Phytotherapy of Vulvovaginal Candidiasis: A Narrative Review
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Pathogenesis
3.2. Treatment
3.3. Effects of Plant Metabolites on Fungal Infections
3.4. Herbal Preparations Used to Treat the Vagina and Vulva
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Spence, D. Candidiasis (vulvovaginal). BMJ Clin. Evid. 2010, 2010, 0815. [Google Scholar] [PubMed]
- Dovnik, A.; Golle, A.; Novak, D.; Arko, D.; Takač, I. Treatment of vulvovaginal candidiasis: A review of the literature. Acta Dermatovenerol. Alp. Pannonica Adriat. 2015, 24, 5–7. [Google Scholar] [CrossRef] [PubMed]
- Phillips, N.A.; Bachmann, G.; Haefner, H.; Martens, M.; Stockdale, C. Topical Treatment of Recurrent Vulvovaginal Candidiasis: An Expert Consensus. Womens Health Rep. 2022, 3, 38–42. [Google Scholar] [CrossRef] [PubMed]
- Neal, C.M.; Martens, M.G. Clinical challenges in diagnosis and treatment of recurrent vulvovaginal candidiasis. SAGE Open Med. 2022, 10, 20503121221115201. [Google Scholar] [CrossRef] [PubMed]
- Blostein, F.; Levin-Sparenberg, E.; Wagner, J.; Foxman, B. Recurrent vulvovaginal candidiasis. Ann. Epidemiol. 2017, 27, 575–582.e3. [Google Scholar] [CrossRef] [PubMed]
- Balakrishnan, S.N.; Yamang, H.; Lorenz, M.C.; Chew, S.Y.; Than, L.T.L. Role of Vaginal Mucosa, Host Immunity and Microbiota in Vulvovaginal Candidiasis. Pathogens 2022, 11, 618. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, Â.; Azevedo, N.; Valente, A.; Dias, M.; Gomes, A.; Nogueira-Silva, C.; Henriques, M.; Silva, S.; Gonçalves, B. Vulvovaginal candidiasis and asymptomatic vaginal colonization in Portugal: Epidemiology, risk factors and antifungal pattern. Med. Mycol. 2022, 60, myac029. [Google Scholar] [CrossRef] [PubMed]
- Gonçalves, B.; Ferreira, C.; Alves, C.T.; Henriques, M.; Azeredo, J.; Silva, S. Vulvovaginal candidiasis: Epidemiology, microbiology and risk factors. Crit. Rev. Microbiol. 2016, 42, 905–927. [Google Scholar] [CrossRef] [PubMed]
- Geiger, A.M.; Foxman, B.; Gillespie, B.W. The epidemiology of vulvovaginal candidiasis among university students. Am. J. Public Health 1995, 85 Pt 1, 1146–1148. [Google Scholar] [CrossRef]
- Lines, A.; Vardi-Flynn, I.; Searle, C. Recurrent vulvovaginal candidiasis. BMJ 2020, 369, m1995. [Google Scholar] [CrossRef]
- Lírio, J.; Giraldo, P.C.; Amaral, R.L.; Sarmento, A.C.A.; Costa, A.P.F.; Gonçalves, A.K. Antifungal (oral and vaginal) therapy for recurrent vulvovaginal candidiasis: A systematic review protocol. BMJ Open 2019, 9, e027489, Erratum in BMJ Open 2019, 9, e027489corr1. [Google Scholar] [CrossRef]
- Yano, J.; Sobel, J.D.; Nyirjesy, P.; Sobel, R.; Williams, V.L.; Yu, Q.; Noverr, M.C.; Fidel, P.L., Jr. Current patient perspectives of vulvovaginal candidiasis: Incidence, symptoms, management and post-treatment outcomes. BMC Womens Health 2019, 19, 48. [Google Scholar] [CrossRef] [PubMed]
