559. [Google Scholar] [CrossRef]
- Muñoz, M.; Carranza, A.; Pavón, A.; Anderson, G.; Coveñas, R. Immunolocalization of Substance P and NK-1 Receptor in Hofbauer Cells in Human Normal Placenta. Microsc. Res. Tech. 2013, 76, 1310–1313. [Google Scholar] [CrossRef]
- Muñoz, M.; Pavón, A.; Rosso, M.; Salinas, M.V.; Pérez, A.; Carranza, A.; González-Ortega, A. Immunolocalization of NK-1 Receptor and Substance P in Human Normal Placenta. Placenta 2010, 31, 649–651. [Google Scholar] [CrossRef]
- Patro-Malysza, J.; Kimber-Trojnar, Z.; Skorzynska-Dziduszko, K.; Marciniak, B.; Darmochwal-Kolarz, D.; Bartosiewicz, J.; Leszczynska-Gorzelak, B.; Oleszczuk, J. The Impact of Substance P on the Pathogenesis of Insulin Resistance Leading to Gestational Diabetes. CPB 2014, 15, 32–37. [Google Scholar] [CrossRef]
- Fu, J.; Liu, B.; Liu, P.; Liu, L.; Li, G.; Wu, B.; Liu, X. Substance P Is Associated with the Development of Obesity, Chronic Inflammation and Type 2 Diabetes Mellitus. Exp. Clin. Endocrinol. Diabetes 2010, 119, 177–181. [Google Scholar] [CrossRef]
- Karagiannides, I.; Bakirtzi, K.; Kokkotou, E.; Stavrakis, D.; Margolis, K.G.; Thomou, T.; Giorgadze, N.; Kirkland, J.L.; Pothoulakis, C. Role of Substance P in the Regulation of Glucose Metabolism via Insulin Signaling-Associated Pathways. Endocrinology 2011, 152, 4571–4580. [Google Scholar] [CrossRef]
- Bright, F.M.; Byard, R.W.; Vink, R.; Paterson, D.S. Normative Distribution of Substance P and Its Tachykinin Neurokinin-1 Receptor in the Medullary Serotonergic Network of the Human Infant during Postnatal Development. Brain Res. Bull. 2018, 137, 319–328. [Google Scholar] [CrossRef]
- Redkiewicz, P. The Regenerative Potential of Substance P. Int. J. Mol. Sci. 2022, 23, 750. [Google Scholar] [CrossRef]
- Rasmussen, K.M.; Yaktine, A.L.; Institute of Medicine (US) and National Research Council (US) Committee to Reexamine IOM Pregnancy Weight Guidelines (Eds.) Weight Gain during Pregnancy: Reexamining the Guidelines; National Academies Press: Washington, DC, USA, 2009. [Google Scholar]
- Bautista, N.M. Transgenerational Epigenetic Programming. In Epigenetics, Development, Ecology and Evolution; Springer: Cham, Switzerland, 2022. [Google Scholar]
- Aiken, C.E.; Ozanne, S.E. Transgenerational developmental programming. Hum. Reprod. Update 2014, 20, 63–75. [Google Scholar] [CrossRef]
- Barnes, R.A.; Wong, T.; Ross, G.P.; Griffiths, M.M.; Smart, C.E.; Collins, C.E.; MacDonald-Wicks, L.; Flack, J.R. Excessive Weight Gain before and during Gestational Diabetes Mellitus Management: What Is the Impact? Diabetes Care 2020, 43, 74–81. [Google Scholar] [CrossRef]
- Marciniak, A.; Patro-Małysza, J.; Kimber-Trojnar, Ż.; Marciniak, B.; Oleszczuk, J.; Leszczyńska-Gorzelak, B. Fetal programming of the metabolic syndrome. Taiwan J. Obstet. Gynecol. 2017, 56, 133–138. [Google Scholar] [CrossRef]
- Kwon, E.J.; Kim, Y.J. What is fetal programming?: A lifetime health is under the control of in utero health. Obstet. Gynecol. Sci. 2017, 60, 506–519. [Google Scholar] [CrossRef]
- Pilszyk, A.; Niebrzydowska, M.; Pilszyk, Z.; Wierzchowska-Opoka, M.; Kimber-Trojnar, Ż. Incretins as a potential treatment option for gestational diabetes mellitus. Int. J. Mol. Sci. 2022, 23, 10101. [Google Scholar] [CrossRef]
