Olfactory Loss in Rhinosinusitis: Mechanisms of Loss and Recovery
Abstract
:1. Introduction
2. Epidemiology
3. The Olfactory System in the Healthy Individual
4. Disease Mechanisms of Olfactory Loss in Chronic Rhinosinusitis
4.1. Conductive Problems
4.2. Local Inflammation
4.2.1. Type-2 Inflammation
4.2.2. Non-Type 2 Inflammation
4.3. Other Potential Mechanistic Drivers
4.4. Central Abnormalities
4.5. Trigeminal System
5. Current Treatment Options for CRS-Induced OD and Their Impact on Olfactory Recovery
5.1. Standard Medical Therapy
5.1.1. Topical Intranasal Corticosteroids
5.1.2. Oral Corticosteroids
5.1.3. Other Medical Treatments
5.2. Surgery
5.3. Biotherapy
5.4. Saline Nasal Irrigation
5.5. Olfactory Training
5.6. Aspirin Desensitization in Non-Steroidal Anti-Inflammatory Drug (NSAID)-Exacerbated Respiratory Disease (NERD)
6. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Temmel, A.F.P.; Quint, C.; Schickinger-Fischer, B.; Klimek, L.; Stoller, E.; Hummel, T. Characteristics of olfactory disorders in relation to major causes of olfactory loss. Arch. Otolaryngol. Head Neck Surg. 2002, 128, 635–641. [Google Scholar] [CrossRef] [PubMed]
- Whitcroft, K.L.; Altundag, A.; Balungwe, P.; Boscolo-Rizzo, P.; Douglas, R.; Enecilla, M.L.; Fjaeldstad, A.W.; Fornazieri, M.A.; Frasnelli, J.; Gane, S.; et al. Position paper on olfactory dysfunction: 2023. Rhinology 2023. online ahead of print. [Google Scholar]
- Patel, R.M.; Pinto, J. Olfaction: Anatomy, physiology, and disease. Clin. Anat. 2014, 27, 54–60. [Google Scholar] [CrossRef] [PubMed]
- Huart, C. Novel Psychophysical and Electrophysiological Tools to Assess Human Olfactory Function and Evaluation of Their Potential for an Early Diagnosis of Alzheimer’s Disease. Doctoral Dissertation, UCL-Université Catholique de Louvain, Ottignies-Louvain-la-Neuve, Belgium, 2014. [Google Scholar]
- Damm, M.; Schmitl, L.; Müller, C.A.; Welge-Lüssen, A.; Hummel, T. Diagnostics and treatment of olfactory dysfunction. Hno 2019, 67, 274–281. [Google Scholar] [CrossRef] [PubMed]
- Rombaux, P.; Huart, C.; Levie, P.; Cingi, C.; Hummel, T. Olfaction in Chronic Rhinosinusitis. Curr. Allergy Asthma Rep. 2016, 16, 41. [Google Scholar] [CrossRef]
- Fokkens, W.J.; Lund, V.J.; Hopkins, C.; Hellings, P.W.; Kern, R.; Reitsma, S.; Toppila-Salmi, S.; Bernal-Sprekelsen, M.; Mullol, J.; Alobid, I.; et al. European Position Paper on Rhinosinusitis and Nasal Polyps 2020. Rhinology 2020, 58 (Suppl. S29), 1–464. [Google Scholar] [CrossRef] [PubMed]
- Stuck, B.A.; Hummel, T. Olfaction in allergic rhinitis: A systematic review. J. Allergy Clin. Immunol. 2015, 136, 1460–1470. [Google Scholar] [CrossRef] [PubMed]
- Lourijsen, E.; Fokkens, W.; Reitsma, S. Direct and indirect costs of adult patients with chronic rhinosinusitis with nasal polyps. Rhinol. J. 2020, 58, 213–217. [Google Scholar] [CrossRef] [PubMed]
- Mullol, J.; Mariño-Sánchez, F.; Valls, M.; Alobid, I.; Marin, C. The sense of smell in chronic rhinosinusitis. J. Allergy Clin. Immunol. 2020, 145, 773–776. [Google Scholar] [CrossRef] [PubMed]
- Landis, B.N.; Giger, R.; Ricchetti, A.; Leuchter, I.; Hugentobler, M.; Hummel, T.; Lacroix, J.-S. Retronasal olfactory function in nasal polyposis. Laryngoscope 2010, 113, 1993–1997. [Google Scholar] [CrossRef] [PubMed]
- Rombaux, P.; Weitz, H.; Mouraux, A.; Nicolas, G.; Bertrand, B.; Duprez, T.; Hummel, T. Olfactory function assessed with orthonasal and retronasal testing, olfactory bulb volume, and chemosensory event–related potentials. Arch. Otolaryngol. Neck Surg. 2006, 132, 1346–1351. [Google Scholar] [CrossRef]
- Othieno, F.; Schlosser, R.J.; Storck, K.A.; Rowan, N.R.; Smith, T.L.; Soler, Z.M. Retronasal olfaction in chronic rhinosinusitis. Laryngoscope 2018, 128, 2437–2442. [Google Scholar] [CrossRef] [PubMed]
- Desiato, V.M.; Levy, D.A.; Byun, Y.J.; Nguyen, S.A.; Soler, Z.M.; Schlosser, R.J. The Prevalence of Olfactory Dysfunction in the General Population: A Systematic Review and Meta-analysis. Am. J. Rhinol. Allergy 2020, 35, 195–205. [Google Scholar] [CrossRef] [PubMed]
- Kohli, P.; Naik, A.N.; Harruff, E.E.; Nguyen, S.A.; Schlosser, R.J.; Soler, Z.M. The prevalence of olfactory dysfunction in chronic rhinosinusitis. Laryngoscope 2016, 127, 309–320. [Google Scholar] [CrossRef]
- Shu, C.-H.; Hummel, T.; Lee, P.-L.; Chiu, C.-H.; Lin, S.-H.; Yuan, B.-C. The proportion of self-rated olfactory dysfunction does not change across the life span. Am. J. Rhinol. Allergy 2009, 23, 413–416. [Google Scholar] [CrossRef]