- Sasani, E.; Rafat, Z.; Ashrafi, K.; Salimi, Y.; Zandi, M.; Soltani, S.; Hashemi, F.; Hashemi, S.J. Vulvovaginal candidiasis in Iran: A systematic review and meta-analysis on the epidemiology, clinical manifestations, demographic characteristics, risk factors, etiologic agents and laboratory diagnosis. Microb. Pathog. 2021, 154, 104802. [Google Scholar] [CrossRef] [PubMed]
- Rosati, D.; Bruno, M.; Jaeger, M.; Ten Oever, J.; Netea, M.G. Recurrent Vulvovaginal Candidiasis: An Immunological Perspective. Microorganisms 2020, 8, 144. [Google Scholar] [CrossRef] [PubMed]
- Kalia, N.; Singh, J.; Kaur, M. Microbiota in vaginal health and pathogenesis of recurrent vulvovaginal infections: A critical review. Ann. Clin. Microbiol. Antimicrob. 2020, 19, 5. [Google Scholar] [CrossRef] [PubMed]
- Willems, H.M.E.; Ahmed, S.S.; Liu, J.; Xu, Z.; Peters, B.M. Vulvovaginal Candidiasis: A Current Understanding and Burning Questions. J. Fungi 2020, 6, 27. [Google Scholar] [CrossRef] [PubMed]
- Cooke, G.; Watson, C.; Deckx, L.; Pirotta, M.; Smith, J.; van Driel, M.L. Treatment for recurrent vulvovaginal candidiasis (thrush). Cochrane Database Syst. Rev. 2022, 1, CD009151. [Google Scholar] [CrossRef] [PubMed]
- Ardizzoni, A.; Wheeler, R.T.; Pericolini, E. It Takes Two to Tango: How a Dysregulation of the Innate Immunity, Coupled with Candida Virulence, Triggers VVC Onset. Front. Microbiol. 2021, 12, 692491. [Google Scholar] [CrossRef] [PubMed]
- Martin Lopez, J.E. Candidiasis (vulvovaginal). BMJ Clin. Evid. 2015, 2015, 0815. [Google Scholar]
- Rodríguez-Cerdeira, C.; Martínez-Herrera, E.; Carnero-Gregorio, M.; López-Barcenas, A.; Fabbrocini, G.; Fida, M.; El-Samahy, M.; González-Cespón, J.L. Pathogenesis and Clinical Relevance of Candida Biofilms in Vulvovaginal Candidiasis. Front. Microbiol. 2020, 11, 544480. [Google Scholar] [CrossRef]
- Jafarzadeh, L.; Ranjbar, M.; Nazari, T.; Naeimi Eshkaleti, M.; Aghaei Gharehbolagh, S.; Sobel, J.D.; Mahmoudi, S. Vulvovaginal candidiasis: An overview of mycological, clinical, and immunological aspects. J. Obstet. Gynaecol. Res. 2022, 48, 1546–1560. [Google Scholar] [CrossRef] [PubMed]
- Nyirjesy, P.; Brookhart, C.; Lazenby, G.; Schwebke, J.; Sobel, J.D. Vulvovaginal Candidiasis: A Review of the Evidence for the 2021 Centers for Disease Control and Prevention of Sexually Transmitted Infections Treatment Guidelines. Clin. Infect. Dis. 2022, 74 (Suppl. 2), S162–S168. [Google Scholar] [CrossRef] [PubMed]
- Esfahani, A.; Omran, A.N.; Salehi, Z.; Shams-Ghahfarokhi, M.; Ghane, M.; Eybpoosh, S.; Razzaghi-Abyaneh, M. Molecular epidemiology, antifungal susceptibility, and ERG11 gene mutation of Candida species isolated from vulvovaginal candidiasis: Comparison between recurrent and non-recurrent infections. Microb. Pathog. 2022, 170, 105696. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.S.A.; Ahmad, I. Chapter 1—Herbal Medicine: Current Trends and Future Prospects. In New Look to Phytomedicine; Khan, M.S.A., Ahmad, I., Chattopadhyay, D., Eds.; Academic Press: London, UK, 2019; pp. 3–13. [Google Scholar] [CrossRef]
