Gestational Diabetes Mellitus and Colostral Appetite-Regulating Adipokines
Abstract
:1. Introduction
2. Results
2.1. Characteristics of the Study Population
2.2. Concentrations of Adipokines in Colostrum Samples
2.3. Correlations of Adipokines and IGF-I with Maternal and Neonatal Outcomes
Colostrum Ghrelin Reflects Maternal Hyperglycemia
3. Discussion
4. Materials and Methods
4.1. Recruitment of Breastfeeding Mothers
4.2. Ethics
4.3. Colostrum Collection
4.4. Colostrum Sample Pre-Treatment for Analysis
4.5. Determination of Adipokines and IGF-I Concentrations
4.6. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Coelho, M.; Oliveira, T.; Fernandes, R. Biochemistry of adipose tissue: An endocrine organ. Arch. Med. Sci. 2013, 9, 191–200. [Google Scholar] [CrossRef]
- Fasshauer, M.; Blüher, M. Adipokines in health and disease. Trends Pharmacol. Sci. 2015, 36, 461–470. [Google Scholar] [CrossRef]
- Wang, X.; Xu, M.; Li, Y. Adipose tissue aging and metabolic disorder, and the impact of nutritional interventions. Nutrients 2022, 14, 3134. [Google Scholar] [CrossRef]
- Ohashi, K.; Parker, J.L.; Ouchi, N.; Higuchi, A.; Vita, J.A.; Gokce, N.; Pedersen, A.A.; Kalthoff, C.; Tullin, S.; Sams, A.; et al. Adiponectin promotes macrophage polarization toward an anti-inflammatory phenotype. J. Biol. Chem. 2010, 285, 6153–6160. [Google Scholar] [CrossRef]
- Ambroszkiewicz, J.; Chełchowska, M.; Rowicka, G.; Klemarczyk, W.; Strucińska, M.; Gajewska, J. Anti-Inflammatory and pro-Inflammatory adipokine profiles in children on vegetarian and omnivorous diets. Nutrients 2018, 10, 1241. [Google Scholar] [CrossRef]
- Liang, W.; Ye, D.D. The potential of adipokines as biomarkers and therapeutic agents for vascular complications in type 2 diabetes mellitus. Cytokine Growth Factor Rev. 2019, 48, 32–39. [Google Scholar] [CrossRef]
- Kirichenko, T.V.; Markina, Y.V.; Bogatyreva, A.I.; Tolstik, T.V.; Varaeva, Y.R.; Starodubova, A.V. The role of adipokines in inflammatory mechanisms of obesity. Int. J. Mol. Sci. 2022, 23, 14982. [Google Scholar] [CrossRef]
- Valencia-Ortega, J.; González-Reynoso, R.; Ramos-Martínez, E.G.; Ferreira-Hermosillo, A.; Peña-Cano, M.I.; Morales-Ávila, E.; Saucedo, R. New insights into adipokines in gestational diabetes mellitus. Int. J. Mol. Sci. 2022, 23, 6279. [Google Scholar] [CrossRef]
- Clemente-Suárez, V.J.; Redondo-Flórez, L.; Beltrán-Velasco, A.I.; Martín-Rodríguez, A.; Martínez-Guardado, I.; Navarro-Jiménez, E.; Laborde-Cárdenas, C.C.; Tornero-Aguilera, J.F. The role of adipokines in health and disease. Biomedicines 2023, 11, 1290. [Google Scholar] [CrossRef]
- Mani, B.K.; Uchida, A.; Lee, Y.; Osborne-Lawrence, S.; Charron, M.J.; Unger, R.H.; Berglund, E.D.; Zigman, J.M. Hypoglycemic effect of combined ghrelin and glucagon receptor blockade. Diabetes 2017, 66, 1847–1857. [Google Scholar] [CrossRef]
- Zhang, C.S.; Wang, L.X.; Wang, R.; Liu, Y.; Song, L.M.; Yuan, J.H.; Wang, B.; Dong, J. The correlation between circulating ghrelin and insulin resistance in obesity: A meta-analysis. Front. Physiol. 2018, 9, 1308. [Google Scholar] [CrossRef]
- Rzepa, Ł.; Peller, M.; Eyileten, C.; Rosiak, M.; Kondracka, A.; Mirowska-Guzel, D.; Opolski, G.; Filipiak, K.J.; Postuła, M.; Kapłon-Cieslicka, A. resistin is associated with inflammation and renal function, but not with insulin resistance in type 2 diabetes. Horm. Metab. Res. 2021, 53, 478–484. [Google Scholar] [CrossRef]
- Mohammed Saeed, W.; Nasser Binjawhar, D. Association of serum leptin and adiponectin concentrations with type 2 diabetes biomarkers and complications among Saudi women. Diabetes Metab. Syndr. Obes. 2023, 16, 2129–2140. [Google Scholar] [CrossRef]
- Turer, A.T.; Scherer, P.E. Adiponectin: Mechanistic insights and clinical implications. Diabetologia 2012, 5, 2319–2326. [Google Scholar] [CrossRef]
- Lis-Kuberka, J.; Pupek, M.; Orczyk-Pawiłowicz, M. The mother-child dyad adipokine pattern: A review of current knowledge. Nutrients 2023, 15, 4059. [Google Scholar] [CrossRef]
