Insights into Inhalation Drug Disposition: The Roles of Pulmonary Drug-Metabolizing Enzymes and Transporters
Abstract
:1. Introduction
2. Expression and Function of Transporters in the Lungs
2.1. ABC Transporters
2.2. SLC Transporters
2.2.1. Lung Organic Cation Transporters (OCTs/OCTNs)
- OCTN1 and OCT3 are highly present in the lung, with the highest mRNA expression intensity observed in bronchi and reduced levels in peripheral lung tissues [17,19,31,32]. They are found in various lung cell types, including bronchial and alveolar epithelial cells, bronchiolar wall epithelial cells, alveolar macrophages, and type-II cells.
- OCTN2 displays a similar expression pattern to OCTN1 and is present in the bronchial area and bronchiolar wall epithelial cells, among others.
- OCT1 and OCT2 do not have significant expression in the lungs, although limited expression of OCT2 has been observed in some individuals. For example, a limited expression of OCT2 in the lungs of a few Caucasian and Spanish subjects was reported [17].
2.2.2. Organic Anion Transporting Polypeptides (OATPs)
2.2.3. Mammalian Multidrug and Toxin Extrusion Proteins (MATEs)
2.2.4. Oligopeptide Transporters (PEPTs) and Serotonin Transporter (SERT)
3. Expression and Function of Metabolizing Enzyme in the Lungs
4. Contribution of Pulmonary Transporters to Drug Disposition
5. Contribution of Pulmonary Metabolizing Enzymes to Drug Disposition
6. DDI Associated with Pulmonary Transporters/Metabolizing Enzymes
7. Refining the Measurement and Prediction of Transport and Biotransformation Processes within the Pulmonary System
7.1. In Vitro Methods
7.2. Ex Vivo Methods
7.3. In Silico Methods
8. Conclusions
Funding
Conflicts of Interest
References
- Cabral, L.M.; Suzuki, É.Y.; Simon, A.; Souza Domingos, T.F.; de Azevedo Abrahim Vieira, B.; de Souza, A.M.T.; Rodrigues, C.R.; de Sousa, V.P.; do Carmo, F.A. Alternative Methods for Pulmonary-Administered Drugs Metabolism: A Breath of Change. Mini Rev. Med. Chem. 2023, 23, 170–186. [Google Scholar] [CrossRef]
- Yue, P.; Zhou, W.; Huang, G.; Lei, F.; Chen, Y.; Ma, Z.; Chen, L.; Yang, M. Nanocrystals Based Pulmonary Inhalation Delivery System: Advance and Challenge. Drug Deliv. 2022, 29, 637–651. [Google Scholar] [CrossRef] [PubMed]
- He, S.; Gui, J.; Xiong, K.; Chen, M.; Gao, H.; Fu, Y.; Barros, A.S.; Costa, A.; Sarmento, B. A Roadmap to Pulmonary Delivery Strategies for the Treatment of Infectious Lung Diseases. J. Nanobiotechnol. 2022, 20, 101. [Google Scholar] [CrossRef] [PubMed]
- Cooper, A.E.; Ferguson, D.; Grime, K. Optimisation of DMPK by the Inhaled Route: Challenges and Approaches. Curr. Drug Metab. 2012, 13, 457–473. [Google Scholar] [CrossRef]
- Anderson, S.; Atkins, P.; Bäckman, P.; Cipolla, D.; Clark, A.; Daviskas, E.; Disse, B.; Entcheva-Dimitrov, P.; Fuller, R.; Gonda, I.; et al. Inhaled Medicines: Past, Present, and Future. Pharmacol. Rev. 2022, 74, 48–118. [Google Scholar] [CrossRef] [PubMed]
- Matłoka, M.; Janowska, S.; Gajos-Draus, A.; Ziółkowski, H.; Janicka, M.; Perko, P.; Kamil, K.; Pankiewicz, P.; Moszczyński-Pętkowski, R.; Mach, M.; et al. Esketamine Inhaled as Dry Powder: Pharmacokinetic, Pharmacodynamic and Safety Assessment in a Preclinical Study. Pulm. Pharmacol. Ther. 2022, 73–74, 102127. [Google Scholar] [CrossRef] [PubMed]
- Ito, K. Inhaled Antifungal Therapy: Benefits, Challenges, and Clinical Applications. Expert. Opin. Drug Deliv. 2022, 19, 755–769. [Google Scholar] [CrossRef] [PubMed]
- Ehrhardt, C.; Bäckman, P.; Couet, W.; Edwards, C.D.; Forbes, B.; Fridén, M.; Griffiths, P.C.; Gumbleton, M.; Hosoya, K.I.; Kato, Y.; et al. Current Progress toward a Better Understanding of Drug Disposition within the Lungs: Summary Proceedings of the First Workshop on Drug Transporters in the Lungs. J. Pharm. Sci. 2017, 106, 2234–2244. [Google Scholar] [CrossRef] [PubMed]
- Nickel, S.; Clerkin, C.G.; Selo, M.A.; Ehrhardt, C. Transport Mechanisms at the Pulmonary Mucosa: Implications for Drug Delivery. Expert. Opin. Drug Deliv. 2016, 13, 667–690. [Google Scholar] [CrossRef]
- Bosquillon, C. Drug Transporters in the Lung—Do They Play a Role in the Biopharmaceutics of Inhaled Drugs? J. Pharm. Sci. 2010, 99, 2240–2255. [Google Scholar] [CrossRef]
- Zhao, M.; Ma, J.; Li, M.; Zhang, Y.; Jiang, B.; Zhao, X.; Huai, C.; Shen, L.; Zhang, N.; He, L.; et al. Cytochrome P450 Enzymes and Drug Metabolism in Humans. Int. J. Mol. Sci. 2021, 22, 12808. [Google Scholar] [CrossRef] [PubMed]
- Oesch, F.; Fabian, E.; Landsiedel, R. Xenobiotica-Metabolizing Enzymes in the Lung of Experimental Animals, Man and in Human Lung Models. Arch. Toxicol. 2019, 93, 3419–3489. [Google Scholar] [CrossRef] [PubMed]
- Visigalli, R.; Rotoli, B.M.; Ferrari, F.; Di Lascia, M.; Riccardi, B.; Puccini, P.; Dall’Asta, V.; Barilli, A. Expression and Function of ABC Transporters in Human Alveolar Epithelial Cells. Biomolecules 2022, 12, 1260. [Google Scholar] [CrossRef] [PubMed]
