Light Control in Microbial Systems
Abstract
:1. Introduction
2. Light Activation in Bacteria
2.1. Photoreceptors
2.2. Chromophores
2.3. Opsins
Rhodopsins
3. Controlling Gene Expression and Protein Function with Light-Activated Units
4. Using Light in Other Ways: Indirect Methods to Couple Light Signal to Microbial Responses
4.1. Light-Responsive Nanoparticles
4.2. Optical Traps
5. How Bacteria Respond to Light: Microbial Response to Light and Engineering Light Control of Bacterial Swimmers
5.1. Flagellar Motility
5.2. Chemotaxis: Bacterial Response to Chemical Gradients
5.3. Phototaxis: Bacterial Response to Light
5.4. Engineered Light Responses in Bacteria
6. Limitations in Applying Light Control to Biological Systems
7. Towards Improved and Integrated Light Control
8. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Briggs, W.R. Phototropism: Some History, Some Puzzles, and a Look Ahead. Plant Physiol. 2014, 164, 13–23. [Google Scholar] [CrossRef]
- Engelmann, T.W. Bacterium Photometricum: Ein Beitrag Zur Vergleichenden Physiologie Des Licht-Und Farbensinnes. Arch. Für Gesamte Physiol. Menschen Tiere 1883, 30, 95–124. [Google Scholar] [CrossRef]
- Tuttobene, M.R.; Pérez, J.; Pavesi, E.; Perez Mora, B.; Biancotti, D.; Cribb, P.; Altilio, M.; Müller, G.L.; Gramajo, H.; Tamagno, G. Light Modulates Important Pathogenic Determinants and Virulence in ESKAPE Pathogens Acinetobacter baumannii, Pseudomonas aeruginosa, and Staphylococcus aureus. J. Bacteriol. 2021, 203, 10–1128. [Google Scholar] [CrossRef]
- Wuichet, K.; Cantwell, B.J.; Zhulin, I.B. Evolution and Phyletic Distribution of Two-Component Signal Transduction Systems. Curr. Opin. Microbiol. 2010, 13, 219–225. [Google Scholar] [CrossRef] [PubMed]
- Henkin, T.M. Riboswitch RNAs: Using RNA to Sense Cellular Metabolism. Genes Dev. 2008, 22, 3383–3390. [Google Scholar] [CrossRef] [PubMed]
- Jiang, C.; Li, H.T.; Zhou, Y.M.; Wang, X.; Wang, L.; Liu, Z.Q. Cardiac Optogenetics: A Novel Approach to Cardiovascular Disease Therapy. EP Eur. 2018, 20, 1741–1749. [Google Scholar] [CrossRef]
- Shui, B.; Lee, J.C.; Reining, S.; Lee, F.K.; Kotlikoff, M.I. Optogenetic Sensors and Effectors: CHROMus—The Cornell Heart Lung Blood Institute Resource for Optogenetic Mouse Signaling. Front. Physiol. 2014, 5, 428. [Google Scholar] [CrossRef] [PubMed]
- Zheng, F.; Yu, C.; Zhou, X.; Zou, P. Genetically Encoded Photocatalytic Protein Labeling Enables Spatially-Resolved Profiling of Intracellular Proteome. Nat. Commun. 2023, 14, 2978. [Google Scholar] [CrossRef]
- Christie, J.M.; Hitomi, K.; Arvai, A.S.; Hartfield, K.A.; Mettlen, M.; Pratt, A.J.; Tainer, J.A.; Getzoff, E.D. Structural Tuning of the Fluorescent Protein iLOV for Improved Photostability. J. Biol. Chem. 2012, 287, 22295–22304. [Google Scholar] [CrossRef]
- Papadaki, S.; Wang, X.; Wang, Y.; Zhang, H.; Jia, S.; Liu, S.; Yang, M.; Zhang, D.; Jia, J.-M.; Köster, R.W. Dual-Expression System for Blue Fluorescent Protein Optimization. Sci. Rep. 2022, 12, 10190. [Google Scholar] [CrossRef]
- Subach, F.V.; Verkhusha, V.V. Chromophore Transformations in Red Fluorescent Proteins. Chem. Rev. 2012, 112, 4308–4327. [Google Scholar] [CrossRef] [PubMed]
- Beilharz, K.; van Raaphorst, R.; Kjos, M.; Veening, J.-W. Red Fluorescent Proteins for Gene Expression and Protein Localization Studies in Streptococcus pneumoniae and Efficient Transformation with DNA Assembled via the Gibson Assembly Method. Appl. Environ. Microbiol. 2015, 81, 7244–7252. [Google Scholar] [CrossRef]