- Bozkurt, L.; Göbl, C.S.; Baumgartner-Parzer, S.; Luger, A.; Pacini, G.; Kautzky-Willer, A. Adiponectin and leptin at early pregnancy: Association to actual glucose disposal and risk for GDM-A prospective cohort study. Int. J. Endocrinol. 2018, 2018, 5463762. [Google Scholar] [CrossRef]
- Zhao, S.; Kusminski, C.M.; Scherer, P.E. Adiponectin, Leptin and Cardiovascular Disorders. Circ. Res. 2021, 128, 136–149. [Google Scholar] [CrossRef]
- Vega, G.L.; Grundy, S.M. Metabolic risk susceptibility in men is partially related to adiponectin/leptin ratio. J. Obes. 2013, 2013, 409679. [Google Scholar] [CrossRef]
- Frühbeck, G.; Catalán, V.; Rodríguez, A.; Gómez-Ambrosi, J. Adiponectin-leptin ratio: A promising index to estimate adipose tissue dysfunction. Relation with obesity-associated cardiometabolic risk. Adipocyte 2018, 7, 57–62. [Google Scholar] [CrossRef]
- Mancuso, P. The role of adipokines in chronic inflammation. Immunotargets Ther. 2016, 5, 47–56. [Google Scholar] [CrossRef]
- Leal Vde, O.; Mafra, D. Adipokines in obesity. Clin. Chim. Acta. 2013, 419, 87–94. [Google Scholar] [CrossRef]
- Taylor, E.B. The complex role of adipokines in obesity, inflammation, and autoimmunity. Clin. Sci. 2021, 135, 731–752. [Google Scholar] [CrossRef]
- Zorena, K.; Jachimowicz-Duda, O.; Ślęzak, D.; Robakowska, M.; Mrugacz, M. Adipokines and obesity. Potential link to metabolic disorders and chronic complications. Int. J. Mol. Sci. 2020, 21, 3570. [Google Scholar] [CrossRef]
- Arroyo-Jousse, V.; Jaramillo, A.; Castaño-Moreno, E.; Lépez, M.; Carrasco-Negüe, K.; Casanello, P. Adipokines underlie the early origins of obesity and associated metabolic comorbidities in the offspring of women with pregestational obesity. Biochim. Biophys. Acta Mol. Basis Dis. 2020, 1866, 165558. [Google Scholar] [CrossRef]
- Lee, D.H.; Lim, J.A.; Kim, J.H.; Kwak, S.H.; Choi, S.H.; Jang, H.C. Longitudinal changes of high molecular weight adiponectin are associated with postpartum development of type 2 diabetes mellitus in patients with gestational diabetes mellitus. Endocrinol. Metab. 2021, 36, 114–122. [Google Scholar] [CrossRef]
- Mallardo, M.; Ferraro, S.; Daniele, A.; Nigro, E. GDM-complicated pregnancies: Focus on adipokines. Mol. Biol. Rep. 2021, 48, 8171–8180. [Google Scholar] [CrossRef]
- Modzelewski, R.; Stefanowicz-Rutkowska, M.M.; Matuszewski, W.; Bandurska-Stankiewicz, E.M. Gestational Diabetes Mellitus-Recent Literature Review. J. Clin. Med. 2022, 11, 5736. [Google Scholar] [CrossRef]
- Zaccara, T.A.; Paganoti, C.F.; Mikami, F.C.F.; Francisco, R.P.V.; Costa, R.A. Early vs. late Gestational Diabetes: Comparison between two groups diagnosed by abnormal initial fasting plasma glucose or mid-pregnancy oral glucose tolerance test. Int. J. Environ. Res. Public Health 2022, 19, 13719. [Google Scholar] [CrossRef]
- Hay, W.W., Jr. Placental-fetal glucose exchange and fetal glucose metabolism. Trans. Am. Clin. Climatol. Assoc. 2006, 117, 321–339; Discussion 339–340. [Google Scholar]
- Farrar, D. Hyperglycemia in pregnancy: Prevalence, impact, and management challenges. Int. J. Womens Health 2016, 8, 519–527. [Google Scholar] [CrossRef]
- Mumtaz, M. Gestational diabetes mellitus. Malays J. Med. Sci. 2000, 7, 4–9. [Google Scholar] [PubMed]
- Alfadhli, E.M. Gestational diabetes mellitus. Saudi Med. J. 2015, 36, 399–406. [Google Scholar] [CrossRef]
- Chu, A.H.Y.; Godfrey, K.M. Gestational Diabetes Mellitus and Developmental Programming. Ann. Nutr. Metab. 2020, 76, 4–15. [Google Scholar] [CrossRef]
- Li, L.; Ji, J.; Li, Y.; Huang, Y.J.; Moon, J.Y.; Kim, R.S. Gestational diabetes, subsequent type 2 diabetes, and food security status: National health and nutrition examination survey, 2007–2018. Prev. Chronic Dis. 2022, 19, E42. [Google Scholar] [CrossRef]
- Zhuang, W.; Lv, J.; Liang, Q.; Chen, W.; Zhang, S.; Sun, X. Adverse effects of gestational diabetes-related risk factors on pregnancy outcomes and intervention measures. Exp. Ther. Med. 2020, 20, 3361–3367. [Google Scholar] [CrossRef]
- Muche, A.A.; Olayemi, O.O.; Gete, Y.K. Effects of gestational diabetes mellitus on risk of adverse maternal outcomes: A prospective cohort study in Northwest Ethiopia. BMC Pregnancy Childbirth 2020, 20, 73. [Google Scholar] [CrossRef]