- Enriquez, K.; Lehrer, E.; Mullol, J. The optimal evaluation and management of patients with a gradual onset of olfactory loss. Curr. Opin. Otolaryngol. Head Neck Surg. 2014, 22, 34–41. [Google Scholar] [CrossRef] [PubMed]
- Whitcroft, K.L.; Cuevas, M.; Haehner, A.; Hummel, T. Patterns of olfactory impairment reflect underlying disease etiology. Laryngoscope 2016, 127, 291–295. [Google Scholar] [CrossRef]
- Seiden, A. Olfactory Loss Secondary to Nasal and Sinus Pathology; Thieme Medical Publishers: Stuttgart, Germany, 1997; pp. 52–71. [Google Scholar]
- Jafek, B.W.; Moran, D.T.; Eller, P.M.; Rowley, J.C.; Jafek, T.B. Steroid-dependent anosmia. Arch. Otolaryngol. Head Neck Surg. 1987, 113, 547–549. [Google Scholar] [CrossRef]
- Smith, T.D.; Bhatnagar, K. Anatomy of the olfactory system. Handb. Clin. Neurol. 2019, 164, 17–28. [Google Scholar]
- Leopold, D.A.; Hummel, T.; Schwob, J.E.; Hong, S.C.; Knecht, M.; Kobal, G. Anterior Distribution of Human Olfactory Epithelium. Laryngoscope 2000, 110, 417–421. [Google Scholar] [CrossRef]
- Fitzek, M.; Patel, P.K.; Solomon, P.D.; Lin, B.; Hummel, T.; Schwob, J.E.; Holbrook, E.H. Integrated age-related immunohistological changes occur in human olfactory epithelium and olfactory bulb. J. Comp. Neurol. 2022, 530, 2154–2175. [Google Scholar] [CrossRef]
- Hadley, K.; Orlandi, R.R.; Fong, K.J. Basic anatomy and physiology of olfaction and taste. Otolaryngol. Clin. N. Am. 2004, 37, 1115–1126. [Google Scholar] [CrossRef]
- Soler, Z.M.; Schlosser, R.J.; Mulligan, J.K.; Smith, T.L.; Mace, J.C.; Ramakrishan, V.R.; Norris-Caneda, K.; Bethard, J.R.; Ball, L.E. Olfactory cleft mucus proteome in chronic rhinosinusitis: A case-control pilot study. Int. Forum Allergy Rhinol. 2020, 11, 1162–1176. [Google Scholar] [CrossRef]
- Schultz, E.W. Regeneration of Olfactory Cells. Proc. Soc. Exp. Biol. Med. 1941, 46, 41–43. [Google Scholar] [CrossRef]
- Schultz, E.W. Repair of the olfactory mucosa with special reference to regeneration of olfactory cells (sensory neurons). Am. J. Pathol. 1960, 37, 1–19. [Google Scholar]
- Graziadei, P.P.C.; Graziadei, G.A.M. Neurogenesis and neuron regeneration in the olfactory system of mammals. I. Morphological aspects of differentiation and structural organization of the olfactory sensory neurons. J. Neurocytol. 1979, 8, 1–18. [Google Scholar] [CrossRef]
- Morrison, E.E.; Costanzo, R.M. Scanning electron microscopic study of degeneration and regeneration in the olfactory epithelium after axotomy. J. Neurocytol. 1989, 18, 393–405. [Google Scholar] [CrossRef]
- Jafek, B.W.; Eller, P.M.; Esses, B.A.; Moran, D.T. Post-traumatic anosmia. Ultrastructural correlates. Arch. Neurol. 1989, 46, 300–304. [Google Scholar] [CrossRef]
- Burd, G.D. Morphological study of the effects of intranasal zinc sulfate irrigation on the mouse olfactory epithelium and olfactory bulb. Microsc. Res. Tech. 1993, 24, 195–213. [Google Scholar] [CrossRef]
- Harding, J.W.; Getchell, T.V.; Margolis, F.L. Denervation of the primary olfactory pathway in mice. V. Long-term effect of intranasal ZnSO4 irrigation on behavior, biochemistry and morphology. Brain Res. 1978, 140, 271–285. [Google Scholar] [CrossRef] [PubMed]
- Schwob, J.E.; Youngentob, S.L.; Mezza, R.C. Reconstitution of the rat olfactory epithelium after methyl bromide-induced lesion. J. Comp. Neurol. 1995, 359, 15–37. [Google Scholar] [CrossRef]
- Durante, M.A.; Kurtenbach, S.; Sargi, Z.B.; Harbour, J.W.; Choi, R.; Kurtenbach, S.; Goss, G.M.; Matsunami, H.; Goldstein, B.J. Single-cell analysis of olfactory neurogenesis and differentiation in adult humans. Nat. Neurosci. 2020, 23, 323–326. [Google Scholar] [CrossRef] [PubMed]
- Leung, C.T.; Coulombe, P.A.; Reed, R.R. Contribution of olfactory neural stem cells to tissue maintenance and regeneration. Nat. Neurosci. 2007, 10, 720–726. [Google Scholar] [CrossRef] [PubMed]
- Caggiano, M.; Kauer, J.S.; Hunter, D.D. Globose basal cells are neuronal progenitors in the olfactory epithelium: A lineage analysis using a replication-incompetent retrovirus. Neuron 1994, 13, 339–352. [Google Scholar] [CrossRef] [PubMed]
- Levey, M.S.; Chikaraishi, D.; Kauer, J. Characterization of potential precursor populations in the mouse olfactory epithelium using immunocytochemistry and autoradiography. J. Neurosci. 1991, 11, 3556–3564. [Google Scholar] [CrossRef] [PubMed]