- Mairinger, S.; Hernández-Lozano, I.; Filip, T.; Sauberer, M.; Löbsch, M.; Stanek, J.; Wanek, T.; Sake, J.A.; Pekar, T.; Ehrhardt, C.; et al. Impact of P-Gp and BCRP on Pulmonary Drug Disposition Assessed by PET Imaging in Rats. J. Control. Release 2022, 349, 109–117. [Google Scholar] [CrossRef] [PubMed]
- Hernández-Lozano, I.; Mairinger, S.; Filip, T.; Sauberer, M.; Wanek, T.; Stanek, J.; Sake, J.A.; Pekar, T.; Ehrhardt, C.; Langer, O. PET Imaging to Assess the Impact of P-Glycoprotein on Pulmonary Drug Delivery in Rats. Exp. Lung Res. 2022, 342, 114–125. [Google Scholar] [CrossRef] [PubMed]
- van der Deen, M.; de Vries, E.G.; Timens, W.; Scheper, R.J.; Timmer-Bosscha, H.; Postma, D.S. ATP-Binding Cassette (ABC) Transporters in Normal and Pathological Lung. Respir. Res. 2005, 6, 59. [Google Scholar] [CrossRef] [PubMed]
- Fallon, J.K.; Houvig, N.; Booth-Genthe, C.L.; Smith, P.C. Quantification of Membrane Transporter Proteins in Human Lung and Immortalized Cell Lines Using Targeted Quantitative Proteomic Analysis by Isotope Dilution nanoLC–MS/MS. J. Pharm. Biomed. Anal. 2018, 154, 150–157. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Liu, X.; Wang, X.; Zhang, J.; Li, S.; Ma, X. Comprehensive Analysis of ABCA Family Members in Lung Adenocarcinoma with Prognostic Values. Mol. Biotechnol. 2022, 64, 1441–1453. [Google Scholar] [CrossRef] [PubMed]
- Sakamoto, A.; Matsumaru, T.; Yamamura, N.; Uchida, Y.; Tachikawa, M.; Ohtsuki, S.; Terasaki, T. Quantitative Expression of Human Drug Transporter Proteins in Lung Tissues: Analysis of Regional, Gender, and Interindividual Differences by Liquid Chromatography-Tandem Mass Spectrometry. J. Pharm. Sci. 2013, 102, 3395–3406. [Google Scholar] [CrossRef]
- Nickel, S.; Selo, M.A.; Fallack, J.; Clerkin, C.G.; Huwer, H.; Schneider-Daum, N.; Lehr, C.-M.; Ehrhardt, C. Expression and Activity of Breast Cancer Resistance Protein (BCRP/ABCG2) in Human Distal Lung Epithelial Cells In Vitro. Pharm. Res. 2017, 34, 2477–2487. [Google Scholar] [CrossRef]
- Demeule, M.; Labelle, M.; Régina, A.; Berthelet, F.; Béliveau, R. Isolation of Endothelial Cells from Brain, Lung, and Kidney: Expression of the Multidrug Resistance P-Glycoprotein Isoforms. Biochem. Biophys. Res. Commun. 2001, 281, 827–834. [Google Scholar] [CrossRef]
- Keppler, D. Multidrug Resistance Proteins (MRPs, ABCCs): Importance for Pathophysiology and Drug Therapy. Handb. Exp. Pharmacol. 2011, 201, 299–323. [Google Scholar] [CrossRef]
- Mairinger, S.; Sake, J.A.; Lozano, I.H.; Filip, T.; Sauberer, M.; Stanek, J.; Wanek, T.; Ehrhardt, C.; Langer, O. Assessing the Activity of Multidrug Resistance–Associated Protein 1 at the Lung Epithelial Barrier. J. Nucl. Med. 2020, 61, 1650–1657. [Google Scholar] [CrossRef]
- van der Deen, M.; Marks, H.; Willemse, B.W.M.; Postma, D.S.; Müller, M.; Smit, E.F.; Scheffer, G.L.; Scheper, R.J.; de Vries, E.G.E.; Timens, W. Diminished Expression of Multidrug Resistance-Associated Protein 1 (MRP1) in Bronchial Epithelium of COPD Patients. Virchows Arch. 2006, 449, 682–688. [Google Scholar] [CrossRef] [PubMed]
- Hediger, M.A.; Clémençon, B.; Burrier, R.E.; Bruford, E.A. The ABCs of Membrane Transporters in Health and Disease (SLC Series): Introduction. Mol. Asp. Med. 2013, 34, 95–107. [Google Scholar] [CrossRef]
- Selo, M.A.; Delmas, A.-S.; Springer, L.; Zoufal, V.; Sake, J.A.; Clerkin, C.G.; Huwer, H.; Schneider-Daum, N.; Lehr, C.-M.; Nickel, S.; et al. Tobacco Smoke and Inhaled Drugs Alter Expression and Activity of Multidrug Resistance-Associated Protein-1 (MRP1) in Human Distal Lung Epithelial Cells in Vitro. Front. Bioeng. Biotechnol. 2020, 8, 1030. [Google Scholar] [CrossRef]
- Aguiar, J.A.; Tamminga, A.; Lobb, B.; Huff, R.D.; Nguyen, J.P.; Kim, Y.; Dvorkin-Gheva, A.; Stampfli, M.R.; Doxey, A.C.; Hirota, J.A. The Impact of Cigarette Smoke Exposure, COPD, or Asthma Status on ABC Transporter Gene Expression in Human Airway Epithelial Cells. Sci. Rep. 2019, 9, 153. [Google Scholar] [CrossRef]
- Gumbleton, M.; Al-Jayyoussi, G.; Crandon-Lewis, A.; Francombe, D.; Kreitmeyr, K.; Morris, C.J.; Smith, M.W. Spatial Expression and Functionality of Drug Transporters in the Intact Lung: Objectives for Further Research. Adv. Drug Deliv. Rev. 2011, 63, 110–118. [Google Scholar] [CrossRef]
- Dietl, P.; Frick, M. Channels and Transporters of the Pulmonary Lamellar Body in Health and Disease. Cells 2021, 11, 45. [Google Scholar] [CrossRef] [PubMed]
- Barilli, A.; Visigalli, R.; Ferrari, F.; Di Lascia, M.; Riccardi, B.; Puccini, P.; Dall’Asta, V.; Rotoli, B.M. Organic Cation Transporters (OCTs/OCTNs) in Human Primary Alveolar Epithelial Cells. Biochem. Biophys. Res. Commun. 2021, 576, 27–32. [Google Scholar] [CrossRef] [PubMed]
- Berg, T.; Hegelund-Myrbäck, T.; Öckinger, J.; Zhou, X.-H.; Brännström, M.; Hagemann-Jensen, M.; Werkström, V.; Werkström, V.; Seidegård, J.; Seidegård, J.; et al. Expression of MATE1, P-Gp, OCTN1 and OCTN2, in Epithelial and Immune Cells in the Lung of COPD and Healthy Individuals. Respir. Res. 2018, 19, 68. [Google Scholar] [CrossRef]
- Berg, T.; Hegelund Myrbäck, T.; Olsson, M.; Seidegård, J.; Werkström, V.; Zhou, X.; Grunewald, J.; Gustavsson, L.; Nord, M. Gene expression analysis of membrane transporters and drug-metabolizing enzymes in the lung of healthy and COPD subjects. Pharmacol. Res. Perspect. 2014, 2, e00054. [Google Scholar] [CrossRef]