- Ye, W.; Luo, C.; Huang, J.; Li, C.; Liu, Z.; Liu, F. Gestational diabetes mellitus and adverse pregnancy outcomes: Systematic review and meta-analysis. BMJ 2022, 377, e067946. [Google Scholar] [CrossRef]
- Nilofer, A.R.; Raju, V.S.; Dakshayini, B.R.; Zaki, S.A. Screening in high-risk group of gestational diabetes mellitus with its maternal and fetal outcomes. Indian J. Endocrinol. Metab. 2012, 16, S74–S78. [Google Scholar]
- Buchanan, T.A.; Xiang, A.H.; Page, K.A. Gestational diabetes mellitus: Risks and management during and after pregnancy. Nat. Rev. Endocrinol. 2012, 8, 639–649. [Google Scholar] [CrossRef]
- Sandsæter, H.L.; Horn, J.; Rich-Edwards, J.W.; Haugdahl, H.S. Preeclampsia, gestational diabetes and later risk of cardiovascular disease: Women’s experiences and motivation for lifestyle changes explored in focus group interviews. BMC Pregnancy Childbirth 2019, 19, 448. [Google Scholar] [CrossRef]
- Ruszała, M.; Pilszyk, A.; Niebrzydowska, M.; Kimber-Trojnar, Ż.; Trojnar, M.; Leszczyńska-Gorzelak, B. Novel Biomolecules in the Pathogenesis of Gestational Diabetes Mellitus 2.0. Int. J. Mol. Sci. 2022, 23, 4364. [Google Scholar] [CrossRef]
- Briana, D.D.; Malamitsi-Puchner, A. Reviews: Adipocytokines in normal and complicated pregnancies. Reprod. Sci. 2009, 16, 921–937. [Google Scholar] [CrossRef]
- Nogues, P.; Dos Santos, E.; Jammes, H.; Berveiller, P.; Arnould, L.; Vialard, F.; Dieudonné, M.N. Maternal obesity influences expression and DNA methylation of the adiponectin and leptin systems in human third-trimester placenta. Clin. Epigenetics 2019, 11, 20. [Google Scholar] [CrossRef]
- Brombach, C.; Tong, W.; Giussani, D.A. Maternal obesity: New placental paradigms unfolded. Trends Mol. Med. 2022, 28, 823–835. [Google Scholar] [CrossRef]
- Tessier, D.R.; Ferraro, Z.M.; Gruslin, A. Role of leptin in pregnancy: Consequences of maternal obesity. Placenta 2013, 34, 205–211. [Google Scholar] [CrossRef]
- Kugananthan, S.; Gridneva, Z.; Lai, C.T.; Hepworth, A.R.; Mark, P.J.; Kakulas, F.; Geddes, D.T. Associations between maternal body composition and appetite hormones and macronutrients in human milk. Nutrients 2017, 9, 252. [Google Scholar] [CrossRef]
- Karatas, Z.; Durmus Aydogdu, S.; Dinleyici, E.C.; Colak, O.; Dogruel, N. Breastmilk ghrelin, leptin, and fat levels changing foremilk to hindmilk: Is that important for self-control of feeding? Eur. J. Pediatr. 2011, 170, 1273–1280. [Google Scholar] [CrossRef]
- Kon, I.Y.; Shilina, N.M.; Gmoshinskaya, M.V.; Ivanushkina, T.A. The study of breast milk IGF-1, leptin, ghrelin and adiponectin levels as possible reasons of high weight gain in breast-fed infants. Ann. Nutr. Metab. 2014, 65, 317–323. [Google Scholar] [CrossRef]
- Gridneva, Z.; Kugananthan, S.; Rea, A.; Lai, C.T.; Ward, L.C.; Murray, K.; Hartmann, P.E.; Geddes, D.T. Human milk adiponectin and leptin and infant body composition over the first 12 months of lactation. Nutrients 2018, 10, 1125. [Google Scholar] [CrossRef]
- Kratzsch, J.; Bae, Y.J.; Kiess, W. Adipokines in human breast milk. Best Pract. Res. Clin. Endocrinol. Metab. 2018, 32, 27–38. [Google Scholar] [CrossRef]
- Badillo-Suárez, P.A.; Rodríguez-Cruz, M.; Nieves-Morales, X. Impact of metabolic hormones secreted in human breast milk on nutritional programming in childhood obesity. J. Mammary Gland Biol. Neoplasia 2017, 22, 171–191. [Google Scholar] [CrossRef]
- Woo, J.G.; Guerrero, M.L.; Guo, F.; Martin, L.J.; Davidson, B.S.; Ortega, H.; Ruiz-Palacios, G.M.; Morrow, A.L. Human milk adiponectin affects infant weight trajectory during the second year of life. J. Pediatr. Gastroenterol. Nutr. 2012, 54, 532–539. [Google Scholar] [CrossRef]
- de Fluiter, K.S.; Kerkhof, G.F.; van Beijsterveldt, I.A.L.P.; Breij, L.M.; van Vark-van der Zee, L.C.; Mulder, M.T.; Abrahamse-Berkeveld, M.; Hokken-Koelega, A.C.S. Appetite-regulating hormone trajectories and relationships with fat mass development in term-born infants during the first 6 months of life. Eur. J. Nutr. 2021, 60, 3717–3725. [Google Scholar] [CrossRef]