- Schwob, J.E.; Huard, J.M.; Luskin, M.B.; Youngentob, S.L. Retroviral lineage studies of the rat olfactory epithelium. Chem. Senses 1994, 19, 671–682. [Google Scholar] [CrossRef]
- Chen, X.; Fang, H.; Schwob, J.E. Multipotency of purified, transplanted globose basal cells in olfactory epithelium. J. Comp. Neurol. 2004, 469, 457–474. [Google Scholar] [CrossRef] [PubMed]
- Holbrook, E.H.; Szumowski, K.E.M.; Schwob, J.E. An immunochemical, ultrastructural, and developmental characterization of the horizontal basal cells of rat olfactory epithelium. J. Comp. Neurol. 1995, 363, 129–146. [Google Scholar] [CrossRef] [PubMed]
- Schwob, J.E.; Jang, W.; Holbrook, E.H.; Lin, B.; Herrick, D.B.; Peterson, J.N.; Coleman, J.H. Stem and progenitor cells of the mammalian olfactory epithelium: Taking poietic license. J. Comp. Neurol. 2016, 525, 1034–1054. [Google Scholar] [CrossRef]
- Child, K.M.; Herrick, D.B.; Schwob, J.E.; Holbrook, E.H.; Jang, W. The Neuroregenerative Capacity of Olfactory Stem Cells Is Not Limitless: Implications for Aging. J. Neurosci. 2018, 38, 6806–6824. [Google Scholar] [CrossRef]
- Kern, R.C. Candidate’s Thesis: Chronic sinusitis and anosmia: Pathologic changes in the olfactory mucosa. Laryngoscope 2000, 110, 1071–1077. [Google Scholar] [CrossRef]
- Damm, M.; Vent, J.; Schmidt, M.; Theissen, P.; Eckel, H.E.; Lötsch, J.; Hummel, T. Intranasal volume and olfactory function. Chem. Senses 2002, 27, 831–839. [Google Scholar] [CrossRef]
- Zhao, K.; Scherer, P.W.; Hajiloo, S.A.; Dalton, P. Effect of anatomy on human nasal air flow and odorant transport patterns: Implications for olfaction. Chem. Senses 2004, 29, 365–379. [Google Scholar] [CrossRef]
- Trotier, D.; Bensimon, J.L.; Herman, P.; Tran Ba Huy, P.; Eloit, C. Inflammatory obstruction of the olfactory clefts and olfactory loss in humans: A new syndrome? Chem Senses 2007, 32, 285–292. [Google Scholar] [CrossRef]
- Nagashima, A.; Touhara, K. Enzymatic conversion of odorants in nasal mucus affects olfactory glomerular activation patterns and odor perception. J. Neurosci. 2010, 30, 16391–16398. [Google Scholar] [CrossRef]
- Robert-Hazotte, A.; Faure, P.; Neiers, F.; Potin, C.; Artur, Y.; Coureaud, G.; Heydel, J.M. Nasal mucus glutathione transferase activity and impact on olfactory perception and neonatal behavior. Sci. Rep. 2019, 9, 3104. [Google Scholar] [CrossRef]
- Han, X.; He, X.; Zhan, X.; Yao, L.; Sun, Z.; Gao, X.; Wang, S.; Wang, Z. Disturbed microbiota-metabolites-immune interaction network is associated with olfactory dysfunction in patients with chronic rhinosinusitis. Front. Immunol. 2023, 14, 1159112. [Google Scholar] [CrossRef]
- Soler, Z.M.; Yoo, F.; Schlosser, R.J.; Mulligan, J.; Ramakrishnan, V.R.; Beswick, D.M.; Alt, J.A.; Mattos, J.L.; Payne, S.C.; Storck, K.A.; et al. Correlation of mucus inflammatory proteins and olfaction in chronic rhinosinusitis. Int. Forum Allergy Rhinol. 2019, 10, 343–355. [Google Scholar] [CrossRef]
- Stevens, W.W.; Peters, A.T.; Tan, B.K.; Klingler, A.I.; Poposki, J.A.; Hulse, K.E.; Grammer, L.C.; Welch, K.C.; Smith, S.S.; Conley, D.B.; et al. Associations Between Inflammatory Endotypes and Clinical Presentations in Chronic Rhinosinusitis. J. Allergy Clin. Immunol. Pract. 2019, 7, 2812–2820.e3. [Google Scholar] [CrossRef]
- Macchi, A.; Giorli, A.; Cantone, E.; Pipolo, G.C.; Arnone, F.; Barbone, U.; Bertazzoni, G.; Bianchini, C.; Ciofalo, A.; Cipolla, F.; et al. Sense of smell in chronic rhinosinusitis: A multicentric study on 811 patients. Front. Allergy 2023, 4, 1083964. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, N.; Bo, M.; Holtappels, G.; Zheng, M.; Lou, H.; Wang, H.; Zhang, L.; Bachert, C. Diversity of T H cytokine profiles in patients with chronic rhinosinusitis: A multicenter study in Europe, Asia, and Oceania. J. Allergy Clin. Immunol. 2016, 138, 1344–1353. [Google Scholar] [CrossRef]
- Delemarre, T.; Holtappels, G.; De Ruyck, N.; Zhang, N.; Nauwynck, H.; Bachert, C.; Gevaert, E. Type 2 inflammation in chronic rhinosinusitis without nasal polyps: Another relevant endotype. J. Allergy Clin. Immunol. 2020, 146, 337–343.e6. [Google Scholar] [CrossRef]
- Van Zele, T.; Claeys, S.; Gevaert, P.; Van Maele, G.; Holtappels, G.; Van Cauwenberge, P.; Bachert, C. Differentiation of chronic sinus diseases by measurement of inflammatory mediators. Allergy 2006, 61, 1280–1289. [Google Scholar] [CrossRef]