- Bleasby, K.; Castle, J.C.; Roberts, C.J.; Cheng, C.; Bailey, W.J.; Sina, J.F.; Kulkarni, A.V.; Hafey, M.J.; Evers, R.; Johnson, J.M.; et al. Expression Profiles of 50 Xenobiotic Transporter Genes in Humans and Pre-Clinical Species: A Resource for Investigations into Drug Disposition. Xenobiotica 2006, 36, 963–988. [Google Scholar] [CrossRef]
- Enlo-Scott, Z.; Bäckström, E.; Mudway, I.; Forbes, B. Drug Metabolism in the Lungs: Opportunities for Optimising Inhaled Medicines. Expert. Opin. Drug Metab. Toxicol. 2021, 17, 611–625. [Google Scholar] [CrossRef]
- Fröhlich, E. Toxicity of Orally Inhaled Drug Formulations at the Alveolar Barrier: Parameters for Initial Biological Screening. Drug Deliv. 2017, 24, 891–905. [Google Scholar] [CrossRef]
- Sun, H.; Scott, D.O. Structure-Based Drug Metabolism Predictions for Drug Design. Chem. Biol. Drug Des. 2010, 75, 3–17. [Google Scholar] [CrossRef]
- Newland, N.; Baxter, A.; Hewitt, K.; Minet, E. CYP1A1/1B1 and CYP2A6/2A13 Activity Is Conserved in Cultures of Differentiated Primary Human Tracheobronchial Epithelial Cells. Toxicol. Vitr. 2011, 25, 922–929. [Google Scholar] [CrossRef]
- Yilmaz, Y.; Williams, G.; Walles, M.; Manevski, N.; Krähenbühl, S.; Camenisch, G. Comparison of Rat and Human Pulmonary Metabolism Using Precision-Cut Lung Slices (PCLS). Drug Metab. Lett. 2019, 13, 53–63. [Google Scholar] [CrossRef]
- Zhu, L.-R.; Thomas, P.E.; Lu, G.; Reuhl, K.R.; Yang, G.-Y.; Wang, L.-D.; Wang, S.-L.; Yang, C.S.; He, X.-Y.; Hong, J.-Y. CYP2A13 in Human Respiratory Tissues and Lung Cancers: An Immunohistochemical Study with A New Peptide-Specific Antibody. Drug Metab. Dispos. 2006, 34, 1672–1676. [Google Scholar] [CrossRef] [PubMed]
- Chiang, H.; Wang, C.-K.; Tsou, T.-C. Differential Distribution of CYP2A6 and CYP2A13 in the Human Respiratory Tract. Respiration 2012, 84, 319–326. [Google Scholar] [CrossRef] [PubMed]
- Carr, B.A.; Wan, J.; Hines, R.N.; Yost, G.S. Characterization of the Human Lung CYP2F1 Gene and Identification of a Novel Lung-Specific Binding Motif. J. Biol. Chem. 2003, 278, 15473–15483. [Google Scholar] [CrossRef] [PubMed]
- Anttila, S.; Hukkanen, J.; Hakkola, J.; Stjernvall, T.; Beaune, P.; Edwards, R.J.; Boobis, A.R.; Pelkonen, O.; Raunio, H. Expression and Localization of CYP3A4 and CYP3A5 in Human Lung. Am. J. Respir. Cell Mol. Biol. 1997, 16, 242–249. [Google Scholar] [CrossRef] [PubMed]
- Enlo-Scott, Z.; Swedrowska, M.; Forbes, B. Epithelial Permeability and Drug Absorption in the Lungs. Expert. Opin. Drug Deliv. 2021, 267–299. [Google Scholar] [CrossRef]
- Forbes, B.; Asgharian, B.; Dailey, L.A.; Ferguson, D.; Gerde, P.; Griffiths, P.C.; Gumbleton, M.; Gustavsson, L.; Hardy, C.J.; Hassall, D.G.; et al. Challenges in Inhaled Product Development and Opportunities for Open Innovation. Adv. Drug Deliv. Rev. 2011, 63, 69–87. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Chen, G. Summarized Analysis of FDA Product-Specific Guidances for Generic Drug Development in Inhalation Route.Pdf. Chin. J. Pharm. 2021, 52, 999–1009. [Google Scholar] [CrossRef]
- Shen, A.M.; Minko, T. Pharmacokinetics of Inhaled Nanotherapeutics for Pulmonary Delivery. J. Control. Release 2020, 326, 222–244. [Google Scholar] [CrossRef] [PubMed]
- Selo, M.A.; Sake, J.A.; Ehrhardt, C.; Salomon, J.J. Organic Cation Transporters in the Lung—Current and Emerging (Patho)Physiological and Pharmacological Concepts. Int. J. Mol. Sci. 2020, 21, 9168. [Google Scholar] [CrossRef]
- Pochini, L.; Galluccio, M.; Scalise, M.; Console, L.; Pappacoda, G.; Indiveri, C. OCTN1: A Widely Studied but Still Enigmatic Organic Cation Transporter Linked to Human Pathology and Drug Interactions. Int. J. Mol. Sci. 2022, 23, 914. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Qi, C.; Zhou, J.; Wen, Z.; Zhu, X.; Xia, H.; Song, J. LPS-Induced Inflammation Delays the Transportation of ASP+ Due to down-Regulation of OCTN1/2 in Alveolar Epithelial Cells. Am. J. Respir. Cell Mol. Biol. 2020, 28, 437–447. [Google Scholar] [CrossRef]
- Nakamura, T.; Nakanishi, T.; Haruta, T.; Shirasaka, Y.; Keogh, J.P.; Tamai, I. Transport of Ipratropium, an Anti-Chronic Obstructive Pulmonary Disease Drug, Is Mediated by Organic Cation/Carnitine Transporters in Human Bronchial Epithelial Cells: Implications for Carrier-Mediated Pulmonary Absorption. Mol. Pharm. 2010, 7, 187–195. [Google Scholar] [CrossRef]
- Al-Jayyoussi, G.; Price, D.F.; Kreitmeyr, K.; Keogh, J.P.; Smith, M.W.; Gumbleton, M.; Morris, C.J.; Salomon, J.J.; Hagos, Y.; Petzke, S.; et al. Absorption of Ipratropium and l -Carnitine into the Pulmonary Circulation of the Ex-Vivo Rat Lung Is Driven by Passive Processes Rather than Active Uptake by OCT/OCTN Transporters. Mol. Pharm. 2015, 496, 834–841. [Google Scholar] [CrossRef] [PubMed]
- Salomon, J.J.; Ehrhardt, C. Organic Cation Transporters in the Blood–Air Barrier: Expression and Implications for Pulmonary Drug Delivery. Ther. Deliv. 2012, 3, 735–747. [Google Scholar] [CrossRef]