- Krzepiłko, A.; Kordowska-Wiater, M.; Sosnowska, B.; Pytka, M. Oddziaływanie Ekstraktów Roślinnych na Drobnoustroje; Wydawnictwo Uniwersytetu Przyrodniczego w Lublinie: Lublin, Poland, 2020. [Google Scholar] [CrossRef]
- Mohankumar, B.; Shandil, R.K.; Narayanan, S.; Krishnan, U.M. Vaginosis: Advances in new therapeutic development and microbiome restoration. Microb. Pathog. 2022, 168, 105606. [Google Scholar] [CrossRef] [PubMed]
- Farr, A.; Effendy, I.; Frey Tirri, B.; Hof, H.; Mayser, P.; Petricevic, L.; Ruhnke, M.; Schaller, M.; Schaefer, A.P.A.; Sustr, V.; et al. Guideline: Vulvovaginal candidosis (AWMF 015/072, level S2k). Mycoses 2021, 64, 583–602. [Google Scholar] [CrossRef] [PubMed]
- Govindarajan, A.; Bistas, K.G.; Ingold, C.J.; Aboeed, A. Fluconazole; StatPearls Publishing: Treasure Island, FL, USA, 2023. Available online: http://www.ncbi.nlm.nih.gov/books/NBK537158/ (accessed on 4 March 2024).
- Hoy, S.M. Oteseconazole: First Approval. Drugs 2022, 82, 1017–1023. [Google Scholar] [CrossRef] [PubMed]
- Sobel, J.D.; Nyirjesy, P. Oteseconazole: An advance in treatment of recurrent vulvovaginal candidiasis. Future Microbiol. 2021, 16, 1453–1461. [Google Scholar] [CrossRef] [PubMed]
- Sobel, J.D. Ibrexafungerp for the treatment of vulvovaginal candidiasis. Drugs Today 2022, 58, 149–158. [Google Scholar] [CrossRef] [PubMed]
- Sobel, R.; Nyirjesy, P.; Ghannoum, M.A.; Delchev, D.A.; Azie, N.E.; Angulo, D.; Harriott, I.A.; Borroto-Esoda, K.; Sobel, J.D. Efficacy and safety of oral ibrexafungerp for the treatment of acute vulvovaginal candidiasis: A global phase 3, randomised, placebo-controlled superiority study (VANISH 306). BJOG Int. J. Obstet. Gynaecol. 2022, 129, 412–420. [Google Scholar] [CrossRef]
- Teodoro, G.R.; Ellepola, K.; Seneviratne, C.J.; Koga-Ito, C.Y. Potential Use of Phenolic Acids as Anti-Candida Agents: A Review. Front. Microbiol. 2015, 6, 1420. [Google Scholar] [CrossRef]
- Cushnie, T.P.; Lamb, A.J. Antimicrobial activity of flavonoids. Int. J. Antimicrob. Agents 2005, 26, 343–356. [Google Scholar] [CrossRef] [PubMed]
- Cantero, G.; Campanella, C.; Mateos, S.; Cortés, F. Topoisomerase II inhibition and high yield of endoreduplication induced by the flavonoids luteolin and quercetin. Mutagenesis 2006, 21, 321–325. [Google Scholar] [CrossRef] [PubMed]
- Xie, Y.; Liu, X.; Zhou, P. In vitro Antifungal Effects of Berberine against Candida spp. In Planktonic and Biofilm Conditions. Drug Devel. Ther. 2020, 14, 87–101. [Google Scholar] [CrossRef] [PubMed]
- Zore, G.B.; Thakre, A.D.; Jadhav, S.; Karuppayil, S.M. Terpenoids inhibit Candida albicans growth by affecting membrane integrity and arrest of cell cycle. Phytomedicine 2011, 18, 1181–1190. [Google Scholar] [CrossRef] [PubMed]
- Raut, J.S.; Shinde, R.B.; Chauhan, N.M.; Karuppayil, S.M. Terpenoids of plant origin inhibit morphogenesis, adhesion, and biofilm formation by Candida albicans. Biofouling 2013, 29, 87–96. [Google Scholar] [CrossRef] [PubMed]
- Talapko, J.; Juzbašić, M.; Matijević, T.; Pustijanac, E.; Bekić, S.; Kotris, I.; Škrlec, I. Candida albicans—The Virulence Factors and Clinical Manifestations of Infection. J. Fungi 2021, 7, 79. [Google Scholar] [CrossRef] [PubMed]