- Garofoli, F.; Mazzucchelli, I.; Angelini, M.; Klersy, C.; Ferretti, V.V.; Gardella, B.; Carletti, G.V.; Spinillo, A.; Tzialla, C.; Ghirardello, S. Leptin levels of the perinatal period shape offspring’s weight trajectories through the first year of age. Nutrients 2022, 14, 1451. [Google Scholar] [CrossRef]
- Brockway, M.M.; Daniel, A.I.; Reyes, S.M.; Gauglitz, J.M.; Granger, M.; McDermid, J.M.; Chan, D.; Refvik, R.; Sidhu, K.K.; Musse, S.; et al. Human milk bioactive components and child growth and body composition in the first 2 years: A systematic review. Adv. Nutr. 2024, 15, 100127. [Google Scholar] [CrossRef]
- Page, L.; Younge, N.; Freemark, M. Hormonal Determinants of Growth and Weight Gain in the Human Fetus and Preterm Infant. Nutrients 2023, 15, 4041. [Google Scholar] [CrossRef]
- Dalcin, L.D.L.; Fagundes-Triches, D.L.G.; de Queiroz, A.A.; Torres, A.H.F.; França, D.C.H.; Soares, T.A.; Ramos, L.C.D.S.; Antônio, C.R.S.S.; Fujimori, M.; França, E.L.; et al. Resistin modulates the functional activity of colostral macrophages from mothers with obesity and diabetes. Biomedicines 2022, 10, 2332. [Google Scholar] [CrossRef]
- Sato, T.; Ida, T.; Shiimura, Y.; Matsui, K.; Oishi, K.; Kojima, M. Insights into the regulation of offspring growth by maternally derived ghrelin. Front. Endocrinol. 2022, 13, 852636. [Google Scholar] [CrossRef]
- Cammisotto, P.; Bendayan, M. A review on gastric leptin: The exocrine secretion of a gastric hormone. Anat. Cell Biol. 2012, 45, 1–16. [Google Scholar] [CrossRef]
- Ravussin, Y.; Leibel, R.L.; Ferrante, A.W. A missing link in body weight homeostasis: The catabolic signal of the overfed state. Cell Metab. 2014, 20, 565–572. [Google Scholar] [CrossRef]
- Huang, J.; Peng, X.; Dong, K.; Tao, J.; Yang, Y. The association between insulin resistance, leptin, and resistin and diabetic nephropathy in type 2 diabetes mellitus patients with different body mass indexes. Diabetes Metab. Syndr. Obes. 2021, 14, 2357–2365. [Google Scholar] [CrossRef]
- Tekin Guler, T.; Koc, N.; Kara Uzun, A.; Fisunoglu, M. The association of pre-pregnancy BMI on leptin, ghrelin, adiponectin and insulin-like growth factor-1 in breast milk: A case-control study. Br. J. Nutr. 2022, 127, 1675–1681. [Google Scholar] [CrossRef]
- Jamaluddin, M.S.; Weakley, S.M.; Yao, Q.; Chen, C. Resistin: Functional roles and therapeutic considerations for cardiovascular disease. Br. J. Pharmacol. 2012, 165, 622–632. [Google Scholar] [CrossRef]
- Su, K.Z.; Li, Y.R.; Zhang, D.; Yuan, J.H.; Zhang, C.S.; Liu, Y.; Song, L.M.; Lin, Q.; Li, M.W.; Dong, J. Relation of circulating resistin to insulin resistance in type 2 diabetes and obesity: A systematic review and meta-analysis. Front. Physiol. 2019, 10, 1399. [Google Scholar] [CrossRef]
- Jiang, S.; Teague, A.M.; Tryggestad, J.B.; Lyons, T.J.; Chernausek, S.D. Fetal circulating human resistin increases in diabetes during pregnancy and impairs placental mitochondrial biogenesis. Mol. Med. 2020, 26, 76. [Google Scholar] [CrossRef]
- Eliana, U.D.; Fly, A.D. The function and alteration of immunological properties in human milk of obese mothers. Nutrients 2019, 11, 1284. [Google Scholar] [CrossRef]
- Gómez-Díaz, R.A.; Gómez-Medina, M.P.; Ramírez-Soriano, E.; López-Robles, L.; Aguilar-Salinas, C.A.; Saucedo, R.; Zarate, A.; Valladares-Salgado, A.; Wacher, N.H. Lower plasma ghrelin levels are found in women with diabetes-complicated pregnancies. J. Clin. Res. Pediatr. Endocrinol. 2016, 8, 425–431. [Google Scholar] [CrossRef]
- Çatlı, G.; Olgaç Dündar, N.; Dündar, B.N. Adipokines in breast milk: An update. J. Clin. Res. Pediatr. Endocrinol. 2014, 6, 192–201. [Google Scholar] [CrossRef]
- Biadgo, B.; Tamir, W.; Ambachew, S. Insulin-like growth factor and its therapeutic potential for diabetes complications–mechanisms and metabolic links: A review. Rev. Diabet. Stud. 2020, 16, 24–34. [Google Scholar] [CrossRef]
- Al-Samerria, S.; Radovick, S. Exploring the therapeutic potential of targeting GH and IGF-1 in the management of obesity: Insights from the interplay between these hormones and metabolism. Int. J. Mol. Sci. 2023, 24, 9556. [Google Scholar] [CrossRef]