- Storelli, F.; Yin, M.; Kumar, A.R.; Ladumor, M.K.; Evers, R.; Chothe, P.P.; Enogieru, O.J.; Liang, X.; Lai, Y.; Unadkat, J.D. The next Frontier in ADME Science: Predicting Transporter-Based Drug Disposition, Tissue Concentrations and Drug-Drug Interactions in Humans. Pharmacol. Ther. 2022, 238, 108271. [Google Scholar] [CrossRef] [PubMed]
- Mairinger, S.; Hernández-Lozano, I.; Filip, T.; Löbsch, M.; Stanek, J.; Zeitlinger, M.; Hacker, M.; Tournier, N.; Wanek, T.; Ehrhardt, C.; et al. Influence of P-Glycoprotein on Pulmonary Disposition of the Model Substrate [11C]Metoclopramide Assessed by PET Imaging in Rats. Eur. J. Pharm. Sci. 2023, 183, 106404. [Google Scholar] [CrossRef] [PubMed]
- Aljayyoussi, G.; Price, D.F.; Francombe, D.; Taylor, G.; Smith, M.W.; Morris, C.J.; Edwards, C.D.; Eddershaw, P.; Griffiths, P.C.; Gumbleton, M. Selectivity in the Impact of P-Glycoprotein upon Pulmonary Absorption of Airway-Dosed Substrates: A Study in Ex Vivo Lung Models Using Chemical Inhibition and Genetic Knockout. J. Pharm. Sci. 2013, 102, 3382–3394. [Google Scholar] [CrossRef] [PubMed]
- Boger, E.; Evans, N.; Chappell, M.; Lundqvist, A.; Ewing, P.; Wigenborg, A.; Fridén, M. Systems Pharmacology Approach for Prediction of Pulmonary and Systemic Pharmacokinetics and Receptor Occupancy of Inhaled Drugs. CPT Pharmacomet. Syst. Pharmacol. 2016, 5, 201–210. [Google Scholar] [CrossRef] [PubMed]
- Boger, E.; Ewing, P.; Eriksson, U.G.; Fihn, B.-M.; Chappell, M.; Evans, N.; Fridén, M. A Novel In Vivo Receptor Occupancy Methodology for the Glucocorticoid Receptor: Toward An Improved Understanding of Lung Pharmacokinetic/Pharmacodynamic Relationships. J. Pharmacol. Exp. Ther. 2015, 353, 279–287. [Google Scholar] [CrossRef] [PubMed]
- Nave, R. Metabolism of Ciclesonide in the Upper and Lower Airways: Review of Available Data. J. Asthma Allergy 2008, 1, 11. [Google Scholar] [CrossRef] [PubMed]
- Nonaka, T.; Nave, R.; McCracken, N.; Kawashimo, A.; Katsuura, Y. Ciclesonide Uptake and Metabolism in Human Alveolar Type II Epithelial Cells (A549). BMC Pharmacol. 2007, 7, 12. [Google Scholar] [CrossRef]
- Sato, H.; Nave, R.; Nonaka, T.; Yoshihisa, N.; Atsuhiro, N.; Mochizuki, T.; Takahama, S.; Kondo, S.; Wingertzahn, M. Uptake and Metabolism of Ciclesonide and Retention of Desisobutyryl-Ciclesonide for up to 24 Hours in Rabbit Nasal Mucosa. BMC Pharmacol. 2007, 7, 7. [Google Scholar] [CrossRef]
- Sato, H.; Nave, R.; Nonaka, T.; Mochizuki, T.; Takahama, S.; Kondo, S. In Vitro Metabolism of Ciclesonide in Human Nasal Epithelial Cells. Biopharm. Drug Dispos. 2007, 28, 43–50. [Google Scholar] [CrossRef] [PubMed]
- Nave, R.; Fisher, R.; Zech, K. In Vitro Metabolism of Ciclesonide in Human Lung and Liver Precision-Cut Tissue Slices. Biopharm. Drug Dispos. 2006, 27, 197–207. [Google Scholar] [CrossRef] [PubMed]
- Mukker, J.K.; Singh, R.S.P.; Derendorf, H. Ciclesonide: A Pro-Soft Drug Approach for Mitigation of Side Effects of Inhaled Corticosteroids. J. Pharm. Sci. 2016, 105, 2509–2514. [Google Scholar] [CrossRef] [PubMed]
- Maneechotesuwan, K.; Singh, D.; Fritscher, L.G.; Dursunoglu, N.; Abhijith, P.G.; Phansalkar, A.; Aggarwal, B.; Pizzichini, E.; Chorazy, J.; Burnett, H. Impact of Inhaled Fluticasone Propionate/Salmeterol on Health-Related Quality of Life in Asthma: A Network Meta-Analysis. Respir. Med. 2022, 203, 106993. [Google Scholar] [CrossRef] [PubMed]
- Mills, H.; Acquah, R.; Tang, N.; Cheung, L.; Klenk, S.; Glassen, R.; Pirson, M.; Albert, A.; Hoang, D.T.; Van, T.N. Biochemical Behaviours of Salmeterol/Fluticasone Propionate in Treating Asthma and Chronic Obstructive Pulmonary Diseases (COPD). Emerg. Med. Int. 2022, 2022, 1–5. [Google Scholar] [CrossRef]
- Pearce, R.E.; Leeder, J.S.; Kearns, G.L. Biotransformation of fluticasone: In vitro characterization. Drug Metab. Dispos. 2006, 34, 1035–1040. [Google Scholar] [CrossRef] [PubMed]
- Nave, R.; Fisher, R.; McCracken, N. In Vitro Metabolism of Beclomethasone Dipropionate, Budesonide, Ciclesonide, and Fluticasone Propionate in Human Lung Precision-Cut Tissue Slices. Respir. Res. 2007, 8, 65. [Google Scholar] [CrossRef] [PubMed]
- Wakayama, N.; Toshimoto, K.; Maeda, K.; Hotta, S.; Ishida, T.; Akiyama, Y.; Sugiyama, Y. In Silico Prediction of Major Clearance Pathways of Drugs among 9 Routes with Two-Step Support Vector Machines. Pharm. Res. 2018, 35, 197. [Google Scholar] [CrossRef] [PubMed]
- Nassr, N.; Huennemeyer, A.; Herzog, R.; von Richter, O.; Hermann, R.; Koch, M.; Duffy, K.; Zech, K.; Lahu, G. Effects of Rifampicin on the Pharmacokinetics of Roflumilast and Roflumilast N-Oxide in Healthy Subjects. Br. J. Clin. Pharmacol. 2009, 68, 580–587. [Google Scholar] [CrossRef]
- Thurston, A.W.; Osborne, D.W.; Snyder, S.; Higham, R.C.; Burnett, P.; Berk, D.R. Pharmacokinetics of Roflumilast Cream in Chronic Plaque Psoriasis: Data from Phase I to Phase III Studies. Am. J. Clin. Dermatol. 2023, 24, 315–324. [Google Scholar] [CrossRef]
- Food and Drug Administration. M12 Drug Interaction Studies; Food and Drug Administration: Silver Spring, MA, USA, 2022.