- Hall, C.; von Grabowiecki, Y.; Pearce, S.P.; Dive, C.; Bagley, S.; Muller, P. iRFP (near-Infrared Fluorescent Protein) Imaging of Subcutaneous and Deep Tissue Tumours in Mice Highlights Differences between Imaging Platforms. Cancer Cell Int. 2021, 21, 247. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Phillips, M.I.; Miao, H.-L.; Zeng, R.; Qin, G.; Kim, I.; Weintraub, N.L.; Tang, Y. Infrared Fluorescent Protein 1.4 Genetic Labeling Tracks Engrafted Cardiac Progenitor Cells in Mouse Ischemic Hearts. PLoS ONE 2014, 9, e107841. [Google Scholar] [CrossRef]
- Shcherbakova, D.M.; Baloban, M.; Verkhusha, V.V. Near-Infrared Fluorescent Proteins Engineered from Bacterial Phytochromes. Curr. Opin. Chem. Biol. 2015, 27, 52–63. [Google Scholar] [CrossRef]
- Flores-Ibarra, A.; Maia, R.N.; Olasz, B.; Church, J.R.; Gotthard, G.; Schapiro, I.; Heberle, J.; Nogly, P. Light-Oxygen-Voltage (LOV)-Sensing Domains: Activation Mechanism and Optogenetic Stimulation. J. Mol. Biol. 2023, 436, 168356. [Google Scholar] [CrossRef]
- Park, H.; Kim, N.Y.; Lee, S.; Kim, N.; Kim, J.; Heo, W.D. Optogenetic Protein Clustering through Fluorescent Protein Tagging and Extension of CRY2. Nat. Commun. 2017, 8, 30. [Google Scholar] [CrossRef] [PubMed]
- Govorunova, E.G.; Gou, Y.; Sineshchekov, O.A.; Li, H.; Lu, X.; Wang, Y.; Brown, L.S.; St-Pierre, F.; Xue, M.; Spudich, J.L. Kalium Channelrhodopsins Are Natural Light-Gated Potassium Channels That Mediate Optogenetic Inhibition. Nat. Neurosci. 2022, 25, 967–974. [Google Scholar] [CrossRef]
- Mattis, J.; Tye, K.M.; Ferenczi, E.A.; Ramakrishnan, C.; O’shea, D.J.; Prakash, R.; Gunaydin, L.A.; Hyun, M.; Fenno, L.E.; Gradinaru, V. Principles for Applying Optogenetic Tools Derived from Direct Comparative Analysis of Microbial Opsins. Nat. Methods 2012, 9, 159–172. [Google Scholar] [CrossRef]
- Tichy, A.-M.; Gerrard, E.J.; Sexton, P.M.; Janovjak, H. Light-Activated Chimeric GPCRs: Limitations and Opportunities. Curr. Opin. Struct. Biol. 2019, 57, 196–203. [Google Scholar] [CrossRef]
- Kim, C.; Kwon, Y.; Jeong, J.; Kang, M.; Lee, G.S.; Moon, J.H.; Lee, H.-J.; Park, Y.-I.; Choi, G. Phytochrome B Photobodies Are Comprised of Phytochrome B and Its Primary and Secondary Interacting Proteins. Nat. Commun. 2023, 14, 1708. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Stensitzki, T.; Lang, C.; Hughes, J.; Mroginski, M.A.; Heyne, K. Ultrafast Protein Response in the Pfr State of Cph1 Phytochrome. Photochem. Photobiol. Sci. 2023, 22, 919–930. [Google Scholar] [CrossRef] [PubMed]
- Ohlendorf, R.; Möglich, A. Light-Regulated Gene Expression in Bacteria: Fundamentals, Advances, and Perspectives. Front. Bioeng. Biotechnol. 2022, 10, 1029403. [Google Scholar] [CrossRef] [PubMed]
- Baumschlager, A.; Khammash, M. Synthetic Biological Approaches for Optogenetics and Tools for Transcriptional Light-control in Bacteria. Adv. Biol. 2021, 5, 2000256. [Google Scholar] [CrossRef] [PubMed]
- Fraikin, G.Y.; Strakhovskaya, M.; Belenikina, N.; Rubin, A. Bacterial Photosensory Proteins: Regulatory Functions and Optogenetic Applications. Microbiology 2015, 84, 461–472. [Google Scholar] [CrossRef]
- García-Iriepa, C.; Ernst, H.A.; Liang, Y.; Unterreiner, A.-N.; Frutos, L.M.; Sampedro, D. Study of Model Systems for Bilirubin and Bilin Chromophores: Determination and Modification of Thermal and Photochemical Properties. J. Org. Chem. 2016, 81, 6292–6302. [Google Scholar] [CrossRef] [PubMed]
- Bjarnsholt, T.; Buhlin, K.; Dufrêne, Y.; Gomelsky, M.; Moroni, A.; Ramstedt, M.; Rumbaugh, K.; Schulte, T.; Sun, L.; Åkerlund, B. Biofilm Formation—What We Can Learn from Recent Developments. J. Intern. Med. 2018, 284, 332–345. [Google Scholar] [CrossRef]
- Bogomolni, R.A.; Spudich, J.L. Identification of a Third Rhodopsin-like Pigment in Phototactic Halobacterium halobium. Proc. Natl. Acad. Sci. USA 1982, 79, 6250–6254. [Google Scholar] [CrossRef] [PubMed]