- Zhao, G.; Rusche, L.N. Genetic Analysis of Sirtuin Deacetylases in Hyphal Growth of Candida albicans. mSphere 2021, 6, e00053-21. [Google Scholar] [CrossRef] [PubMed]
- Low, C.F.; Chong, P.P.; Yong, P.V.; Lim, C.S.; Ahmad, Z.; Othman, F. Inhibition of hyphae formation and SIR2 expression in Candida albicans treated with fresh Allium sativum (garlic) extract. J. Appl. Microbiol. 2008, 105, 2169–2177. [Google Scholar] [CrossRef] [PubMed]
- Kasper, L.; König, A.; Koenig, P.A.; Gresnigt, M.S.; Westman, J.; Drummond, R.A.; Lionakis, M.S.; Groß, O.; Ruland, J.; Naglik, J.R.; et al. The fungal peptide toxin Candidalysin activates the NLRP3 inflammasome and causes cytolysis in mononuclear phagocytes. Nat. Commun. 2018, 9, 4260. [Google Scholar] [CrossRef] [PubMed]
- Richardson, J.P.; Brown, R.; Kichik, N.; Lee, S.; Priest, E.; Mogavero, S.; Maufrais, C.; Wickramasinghe, D.N.; Tsavou, A.; Kotowicz, N.K.; et al. Candidalysins Are a New Family of Cytolytic Fungal Peptide Toxins. mBio 2022, 13, e0351021. [Google Scholar] [CrossRef]
- Garbe, E.; Thielemann, N.; Hohner, S.; Kumar, A.; Vylkova, S.; Kurzai, O.; Martin, R. Functional analysis of the Candida albicans ECE1 Promoter. Microbiol. Spectr. 2023, 11, e0025323. [Google Scholar] [CrossRef]
- Said, M.M.; Watson, C.; Grando, D. Garlic alters the expression of putative virulence factor genes SIR2 and ECE1 in vulvovaginal C. albicans isolates. Sci. Rep. 2020, 10, 3615. [Google Scholar] [CrossRef]
- Shahrokh, S.; Vahedi, G.; Khosravi, A.-R.; Mahzounieh, M.; Ebrahimi, A.; Sharifzadeh, A.; Balal, A. In vitro antifungal activity of aqueous-ethanolic extract of Allium jesdianum against fluconazole-susceptible and -resistant human vaginal Candida glabrata isolates. J. Herbmed Pharmacol. 2017, 6, 165–170. [Google Scholar]
- Batalha, A.D.S.J.; Souza, D.C.M.; Ubiera, R.D.; Chaves, F.C.M.; Monteiro, W.M.; da Silva, F.M.A.; Koolen, H.H.F.; Boechat, A.L.; Sartim, M.A. Therapeutic Potential of Leaves from Fridericia chica (Bonpl.) L. G. Lohmann: Botanical Aspects, Phytochemical and Biological, Anti-Inflammatory, Antioxidant and Healing Action. Biomolecules 2022, 12, 1208. [Google Scholar] [CrossRef] [PubMed]
- da Cruz, A.F.G.; Reis, A.C.C.; Sousa, J.A.C.; Vaz, L.B.A.; Silva, B.d.M.; Magalhães, C.L.d.B.; Kohlhoff, M.; de Oliveira, A.B.; Brandão, G.C. High-Resolution Mass Spectrometry Identification and Characterization of Flavonoids from Fridericia chica Leaves Extract with Anti-Arbovirus Activity. Molecules 2022, 27, 6043. [Google Scholar] [CrossRef] [PubMed]
- Lima, W.G.; Araújo, M.G.F.; Brito, J.C.M.; Castilho, R.O.; Cardoso, V.N.; Fernandes, S.O.A. Antifungal effect of hydroethanolic extract of Fridericia chica (Bonpl.) L. G. Lohmann leaves and its therapeutic use in a vulvovaginal candidosis model. J. Mycol. Med. 2022, 32, 101255. [Google Scholar] [CrossRef] [PubMed]