- Lewitt, M.S.; Dent, M.S.; Hall, K. The Insulin-Like growth factor system in obesity, insulin resistance and type 2 diabetes mellitus. J. Clin. Med. 2014, 3, 1561–1574. [Google Scholar] [CrossRef]
- Kubo, H.; Sawada, S.; Satoh, M.; Asai, Y.; Kodama, S.; Sato, T.; Tomiyama, S.; Seike, J.; Takahashi, K.; Kaneko, K. Insulin-like growth factor-1 levels are associated with high comorbidity of metabolic disorders in obese subjects; a Japanese single-center, retrospective-study. Sci. Rep. 2022, 12, 20130. [Google Scholar] [CrossRef]
- Galante, L.; Lagström, H.; Vickers, M.H.; Reynolds, C.M.; Rautava, S.; Milan, A.M.; Cameron-Smith, D.; Pundir, S. Sexually dimorphic associations between maternal factors and human milk hormonal concentrations. Nutrients 2020, 12, 152. [Google Scholar] [CrossRef]
- Suwaydi, M.A.; Zhou, X.; Perrella, S.L.; Wlodek, M.E.; Lai, C.T.; Gridneva, Z.; Geddes, D.T. The impact of gestational diabetes mellitus on human milk metabolic hormones: A systematic review. Nutrients 2022, 14, 3620. [Google Scholar] [CrossRef]
- Moyce Gruber, B.L.; Dolinsky, V.W. The Role of adiponectin during pregnancy and gestational diabetes. Life 2023, 13, 301. [Google Scholar] [CrossRef]
- Erlanson-Albertsson, C. How palatable food disrupts appetite regulation. Basic Clin Pharmacol Toxicol. 2005, 97, 61–73. [Google Scholar] [CrossRef]
- Camilleri, M. Peripheral mechanisms in appetite regulation. Gastroenterology 2015, 148, 1219–1233. [Google Scholar] [CrossRef]
- Freire, R.H.; Alvarez-Leite, J.I. Appetite control: Hormones or diet strategies? Curr. Opin. Clin. Nutr. Metab. Care 2020, 23, 328–335. [Google Scholar] [CrossRef]
- Jiao, Z.-T.; Luo, Q. Molecular Mechanisms and Health Benefits of Ghrelin: A Narrative Review. Nutrients 2022, 14, 4191. [Google Scholar] [CrossRef]
- Sinkiewicz-Darol, E.; Adamczyk, I.; Łubiech, K.; Pilarska, G.; Twarużek, M. Leptin in Human Milk—One of the Key Regulators of Nutritional Programming. Molecules 2022, 27, 3581. [Google Scholar] [CrossRef]
- Deru, L.S.; Chamberlain, C.J.; Lance, G.R.; Gipson, E.Z.; Bikman, B.T.; Davidson, L.E.; Tucker, L.A.; Coleman, J.L.; Bailey, B.W. The Effects of Exercise on Appetite-Regulating Hormone Concentrations over a 36-h Fast in Healthy Young Adults: A Randomized Crossover Study. Nutrients 2023, 15, 1911. [Google Scholar] [CrossRef]
- Aydin, S. The presence of the peptides apelin, ghrelin and nesfatin-1 in the human breast milk, and the lowering of their levels in patients with gestational diabetes mellitus. Peptides 2010, 31, 2236–2240. [Google Scholar] [CrossRef]
- Yu, X.; Rong, S.S.; Sun, X.; Ding, G.; Wan, W.; Zou, L.; Wu, S.; Li, M.; Wang, D. Associations of breast milk adiponectin, leptin, insulin and ghrelin with maternal characteristics and early infant growth: A longitudinal study. Br. J. Nutr. 2018, 120, 1380–1387. [Google Scholar] [CrossRef]
- Słupecka, M.; Romanowicz, K.; Woliński, J. Maternal high-fat diet during pregnancy and lactation influences obestatin and ghrelin concentrations in milk and plasma of wistar rat dams and their offspring. Int. J. Endocrinol. 2016, 2016, 5739763. [Google Scholar] [CrossRef]
- Kisioglu, B.; Nergiz-Unal, R. Potential effect of maternal dietary sucrose or fructose syrup on CD36, leptin, and ghrelin-mediated fetal programming of obesity. Nutr. Neurosci. 2020, 23, 210–220. [Google Scholar] [CrossRef]
- Mohamad, M.; Loy, S.L.; Lim, P.Y.; Wang, Y.; Soo, K.L.; Mohamed, H.J.J. Maternal serum and breast milk adiponectin: The association with infant adiposity development. Int. J. Environ. Res. Public Health 2018, 15, 1250. [Google Scholar] [CrossRef]
- Luoto, R.; Laitinen, K.; Nermes, M.; Isolauri, E. Impact of maternal probiotic-supplemented dietary counseling during pregnancy on colostrum adiponectin concentration: A prospective, randomized, placebo-controlled study. Early Hum. Dev. 2012, 88, 339–344. [Google Scholar] [CrossRef]