- Spudich, E.N.; Spudich, J.L. Control of Transmembrane Ion Fluxes to Select Halorhodopsin-Deficient and Other Energy-Transduction Mutants of Halobacterium halobium. Proc. Natl. Acad. Sci. USA 1982, 79, 4308–4312. [Google Scholar] [CrossRef]
- Govorunova, E.G.; Sineshchekov, O.A.; Li, H.; Spudich, J.L. Microbial Rhodopsins: Diversity, Mechanisms, and Optogenetic Applications. Annu. Rev. Biochem. 2017, 86, 845–872. [Google Scholar] [CrossRef]
- Oliinyk, O.S.; Chernov, K.G.; Verkhusha, V.V. Bacterial Phytochromes, Cyanobacteriochromes and Allophycocyanins as a Source of near-Infrared Fluorescent Probes. Int. J. Mol. Sci. 2017, 18, 1691. [Google Scholar] [CrossRef] [PubMed]
- Anders, K.; Essen, L.-O. The Family of Phytochrome-like Photoreceptors: Diverse, Complex and Multi-Colored, but Very Useful. Curr. Opin. Struct. Biol. 2015, 35, 7–16. [Google Scholar] [CrossRef] [PubMed]
- Pathak, G.P.; Losi, A.; Gaertner, W. Metagenome-based Screening Reveals Worldwide Distribution of LOV-domain Proteins. Photochem. Photobiol. 2012, 88, 107–118. [Google Scholar] [CrossRef] [PubMed]
- Briggs, W.R. The LOV Domain: A Chromophore Module Servicing Multiple Photoreceptors. J. Biomed. Sci. 2007, 14, 499–504. [Google Scholar] [CrossRef] [PubMed]
- Akbar, S.; Gaidenko, T.A.; Kang, C.M.; O’Reilly, M.; Devine, K.M.; Price, C.W. New Family of Regulators in the Environmental Signaling Pathway Which Activates the General Stress Transcription Factor ςB of Bacillus subtilis. J. Bacteriol. 2001, 183, 1329–1338. [Google Scholar] [CrossRef]
- Purcell, E.B.; Siegal-Gaskins, D.; Rawling, D.C.; Fiebig, A.; Crosson, S. A Photosensory Two-Component System Regulates Bacterial Cell Attachment. Proc. Natl. Acad. Sci. USA 2007, 104, 18241–18246. [Google Scholar] [CrossRef] [PubMed]
- Swartz, T.E.; Tseng, T.-S.; Frederickson, M.A.; Paris, G.; Comerci, D.J.; Rajashekara, G.; Kim, J.-G.; Mudgett, M.B.; Splitter, G.A.; Ugalde, R.A. Blue-Light-Activated Histidine Kinases: Two-Component Sensors in Bacteria. Science 2007, 317, 1090–1093. [Google Scholar] [CrossRef] [PubMed]
- Sprenger, W.W.; Hoff, W.D.; Armitage, J.P.; Hellingwerf, K.J. The Eubacterium Ectothiorhodospira halophila Is Negatively Phototactic, with a Wavelength Dependence That Fits the Absorption Spectrum of the Photoactive Yellow Protein. J. Bacteriol. 1993, 175, 3096–3104. [Google Scholar] [CrossRef]
- Xing, J.; Gumerov, V.M.; Zhulin, I.B. Photoactive Yellow Protein Represents a Distinct, Evolutionarily Novel Family of PAS Domains. J. Bacteriol. 2022, 204, e00300-22. [Google Scholar] [CrossRef]
- Hart, J.E.; Gardner, K.H. Lighting the Way: Recent Insights into the Structure and Regulation of Phototropin Blue Light Receptors. J. Biol. Chem. 2021, 296, 100594. [Google Scholar] [CrossRef]
- Guéneau, V.; Charron, R.; Costache, V.; Bridier, A.; Briandet, R.; Lallemand, S.; thèse ANSES, F. Spatial Analysis of Multispecies Bacterial Biofilms; Elsevier: Amsterdam, The Netherlands, 2023. [Google Scholar]
- Braatsch, S.; Klug, G. Blue Light Perception in Bacteria. Photosynth. Res. 2004, 79, 45–57. [Google Scholar] [CrossRef] [PubMed]
- Hontani, Y.; Mehlhorn, J.; Domratcheva, T.; Beck, S.; Kloz, M.; Hegemann, P.; Mathes, T.; Kennis, J.T. Spectroscopic and Computational Observation of Glutamine Tautomerization in the Blue Light Sensing Using Flavin Domain Photoreaction. J. Am. Chem. Soc. 2023, 145, 1040–1052. [Google Scholar] [CrossRef] [PubMed]
- Padmanabhan, S.; Pérez-Castaño, R.; Osete-Alcaraz, L.; Polanco, M.C.; Elías-Arnanz, M. Vitamin B12 Photoreceptors. In Vitamins and Hormones; Elsevier: Amsterdam, The Netherlands, 2022; Volume 119, pp. 149–184. ISBN 0083-6729. [Google Scholar]