- Neag, M.A.; Mocan, A.; Echeverría, J.; Pop, R.M.; Bocsan, C.I.; Crişan, G.; Buzoianu, A.D. Berberine: Botanical Occurrence, Traditional Uses, Extraction Methods, and Relevance in Cardiovascular, Metabolic, Hepatic, and Renal Disorders. Front. Pharmacol. 2018, 9, 557. [Google Scholar] [CrossRef]
- Lin, J.; Cai, Q.; Liang, B.; Wu, L.; Zhuang, Y.; He, Y.; Lin, W. Berberine, a Traditional Chinese Medicine, Reduces Inflammation in Adipose Tissue, Polarizes M2 Macrophages, and Increases Energy Expenditure in Mice Fed a High-Fat Diet. Med. Sci. Monit. 2019, 25, 87–97. [Google Scholar] [CrossRef] [PubMed]
- Song, D.; Hao, J.; Fan, D. Biological properties and clinical applications of berberine. Front. Med. 2020, 14, 564–582. [Google Scholar] [CrossRef] [PubMed]
- Bui, T.M.; Wiesolek, H.L.; Sumagin, R. ICAM-1: A master regulator of cellular responses in inflammation, injury resolution, and tumorigenesis. J. Leukoc. Biol. 2020, 108, 787–799. [Google Scholar] [CrossRef] [PubMed]
- Mikamo, H.; Yamagishi, Y.; Sugiyama, H.; Sadakata, H.; Miyazaki, S.; Sano, T.; Tomita, T. High glucose-mediated overexpression of ICAM-1 in human vaginal epithelial cells increases adhesion of Candida albicans. J. Obstet. Gynaecol. 2018, 38, 226–230. [Google Scholar] [CrossRef] [PubMed]
- Zhao, T.; Zhang, K.; Shi, G.; Ma, K.; Wang, B.; Shao, J.; Wang, T.; Wang, C. Berberine Inhibits the Adhesion of Candida albicans to Vaginal Epithelial Cells. Front. Pharmacol. 2022, 13, 814883. [Google Scholar] [CrossRef] [PubMed]
- Sharifi-Rad, J.; El Rayess, Y.; Rizk, A.A.; Sadaka, C.; Zgheib, R.; Zam, W.; Sestito, S.; Rapposelli, S.; Neffe-Skocińska, K.; Zielińska, D.; et al. Turmeric and Its Major Compound Curcumin on Health: Bioactive Effects and Safety Profiles for Food, Pharmaceutical, Biotechnological and Medicinal Applications. Front. Pharmacol. 2020, 11, 01021. [Google Scholar] [CrossRef] [PubMed]
- Peng, Y.; Ao, M.; Dong, B.; Jiang, Y.; Yu, L.; Chen, Z.; Hu, C.; Xu, R. Anti-Inflammatory Effects of Curcumin in the Inflammatory Diseases: Status, Limitations and Countermeasures. Drug Devel. Ther. 2021, 15, 4503–4525. [Google Scholar] [CrossRef] [PubMed]
- Abouali, N.; Moghimipour, E.; Mahmoudabadi, A.Z.; Namjouyan, F.; Abbaspoor, Z. The effect of curcumin-based and clotrimazole vaginal cream in the treatment of vulvovaginal candidiasis. J. Family Med. Prim. Care 2019, 8, 3920–3924. [Google Scholar] [CrossRef] [PubMed]
- Varthya, S.B.; Thangaraju, P.; Venkatesan, S. Curcumin and fungal infection—Commonly available herbs for common female infection. J. Family Med. Prim. Care 2020, 9, 1272. [Google Scholar] [CrossRef] [PubMed]
- Badowski, M.E. A review of oral cannabinoids and medical marijuana for the treatment of chemotherapy-induced nausea and vomiting: A focus on pharmacokinetic variability and pharmacodynamics. Cancer Chemother. Pharmacol. 2017, 80, 441–449. [Google Scholar] [CrossRef] [PubMed]
- Bains, S.; Mukhdomi, T. Medicinal Cannabis for Treatment of Chronic Pain; StatPearls Publishing: Treasure Island, FL, USA, 2023. Available online: http://www.ncbi.nlm.nih.gov/books/NBK574562/ (accessed on 4 March 2024).