- Choi, Y.; Nagel, E.M.; Kharoud, H.; Johnson, K.E.; Gallagher, T.; Duncan, K.; Kharbanda, E.O.; Fields, D.A.; Gale, C.A.; Jacobs, K.; et al. Gestational diabetes mellitus is associated with differences in human milk hormone and cytokine concentrations in a fully breastfeeding United States cohort. Nutrients 2022, 14, 667. [Google Scholar] [CrossRef]
- Ilcol, Y.O.; Hizli, Z.B.; Ozkan, T. Leptin concentration in breast milk and its relationship to duration of lactation and hormonal status. Int. Breastfeed J. 2006, 1, 21. [Google Scholar] [CrossRef]
- Çağiran Yilmaz, F.; Özçelik, A.Ö. The relationships between leptin levels in maternal serum and breast milk of mothers and term infants. Ann. Med. 2021, 53, 1309–1315. [Google Scholar] [CrossRef]
- Christensen, S.H.; Lewis, J.I.; Larnkjær, A.; Frøkiær, H.; Allen, L.H.; Mølgaard, C.; Michaelsen, K.F. Associations between maternal adiposity and appetite-regulating hormones in human milk are mediated through maternal circulating concentrations and might affect infant outcomes. Front. Nutr. 2022, 9, 1025439. [Google Scholar] [CrossRef]
- Ayina, C.N.A.; Endomba, F.T.A.; Mandengue, S.H.; Noubiap, J.J.N.; Ngoa, L.S.E.; Boudou, P.; Gautier, J.F.; Mbanya, J.C.; Sobngwi, E. Association of the leptin-to-adiponectin ratio with metabolic syndrome in a sub-Saharan African population. Diabetol. Metab. Syndr. 2017, 9, 66. [Google Scholar] [CrossRef]
- Frühbeck, G.; Catalán, V.; Rodríguez, A.; Ramírez, B.; Becerril, S.; Salvador, J.; Portincasa, P.; Colina, I.; Gómez-Ambrosi, J. Involvement of the leptin-adiponectin axis in inflammation and oxidative stress in the metabolic syndrome. Sci. Rep. 2017, 7, 6619. [Google Scholar] [CrossRef]
- Frithioff-Bøjsøe, C.; Lund, M.A.V.; Lausten-Thomsen, U.; Hedley, P.L.; Pedersen, O.; Christiansen, M.; Baker, J.L.; Hansen, T.; Holm, J.C. Leptin, adiponectin, and their ratio as markers of insulin resistance and cardiometabolic risk in childhood obesity. Pediatr. Diabetes 2020, 21, 194–202. [Google Scholar] [CrossRef]
- Popova, P.; Vasilyeva, L.; Tkachuck, A.; Puzanov, M.; Golovkin, A.; Bolotko, Y.; Pustozerov, E.; Vasilyeva, E.; Li, O.; Zazerskaya, I.; et al. A Randomised, Controlled Study of Different Glycaemic Targets during Gestational Diabetes treatment: Effect on the level of adipokines in cord blood and angptl4 expression in human umbilical vein endothelial cells. Int. J. Endocrinol. 2018, 2018, 6481658. [Google Scholar] [CrossRef]
- Liao, P.J.; Ting, M.K.; Wu, I.W.; Chen, S.W.; Yang, N.I.; Hsu, K.H. Higher leptin-to-adiponectin ratio strengthens the association between body measurements and occurrence of type 2 diabetes mellitus. Front. Public Health 2021, 9, 678681. [Google Scholar] [CrossRef]
- Mohsen, A.H.; Sallam, S.; Ramzy, M.M.; Hamed, E.K. Investigating the Relationship between Insulin-like Growth Factor-1 (IGF-1) in diabetic mother’s breast milk and the blood serum of their babies. Electron. Physician 2016, 8, 2546–2550. [Google Scholar] [CrossRef]
- Galante, L.; Reynolds, C.M.; Milan, A.M.; Alexander, T.; Bloomfield, F.H.; Cameron-Smith, D.; Pundir, S.; Vickers, M.H.; DIAMOND study group. Preterm human milk: Associations between perinatal factors and hormone concentrations throughout lactation. Pediatr. Res. 2021, 89, 1461–1469. [Google Scholar] [CrossRef]
- Wang, X.R.; Wang, W.J.; Yu, X.; Hua, X.; Ouyang, F.; Luo, Z.C. Insulin-Like Growth Factor Axis Biomarkers and Gestational Diabetes Mellitus: A Systematic Review and Meta-Analysis. Front. Endocrinol. 2019, 10, 444. [Google Scholar] [CrossRef]
- Akinmola, O.O.; Okusanya, B.O.; Olorunfemi, G.; Okpara, H.C.; Azinge, E.C. Fetal macrosomia, fetal insulin, and insulin-like growth factor- 1 among neonates in Lagos, Nigeria: A case-control study. PLoS ONE 2022, 17, e0266314. [Google Scholar] [CrossRef]
- Ilcol, Y.O.; Hizli, Z.B.; Eroz, E. Resistin is present in human breast milk and it correlates with maternal hormonal status and serum level of C-reactive protein. Clin. Chem. Lab. Med. 2008, 46, 118–124. [Google Scholar] [CrossRef]
- Savino, F.; Sorrenti, M.; Benetti, S.; Lupica, M.M.; Liguori, S.A.; Oggero, R. Resistin and leptin in breast milk and infants in early life. Early Hum. Dev. 2012, 88, 779–782. [Google Scholar] [CrossRef]