- Möglich, A. Signal Transduction in Photoreceptor Histidine Kinases. Protein Sci. 2019, 28, 1923–1946. [Google Scholar] [CrossRef] [PubMed]
- Losi, A.; Gardner, K.H.; Möglich, A. Blue-Light Receptors for Optogenetics. Chem. Rev. 2018, 118, 10659–10709. [Google Scholar] [CrossRef] [PubMed]
- Kraiselburd, I.; Moyano, L.; Carrau, A.; Tano, J.; Orellano, E.G. Bacterial Photosensory Proteins and Their Role in Plant–Pathogen Interactions. Photochem. Photobiol. 2017, 93, 666–674. [Google Scholar] [CrossRef] [PubMed]
- Ernst, O.P.; Lodowski, D.T.; Elstner, M.; Hegemann, P.; Brown, L.S.; Kandori, H. Microbial and Animal Rhodopsins: Structures, Functions, and Molecular Mechanisms. Chem. Rev. 2014, 114, 126–163. [Google Scholar] [CrossRef] [PubMed]
- Spudich, J.L.; Yang, C.-S.; Jung, K.-H.; Spudich, E.N. Retinylidene Proteins: Structures and Functions from Archaea to Humans. Annu. Rev. Cell Dev. Biol. 2000, 16, 365–392. [Google Scholar] [CrossRef]
- Mackin, K.A.; Roy, R.A.; Theobald, D.L. An Empirical Test of Convergent Evolution in Rhodopsins. Mol. Biol. Evol. 2014, 31, 85–95. [Google Scholar] [CrossRef] [PubMed]
- Hasegawa, M.; Hosaka, T.; Kojima, K.; Nishimura, Y.; Nakajima, Y.; Kimura-Someya, T.; Shirouzu, M.; Sudo, Y.; Yoshizawa, S. A Unique Clade of Light-Driven Proton-Pumping Rhodopsins Evolved in the Cyanobacterial Lineage. Sci. Rep. 2020, 10, 16752. [Google Scholar] [CrossRef]
- Pinhassi, J.; DeLong, E.F.; Béjà, O.; González, J.M.; Pedrós-Alió, C. Marine Bacterial and Archaeal Ion-Pumping Rhodopsins: Genetic Diversity, Physiology, and Ecology. Microbiol. Mol. Biol. Rev. 2016, 80, 929–954. [Google Scholar] [CrossRef]
- Fuhrman, J.A.; Schwalbach, M.S.; Stingl, U. Proteorhodopsins: An Array of Physiological Roles? Nat. Rev. Microbiol. 2008, 6, 488–494. [Google Scholar] [CrossRef]
- Yang, Q.; Chen, D. Na+ Binding and Transport: Insights from Light-Driven Na+-Pumping Rhodopsin. Molecules 2023, 28, 7135. [Google Scholar] [CrossRef] [PubMed]
- Ma, M.; Li, H.; Wang, C.; Li, T.; Wang, J.; Yuan, H.; Yu, L.; Wang, J.; Li, L.; Lin, S. A Comparative Study Reveals the Relative Importance of Prokaryotic and Eukaryotic Proton Pump Rhodopsins in a Subtropical Marginal Sea. ISME Commun. 2023, 3, 79. [Google Scholar] [CrossRef] [PubMed]
- Katana, R.; Guan, C.; Zanini, D.; Larsen, M.E.; Giraldo, D.; Geurten, B.R.; Schmidt, C.F.; Britt, S.G.; Göpfert, M.C. Chromophore-Independent Roles of Opsin Apoproteins in Drosophila Mechanoreceptors. Curr. Biol. 2019, 29, 2961–2969. [Google Scholar] [CrossRef] [PubMed]
- Kojima, K.; Sudo, Y. Convergent Evolution of Animal and Microbial Rhodopsins. RSC Adv. 2023, 13, 5367–5381. [Google Scholar] [CrossRef] [PubMed]
- Chung, K.; Booth, M.J. Sequence-Independent, Site-Specific Incorporation of Chemical Modifications to Generate Light-Activated Plasmids. Chem. Sci. 2023, 14, 12693–12706. [Google Scholar] [CrossRef] [PubMed]
- Kikis, E.A.; Oka, Y.; Hudson, M.E.; Nagatani, A.; Quail, P.H. Residues Clustered in the Light-Sensing Knot of Phytochrome B Are Necessary for Conformer-Specific Binding to Signaling Partner PIF3. PLoS Genet. 2009, 5, e1000352. [Google Scholar] [CrossRef] [PubMed]
- Chait, R.; Ruess, J.; Bergmiller, T.; Tkačik, G.; Guet, C.C. Shaping Bacterial Population Behavior through Computer-Interfaced Control of Individual Cells. Nat. Commun. 2017, 8, 1535. [Google Scholar] [CrossRef] [PubMed]
- Fernandez-Rodriguez, J.; Moser, F.; Song, M.; Voigt, C.A. Engineering RGB Color Vision into Escherichia Coli. Nat. Chem. Biol. 2017, 13, 706–708. [Google Scholar] [CrossRef]
- Olson, E.J.; Hartsough, L.A.; Landry, B.P.; Shroff, R.; Tabor, J.J. Characterizing Bacterial Gene Circuit Dynamics with Optically Programmed Gene Expression Signals. Nat. Methods 2014, 11, 449–455. [Google Scholar] [CrossRef]