- The International Council for Harmonisation. ICH Guideline M12 on Drug Interaction Studies; The International Council for Harmonisation: Montreal, QC, Canada, 2022. [Google Scholar]
- Bergagnini-Kolev, M.; Kane, K.; Templeton, I.E.; Curran, A.K. Evaluation of the Potential for Drug-Drug Interactions with Inhaled Itraconazole Using Physiologically Based Pharmacokinetic Modelling, Based on Phase 1 Clinical Data. AAPS J. 2023, 25, 62. [Google Scholar] [CrossRef] [PubMed]
- Patel, A.; Wilson, R.; Harrell, A.W.; Taskar, K.S.; Taylor, M.; Tracey, H.; Riddell, K.; Georgiou, A.; Cahn, A.P.; Marotti, M.; et al. Drug Interactions for Low-Dose Inhaled Nemiralisib: A Case Study Integrating Modeling, In Vitro, and Clinical Investigations. Drug Metab. Dispos. 2020, 48, 307–316. [Google Scholar] [CrossRef] [PubMed]
- Sawant-Basak, A.; Obach, R.S. Emerging Models of Drug Metabolism, Transporters, and Toxicity. Drug Metab. Dispos. 2018, 46, 1556–1561. [Google Scholar] [CrossRef] [PubMed]
- Matera, M.G.; Calzetta, L.; Ora, J.; Rogliani, P.; Cazzola, M. Pharmacokinetic/Pharmacodynamic Approaches to Drug Delivery Design for Inhalation Drugs. Expert. Opin. Drug Deliv. 2021, 18, 891–906. [Google Scholar] [CrossRef] [PubMed]
- Mairinger, S.; Hernández-Lozano, I.; Zeitlinger, M.; Ehrhardt, C.; Langer, O. Nuclear Medicine Imaging Methods as Novel Tools in the Assessment of Pulmonary Drug Disposition. Expert. Opin. Drug Deliv. 2022, 19, 1561–1575. [Google Scholar] [CrossRef] [PubMed]
- Roerig, D.L.; Audi, S.H.; Ahlf, S.B. Kinetic characterization of p-glycoprotein-mediated efflux of rhodamine 6g in the intact rabbit lung. Drug Metab. Dispos. 2004, 32, 953–958. [Google Scholar] [CrossRef] [PubMed]
- Nahar, K.; Gupta, N.; Gauvin, R.; Absar, S.; Patel, B.; Gupta, V.; Khademhosseini, A.; Ahsan, F. IIn Vitro, In Vivo and Ex Vivo Models for Studying Particle Deposition and Drug Absorption of Inhaled Pharmaceuticals. Eur. J. Pharm. Sci. 2013, 49, 805–818. [Google Scholar] [CrossRef]
- Wang, W.; Ouyang, D. Opportunities and Challenges of Physiologically Based Pharmacokinetic Modeling in Drug Delivery. Drug Discov. Today 2022, 27, 2100–2120. [Google Scholar] [CrossRef]
- Tang, C.; Ou-yang, C.; Chen, W.; Zou, C.; Huang, J.; Cui, C.; Yang, S.; Guo, C.; Yang, X.; Lin, Y.; et al. Prediction of Pharmacokinetic Parameters of Inhaled Indacaterol Formulation in Healthy Volunteers Using Physiologically-Based Pharmacokinetic (PBPK) Model. Eur. J. Pharm. Sci. 2022, 168, 106055. [Google Scholar] [CrossRef]
- Debnath, S.K.; Srivastava, R.; Debnath, M.; Omri, A. Status of Inhalable Antimicrobial Agents for Lung Infection: Progress and Prospects. Expert. Rev. Respir. Med. 2021, 15, 1251–1270. [Google Scholar] [CrossRef]
- Michi, A.N.; Proud, D. A Toolbox for Studying Respiratory Viral Infections Using Air-Liquid Interface Cultures of Human Airway Epithelial Cells. Am. J. Physiol. Lung Cell. Mol. Physiol. 2021, 321, L263–L279. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.F.; Lethem, M.I.; Lansley, A.B. A Comparison of Three Mucus-Secreting Airway Cell Lines (Calu-3, SPOC1 and UNCN3T) for Use as Biopharmaceutical Models of the Nose and Lung. Eur. J. Pharm. Biopharm. 2021, 167, 159–174. [Google Scholar] [CrossRef] [PubMed]
- Sakagami, M. In Vitro, Ex Vivo and in Vivo Methods of Lung Absorption for Inhaled Drugs. Adv. Drug Deliv. Rev. 2020, 161–162, 63–74. [Google Scholar] [CrossRef] [PubMed]
- Silva, S.; Bicker, J.; Falcão, A.; Fortuna, A. Air-Liquid Interface (ALI) Impact on Different Respiratory Cell Cultures. Eur. J. Pharm. Biopharm. 2023, 184, 62–82. [Google Scholar] [CrossRef] [PubMed]
- Lee, R.E.; Reidel, B.; Nelson, M.R.; Macdonald, J.K.; Kesimer, M.; Randell, S.H. Air-Liquid Interface Cultures to Model Drug Delivery through the Mucociliary Epithelial Barrier. Adv. Drug Deliv. Rev. 2023, 198, 114866. [Google Scholar] [CrossRef] [PubMed]
- Newman, S.; Fleming, J. Challenges in Assessing Regional Distribution of Inhaled Drug in the Human Lungs. Expert. Opin. Drug Deliv. 2011, 8, 841–855. [Google Scholar] [CrossRef] [PubMed]
- Kasper, J.Y.; Hermanns, M.I.; Unger, R.E.; Kirkpatrick, C.J. A Responsive Human Triple-Culture Model of the Air-Blood Barrier: Incorporation of Different Macrophage Phenotypes. J. Tissue Eng. Regen. Med. 2017, 11, 1285–1297. [Google Scholar] [CrossRef]
- Kletting, S. Co-Culture of Human Alveolar Epithelial (hAELVi) and Macrophage (THP-1) Cell Lines. ALTEX 2018, 35, 211–222. [Google Scholar] [CrossRef]