- Hillier, T.A.; Pedula, K.L.; Ogasawara, K.K.; Vesco, K.K.; Oshiro, C.E.S.; Lubarsky, S.L.; Van Marter, J. A Pragmatic, Randomized Clinical Trial of Gestational Diabetes Screening. N. Engl. J. Med. 2021, 384, 895–904. [Google Scholar] [CrossRef]
- Goławski, K.; Giermaziak, W.; Ciebiera, M.; Wojtyła, C. Excessive Gestational Weight Gain and Pregnancy Outcomes. J. Clin. Med. 2023, 12, 3211. [Google Scholar] [CrossRef]
- Cogswell, M.E.; Serdula, M.K.; Hungerford, D.W.; Yip, R. Gestational weight gain among average-weight and overweight women--what is excessive? Am. J. Obstet. Gynecol. 1995, 172 Pt 1, 705–712. [Google Scholar] [CrossRef]
- Dietz, P.M.; Callaghan, W.M.; Sharma, A.J. High pregnancy weight gain and risk of excessive fetal growth. Am. J. Obstet. Gynecol. 2009, 201, e1–e6. [Google Scholar] [CrossRef]
- Clausen, T.; Burski, T.K.; Øyen, N.; Godang, K.; Bollerslev, J.; Henriksen, T. Maternal anthropometric and metabolic factors in the first half of pregnancy and risk of neonatal macrosomia in term pregnancies. A prospective study. Eur. J. Endocrinol. 2005, 153, 887–894. [Google Scholar] [CrossRef]
- Douglas, S.D.; Leeman, S.E. Neurokinin-1 receptor: Functional significance in the immune system in reference to selected infections and inflammation. Ann. N. Y. Acad. Sci. 2011, 1217, 83–95. [Google Scholar] [CrossRef]
- Baek, S.M.; Kim, K.; Kim, S.; Son, Y.; Hong, H.S.; Yu, S.Y. SP prevents T2DM complications by immunomodulation. Sci. Rep. 2020, 7, 16753. [Google Scholar] [CrossRef]
- Mehboob, R.; Oehme, P.; Pfaff, G. The role of Substance P in the defense line of the respiratory tract and neurological manifestations post COVID-19 infection. Front. Neurol. 2023, 14, 1052811. [Google Scholar] [CrossRef]
- Gellis, S.S.; Hsia, D.Y. The infant of diabetic mother. Am. J. Dis Child. 1959, 97, 1–41. [Google Scholar] [CrossRef]
- Robert, M.F.; Neff, R.K.; Hubbell, J.P.; Taeusch, H.W.; Avery, M.E. Association between Maternal Diabetes and the RespiratoryDistress Syndrome in the Newborn. N. Engl. J. Med. 1976, 294, 357–360. [Google Scholar] [CrossRef]
- Atar, H.; Baatz, J.E.; Ryan, R.M. Molecular Mechanisms of Maternal Diabetes Effects on Fetal and Neonatal Surfactant. Children 2021, 8, 281. [Google Scholar] [CrossRef]
- Bryndina, I.G.; Danilov, G.E. Substance P as a factor enhancing resistance of the surfactant lung system to chronic immobilization stress. Ross. Fiziol. Zhurnal Im. IM Sechenova 2002, 88, 84–89. [Google Scholar]
- Rice, W.R.; Singleton, F.M. Regulation of surfactant secretion from isolated Type II pneumocytes by substance P. BiochimBiophys Acta 1986, 889, 123–127. [Google Scholar] [CrossRef]
- De Angelis, F.; Di Tullio, A.; Del Boccio, P.; Reale, S.; Savelli, G.; Spreti, N. ESI-MS in the study of the activity of alpha-chymotrypsin in aqueous surfactant media. Org. Biomol. Chem. 2003, 1, 3125–3130. [Google Scholar] [CrossRef]
- Bright, F.M.; Vink, R.; Byard, R.W.; Duncan, J.R.; Krous, H.F.; Paterson, D.S. Abnormalities in substance P neurokinin-1 receptor binding in key brainstem nuclei in sudden infant death syndrome related to prematurity and sex. PLoS ONE 2017, 12, e0184958. [Google Scholar] [CrossRef]
- Dziennik Ustaw Rzeczypospolitej Polskiej. Rozporządzenie Ministra Zdrowia z Dnia 16 Sierpnia 2018 r. w Sprawie Standardu Organizacyjnego Opieki Okołoporodowej. Available online: https://isap.sejm.gov.pl/isap.nsf/download.xsp/WDU20180001756/O/D20181756.pdf (accessed on 15 December 2023).