- Santosa, I.; Shoji, H.; Awata, K.; Arai, Y.; Suganuma, H.; Shimizu, T. Resistin in urine and breast milk: Relation to type of feeding and anthropometry at 1-month. Pediatr. Rep. 2022, 14, 86–92. [Google Scholar] [CrossRef]
- Brawerman, G.M.; Kereliuk, S.M.; Brar, N.; Cole, L.K.; Seshadri, N.; Pereira, T.J.; Xiang, B.; Hunt, K.L.; Fonseca, M.A.; Hatch, G.M.; et al. Maternal resveratrol administration protects against gestational diabetes-induced glucose intolerance and islet dysfunction in the rat offspring. J. Physiol. 2019, 597, 4175–4192. [Google Scholar] [CrossRef]
- Jara, A.; Dreher, M.; Porter, K.; Christian, L.M. The association of maternal obesity and race with serum adipokines in pregnancy and postpartum: Implications for gestational weight gain and infant birth weight. Brain Behav. Immun. Health 2020, 3, 100053. [Google Scholar] [CrossRef]
- Idrizaj, E.; Garella, R.; Squecco, R.; Baccari, M.C. Can adiponectin have an additional effect on the regulation of food intake by inducing gastric motor changes? World J. Gastroenterol. 2020, 26, 2472–2478. [Google Scholar] [CrossRef]
- Roger, C.; Lasbleiz, A.; Guye, M.; Dutour, A.; Gaborit, B.; Ranjeva, J.P. The Role of the Human Hypothalamus in Food Intake Networks: An MRI Perspective. Front. Nutr. 2022, 8, 760914. [Google Scholar] [CrossRef]
- Cummings, D.E.; Purnell, J.Q.; Frayo, R.S.; Schmidova, K.; Wisse, B.E.; Weigle, D.S. A preprandial rise in plasma ghrelin levels suggests a role in meal initiation in humans. Diabetes 2001, 50, 1714–1719. [Google Scholar] [CrossRef]
- Adamska-Patruno, E.; Ostrowska, L.; Goscik, J.; Pietraszewska, B.; Kretowski, A.; Gorska, M. The relationship between the leptin/ghrelin ratio and meals with various macronutrient contents in men with different nutritional status: A randomized crossover study. Nutr. J. 2018, 17, 118. [Google Scholar] [CrossRef]
- Hajishizari, S.; Imani, H.; Mehranfar, S.; Saeed Yekaninejad, M.; Mirzababaei, A.; Clark, C.C.T.; Mirzaei, K. The association of appetite and hormones (leptin, ghrelin, and Insulin) with resting metabolic rate in overweight/obese women: A case-control study. BMC Nutr. 2022, 8, 37. [Google Scholar] [CrossRef]
- Wabitsch, M.; Funcke, J.B.; Lennerz, B.; Kuhnle-Krahl, U.; Lahr, G.; Debatin, K.M.; Vatter, P.; Gierschik, P.; Moepps, B.; Fischer-Posovszky, P. Biologically inactive leptin and early-onset extreme obesity. N. Engl. J. Med. 2015, 372, 48–54. [Google Scholar] [CrossRef]
- Expert Committee on the Diagnosis and Classification of Diabetes Mellitus. Report of the expert committee on the diagnosis and classification of diabetes mellitus. Diabetes Care 2003, 1, S5–S20. [Google Scholar]
- Wender-Ożegowska, E.; Bomba-Opoń, D.; Brązert, J.; Celewicz, Z.; Czajkowski, K.; Gutaj, P.; Malinowska-Polubiec, A.; Zawiejska, A.; Wielgoś, M. Standards of Polish Society of Gynecologists and Obstetricians in management of women with diabetes. Ginekol. Pol. 2018, 89, 341–350. [Google Scholar] [CrossRef]
- Araszkiewicz, A.; Bandurska-Stankiewicz, E.; Budzyński, A.; Cypryk, K.; Czech, A.; Czupryniak, L.; Józef, D.; Grzegorz, D.; Tomasz, D.; Edward, F.; et al. Guidelines on the management of diabetic patients. A position of Diabetes Poland. Clin. Diabetol. 2020, 9, 1. [Google Scholar]
- Lis-Kuberka, J.; Berghausen-Mazur, M.; Orczyk-Pawiłowicz, M. Lactoferrin and Immunoglobulin Concentrations in Milk of Gestational Diabetic Mothers. Nutrients 2021, 13, 818. [Google Scholar] [CrossRef]
Overall N = 51 (% (n/N)) | GDM-G1 N = 16 (% (n/N)) | GDM-G2 N = 14 (% (n/N)) | Non-GDM N = 21 (% (n/N)) | Chi-Square Test χ2 | p-Value | |
---|---|---|---|---|---|---|
Race/Ethnicity
| 100% (51/51) | 100% (16/16) | 100% (14/14) | 100% (21/21) | - | - |
Maternal age (mean ± SD) | 33.38 ± 4.55 | 32.94 ± 4.68 | 34.79 ± 5.32 | 32.43 ± 3.63 | 4.55 | 0.60 (NS) |
| 25.49% (13/51) | 37.50% (6/16) | 14.29% (2/14) | 23.81% (5/21) | ||
| 33.33% (17/51) | 31.25% (5/16) | 28.57% (4/14) | 38.10% (8/21) | ||
| 37.25% (19/51) | 25.00% (4/16) | 50.00% (7/14) | 38.10% (8/21) | ||
| 3.92% (2/51) | 6.25% (1/16) | 7.14% (1/14) | non | ||
Maternal pre-pregnancy BMI, kg/m2 (mean ± SD)