- Zhang, N.; Van Zele, T.; Perez-Novo, C.; Van Bruaene, N.; Holtappels, G.; DeRuyck, N.; Van Cauwenberge, P.; Bachert, C. Different types of T-effector cells orchestrate mucosal inflammation in chronic sinus disease. J. Allergy Clin. Immunol. 2008, 122, 961–968. [Google Scholar] [CrossRef]
- Delemarre, T.; Bochner, B.S.; Simon, H.-U.; Bachert, C. Rethinking neutrophils and eosinophils in chronic rhinosinusitis. J. Allergy Clin. Immunol. 2021, 148, 327–335. [Google Scholar] [CrossRef]
- Harlin, S.; Ansel, D.; Lane, S.; Myers, J.; Kephart, G.; Gleich, G. A clinical and pathologic study of chronic sinusitis: The role of the eosinophil. J. Allergy Clin. Immunol. 1988, 81, 867–875. [Google Scholar] [CrossRef]
- Frigas, E.; Motojima, S.; Gleich, G.J. The eosinophilic injury to the mucosa of the airways in the pathogenesis of bronchial asthma. Eur. Respir. J. Suppl. 1991, 13, 123s–135s. [Google Scholar]
- Hox, V.; Bobic, S.; Callebaux, I.; Jorissen, M.; Hellings, P. Nasal obstruction and smell impairment in nasal polyp disease: Correlation between objective and subjective parameters. Rhinol. J. 2010, 48, 426–432. [Google Scholar] [CrossRef]
- Lavin, J.; Min, J.; Lidder, A.K.; Huang, J.H.; Kato, A.; Lam, K.; Meen, E.; Chmiel, J.S.; Norton, J.; Suh, L.; et al. Superior turbinate eosinophilia correlates with olfactory deficit in chronic rhinosinusitis patients. Laryngoscope 2017, 127, 2210–2218. [Google Scholar] [CrossRef] [PubMed]
- Persson, E.K.; Verstraete, K.; Heyndrickx, I.; Gevaert, E.; Aegerter, H.; Percier, J.-M.; Deswarte, K.; Verschueren, K.H.G.; Dansercoer, A.; Gras, D.; et al. Protein crystallization promotes type 2 immunity and is reversible by antibody treatment. Science 2019, 364, eaaw4295. [Google Scholar] [CrossRef]
- Liu, Z.; Hong, J.; Huang, X.; Wu, D. Olfactory cleft mucus galectin-10 predicts olfactory loss in chronic rhinosinusitis. Ann. Allergy, Asthma Immunol. 2022, 130, 317–324.e1. [Google Scholar] [CrossRef]
- Schlosser, R.J.; Mulligan, J.K.; Hyer, J.M.; Karnezis, T.T.; Gudis, D.A.; Soler, Z.M. Mucous Cytokine Levels in Chronic Rhinosinusitis–Associated Olfactory Loss. JAMA Otolaryngol. Neck Surg. 2016, 142, 731–737. [Google Scholar] [CrossRef]
- Han, X.; Wu, D.; Sun, Z.; Sun, H.; Lv, Q.; Zhang, L.; Wei, Y. Type 1/type 2 inflammatory cytokines correlate with olfactory function in patients with chronic rhinosinusitis. Am. J. Otolaryngol. 2020, 41, 102587. [Google Scholar] [CrossRef]
- Rouyar, A.; Classe, M.; Gorski, R.; Bock, M.D.; Le-Guern, J.; Roche, S.; Fourgous, V.; Remaury, A.; Paul, P.; Ponsolles, C.; et al. Type 2/Th2-driven inflammation impairs olfactory sensory neurogenesis in mouse chronic rhinosinusitis model. Allergy 2019, 74, 549–559. [Google Scholar] [CrossRef]
- Huang, W.-H.; Hung, Y.-W.; Hung, W.; Lan, M.-Y.; Yeh, C.-F. Murine model of eosinophilic chronic rhinosinusitis with nasal polyposis inducing neuroinflammation and olfactory dysfunction. J. Allergy Clin. Immunol. 2024, 15, S0091-6749(24)00243-4. [Google Scholar] [CrossRef]
- Cho, S.H.; Kim, D.W.; Gevaert, P. Chronic Rhinosinusitis without Nasal Polyps. J. Allergy Clin. Immunol. Pract. 2016, 4, 575–582. [Google Scholar] [CrossRef]
- Pothoven, K.L.; Norton, J.E.; Suh, L.A.; Carter, R.G.; Harris, K.E.; Biyasheva, A.; Welch, K.; Shintani-Smith, S.; Conley, D.B.; Liu, M.C.; et al. Neutrophils are a major source of the epithelial barrier disrupting cytokine oncostatin M in patients with mucosal airways disease. J. Allergy Clin. Immunol. 2016, 139, 1966–1978.e9. [Google Scholar] [CrossRef]
- Bourgon, C.; Albin, A.S.; Ando-Grard, O.; Da Costa, B.; Domain, R.; Korkmaz, B.; Klonjkowski, B.; Le Poder, S.; Meunier, N. Neutrophils play a major role in the destruction of the olfactory epithelium during SARS-CoV-2 infection in hamsters. Cell Mol. Life Sci. 2022, 79, 616. [Google Scholar] [CrossRef]
- Han, X.; Ordouie, A.-A.; Schmelz, R.; Hummel, T. Chemosensory Functions in Patients with Inflammatory Bowel Disease and Their Association with Clinical Disease Activity. Nutrients 2022, 14, 3543. [Google Scholar] [CrossRef]
- Lane, A.P.; Turner, J.; May, L.; Reed, R. A genetic model of chronic rhinosinusitis-associated olfactory inflammation reveals reversible functional impairment and dramatic neuroepithelial reorganization. J. Neurosci. 2010, 30, 2324–2329. [Google Scholar] [CrossRef] [PubMed]