- Tandar, S.T.; Senoo, S.; Toya, Y.; Shimizu, H. Optogenetic Switch for Controlling the Central Metabolic Flux of Escherichia coli. Metab. Eng. 2019, 55, 68–75. [Google Scholar] [CrossRef] [PubMed]
- Eivazihollagh, A.; Svanedal, I.; Edlund, H.; Norgren, M. On Chelating Surfactants: Molecular Perspectives and Application Prospects. J. Mol. Liq. 2019, 278, 688–705. [Google Scholar] [CrossRef]
- Di Ventura, B.; Weber, W. The Rise of Molecular Optogenetics. Adv. Biol. 2021, 5, 2100776. [Google Scholar] [CrossRef] [PubMed]
- Benisch, M.; Aoki, S.K.; Khammash, M. Unlocking the Potential of Optogenetics in Microbial Applications. Curr. Opin. Microbiol. 2024, 77, 102404. [Google Scholar] [CrossRef] [PubMed]
- Jin, X.; Riedel-Kruse, I.H. Biofilm Lithography Enables High-Resolution Cell Patterning via Optogenetic Adhesin Expression. Proc. Natl. Acad. Sci. USA 2018, 115, 3698–3703. [Google Scholar] [CrossRef] [PubMed]
- Levskaya, A.; Chevalier, A.A.; Tabor, J.J.; Simpson, Z.B.; Lavery, L.A.; Levy, M.; Davidson, E.A.; Scouras, A.; Ellington, A.D.; Marcotte, E.M. Engineering Escherichia Coli to See Light. Nature 2005, 438, 441–442. [Google Scholar] [CrossRef] [PubMed]
- Tabor, J.J.; Salis, H.M.; Simpson, Z.B.; Chevalier, A.A.; Levskaya, A.; Marcotte, E.M.; Voigt, C.A.; Ellington, A.D. A Synthetic Genetic Edge Detection Program. Cell 2009, 137, 1272–1281. [Google Scholar] [CrossRef] [PubMed]
- Ramakrishnan, P.; Tabor, J.J. Repurposing Synechocystis PCC6803 UirS–UirR as a UV-Violet/Green Photoreversible Transcriptional Regulatory Tool in E. coli. ACS Synth. Biol. 2016, 5, 733–740. [Google Scholar] [CrossRef] [PubMed]
- Möglich, A.; Ayers, R.A.; Moffat, K. Design and Signaling Mechanism of Light-Regulated Histidine Kinases. Biophys. J. 2009, 96, 524a. [Google Scholar] [CrossRef]
- Hirose, Y.; Shimada, T.; Narikawa, R.; Katayama, M.; Ikeuchi, M. Cyanobacteriochrome CcaS Is the Green Light Receptor That Induces the Expression of Phycobilisome Linker Protein. Proc. Natl. Acad. Sci. USA 2008, 105, 9528–9533. [Google Scholar] [CrossRef]
- Ong, N.T.; Olson, E.J.; Tabor, J.J. Engineering an E. coli near-Infrared Light Sensor. ACS Synth. Biol. 2018, 7, 240–248. [Google Scholar] [CrossRef] [PubMed]
- Buschiazzo, A.; Trajtenberg, F. Two-Component Sensing and Regulation: How Do Histidine Kinases Talk with Response Regulators at the Molecular Level? Annu. Rev. Microbiol. 2019, 73, 507–528. [Google Scholar] [CrossRef] [PubMed]
- Jacob-Dubuisson, F.; Mechaly, A.; Betton, J.-M.; Antoine, R. Structural Insights into the Signalling Mechanisms of Two-Component Systems. Nat. Rev. Microbiol. 2018, 16, 585–593. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Zhang, J.; Jin, J.; Geng, Z.; Qi, Q.; Liang, Q. Programming Bacteria with Light—Sensors and Applications in Synthetic Biology. Front. Microbiol. 2018, 9, 2692. [Google Scholar] [CrossRef]
- Avila-Pérez, M.; Vreede, J.; Tang, Y.; Bende, O.; Losi, A.; Gärtner, W.; Hellingwerf, K. In Vivo Mutational Analysis of YtvA from Bacillus subtilis: Mechanism of Light Activation of the General Stress Response. J. Biol. Chem. 2009, 284, 24958–24964. [Google Scholar] [CrossRef] [PubMed]
- Gaidenko, T.A.; Kim, T.-J.; Weigel, A.L.; Brody, M.S.; Price, C.W. The Blue-Light Receptor YtvA Acts in the Environmental Stress Signaling Pathway of Bacillus subtilis. J. Bacteriol. 2006, 188, 6387–6395. [Google Scholar] [CrossRef] [PubMed]
- Möglich, A.; Moffat, K. Structural Basis for Light-Dependent Signaling in the Dimeric LOV Domain of the Photosensor YtvA. J. Mol. Biol. 2007, 373, 112–126. [Google Scholar] [CrossRef] [PubMed]