| 24.16 ± 4.33 3.92% (2/51) 64.71% (33/51) 17.65% (9/51) 9.80% (5/51) 3.92% (2/51) | 22.86 ± 4.12 6.25% (1/16) 68.75% (11/16) 18.75% (3/16) 6.25% (1/16) non | 27.70 ± 5.62 non 35.71% (5/14) 35.71% (5/14) 14.29% (2/14) 14.29% (2/14) | 21.90 ± 3.25 4.76% (1/21) 80.95% (17/21) 4.76% (1/21) 9.52% (2/21) non | 13.88 | 0.08 (NS) |
Gestational age (mean ± SD) | 38.68 ± 1.35 | 38.75 ± 1.35 | 38.14 ± 1.12 | 39.14 ± 1.21 | 2.36 | 0.30 (NS) |
| 19.61% (10/51) | 25.00% (4/16) | 28.57% (4/14) | 9.52% (2/21) | ||
| 80.39% (41/51) | 75.00% (12/16) | 71.43% (10/14) | 90.48% (19/21) | ||
Delivery mode | 0.31 | 0.85 (NS) | ||||
| 25.49% (13/51) | 25.00% (4/16) | 21.43% (3/14) | 28.57% (6/21) | ||
| 74.51% (38/51) | 75.00% (14/16) | 78.57% (11/14) | 71.43% (15/21) | ||
Birth weight (g) (mean ± SD) | 3287.14 ± 499.83 | 3255.00 ± 583.57 | 3172.14 ± 428.14 | 3434.29 ± 487.80 | - | - |
Appropriate for gestational age | 100% (51/51) | 100% (16/16) | 100% (14/14) | 100% (21/21) | ||
Newborn’s sex | 4.53 | 0.33 (NS) | ||||
| 49.02% (25/51) | 62.50% (10/16) | 57.14% (8/14) | 33.33% (7/21) | ||
| 47.06% (24/51) | 31.25% (5/16) | 42.86% (6/14) | 61.90% (13/21) | ||
| 3.92% (2/51) | 6.25% (1/16) | non | 4.77% (1/21) |
Colostral Molecules | Group | p-Value * | p-Value ** | |||||
---|---|---|---|---|---|---|---|---|
Overall N = 51 | GDM-G1 N = 16 | GDM-G2 N = 14 | Non-GDM N = 21 | G1 vs. G2 | G1 vs. Non-GDM | G2 vs. Non-GDM | ||
Leptin (ng/mL) | 0.22 | 0.22 | 0.23 | 0.20 | 0.31 | 0.86 | 0.18 | 0.25 |
0.19–0.31 | 0.21–0.28 | 0.21–0.31 | 0.16–0.38 | |||||
(0.27 ± 0.13) | (0.27 ± 0.10) | (0.27 ± 0.10) | (0.27 ± 0.16) | |||||
Adiponectin (ng/mL) | 6.84 | 7.00 | 6.44 | 6.84 | 0.97 | 0.87 | 0.87 | 0.88 |
4.68–16.12 | 4.19–15.09 | 3.94–25.80 | 5.45–10.57 | |||||
(30.61 ± 73.63) | (52.58 ± 120.49) | (29.65 ± 49.39) | (14.50 ± 20.54) | |||||
LAR | 0.036 | 0.039 | 0.037 | 0.035 | 0.80 | 0.70 | 0.53 | 0.83 |
0.017–0.066 | 0.021–0.070 | 0.012–0.057 | 0.020–0.052 | |||||
(0.048 ± 0.047) | (0.054 ± 0.05) | (0.045 ± 0.04) | (0.044 ± 0.050) | |||||
IGF-I (ng/mL) | 1.70 | 1.36 | 1.84 | 1.74 | 0.21 | 0.13 | 0.15 | 0.73 |
1.29–2.37 | 0.95–2.01 | 1.50–2.60 | 1.60–2.06 | |||||
(1.88 ± 0.85) | (1.68 ± 1.09) | (2.11 ± 0.92) | (1.87 ± 0.54) | |||||
Resistin (ng/mL) | 11.98 | 13.33 | 12.81 | 7.89 | 0.55 | 0.79 | 0.27 | 0.61 |
2.26–92.86 | 5.20–87.84 | 1.13–96.11 | 1.82–33.14 | |||||
(56.73 ± 106.09) | (48.39 ± 56.41) | (89.46 ± 170.76) | (41.26 ± 75.77) | |||||
Ghrelin (ng/mL) | 0.30 | 0.21 | 0.38 | 0.36 | 0.01 | 0.02 | 0.005 | 0.78 |
0.23–0.51 | 0.17–0.33 | 0.27–0.57 | 0.27–0.51 | |||||
(0.53 ± 0.75) | (0.33 ± 0.31) | (0.88 ± 1.31) | (0.44 ± 0.31) |
Ghrelin [ng/mL] | |||
---|---|---|---|
GDM-G1 | GDM-G2 | non-GDM | |
Day of lactation | −0.74 | −0.08 | 0.10 |
Age [years] | −0.14 | 0.52 | 0.21 |
BMI [kg/m2] | −0.16 | 0.11 | −0.01 |
HBD [week] | 0.28 | −0.27 | −0.28 |
Birth weight [g] | 0.31 | 0.62 | −0.12 |
Leptin [ng/mL] | −0.18 | −0.42 | 0.12 |
Adiponectin [ng/mL] | 0.33 | 0.11 | 0.36 |
LAR | −0.35 | −0.16 | −0.09 |
IGF-I [ng/mL] | −0.24 | −0.40 | −0.46 |
Resistin [ng/mL] | 0.52 | 0.55 | 0.30 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lis-Kuberka, J.; Berghausen-Mazur, M.; Orczyk-Pawiłowicz, M. Gestational Diabetes Mellitus and Colostral Appetite-Regulating Adipokines. Int. J. Mol. Sci. 2024, 25, 3853. https://doi.org/10.3390/ijms25073853
Lis-Kuberka J, Berghausen-Mazur M, Orczyk-Pawiłowicz M. Gestational Diabetes Mellitus and Colostral Appetite-Regulating Adipokines. International Journal of Molecular Sciences. 2024; 25(7):3853. https://doi.org/10.3390/ijms25073853
Chicago/Turabian StyleLis-Kuberka, Jolanta, Marta Berghausen-Mazur, and Magdalena Orczyk-Pawiłowicz. 2024. "Gestational Diabetes Mellitus and Colostral Appetite-Regulating Adipokines" International Journal of Molecular Sciences 25, no. 7: 3853. https://doi.org/10.3390/ijms25073853
APA StyleLis-Kuberka, J., Berghausen-Mazur, M., & Orczyk-Pawiłowicz, M. (2024). Gestational Diabetes Mellitus and Colostral Appetite-Regulating Adipokines. International Journal of Molecular Sciences, 25(7), 3853. https://doi.org/10.3390/ijms25073853