- Garcia, D.S.; Chen, M.; Smith, A.K.; Lazarini, P.R.; Lane, A.P. Role of the type I tumor necrosis factor receptor in inflammation-associated olfactory dysfunction. Int. Forum Allergy Rhinol. 2016, 7, 160–168. [Google Scholar] [CrossRef]
- Pozharskaya, T.; Liang, J.; Lane, A.P. Regulation of inflammation-associated olfactory neuronal death and regeneration by the type II tumor necrosis factor receptor. Int. Forum Allergy Rhinol. 2013, 3, 740–747. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, Y.; Farbman, A. Tumor necrosis factor-alpha-induced apoptosis in olfactory epithelium in vitro: Possible roles of caspase 1 (ICE), caspase 2 (ICH-1), and caspase 3 (CPP32). Exp. Neurol. 2000, 165, 35–45. [Google Scholar] [CrossRef]
- Holbrook, J.; Lara-Reyna, S.; Jarosz-Griffiths, H.; McDermott, M.F. Tumour necrosis factor signalling in health and disease. F1000Research 2019, 8, 111. [Google Scholar] [CrossRef] [PubMed]
- Victores, A.J.; Chen, M.; Smith, A.; Lane, A.P. Olfactory loss in chronic rhinosinusitis is associated with neuronal activation of c-Jun N-terminal kinase. Int. Forum Allergy Rhinol. 2017, 8, 415–420. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Reed, R.R.; Lane, A.P. Chronic Inflammation Directs an Olfactory Stem Cell Functional Switch from Neuroregeneration to Immune Defense. Cell Stem Cell 2019, 25, 501–513.e5. [Google Scholar] [CrossRef]
- Biswas, K.; Mackenzie, B.W.; Ballauf, C.; Draf, J.; Douglas, R.G.; Hummel, T. Loss of bacterial diversity in the sinuses is associated with lower smell discrimination scores. Sci. Rep. 2020, 10, 16422. [Google Scholar] [CrossRef] [PubMed]
- Jafek, B.; Murrow, B.; Michaels, R.; Restrepo, D.; Linschoten, M. Biopsies of human olfactory epithelium. Chem. Senses 2002, 27, 623–628. [Google Scholar] [CrossRef] [PubMed]
- Yee, K.K.; Pribitkin, E.A.; Cowart, B.J.; Vainius, A.A.; Klock, C.T.; Rosen, D.; Feng, P.; McLean, J.; Hahn, C.-G.; Rawson, N.E. Neuropathology of the olfactory mucosa in chronic rhinosinusitis. Am. J. Rhinol. Allergy 2010, 24, 110–120. [Google Scholar] [CrossRef] [PubMed]
- Mori, E.; Ueha, R.; Kondo, K.; Funada, S.; Shimmura, H.; Kanemoto, K.; Tanaka, H.; Nishijima, H.; Otori, N.; Yamasoba, T.; et al. Squamous and Respiratory Metaplasia After Olfactory Mucosal Resection. Front. Neurosci. 2021, 15, 695653. [Google Scholar] [CrossRef]
- Rombaux, P.; Potier, H.; Bertrand, B.; Duprez, T.; Hummel, T. Olfactory bulb volume in patients with sinonasal disease. Am. J. Rhinol. 2008, 22, 598–601. [Google Scholar] [CrossRef]
- Han, P.; Whitcroft, K.L.; Fischer, J.; Gerber, J.; Cuevas, M.; Andrews, P.; Hummel, T. Olfactory brain gray matter volume reduction in patients with chronic rhinosinusitis. Int. Forum Allergy Rhinol. 2017, 7, 551–556. [Google Scholar] [CrossRef] [PubMed]
- Hummel, T.; Frasnelli, J. The intranasal trigeminal system. In Handbook of Clinical Neurology; Elsevier: Amsterdam, The Netherlands, 2019; Volume 164, pp. 119–134. [Google Scholar]
- Saliba, J.; Fnais, N.; Tomaszewski, M.; Carriere, J.S.; Frenkiel, S.; Frasnelli, J.; Tewfik, M.A. The role of trigeminal function in the sensation of nasal obstruction in chronic rhinosinusitis. Laryngoscope 2016, 126, E174–E178. [Google Scholar] [CrossRef] [PubMed]
- Migneault-Bouchard, C.; Lagueux, K.; Hsieh, J.W.; Cyr, M.; Landis, B.N.; Frasnelli, J. Trigeminal cold receptors and airflow perception are altered in chronic rhinosinusitis. Rhinology 2024, 62, 63–70. [Google Scholar] [PubMed]
- Burghardt, G.K.L.; Cuevas, M.; Sekine, R.; Hummel, T. Trigeminal Sensitivity in Patients With Allergic Rhinitis and Chronic Rhinosinusitis. Laryngoscope 2022, 133, 654–660. [Google Scholar] [CrossRef] [PubMed]
- Poletti, S.; Cuevas, M.; Weile, S.; Hummel, T. Trigeminal sensitivity in chronic rhinosinusitis: Topographical differences and the effect of surgery. Rhinol. J. 2017, 55, 70–74. [Google Scholar] [CrossRef] [PubMed]
- Benoliel, R.; Biron, A.; Quek, S.Y.P.; Nahlieli, O.; Eliav, E. Trigeminal neurosensory changes following acute and chronic paranasal sinusitis. Quintessence Int. 2006, 37, 437–443. [Google Scholar] [PubMed]
- Orlandi, R.R.; Kingdom, T.T.; Smith, T.L.; Bleier, B.; DeConde, A.; Luong, A.U.; Poetker, D.M.; Soler, Z.; Welch, K.C.; Wise, S.K.; et al. International consensus statement on allergy and rhinology: Rhinosinusitis 2021. Int. Forum Allergy Rhinol. 2020, 11, 213–739. [Google Scholar] [CrossRef]
