Fetal Kidney Grafts and Organoids from Microminiature Pigs: Establishing a Protocol for Production and Long-Term Cryopreservation
Abstract
:1. Introduction
2. Results
2.1. Efficient Retrieval of Pig Fetuses While Preserving Maternal Fertility
2.2. Estimation of the Usability of the Cryopreserved Porcine Kidneys by In Vivo Implantation
2.3. Successful Production of Pig Renal Organoids from the Cryopreserved Fetal Kidneys
3. Discussion
4. Materials and Methods
4.1. Research Animals
4.2. Cesarean Section and Fertility Preservation in Pigs
4.3. Collection, Cryopreservation, and Thawing of Fetal Porcine Kidneys
4.4. In Vivo Fetal Kidney Transplantation Assay
4.5. In Vitro Organoid Experiment Assay
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Montgomery, R.A.; Stern, J.M.; Lonze, B.E.; Tatapudi, V.S.; Mangiola, M.; Wu, M.; Weldon, E.; Lawson, N.; Deterville, C.; Dieter, R.A.; et al. Results of two cases of pig-to-human kidney xenotransplantation. N. Engl. J. Med. 2022, 386, 1889–1898. [Google Scholar] [CrossRef] [PubMed]
- Yokoo, T.; Yamanaka, S.; Kobayashi, E. Xeno-regenerative medicine: A novel concept for donor kidney fabrication. Xenotransplantation 2020, 27, e12622. [Google Scholar] [CrossRef] [PubMed]
- Matsui, K.; Kinoshita, Y.; Inage, Y.; Matsumoto, N.; Morimoto, K.; Saito, Y.; Takamura, T.; Matsunari, H.; Yamanaka, S.; Nagashima, H.; et al. Cryopreservation of fetal porcine kidneys for xenogeneic regenerative medicine. J. Clin. Med. 2023, 12, 2293. [Google Scholar] [CrossRef] [PubMed]
- Cui, S.; Fang, X.; Lee, H.; Shin, Y.J.; Koh, E.S.; Chung, S.; Park, H.S.; Lim, S.W.; Lee, K.I.; Lee, J.Y.; et al. Modeling of Fabry disease nephropathy using patient derived human induced pluripotent stem cells and kidney organoid system. J. Transl. Med. 2023, 21, 138. [Google Scholar] [CrossRef] [PubMed]
- Tran, T.; Song, C.J.; Nguyen, T.; Cheng, S.Y.; McMahon, J.A.; Yang, R.; Guo, Q.; Der, B.; Lindstrom, N.O.; Lin, D.C.; et al. A scalable organoid model of human autosomal dominant polycystic kidney disease for disease mechanism and drug discovery. Cell Stem Cell 2022, 29, 1083–1101.e7. [Google Scholar] [CrossRef] [PubMed]
- Mandai, M.; Watanabe, A.; Kurimoto, Y.; Hirami, Y.; Morinaga, C.; Daimon, T.; Fujihara, M.; Akimaru, H.; Sakai, N.; Shibata, Y.; et al. Autologous induced stem-cell-derived retinal cells for macular degeneration. N. Engl. J. Med. 2017, 376, 1038–1046. [Google Scholar] [CrossRef] [PubMed]
- Little, M.H.; Combes, A.N. Kidney organoids: Accurate models or fortunate accidents. Genes. Dev. 2019, 33, 1319–1345. [Google Scholar] [CrossRef] [PubMed]
- Ho, Y.K.; Loke, K.M.; Woo, J.Y.; Lee, Y.L.; Too, H.-P. Cryopreservation does not change the performance and characteristics of allogenic mesenchymal stem cells highly over-expressing a cytoplasmic therapeutic transgene for cancer treatment. Stem Cell Res. Ther. 2022, 13, 519. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.Q.; Tan, P.C.; Gao, Y.M.; Zhang, X.J.; Xie, Y.; Zheng, D.N.; Zhou, S.B.; Li, Q.F. The effect of glycerol as a cryoprotective agent in the cryopreservation of adipose tissue. Stem Cell Res. Ther. 2022, 13, 152. [Google Scholar] [CrossRef] [PubMed]
- Kojayan, G.; Whaley, D.; Alexander, M.; Rodriguez, S.; Lee, S.; Lakey, J.R. Improved cryopreservation yield of pancreatic islets using combination of lower dose permeable cryoprotective agents. Cryobiology 2019, 88, 23–28. [Google Scholar] [CrossRef] [PubMed]
- Marquez-Curtis, L.A.; Dai, X.Q.; Hang, Y.; Lam, J.Y.; Lyon, J.; Manning Fox, J.E.; McGann, L.E.; MacDonald, P.E.; Kim, S.K.; Elliott, J.A.W. Cryopreservation and post-thaw characterization of dissociated human islet cells. PLoS ONE 2022, 17, e0263005. [Google Scholar] [CrossRef] [PubMed]