- Lv, H.; Liu, J.; Wang, Y.; Xia, X.; Li, Y.; Hou, W.; Li, F.; Guo, L.; Li, X. Upconversion Nanoparticles and Its Based Photodynamic Therapy for Antibacterial Applications: A State-of-the-Art Review. Front. Chem. 2022, 10, 996264. [Google Scholar] [CrossRef] [PubMed]
- Pan, H.; Li, L.; Pang, G.; Han, C.; Liu, B.; Zhang, Y.; Shen, Y.; Sun, T.; Liu, J.; Chang, J. Engineered NIR Light-Responsive Bacteria as Anti-Tumor Agent for Targeted and Precise Cancer Therapy. Chem. Eng. J. 2021, 426, 130842. [Google Scholar] [CrossRef]
- Chattopadhyay, S.; Moldovan, R.; Yeung, C.; Wu, X. Swimming Efficiency of Bacterium Escherichia coli. Proc. Natl. Acad. Sci. USA 2006, 103, 13712–13717. [Google Scholar] [CrossRef]
- Min, T.L.; Mears, P.J.; Chubiz, L.M.; Rao, C.V.; Golding, I.; Chemla, Y.R. High-Resolution, Long-Term Characterization of Bacterial Motility Using Optical Tweezers. Nat. Methods 2009, 6, 831–835. [Google Scholar] [CrossRef]
- Min, T.L.; Mears, P.J.; Golding, I.; Chemla, Y.R. Chemotactic Adaptation Kinetics of Individual Escherichia coli Cells. Proc. Natl. Acad. Sci. USA 2012, 109, 9869–9874. [Google Scholar] [CrossRef]
- Li, X.; Sun, D. Automated Transportation of Microparticles in Vivo. In Control Systems Design of Bio-Robotics and Bio-Mechatronics with Advanced Applications; Elsevier: Amsterdam, The Netherlands, 2020; pp. 281–328. [Google Scholar]
- Bustamante, C.J.; Chemla, Y.R.; Liu, S.; Wang, M.D. Optical Tweezers in Single-Molecule Biophysics. Nat. Rev. Methods Primer 2021, 1, 25. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Yue, G.; Zhang, R.; Yuan, J. Direct Measurement of the Stall Torque of the Flagellar Motor in Escherichia coli with Magnetic Tweezers. mBio 2022, 13, e00782-22. [Google Scholar] [CrossRef]
- Minamino, T.; Miyata, M.; Namba, K. Bacterial and Archaeal Motility; Springer Nature: Berlin, Germany, 2023; Volume 2646, ISBN 1-07-163060-1. [Google Scholar]
- Xie, L.; Wu, X.-L. Bacterial Motility Patterns Reveal Importance of Exploitation over Exploration in Marine Microhabitats. Part I: Theory. Biophys. J. 2014, 107, 1712–1720. [Google Scholar] [CrossRef]
- Jarrell, K.F.; McBride, M.J. The Surprisingly Diverse Ways That Prokaryotes Move. Nat. Rev. Microbiol. 2008, 6, 466–476. [Google Scholar] [CrossRef] [PubMed]
- Nirody, J.A.; Sun, Y.-R.; Lo, C.-J. The Biophysicist’s Guide to the Bacterial Flagellar Motor. Adv. Phys. X 2017, 2, 324–343. [Google Scholar] [CrossRef]
- Nandel, V.; Scadden, J.; Baker, M.A. Ion-Powered Rotary Motors: Where Did They Come from and Where They Are Going? Int. J. Mol. Sci. 2023, 24, 10601. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.; Li, T.; Tu, Y. Modeling Bacterial Flagellar Motor with New Structure Information: Rotational Dynamics of Two Interacting Protein Nano-Rings. Front. Microbiol. 2022, 13, 866141. [Google Scholar] [CrossRef]
- Nakamura, S.; Minamino, T. Flagella-Driven Motility of Bacteria. Biomolecules 2019, 9, 279. [Google Scholar] [CrossRef]
- Guo, S.; Liu, J. The Bacterial Flagellar Motor: Insights into Torque Generation, Rotational Switching, and Mechanosensing. Front. Microbiol. 2022, 13, 911114. [Google Scholar] [CrossRef] [PubMed]
- Khan, S.; Scholey, J.M. Assembly, Functions and Evolution of Archaella, Flagella and Cilia. Curr. Biol. 2018, 28, R278–R292. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Luo, Y.; Poh, C.L. Blue Light-Directed Cell Migration, Aggregation, and Patterning. J. Mol. Biol. 2020, 432, 3137–3148. [Google Scholar] [CrossRef] [PubMed]
- Iglesias, P.A.; Devreotes, P.N. Navigating through Models of Chemotaxis. Curr. Opin. Cell Biol. 2008, 20, 35–40. [Google Scholar] [CrossRef] [PubMed]