- Hox, V.; Lourijsen, E.; Jordens, A.; Aasbjerg, K.; Agache, I.; Alobid, I.; Bachert, C.; Boussery, K.; Campo, P.; Fokkens, W.; et al. Correction to: Benefits and harm of systemic steroids for short- and long-term use in rhinitis and rhinosinusitis: An EAACI position paper. Clin. Transl. Allergy 2020, 10, 38. [Google Scholar] [CrossRef] [PubMed]
- Espehana, A.; Lee, L.; Garden, E.M.; Klyvyte, G.; Gokani, S.; Jegatheeswaran, L.; Wong, J.J.; Philpott, C. Delivery of Topical Drugs to the Olfactory Cleft. J. Clin. Med. 2023, 12, 7387. [Google Scholar] [CrossRef]
- Hardy, J.G.; Lee, S.W.; Wilson, C.G. Intranasal drug delivery by spray and drops. J. Pharm. Pharmacol. 1985, 37, 294–297. [Google Scholar] [CrossRef]
- Scheibe, M.; Bethge, C.; Witt, M.; Hummel, T. Intranasal Administration of Drugs. Arch. Otolaryngol. Neck Surg. 2008, 134, 643–646. [Google Scholar] [CrossRef] [PubMed]
- Lam, K.; Tan, B.K.; Lavin, J.M.; Meen, E.; Conley, D.B. Comparison of nasal sprays and irrigations in the delivery of topical agents to the olfactory mucosa. Laryngoscope 2013, 123, 2950–2957. [Google Scholar] [CrossRef] [PubMed]
- Banglawala, S.M.; Oyer, S.L.; Lohia, S.; Psaltis, A.J.; Soler, Z.M.; Schlosser, R.J. Olfactory outcomes in chronic rhinosinusitis with nasal polyposis after medical treatments: A systematic review and meta-analysis. Int. Forum Allergy Rhinol. 2014, 4, 986–994. [Google Scholar] [CrossRef] [PubMed]
- Papadakis, C.; Chimona, T.; Chaidas, K.; Ladias, A.; Zisoglou, M.; Proimos, E. Effect of oral steroids on olfactory function in chronic rhinosinusitis with nasal polyps. Eur. Ann. Otorhinolaryngol. Head Neck Dis. 2021, 138, 343–348. [Google Scholar] [CrossRef] [PubMed]
- Barnes, P.J. Mechanisms and resistance in glucocorticoid control of inflammation. J. Steroid Biochem. Mol. Biol. 2010, 120, 76–85. [Google Scholar] [CrossRef] [PubMed]
- Rimmer, C.; Hetelekides, S.; Eliseeva, S.I.; Georas, S.N.; Veazey, J.M. Budesonide promotes airway epithelial barrier integrity following double-stranded RNA challenge. PLoS ONE 2021, 16, e0260706. [Google Scholar] [CrossRef] [PubMed]
- Sekiyama, A.; Gon, Y.; Terakado, M.; Takeshita, I.; Kozu, Y.; Matsumoto, K.; Hashimoto, S. Glucocorticoids enhance airway epithelial barrier integrity. Int. Immunopharmacol. 2012, 12, 350–357. [Google Scholar] [CrossRef] [PubMed]
- Glezer, I.; Chang, S.Y. The balance between efficient anti-inflammatory treatment and neuronal regeneration in the olfactory epithelium. Neural Regen. Res. 2018, 13, 1711–1714. [Google Scholar] [CrossRef] [PubMed]
- Van Zele, T.; Gevaert, P.; Holtappels, G.; Beule, A.; Wormald, P.J.; Mayr, S.; Hens, G.; Hellings, P.; Ebbens, F.A.; Fokkens, W.; et al. Oral steroids and doxycycline: Two different approaches to treat nasal polyps. J. Allergy Clin. Immunol. 2010, 125, 1069–1076.e4. [Google Scholar] [CrossRef]
- Videler, W.J.; Badia, L.; Harvey, R.J.; Gane, S.; Georgalas, C.; Van Der Meulen, F.W.; Menger, D.J.; Lehtonen, M.T.; Toppila-Salmi, S.K.; Vento, S.I.; et al. Lack of efficacy of long-term, low-dose azithromycin in chronic rhinosinusitis: A randomized controlled trial. Allergy 2011, 66, 1457–1468. [Google Scholar] [CrossRef]
- Ebbens, F.A.; Scadding, G.K.; Badia, L.; Hellings, P.W.; Jorissen, M.; Mullol, J.; Cardesin, A.; Bachert, C.; Vanzele, T.; Dijkgraaf, M.G.; et al. Amphotericin B nasal lavages: Not a solution for patients with chronic rhinosinusitis. J. Allergy Clin. Immunol. 2006, 118, 1149–1156. [Google Scholar] [CrossRef] [PubMed]
- Reden, J.; El-Hifnawi, D.; Zahnert, T.; Hummel, T. The effect of a herbal combination of primrose, gentian root, vervain, elder flowers, and sorrel on olfactory function in patients with a sinonasal olfactory dysfunction. Rhinol. J. 2011, 49, 342–346. [Google Scholar] [CrossRef] [PubMed]
- Kohli, P.; Naik, A.N.; Farhood, Z.; Ong, A.A.; Nguyen, S.A.; Soler, Z.M.; Schlosser, R.J. Olfactory Outcomes after Endoscopic Sinus Surgery for Chronic Rhinosinusitis: A Meta-analysis. Otolaryngol. Head Neck Surg. 2016, 155, 936–948. [Google Scholar] [CrossRef] [PubMed]
- Vandenhende-Szymanski, C.; Hochet, B.; Chevalier, D.; Mortuaire, G. Olfactory cleft opacity and CT score are predictive factors of smell recovery after surgery in nasal polyposis. Rhinology 2015, 53, 29–34. [Google Scholar] [CrossRef] [PubMed]
- Haxel, B.R. Recovery of olfaction after sinus surgery for chronic rhinosinusitis: A review. Laryngoscope 2019, 129, 1053–1059. [Google Scholar] [CrossRef] [PubMed]