- Haddad, F.; Dokmak, G.; Karaman, R. The Efficacy of Cannabis on Multiple Sclerosis-Related Symptoms. Life 2022, 12, 682. [Google Scholar] [CrossRef] [PubMed]
- Feldman, M.; Sionov, R.V.; Mechoulam, R.; Steinberg, D. Anti-Biofilm Activity of Cannabidiol against Candida albicans. Microorganisms 2021, 9, 441. [Google Scholar] [CrossRef]
- Liu, Y.; Ou, Y.; Sun, L.; Li, W.; Yang, J.; Zhang, X.; Hu, Y. Alcohol dehydrogenase of Candida albicans triggers differentiation of THP-1 cells into macrophages. J. Adv. Res. 2019, 18, 137–145. [Google Scholar] [CrossRef]
- Dunker, C.; Polke, M.; Schulze-Richter, B.; Schubert, K.; Rudolphi, S.; Gressler, A.E.; Pawlik, T.; Salcedo, J.P.P.; Niemiec, M.J.; Slesiona-Künzel, S.; et al. Rapid proliferation due to better metabolic adaptation results in full virulence of a filament-deficient Candida albicans strain. Nat. Commun. 2021, 12, 3899. [Google Scholar] [CrossRef] [PubMed]
- Roudbary, M.; Roudbarmohammadi, S.; Bakhshi, B.; Katiraee, F.; Mohammadi, R.; Falahati, M. ALS1 and ALS3 gene expression and biofilm formation in Candida albicans isolated from vulvovaginal candidiasis. Adv. Biomed. Res. 2016, 5, 105. [Google Scholar] [CrossRef] [PubMed]
- Shahina, Z.; Ndlovu, E.; Persaud, O.; Sultana, T.; Dahms, T.E.S. Candida albicans Reactive Oxygen Species (ROS)-Dependent Lethality and ROS-Independent Hyphal and Biofilm Inhibition by Eugenol and Citral. Microbiol. Spectr. 2022, 10, e0318322. [Google Scholar] [CrossRef] [PubMed]
- Varadarajan, S.; Narasimhan, M.; Malaisamy, M.; Duraipandian, C. Invitro Anti-mycotic Activity of Hydro Alcoholic Extracts of Some Indian Medicinal Plants against Fluconazole Resistant Candida albicans. J. Clin. Diagn. Res. 2015, 9, ZC07-10. [Google Scholar] [CrossRef] [PubMed]
- Akwongo, B.; Katuura, E.; Nsubuga, A.M.; Tugume, P.; Andama, M.; Anywar, G.; Namaganda, M.; Asimwe, S.; Kakudidi, E.K. Ethnobotanical study of medicinal plants utilized in the management of candidiasis in Northern Uganda. Trop. Med. Health 2022, 50, 78. [Google Scholar] [CrossRef] [PubMed]
- Acquaviva, R.; Di Giacomo, C.; Vanella, L.; Santangelo, R.; Sorrenti, V.; Barbagallo, I.; Genovese, C.; Mastrojeni, S.; Ragusa, S.; Iauk, L. Antioxidant activity of extracts of Momordica foetida Schumach. et Thonn. Molecules 2013, 18, 3241–3249. [Google Scholar] [CrossRef] [PubMed]
- Tsana, R.N.; Mafo, M.A.; Ottou, M.T.; Sidjui, L.S.; Nnanga, N. Antimicrobial and antioxidant activities of ethanolic stem bark and root extracts of Khaya ivorensis A Chev. (Meliaceae). J. Pharmacogn. Phytochem. 2019, 8, 1393–1397. [Google Scholar]
- Jana, S.; Shekhawat, G.S. Anethum graveolens: An Indian traditional medicinal herb and spice. Pharmacogn. Rev. 2010, 4, 179–184. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Zeng, H.; Tian, J.; Ban, X.; Ma, B.; Wang, Y. Antifungal mechanism of essential oil from Anethum graveolens seeds against Candida albicans. J. Med. Microbiol. 2013, 62 Pt 8, 1175–1183. [Google Scholar] [CrossRef]