- Vladimirov, N.; Sourjik, V. Chemotaxis: How Bacteria Use Memory. BCHM 2009, 390, 1097–1104. [Google Scholar] [CrossRef] [PubMed]
- Collins, S.R.; Yang, H.W.; Bonger, K.M.; Guignet, E.G.; Wandless, T.J.; Meyer, T. Using Light to Shape Chemical Gradients for Parallel and Automated Analysis of Chemotaxis. Mol. Syst. Biol. 2015, 11, 804. [Google Scholar] [CrossRef] [PubMed]
- Hwang, I.Y.; Tan, M.H.; Koh, E.; Ho, C.L.; Poh, C.L.; Chang, M.W. Reprogramming Microbes to Be Pathogen-Seeking Killers. ACS Synth. Biol. 2014, 3, 228–237. [Google Scholar] [CrossRef] [PubMed]
- Sinha, J.; Reyes, S.J.; Gallivan, J.P. Reprogramming Bacteria to Seek and Destroy an Herbicide. Nat. Chem. Biol. 2010, 6, 464–470. [Google Scholar] [CrossRef]
- Liu, C.; Fu, X.; Liu, L.; Ren, X.; Chau, C.K.; Li, S.; Xiang, L.; Zeng, H.; Chen, G.; Tang, L.-H. Sequential Establishment of Stripe Patterns in an Expanding Cell Population. Science 2011, 334, 238–241. [Google Scholar] [CrossRef]
- Weiss, L.E.; Badalamenti, J.P.; Weaver, L.J.; Tascone, A.R.; Weiss, P.S.; Richard, T.L.; Cirino, P.C. Engineering Motility as a Phenotypic Response to LuxI/R-dependent Quorum Sensing in Escherichia coli. Biotechnol. Bioeng. 2008, 100, 1251–1255. [Google Scholar] [CrossRef]
- Riggs, J.; Hoff, W.D. Phototaxis in Archaea and Bacteria; Elsevier: Amsterdam, The Netherlands, 2019. [Google Scholar]
- Menon, S.N.; Varuni, P.; Bunbury, F.; Bhaya, D.; Menon, G.I. Phototaxis in Cyanobacteria: From Mutants to Models of Collective Behavior. mBio 2021, 12, e02398-21. [Google Scholar] [CrossRef] [PubMed]
- Ng, W.-O.; Grossman, A.R.; Bhaya, D. Multiple Light Inputs Control Phototaxis in Synechocystis sp. strain PCC6803. J. Bacteriol. 2023, 185, 1599–1607. [Google Scholar] [CrossRef]
- Kishimoto, M.; Gornik, S.G.; Foulkes, N.S.; Guse, A. Negative Phototaxis in the Photosymbiotic Sea Anemone Aiptasia as a Potential Strategy to Protect Symbionts from Photodamage. Sci. Rep. 2023, 13, 17857. [Google Scholar] [CrossRef] [PubMed]
- Armitage, J.P.; Hellingwerf, K.J. Light-Induced Behavioral Responses (‘Phototaxis’) in Prokaryotes. In Discoveries in Photosynthesis; Springer: Dordrecht, The Netherlands, 2005; pp. 985–995. [Google Scholar]
- Wilde, A.; Mullineaux, C.W. Light-Controlled Motility in Prokaryotes and the Problem of Directional Light Perception. FEMS Microbiol. Rev. 2017, 41, 900–922. [Google Scholar] [CrossRef] [PubMed]
- Arlt, J.; Martinez, V.A.; Dawson, A.; Pilizota, T.; Poon, W.C. Painting with Light-Powered Bacteria. Nat. Commun. 2018, 9, 768. [Google Scholar] [CrossRef] [PubMed]
- Hartsough, L.A.; Park, M.; Kotlajich, M.V.; Lazar, J.T.; Han, B.; Lin, C.-C.J.; Musteata, E.; Gambill, L.; Wang, M.C.; Tabor, J.J. Optogenetic Control of Gut Bacterial Metabolism to Promote Longevity. eLife 2020, 9, e56849. [Google Scholar] [CrossRef] [PubMed]
- Ong, N.T.; Tabor, J.J. A Miniaturized Escherichia Coli Green Light Sensor with High Dynamic Range. ChemBioChem 2018, 19, 1255–1258. [Google Scholar] [CrossRef]
- Deng, W.; Goldys, E.M.; Farnham, M.M.; Pilowsky, P.M. Optogenetics, the Intersection between Physics and Neuroscience: Light Stimulation of Neurons in Physiological Conditions. Am. J. Physiol.-Regul. Integr. Comp. Physiol. 2014, 307, R1292–R1302. [Google Scholar] [CrossRef]
- Pereira, R.; Bicalho, M.; Machado, V.; Lima, S.; Teixeira, A.; Warnick, L.; Bicalho, R. Evaluation of the Effects of Ultraviolet Light on Bacterial Contaminants Inoculated into Whole Milk and Colostrum, and on Colostrum Immunoglobulin G. J. Dairy Sci. 2014, 97, 2866–2875. [Google Scholar] [CrossRef] [PubMed]