- Gudziol, V.; Buschhüter, D.; Abolmaali, N.; Gerber, J.; Rombaux, P.; Hummel, T. Increasing olfactory bulb volume due to treatment of chronic rhinosinusitis—A longitudinal study. Brain 2009, 132, 3096–3101. [Google Scholar] [CrossRef] [PubMed]
- Whitcroft, K.L.; Noltus, J.; Andrews, P.; Hummel, T. Sinonasal surgery alters brain structure and function: Neuroanatomical correlates of olfactory dysfunction. J. Neurosci. Res. 2021, 99, 2156–2171. [Google Scholar] [CrossRef] [PubMed]
- Fokkens, W.J.; Viskens, A.-S.; Backer, V.; Conti, D.; De Corso, E.; Gevaert, P.; Scadding, G.K.; Wagemann, M.; Bernal-Sprekelsen, M.; Chaker, A.; et al. EPOS/EUFOREA update on indication and evaluation of Biologics in Chronic Rhinosinusitis with Nasal Polyps 2023. Rhinol. J. 2023, 61, 194–202. [Google Scholar] [CrossRef]
- Gevaert, P.; Omachi, T.A.; Corren, J.; Mullol, J.; Han, J.; Lee, S.E.; Kaufman, D.; Ligueros-Saylan, M.; Howard, M.; Zhu, R.; et al. Efficacy and safety of omalizumab in nasal polyposis: 2 randomized phase 3 trials. J. Allergy Clin. Immunol. 2020, 146, 595–605. [Google Scholar] [CrossRef]
- Gevaert, P.; Calus, L.; Van Zele, T.; Blomme, K.; De Ruyck, N.; Bauters, W.; Hellings, P.; Brusselle, G.; De Bacquer, D.; van Cauwenberge, P.; et al. Omalizumab is effective in allergic and nonallergic patients with nasal polyps and asthma. J. Allergy Clin. Immunol. 2012, 131, 110–116.e1. [Google Scholar] [CrossRef]
- Bachert, C.; Han, J.K.; Desrosiers, M.; Hellings, P.W.; Amin, N.; Lee, S.E.; Mullol, J.; Greos, L.S.; Bosso, J.V.; Laidlaw, T.M.; et al. Efficacy and safety of dupilumab in patients with severe chronic rhinosinusitis with nasal polyps (LIBERTY NP SINUS-24 and LIBERTY NP SINUS-52): Results from two multicentre, randomised, double-blind, placebo-controlled, parallel-group phase 3 trials. Lancet 2019, 394, 1638–1650. [Google Scholar] [CrossRef] [PubMed]
- Han, J.K.; Bachert, C.; Fokkens, W.; Desrosiers, M.; Wagenmann, M.; Lee, S.E.; Smith, S.G.; Martin, N.; Mayer, B.; Yancey, S.W.; et al. Mepolizumab for chronic rhinosinusitis with nasal polyps (SYNAPSE): A randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Respir. Med. 2021, 9, 1141–1153. [Google Scholar] [CrossRef] [PubMed]
- Oykhman, P.; Paramo, F.A.; Bousquet, J.; Kennedy, D.W.; Brignardello-Petersen, R.; Chu, D.K. Comparative efficacy and safety of monoclonal antibodies and aspirin desensitization for chronic rhinosinusitis with nasal polyposis: A systematic review and network meta-analysis. J. Allergy Clin. Immunol. 2022, 149, 1286–1295. [Google Scholar] [CrossRef] [PubMed]
- Barroso, B.; Valverde-Monge, M.; Betancor, D.; Gómez-López, A.; Villalobos-Vildas, C.; González-Cano, B.; Sastre, J. Improvement in Smell Using Monoclonal Antibodies Among Patients with Chronic Rhinosinusitis with Nasal Polyps: A Systematic Review. J. Investig. Allergol. Clin. Immunol. 2023, 33, 419–430. [Google Scholar] [CrossRef] [PubMed]
- Hara, Y.; Jha, M.K.; Mattoo, H.; Nash, S.; Khan, A.; Orengo, J.; Hicks, A. Interleukin 4 directly activates olfactory neurons and induces loss of smell in mice. J. Allergy Clin. Immunol. 2023, 151, AB128. [Google Scholar] [CrossRef]
- Friedman, M.; Hamilton, C.; Samuelson, C.G.; Maley, A.; Wilson, M.N.; Venkatesan, T.; Joseph, N.J. Dead Sea salt irrigations vs saline irrigations with nasal steroids for symptomatic treatment of chronic rhinosinusitis: A randomized, prospective double-blind study. Int. Forum Allergy Rhinol. 2012, 2, 252–257. [Google Scholar] [CrossRef]
- Savietto, E.; Marioni, G.; Maculan, P.; Pettorelli, A.; Scarpa, B.; Simoni, E.; Astolfi, L.; Marchese-Ragona, R.; Ottaviano, G. Effectiveness of micronized nasal irrigations with hyaluronic acid/isotonic saline solution in non-polipoid chronic rhinosinusitis: A prospective, randomized, double-blind, controlled study. Am. J. Otolaryngol. 2020, 41, 102502. [Google Scholar] [CrossRef]
- Macdonald, K.I.; Wright, E.D.; Sowerby, L.J.; Rotenberg, B.W.; Chin, C.J.; Rudmik, L.; Sommer, D.D.; Nayan, S.; DesRosiers, M.; Tewfik, M.A.; et al. Squeeze bottle versus saline spray after endoscopic sinus surgery for chronic rhinosinusitis: A pilot multicentre trial. Am. J. Rhinol. Allergy 2015, 29, e13–e17. [Google Scholar] [CrossRef] [PubMed]
- Farag, A.A.; Deal, A.M.; McKinney, K.A.; Thorp, B.D.; Senior, B.A.; Ebert, C.S.; Zanation, A.M. Single-blind randomized controlled trial of surfactant vs hypertonic saline irrigation following endoscopic endonasal surgery. Int. Forum Allergy Rhinol. 2012, 3, 276–280. [Google Scholar] [CrossRef]