a. Maternal | |||||
Variables | GDM Group n = 25 A | EGWG n = 25 B | Control Group n = 24 C | p | |
Age (years) | Median (quartile) | 30 (27–32) | 28 (25–30) | 28 (25–29.25) | p = 0.071 |
Weight before pregnancy (kg) | Median (quartile) | 73.9 (66–78) | 62 (59–66.5) | 60 (56.75–65.78) | p < 0.001 * A>B,C |
Weight before delivery (kg) | Median (quartile) | 83.3 (75–95) | 86 (83–92) | 72.35 (70–78.25) | p < 0.001 * B,A>C |
Glycemia before 10 weeks of pregnancy (mg/dL) | Median (quartile) | 89 (86–90) | 80 (78–84) | 84.5 (79–89.25) | p < 0.001 * A>C>B |
GWG (kg) | Median (quartile) | 11 (8.5–14) | 24.80 (23–26) | 13 (8–15) | p < 0.001 * B>C,A |
Maternal weight (g) | Median (quartile) | 3400 (3100–3600) | 3300 (3100–3500) | 3300 (2867.5–3695) | p = 0.719 |
Maternal GWG (kg) | Median (quartile) | 14 (12–17) | 18 (16–20) | 12.5 (10–15) | p < 0.001 * B>A,C |
b. Neonatal | |||||
Variables | GDM Group n = 25 A | EGWG n = 25 B | Control Group n = 24 C | p | |
Birth weight (g) | Median (quartile) | 3270 (3150–3700) | 3520 (3400–3650) | 3540 (3230–3905) | p = 0.207 |
Birth length (cm) | Median (quartile) | 54 (53–56) | 55 (54–56) | 55 (55–56) | p = 0.058 |
PI | Median (quartile) | 2.08 (2–2.3) | 2.1 (2–2.33) | 2.10 (1.94–2.21) | p = 0.84 |
Head circumference (cm) | Median (quartile) | 34 (34–35) | 34 (34–35) | 34.5 (34–35) | p = 0.441 |
Chest circumference (cm) | Median (quartile) | 35 (33–35) | 34 (33–35) | 34 (33.75–35) | p = 0.942 |
Apgar 1’ | Median (quartile) | 10 (9–10) | 10 (10) | 10 (10) | p = 0.764 |
Apgar 5’ | Median (quartile) | 10 (10) | 10 (10) | 10 (10) | p = 0.223 |
Parameter | GDM Group n = 25 A | EGWG n = 25 B | Control Group n = 24 C | p | |
---|---|---|---|---|---|
Concentration of SP in serum on delivery day (ng/mL) | Median (quartile) | 64.94 (48.2–80.4) | 40.12 (24.78–56.9) | 61.85 (36.53–105.89) | p = 0.057 |
Concentration of SP in umbilical cord blood (ng/mL) | Median (quartile) | 78.2 (53.5–199.45) | 40.2 (34.2–56.51) | 61.19 (34.77–69.59) | p = 0.006 * A>C,B |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Niebrzydowska-Tatus, M.; Pełech, A.; Bień, K.; Rekowska, A.K.; Domańska, A.; Kimber-Trojnar, Ż.; Leszczyńska-Gorzelak, B.; Trojnar, M. Substance P Concentration in Gestational Diabetes and Excessive Gestational Weight Gain and Its Impact on Neonatal Anthropometry. Int. J. Mol. Sci. 2024, 25, 3759. https://doi.org/10.3390/ijms25073759
Niebrzydowska-Tatus M, Pełech A, Bień K, Rekowska AK, Domańska A, Kimber-Trojnar Ż, Leszczyńska-Gorzelak B, Trojnar M. Substance P Concentration in Gestational Diabetes and Excessive Gestational Weight Gain and Its Impact on Neonatal Anthropometry. International Journal of Molecular Sciences. 2024; 25(7):3759. https://doi.org/10.3390/ijms25073759
Chicago/Turabian StyleNiebrzydowska-Tatus, Magdalena, Aleksandra Pełech, Katarzyna Bień, Anna K. Rekowska, Aleksandra Domańska, Żaneta Kimber-Trojnar, Bożena Leszczyńska-Gorzelak, and Marcin Trojnar. 2024. "Substance P Concentration in Gestational Diabetes and Excessive Gestational Weight Gain and Its Impact on Neonatal Anthropometry" International Journal of Molecular Sciences 25, no. 7: 3759. https://doi.org/10.3390/ijms25073759
APA StyleNiebrzydowska-Tatus, M., Pełech, A., Bień, K., Rekowska, A. K., Domańska, A., Kimber-Trojnar, Ż., Leszczyńska-Gorzelak, B., & Trojnar, M. (2024). Substance P Concentration in Gestational Diabetes and Excessive Gestational Weight Gain and Its Impact on Neonatal Anthropometry. International Journal of Molecular Sciences, 25(7), 3759. https://doi.org/10.3390/ijms25073759