- Costa, A.; de Souza Carvalho-Wodarz, C.; Seabra, V.; Sarmento, B.; Lehr, C.-M. Triple Co-Culture of Human Alveolar Epithelium, Endothelium and Macrophages for Studying the Interaction of Nanocarriers with the Air-Blood Barrier. Acta Biomater. 2019, 91, 235–247. [Google Scholar] [CrossRef]
- Dohle, E.; Singh, S.; Nishigushi, A.; Fischer, T.; Wessling, M.; Möller, M.; Sader, R.; Kasper, J.; Ghanaati, S.; Kirkpatrick, C.J. Human Co- and Triple-Culture Model of the Alveolar-Capillary Barrier on a Basement Membrane Mimic. Tissue Eng. Part. C Methods 2018, 24, 495–503. [Google Scholar] [CrossRef]
- Brookes, O.; Boland, S.; Lai Kuen, R.; Miremont, D.; Movassat, J.; Baeza-Squiban, A. Co-Culture of Type I and Type II Pneumocytes as a Model of Alveolar Epithelium. PLoS ONE 2021, 16, e0248798. [Google Scholar] [CrossRef] [PubMed]
- Kuehn, A. Human Alveolar Epithelial Cells Expressing Tight Junctions to Model the Air-Blood Barrier. ALTEX 2016, 33, 251–260. [Google Scholar] [CrossRef] [PubMed]
- Carius, P.; Jungmann, A.; Bechtel, M.; Grißmer, A.; Boese, A.; Gasparoni, G.; Salhab, A.; Seipelt, R.; Urbschat, K.; Richter, C.; et al. A Monoclonal Human Alveolar Epithelial Cell Line (“Arlo”) with Pronounced Barrier Function for Studying Drug Permeability and Viral Infections. Adv. Sci. 2023, 10, e2207301. [Google Scholar] [CrossRef] [PubMed]
- Sharan, S.; Nagar, S. Pulmonary Metabolism of Resveratrol: In Vitro and In Vivo Evidence. Drug Metab. Dispos. 2013, 41, 1163–1169. [Google Scholar] [CrossRef]
- Rock, B.M.; Foti, R.S. Pharmacokinetic and Drug Metabolism Properties of Novel Therapeutic Modalities. Drug Metab. Dispos. 2019, 47, 1097–1099. [Google Scholar] [CrossRef]
- Marques, L.; Vale, N. Salbutamol in the Management of Asthma: A Review. Int. J. Mol. Sci. 2022, 23, 14207. [Google Scholar] [CrossRef] [PubMed]
- Hansen, T.; Chougule, A.; Borlak, J. Isolation and Cultivation of Metabolically Competent Alveolar Epithelial Cells from A/J Mice. Toxicol. Vitr. 2014, 28, 812–821. [Google Scholar] [CrossRef]
- Nayak, D.K.; Mendez, O.; Bowen, S.; Mohanakumar, T. Isolation and In Vitro Culture of Murine and Human Alveolar Macrophages. J. Vis. Exp. 2018, 134, e57287. [Google Scholar] [CrossRef] [PubMed]
- Oreffo, V.I.; Morgan, A.; Richards, R.J. Isolation of Clara Cells from the Mouse Lung. Environ. Health Perspect. 1990, 85, 51–64. [Google Scholar] [CrossRef]
- Tǎbǎran, A.-F.; O’Sullivan, M.G.; Seabloom, D.E.; Vevang, K.R.; Smith, W.E.; Wiedmann, T.S.; Peterson, L.A. Inhaled Furan Selectively Damages Club Cells in Lungs of A/J Mice. Toxicol. Pathol. 2019, 47, 842–850. [Google Scholar] [CrossRef]
- Ong, H.X.; Traini, D.; Young, P.M. Pharmaceutical Applications of the Calu-3 Lung Epithelia Cell Line. Expert. Opin. Drug Deliv. 2013, 10, 1287–1302. [Google Scholar] [CrossRef] [PubMed]
- Forbes, B.; Ehrhardt, C. Human Respiratory Epithelial Cell Culture for Drug Delivery Applications. Eur. J. Pharm. Biopharm. 2005, 60, 193–205. [Google Scholar] [CrossRef]
- Costa, A.; Sarmento, B.; Seabra, V. An Evaluation of the Latest in Vitro Tools for Drug Metabolism Studies. Expert. Opin. Drug Metab. Toxicol. 2014, 10, 103–119. [Google Scholar] [CrossRef] [PubMed]
- Somers, G.I.; Lindsay, N.; Lowdon, B.M.; Jones, A.E.; Freathy, C.; Ho, S.; Woodrooffe, A.J.M.; Bayliss, M.K.; Manchee, G.R. A Comparison of the Expression and Metabolizing Activities of Phase I and II Enzymes in Freshly Isolated Human Lung Parenchymal Cells and Cryopreserved Human Hepatocytes. Drug Metab. Dispos. 2007, 35, 1797–1805. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Canton, C.; Minet, E.; Anadon, A.; Meredith, C. Metabolic Characterization of Cell Systems Used in in Vitro Toxicology Testing: Lung Cell System BEAS-2B as a Working Example. Toxicol. Vitr. 2013, 27, 1719–1727. [Google Scholar] [CrossRef] [PubMed]
- Sheets, P.L.; Yost, G.S.; Carlson, G.P. Benzene Metabolism in Human Lung Cell Lines BEAS-2B and A549 and Cells Overexpressing CYP2F1. J. Biochem. Mol. Toxicol. 2004, 18, 92–99. [Google Scholar] [CrossRef] [PubMed]
- Kuzuya, Y.; Adachi, T.; Hara, H.; Anan, A.; Izuhara, K.; Nagai, H. Induction of Drug-Metabolizing Enzymes and Transporters in Human Bronchial Epithelial Cells by Beclomethasone Dipropionate. IUBMB Life (Int. Union Biochem. Mol. Biol. Life) 2004, 56, 355–359. [Google Scholar] [CrossRef]
- Cidem, A.; Bradbury, P.; Traini, D.; Ong, H.X. Modifying and Integrating In Vitro and Ex Vivo Respiratory Models for Inhalation Drug Screening. Front. Bioeng. Biotechnol. 2020, 8, 581995. [Google Scholar] [CrossRef]