- Low, T.-H.; Woods, C.M.; Ullah, S.; Carney, A.S. A double-blind randomized controlled trial of normal saline, lactated ringer’s, and hypertonic saline nasal irrigation solution after endoscopic sinus surgery. Am. J. Rhinol. Allergy 2014, 28, 225–231. [Google Scholar] [CrossRef]
- Jiang, R.-S.; Liang, K.-L.; Wu, S.-H.; Su, M.-C.; Chen, W.-K.; Lu, F.-J. Electrolyzed acid water nasal irrigation after functional endoscopic sinus surgery. Am. J. Rhinol. Allergy 2014, 28, 176–181. [Google Scholar] [CrossRef] [PubMed]
- Salib, R.; Talpallikar, S.; Uppal, S.; Nair, S. A prospective randomised single-blinded clinical trial comparing the efficacy and tolerability of the nasal douching products Sterimar™ and Sinus Rinse™ following functional endoscopic sinus surgery. Clin. Otolaryngol. 2013, 38, 297–305. [Google Scholar] [CrossRef] [PubMed]
- Pieniak, M.; Oleszkiewicz, A.; Avaro, V.; Calegari, F.; Hummel, T. Olfactory training—Thirteen years of research reviewed. Neurosci. Biobehav. Rev. 2022, 141, 104853. [Google Scholar] [CrossRef] [PubMed]
- Hummel, T.; Rissom, K.; Reden, J.; Hähner, A.; Weidenbecher, M.; Hüttenbrink, K. Effects of olfactory training in patients with olfactory loss. Laryngoscope 2009, 119, 496–499. [Google Scholar] [CrossRef] [PubMed]
- Fleiner, F.; Lau, L.; Göktas, Ö. Active olfactory training for the treatment of smelling disorders. Ear. Nose Throat J. 2012, 91, 198–215. [Google Scholar] [CrossRef] [PubMed]
- Park, J.Y.; Choi, B.Y.; Kim, H.; Jung, T.; Kim, J.K. Olfactory training assists in olfactory recovery after sinonasal surgery. Laryngoscope Investig. Otolaryngol. 2022, 7, 1733–1739. [Google Scholar] [CrossRef] [PubMed]
- Youngentob, S.L.; Kent, P.F. Enhancement of odorant-induced mucosal activity patterns in rats trained on an odorant identification task. Brain Res. 1995, 670, 82–88. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Chen, L.; Jacob, T. Evidence for peripheral plasticity in human odour response. J. Physiol. 2003, 554, 236–244. [Google Scholar] [CrossRef] [PubMed]
- Kim, B.Y.; Park, J.; Kim, E.; Kim, B. Olfactory Ensheathing Cells Mediate Neuroplastic Mechanisms after Olfactory Training in Mouse Model. Am. J. Rhinol. Allergy 2020, 34, 217–229. [Google Scholar] [CrossRef]
- Kowalski, M.L.; Agache, I.; Bavbek, S.; Bakirtas, A.; Blanca, M.; Bochenek, G.; Bonini, M.; Heffler, E.; Klimek, L.; Laidlaw, T.M.; et al. Diagnosis and management of NSAID-Exacerbated Respiratory Disease (N-ERD)-a EAACI position paper. Allergy 2019, 74, 28–39. [Google Scholar] [CrossRef]
- Mortazavi, N.; Esmaeilzadeh, H.; Abbasinazari, M.; Babaie, D.; Alyasin, S.; Nabavizadeh, H.; Esmailzadeh, E. Clinical and Immunological Efficacy of Aspirin Desensitization in Nasal Polyp Patients with Aspirin-Exacerbated Respiratory Disease. Ranian J. Pharm. Res. IJPR 2017, 16, 1639–1647. [Google Scholar]
- Esmaeilzadeh, H.; Nabavi, M.; Aryan, Z.; Arshi, S.; Bemanian, M.H.; Fallahpour, M.; Mortazavi, N. Aspirin desensitization for patients with aspirin-exacerbated respiratory disease: A randomized double-blind placebo-controlled trial. Clin. Immunol. 2015, 160, 349–357. [Google Scholar] [CrossRef] [PubMed]
- Świerczyńska-Krępa, M.; Sanak, M.; Bochenek, G.; Stręk, P.; Ćmiel, A.; Gielicz, A.; Plutecka, H.; Szczeklik, A.; Niżankowska-Mogilnicka, E. Aspirin desensitization in patients with aspirin-induced and aspirin-tolerant asthma: A double-blind study. J. Allergy Clin. Immunol. 2014, 134, 883–890. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dekeyser, A.; Huart, C.; Hummel, T.; Hox, V. Olfactory Loss in Rhinosinusitis: Mechanisms of Loss and Recovery. Int. J. Mol. Sci. 2024, 25, 4460. https://doi.org/10.3390/ijms25084460
Dekeyser A, Huart C, Hummel T, Hox V. Olfactory Loss in Rhinosinusitis: Mechanisms of Loss and Recovery. International Journal of Molecular Sciences. 2024; 25(8):4460. https://doi.org/10.3390/ijms25084460
Chicago/Turabian StyleDekeyser, Agnès, Caroline Huart, Thomas Hummel, and Valérie Hox. 2024. "Olfactory Loss in Rhinosinusitis: Mechanisms of Loss and Recovery" International Journal of Molecular Sciences 25, no. 8: 4460. https://doi.org/10.3390/ijms25084460
APA StyleDekeyser, A., Huart, C., Hummel, T., & Hox, V. (2024). Olfactory Loss in Rhinosinusitis: Mechanisms of Loss and Recovery. International Journal of Molecular Sciences, 25(8), 4460. https://doi.org/10.3390/ijms25084460