- Martín-López, M.; Rosell-Valle, C.; Arribas-Arribas, B.; Fernández-Muñoz, B.; Jiménez, R.; Nogueras, S.; García-Delgado, A.B.; Campos, F.; Santos-González, M. Bioengineered tissue and cell therapy products are efficiently cryopreserved with pathogen-inactivated human platelet lysate-based solutions. Stem Cell Res. Ther. 2023, 14, 69. [Google Scholar] [CrossRef] [PubMed]
- Han, Z.; Rao, J.S.; Gangwar, L.; Namsrai, B.E.; Pasek-Allen, J.L.; Etheridge, M.L.; Wolf, S.M.; Pruett, T.L.; Bischof, J.C.; Finger, E.B. Vitrification and nanowarming enable long-term organ cryopreservation and life-sustaining kidney transplantation in a rat model. Nat. Commun. 2023, 14, 3407. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Guo, X.; Cheng, L.; Zhang, H.; Zhou, M.; Zhang, M.; Yin, Z.; Guo, T.; Zhao, L.; Liu, H.; et al. Porcine kidney organoids derived from naive-like embryonic stem cells. Int. J. Mol. Sci. 2024, 25, 682. [Google Scholar] [CrossRef] [PubMed]
- Taguchi, A.; Nishinakamura, R. Higher-order kidney organogenesis from pluripotent stem cells. Cell Stem Cell 2017, 21, 730–746.e6. [Google Scholar] [CrossRef] [PubMed]
- Yoshimura, Y.; Muto, Y.; Ledru, N.; Wu, H.; Omachi, K.; Miner, J.H.; Humphreys, B.D. A single-cell multiomic analysis of kidney organoid differentiation. Proc. Natl. Acad. Sci. USA 2023, 120, e2219699120. [Google Scholar] [CrossRef] [PubMed]
- Bender, E. How organoids are advancing the understanding of chronic kidney disease. Nature 2023, 615, S10–S11. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, E. A new stage of experimental surgery for organoid based intestinal regeneration—A review of organoid research and recent advance. Magy. Seb. 2022, 75, 261–264. [Google Scholar] [PubMed]
- Moscona, A. The development in vitro of chimeric aggregates of dissociated embryonic chick and mouse cells. Proc. Natl. Acad. Sci. USA 1957, 43, 184–194. [Google Scholar] [CrossRef] [PubMed]
Embryonic Days | Cryopreservation Period | Growth Ratio | Glomerular Number |
---|---|---|---|
30 | 1 day | 2.20 | 13 |
30 | 2 days | 1.87 | 38 |
30 | 3 days | 1.90 | 23 |
30 | 6 months | 1.73 | 32 |
30 | 6 months | 1.14 | 2 |
29 | 2 years | 2.46 | 63 |
29 | 2 years | 1.90 | 26 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Inage, Y.; Fujimori, K.; Takasu, M.; Matsui, K.; Kinoshita, Y.; Morimoto, K.; Koda, N.; Yamamoto, S.; Shimada, K.; Yokoo, T.; et al. Fetal Kidney Grafts and Organoids from Microminiature Pigs: Establishing a Protocol for Production and Long-Term Cryopreservation. Int. J. Mol. Sci. 2024, 25, 4793. https://doi.org/10.3390/ijms25094793
Inage Y, Fujimori K, Takasu M, Matsui K, Kinoshita Y, Morimoto K, Koda N, Yamamoto S, Shimada K, Yokoo T, et al. Fetal Kidney Grafts and Organoids from Microminiature Pigs: Establishing a Protocol for Production and Long-Term Cryopreservation. International Journal of Molecular Sciences. 2024; 25(9):4793. https://doi.org/10.3390/ijms25094793
Chicago/Turabian StyleInage, Yuka, Koki Fujimori, Masaki Takasu, Kenji Matsui, Yoshitaka Kinoshita, Keita Morimoto, Nagisa Koda, Shutaro Yamamoto, Kentaro Shimada, Takashi Yokoo, and et al. 2024. "Fetal Kidney Grafts and Organoids from Microminiature Pigs: Establishing a Protocol for Production and Long-Term Cryopreservation" International Journal of Molecular Sciences 25, no. 9: 4793. https://doi.org/10.3390/ijms25094793
APA StyleInage, Y., Fujimori, K., Takasu, M., Matsui, K., Kinoshita, Y., Morimoto, K., Koda, N., Yamamoto, S., Shimada, K., Yokoo, T., & Kobayashi, E. (2024). Fetal Kidney Grafts and Organoids from Microminiature Pigs: Establishing a Protocol for Production and Long-Term Cryopreservation. International Journal of Molecular Sciences, 25(9), 4793. https://doi.org/10.3390/ijms25094793