- Bäckström, E.; Lundqvist, A.; Boger, E.; Svanberg, P.; Ewing, P.; Hammarlund-Udenaes, M.; Fridén, M. Development of a Novel Lung Slice Methodology for Profiling of Inhaled Compounds. J. Pharm. Sci. 2016, 105, 838–845. [Google Scholar] [CrossRef]
- Bäckström, E.; Boger, E.; Lundqvist, A.; Hammarlund-Udenaes, M.; Fridén, M. Lung Retention by Lysosomal Trapping of Inhaled Drugs Can Be Predicted In Vitro with Lung Slices. J. Pharm. Sci. 2016, 105, 3432–3439. [Google Scholar] [CrossRef]
- Liu, G.; Betts, C.; Cunoosamy, D.M.; Åberg, P.M.; Hornberg, J.J.; Sivars, K.B.; Cohen, T.S. Use of Precision Cut Lung Slices as a Translational Model for the Study of Lung Biology. Respir. Res. 2019, 20, 162. [Google Scholar] [CrossRef]
- Umachandran, M.; Ioannides, C. Stability of Cytochromes P450 and Phase II Conjugation Systems in Precision-Cut Rat Lung Slices Cultured up to 72h. Toxicology 2006, 224, 14–21. [Google Scholar] [CrossRef]
- Bosquillon, C.; Madlova, M.; Patel, N.; Clear, N.; Forbes, B. A Comparison of Drug Transport in Pulmonary Absorption Models: Isolated Perfused Rat Lungs, Respiratory Epithelial Cell Lines and Primary Cell Culture. Pharm. Res. 2017, 34, 2532–2540. [Google Scholar] [CrossRef] [PubMed]
- Borghardt, J.M.; Kloft, C.; Sharma, A. Inhaled Therapy in Respiratory Disease: The Complex Interplay of Pulmonary Kinetic Processes. Can. Respir. J. 2018, 2018, 2732017. [Google Scholar] [CrossRef]
- Eriksson, J.; Sjögren, E.; Thörn, H.; Rubin, K.; Bäckman, P.; Lennernäs, H. Pulmonary Absorption—Estimation of Effective Pulmonary Permeability and Tissue Retention of Ten Drugs Using an Ex Vivo Rat Model and Computational Analysis. Eur. J. Pharm. Biopharm. 2018, 124, 1–12. [Google Scholar] [CrossRef]
- Eriksson, J.; Thörn, H.; Sjögren, E.; Holmstén, L.; Rubin, K.; Lennernäs, H. Pulmonary Dissolution of Poorly Soluble Compounds Studied in an Ex Vivo Rat Lung Model. Mol. Pharm. 2019, 16, 3053–3064. [Google Scholar] [CrossRef] [PubMed]
- Bates, J.H.T.; Davis, G.S.; Majumdar, A.; Butnor, K.J.; Suki, B. Linking Parenchymal Disease Progression to Changes in Lung Mechanical Function by Percolation. Am. J. Respir. Crit. Care Med. 2007, 176, 617–623. [Google Scholar] [CrossRef] [PubMed]
- Shi, C.; Ignjatović, J.; Liu, T.; Han, M.; Cun, D.; Đuriš, J.; Yang, M.; Cvijić, S. In Vitro—In Vivo—In Silico Approach in the Development of Inhaled Drug Products: Nanocrystal-Based Formulations with Budesonide as a Model Drug. Asian J. Pharm. Sci. 2021, 16, 350–362. [Google Scholar] [CrossRef]
- Gill, J.; Moullet, M.; Martinsson, A.; Miljković, F.; Williamson, B.; Arends, R.H.; Pilla Reddy, V. Comparing the applications of machine learning, PBPK, and population pharmacokinetic models in pharmacokinetic drug–drug interaction prediction. CPT Pharmacom Syst. Pharma 2022, 11, 1560–1568. [Google Scholar] [CrossRef]
- Bartels, M.; van Osdol, W.; Le Merdy, M.; Chappelle, A.; Kuhl, A.; West, R. In Silico Predictions of Absorption of MDI Substances after Dermal or Inhalation Exposures to Support a Category Based Read-across Assessment. Regul. Toxicol. Pharmacol. 2022, 129, 105117. [Google Scholar] [CrossRef]
- Aulin, L.B.S.; Tandar, S.T.; van Zijp, T.; van Ballegooie, E.; van der Graaf, P.H.; Saleh, M.A.A.; Välitalo, P.; van Hasselt, J.G.C. Physiologically Based Modelling Framework for Prediction of Pulmonary Pharmacokinetics of Antimicrobial Target Site Concentrations. Clin. Pharmacokinet. 2022, 61, 1735–1748. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Chen, Y.; Wang, L.; Xu, S.; Fang, G.; Guo, X.; Chen, Z.; Gu, Z. PBPK Modeling on Organs-on-Chips: An Overview of Recent Advancements. Front. Bioeng. Biotechnol. 2022, 10, 900481. [Google Scholar] [CrossRef] [PubMed]
- Miller, N.A.; Graves, R.H.; Edwards, C.D.; Amour, A.; Taylor, E.; Robb, O.; O’Brien, B.; Patel, A.; Harrell, A.W.; Hessel, E.M. Physiologically Based Pharmacokinetic Modelling of Inhaled Nemiralisib: Mechanistic Components for Pulmonary Absorption, Systemic Distribution, and Oral Absorption. Clin. Pharmacokinet. 2022, 61, 281–293. [Google Scholar] [CrossRef] [PubMed]
Gene | mRNA Level | Protein Expression | |
---|---|---|---|
Transporter | |||
ABC Transporter | |||
MDR1/P-gp | ABCB1 | +++ | ++ |
MRP1 | ABCC1 | ++ | ++ |
MRP2 | ABCC2 | +/− | +/− |
MRP3 | ABCC3 | + | + |
MRP4 | ABCC4 | +/− | + |
MRP5 | ABCC5 | + | + |
MRP6 | ABCC6 | ++ | + |
MRP7 | ABCC10 | ++ | +/− |
MRP8 | ABCC11 | − | − |
MRP9 | ABCC12 | − | − |