- Yin, R.; Dai, T.; Avci, P.; Jorge, A.E.S.; de Melo, W.C.; Vecchio, D.; Huang, Y.-Y.; Gupta, A.; Hamblin, M.R. Light Based Anti-Infectives: Ultraviolet C Irradiation, Photodynamic Therapy, Blue Light, and Beyond. Curr. Opin. Pharmacol. 2013, 13, 731–762. [Google Scholar] [CrossRef]
- Jacques, S.L. Optical Properties of Biological Tissues: A Review. Phys. Med. Biol. 2013, 58, R37. [Google Scholar] [CrossRef]
- Arinkin, V.; Granzin, J.; Röllen, K.; Krauss, U.; Jaeger, K.-E.; Willbold, D.; Batra-Safferling, R. Structure of a LOV Protein in Apo-State and Implications for Construction of LOV-Based Optical Tools. Sci. Rep. 2017, 7, 42971. [Google Scholar] [CrossRef]
- Hoffmann, M.D.; Bubeck, F.; Eils, R.; Niopek, D. Controlling Cells with Light and LOV. Adv. Biosyst. 2018, 2, 1800098. [Google Scholar] [CrossRef]
- Ferrera-González, J.; Francés-Soriano, L.; Galiana-Roselló, C.; González-Garcia, J.; González-Béjar, M.; Fröhlich, E.; Pérez-Prieto, J. Initial Biological Assessment of Upconversion Nanohybrids. Biomedicines 2021, 9, 1419. [Google Scholar] [CrossRef] [PubMed]
- Yamada, M.; Nagasaki, S.C.; Ozawa, T.; Imayoshi, I. Light-Mediated Control of Gene Expression in Mammalian Cells. Neurosci. Res. 2020, 152, 66–77. [Google Scholar] [CrossRef] [PubMed]
- Algorri, J.F.; Ochoa, M.; Roldán-Varona, P.; Rodríguez-Cobo, L.; López-Higuera, J.M. Light Technology for Efficient and Effective Photodynamic Therapy: A Critical Review. Cancers 2021, 13, 3484. [Google Scholar] [CrossRef] [PubMed]
- Lin, B.-S.; Yang, Y.-C.; Ho, C.-Y.; Yang, H.-Y.; Wang, H.-Y. A PDMS-Based Cylindrical Hybrid Lens for Enhanced Fluorescence Detection in Microfluidic Systems. Sensors 2014, 14, 2967–2980. [Google Scholar] [CrossRef] [PubMed]
- Niculescu, A.-G.; Chircov, C.; Bîrcă, A.C.; Grumezescu, A.M. Fabrication and Applications of Microfluidic Devices: A Review. Int. J. Mol. Sci. 2021, 22, 2011. [Google Scholar] [CrossRef]
- Gurung, J.P.; Gel, M.; Baker, M.A.B. Microfluidic Techniques for Separation of Bacterial Cells via Taxis. Microb. Cell 2020, 7, 66–79. [Google Scholar] [CrossRef]
- Wang, H. Opto-Fluidic Manipulation of Microparticles and Related Applications; University of South Florida: Tampa, FL, USA, 2020; ISBN 9798557009157. [Google Scholar]
Type | Including | Chromophores | Absorbance Range | Ref. |
---|---|---|---|---|
Flavoproteins | MiniSOG, phiLOV | Flavin mononucleotide | ~450–520 | [8,9] |
GFP-like proteins | BFPs, GFPs, RFPs | Tag-BFP like, GFP-like chromophores, DsRed-like | ~400–650 | [10,11,12] |
Bacterial phytochromes | iRFP, IFP1.4, Wi-Phy | Biliverdin | ~650–780 | [13,14,15] |
Flavoproteins | LOV2, CRY2 | Flavin mononucleotide/flavin adenine dinucleotide | ~440–480 | [16,17] |
Rhodopsins | Channelrhodopsins, halorhodopsins, OptoXRs | Retinal | ~490–630 | [18,19,20] |
Plant and cyanobacterial phytochromes | PhyB/PIF, Cph1 | Phycocyanobilin | ~550–740 | [21,22] |
Methods | Advantages | Disadvantages |
---|---|---|
Light-sensitive proteins and LOV |
|
|
Photo-regulation |
|
|
Nanoparticles and optical tweezers |
|
|
Integrated light with microfluidics |
|
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Elahi, Y.; Baker, M.A.B. Light Control in Microbial Systems. Int. J. Mol. Sci. 2024, 25, 4001. https://doi.org/10.3390/ijms25074001
Elahi Y, Baker MAB. Light Control in Microbial Systems. International Journal of Molecular Sciences. 2024; 25(7):4001. https://doi.org/10.3390/ijms25074001
Chicago/Turabian StyleElahi, Yara, and Matthew Arthur Barrington Baker. 2024. "Light Control in Microbial Systems" International Journal of Molecular Sciences 25, no. 7: 4001. https://doi.org/10.3390/ijms25074001
APA StyleElahi, Y., & Baker, M. A. B. (2024). Light Control in Microbial Systems. International Journal of Molecular Sciences, 25(7), 4001. https://doi.org/10.3390/ijms25074001