- Saghafi, N.; Karjalian, M.; Ghazanfarpour, M.; Khorsand, I.; Rakhshandeh, H.; Mirteimouri, M.; Babakhanian, M.; Khadivzadeh, T.; Najafzadeh, M.J.; Ghorbani, A.; et al. The effect of a vaginal suppository formulation of dill (Anethum graveolens) in comparison to clotrimazole vaginal tablet on the treatment of vulvovaginal candidiasis. J. Obstet. Gynaecol. 2018, 38, 985–988. [Google Scholar] [CrossRef]
- Samadi, F.M.; Suhail, S.; Sonam, M.; Sharma, N.; Singh, S.; Gupta, S.; Dobhal, A.; Pradhan, H. Antifungal efficacy of herbs. J. Oral. Biol. Craniofac. Res. 2019, 9, 28–32. [Google Scholar] [CrossRef] [PubMed]
- Eldin, A.B.; Ezzat, M.; Afifi, M.; Sabry, O.; Caprioli, G. Herbal medicine: The magic way crouching microbial resistance. Nat. Prod. Res. 2023, 37, 4280–4289. [Google Scholar] [CrossRef] [PubMed]
- Nass, S.J.; Levit, L.A.; Gostin, L.O. Institute of Medicine (US) Committee on Health Research and the Privacy of Health Information: The HIPAA Privacy Rule. The Value, Importance, and Oversight of Health Research. In Beyond the HIPAA Privacy Rule: Enhancing Privacy, Improving Health through Research; National Academies Press: Washington, DC, USA, 2009. [Google Scholar]
- Abdelmonem, A.M.; Rasheed, S.M.; Mohamed, A.S. Bee-honey and yogurt: A novel mixture for treating patients with vulvovaginal candidiasis during pregnancy. Arch. Gynecol. Obstet. 2012, 286, 109–114. [Google Scholar] [CrossRef] [PubMed]
Drugs | MIC 50% | MIC 90% |
---|---|---|
Fluconazole | 8 µg/mL | 32 µg/mL |
Allium jesdianum | 2 mg/mL | 3 mg/mL |
Hours | Number of Active C. albicans Decreased Cells in Biofilms [%] |
---|---|
24 | 48 |
48 | 64 |
72 | 87 |
Metabolites | Roots | Leaves | Seeds |
---|---|---|---|
Flavonoids | Present | Present | Present |
Terpenoids | Present | Present | Present |
Tannins | Present | Present | Present |
Saponins | Present | - | Present |
Cardiac-glycosides | Present | Present | Present |
Strain of Fungus | Percentage of Ergosterol Synthesis Inhibition in C. albicans Cells at a Certain Concentration of Fennel Essential Oil [%] | ||
---|---|---|---|
0.078 μg/mL | 0.156 μg/mL | 0.312 μg/mL | |
C. albicans 09–5304 | 35.71% | 42.85% | 71.43% |
C. albicans ATCC 64550 | 37.50% | 45.83% | 75.00% |
C. albicans 09–1502 | 33.33% | 41.67% | 70.83% |
Concentration [μg/mL] | Activity [%] |
---|---|
0.078 | 98.89 |
0.156 | 91.46 |
0.312 | 86.69 |
0.625 | 75.04 |
1.25 | 55.01 |
2.5 | 45.87 |
5 | 38.28 |
10 | 28.37 |
Author | Year | Substance | Searching Group | Main Findings |
---|---|---|---|---|
C. F. Low [41] | 2008 | Allicin | C. albicans ATCC isolated was treated with different concentrations of garlic extract |