BCRP | ABCG2 | ++ | ++ |
SLC transporter | |||
OCT1 | SLC22A1 | +/− | +/− |
OCT2 | SLC22A2 | − | − |
OCT3 | SLC22A3 | ++ | ++ |
OCTN1 | SLC22A4 | ++/+ | ++ |
OCTN2 | SLC22A5 | + | ++/+ |
OATP1A2 | SLCO1A2 | +/− | +/− |
OATP1B3 | SLCO1B3 | +/− | ND |
OATP2A1 | SLCO2A1 | + | ++ |
OATP2B1 | SLCO2B1 | ++/+ | ++ |
OATP3A1 | SLCO3A1 | + | + |
OATP4A1 | SLCO4A1 | ++ | + |
OATP4C1 | SLCO4C1 | + | + |
PEPT1 | SCL15A1 | − | − |
PEPT2 | SCL15A2 | ++ | + |
MATE1 | SLC47A1 | + | + |
SERT | SLC6A4 | ++ | + |
Enzyme | |||
Phase I | |||
CYP1A1 | CYP1A1 | +++/− | ++ |
CYP1A2 | CYP1A2 | +/− | + |
CYP1B1 | CYP1B1 | ++/+ | + |
CYP2A6 | CYP2A6 | ++/+ | ++ |
CYP2A13 * | CYP2A13 | +/+++ | ND |
CYP2B6/7 | CYP2B6/7 | +++ | + |
CYP2C8 | CYP2C8 | +/− | + |
CYP2C9 | CYP2C9 | +/− | ND |
CYP2C18 | CYP2C18 | + | + |
CYP2C19 | CYP2C19 | +/− | ND |
CYP2D6 | CYP2D6 | +/− | ND |
CYP2E1 | CYP2E1 | +++/++/+ | + |
CYP2F1 * | CYP2F1 | +++/++ | ND |
CYP2J2 | CYP2J2 | + | + |
CYP2R1 | CYP2R1 | + | ND |
CYP2S1 | CYP2S1 | + | ND |
CYP2W1 | CYP2W1 | ++ | ND |
CYP3A4 | CYP3A4 | +/− | ND |
CYP3A5 * | CYP3A5 | +++/++ | ++ |
CYP3A7 | CYP3A7 | +/− | ND |
CYP3A43 | CYP3A43 | +/− | ND |
CYP4B1 * | CYP4B1 | + | ND |
CES1 | CES1 | ++ | ++ |
FMO2 | FMO | + | + |
Phase II | |||
GSTs | / | ++ | ++ |
NATs | / | ++ | + |
SULTs | / | + | + |
UGTs | / | + | − |
Cell Line | Transporter Expression | Enzyme Expression | Characteristic |
---|---|---|---|
Calu-3 | P-gp, MRP1, MRP2, BCRP *, OCT1, OCT3, OCTN1, OCTN2 | ND |
|
BEAS-2B | MRP1, BCRP, OCT1, OCT2, OCT3, OCTN1, OCTN2, OATP1A2 | CYP1B1, CYP2R1, CYP2S1, CYP2U1, CYP4A11, CYP4A22, CYP4B1, CYP4F11, CYP4F12, CYP4V2, CYP4X1, CYP4Z1, CYP5A11, CYP7B1, CYP8A1, CYP20A1, CYP21A2, CYP27A1, CYP27B1, CYP27C1, CYP39A1, CYP51A1, CES2, CES3, FMO2, FMO3, FMO4, FMO5, ADH1B, AKRs, EPHX1, EPHX2, NQO1, NQO2, GSTA4, GSTP1, SULT1E1, UGT3A2 |
|
16HBE14o- | ND | CYP1B1, CYP2E1, CYP2J2, CYP2S1, CYP2U1, CYP4F3, CYP4V2, CYP7B1, CYP8A1, CYP20A1, CYP24A1, CYP26B1, CYP27B1, CYP27C1, CYP39A1, CES2, CES3, FMO4, FMO5, ADH5, ADHFE1, AKRs, EPHX1, EPHX2, NQO1, NQO2, GSTA4, GSTP1, NAT1, NAT5, SULT1A3, SULT1A4, SULT2B1 |
|
NCI-H292 | P-gp, MRP1, MRP2, BCRP, OCT1, OCT2, OCT3, OCTN1, OCTN2 | CYP1A1, CYP1B1, CYP2A7, CYP2A13, CYP2B6, CYP2D6, CYP2E1, CYP2J1, CYP2R1, CYP2S1, CYP2U1, CYP2W1, CYP3A5, CYP4B1, CYP4F11, CYP4F12, CYP4V2, CYP4X1, CYP7B1, CYP8A1, CYP20A1, CYP21A2, CYP24A1, CYP26A1, CYP26B1, CYP27B1, CYP39A1, CYP51A1, CES2, CES3, FMO4, FMO5, ADH5, ADHFE1, AKRs, EPHX1, EPHX2, NQO1, NQO2, GSTA4, GSTP1, NAT1, NAT5, SULT1A2, SULT1A2, SULT1A4, SULT1E1, SULT2B1, UGT3A2 |
|
NCI-H441 | P-gp, MRP1, MRP2, MRP3, BCRP, OCT1, OCT2, OCT3, OCTN1, OCTN2, PEPT2 | ND |
|
A549 | P-gp, MRP1, MRP2, MRP3, BCRP, OCT1, OCT3, OCTN1, OAT4, PEPT1, | CYP1A1, CYP1B1, CYP2A7, CYP2C9, CYP2C18, CYP2J2, CYP2R1, CYP2S1, CYP2U1, CYP3A5, CYP4F3, CYP4F11, CYP4F12, CYP4V2, CYP5A11, CYP7B1, CYP20A1, CYP24A1, CYP26A1, CYP26B1, CYP27B1, CYP27C1, CYP39A1, CYP51A1, CES1, CES2, CES3, FMO4, FMO5, ADH5, AKRs, EPHX1, EPHX2, NQO1, NQO2, GSTA1, GSTA2, GSTA4, GSTP1, NAT1, NAT5, SULT1A3, SULT1A4, SULT1C2, SULT2B1, UGT1A1, UGT1A6, UGT1A7, UGT1A8, UGT1A9, UGT2A3, UGT2B10, UGT2B11, UGT2B15, UGT2B28, UGT2B4, UGT2B7 |
|
Model | Advantages | Disadvantages |
---|---|---|
In vitro |
| |
Primary cells (bronchial or alveolar) |
|
|
Cell lines |
|
|
Lung cell homogenate |
|
|
S9 fraction |
|
|
Microsomes |
|
|
Cell cytosol |
|
|
Ex vivo |
| |
Precision-cut lung slices |
|
|
Isolated perfused lungs |
|
|
In vivo |
|
|
In silico |
|
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dong, L.; Zhuang, X. Insights into Inhalation Drug Disposition: The Roles of Pulmonary Drug-Metabolizing Enzymes and Transporters. Int. J. Mol. Sci. 2024, 25, 4671. https://doi.org/10.3390/ijms25094671
Dong L, Zhuang X. Insights into Inhalation Drug Disposition: The Roles of Pulmonary Drug-Metabolizing Enzymes and Transporters. International Journal of Molecular Sciences. 2024; 25(9):4671. https://doi.org/10.3390/ijms25094671
Chicago/Turabian StyleDong, Liuhan, and Xiaomei Zhuang. 2024. "Insights into Inhalation Drug Disposition: The Roles of Pulmonary Drug-Metabolizing Enzymes and Transporters" International Journal of Molecular Sciences 25, no. 9: 4671. https://doi.org/10.3390/ijms25094671
APA StyleDong, L., & Zhuang, X. (2024). Insights into Inhalation Drug Disposition: The Roles of Pulmonary Drug-Metabolizing Enzymes and Transporters. International Journal of Molecular Sciences, 25(9), 4671. https://doi.org/10.3390/ijms25094671