Reduction in SIR2 gene expression a decrease in invasive form of the fungus |
Y. Chen [73] | 2013 |
Anethum graveolens seed oil | Isolates from patients vagina C. albicans 09–1502 and 09–5304 were incubated with essential oil from dried dill seads |
Inhibition of mitochondrial dehydrogenase a decrease in ATP levels in the fungal cell |
N. Abouali [58] | 2019 | Curcumin | Randomized study trial on 94 women– they were randomly assigned into two groups–fist one use curcumin–based 10% vaginal cream and second 1% vaginal clotrimazole cream |
Reduction in ergosterol synthesis |
M. M. Said [45] | 2020 | Allicin | C. albicans ATCC 14053 and two clinical isolates of C. albicans 0861 and 1358 was treated of freshly prepared garlic extract |
Down-regulation of expression of ECE1 gene encoding candidalysin a inhibits the proliferation of the filaments |
M. Feldman [63] | 2021 | CBD | C. albicans SC5314 and C. albicans SC5314 with green fluorescence protein–control group were treated with ethanol and blank samples were with CBD |
Decrease in expression of ADH5 gene encoding alcohol dehydrogenase a decrease in cell wall synthesis. Increase in ROS levels a increase in fungal cell death. Mitochondrial membrane hyperpolarization a decrease in ATP concentration. |
W. G. Lima [49] | 2022 |
Hydroethanolic extract from F. chica leaves | After infection rats were randomly assigned to 6 groups of 6 each: fist–non– infected, second– infected and untreated, third and the rest infected and treated with hydroethanolic extract from F. chica leaves with different concentrations |
Inhibiting the transition of the fungus into an invasive form |
T. Zhao [55] | 2022 | Berberine | C. albicans SC5314 was treated with berberine |
Limiting the transition of fungi to an invasive form |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Picheta, N.; Piekarz, J.; Burdan, O.; Satora, M.; Tarkowski, R.; Kułak, K. Phytotherapy of Vulvovaginal Candidiasis: A Narrative Review. Int. J. Mol. Sci. 2024, 25, 3796. https://doi.org/10.3390/ijms25073796
Picheta N, Piekarz J, Burdan O, Satora M, Tarkowski R, Kułak K. Phytotherapy of Vulvovaginal Candidiasis: A Narrative Review. International Journal of Molecular Sciences. 2024; 25(7):3796. https://doi.org/10.3390/ijms25073796
Chicago/Turabian StylePicheta, Natalia, Julia Piekarz, Oliwia Burdan, Małgorzata Satora, Rafał Tarkowski, and Krzysztof Kułak. 2024. "Phytotherapy of Vulvovaginal Candidiasis: A Narrative Review" International Journal of Molecular Sciences 25, no. 7: 3796. https://doi.org/10.3390/ijms25073796
APA StylePicheta, N., Piekarz, J., Burdan, O., Satora, M., Tarkowski, R., & Kułak, K. (2024). Phytotherapy of Vulvovaginal Candidiasis: A Narrative Review. International Journal of Molecular Sciences, 25(7), 3796. https://doi.org/10.3390/ijms25073796