Host RNA Expression Signatures in Young Infants with Urinary Tract Infection: A Prospective Study
Abstract
:1. Introduction
2. Results
2.1. Host RNA Expression in UTI without Bacteremia and Definite Viral Infection
2.2. Gene Set Enrichment Analysis
2.3. Description of the Top Differentially Expressed Genes
2.4. Testing the Classification Performance of a Two-Gene Signature
3. Discussion
4. Materials and Methods
4.1. Clinical Categorization
4.2. Data Collection
4.3. RNA Sequencing, Quality Control, and Normalization
4.4. Statistical Analyses
4.5. Study Approvals
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dorney, K.; Bachur, R.G. Febrile infant update. Curr. Opin. Pediatr. 2017, 29, 280–285. [Google Scholar] [CrossRef]
- DePorre, A.G.; Aronson, P.L.; McCulloh, R.J. Facing the ongoing challenge of the febrile young infant. Crit. Care 2017, 21, 68. [Google Scholar] [CrossRef]
- Goldman, R.D.; Scolnik, D.; Chauvin-Kimoff, L.; Farion, K.J.; Ali, S.; Lynch, T.; Gouin, S.; Osmond, M.H.; Johnson, D.W.; Klassen, T.P.; et al. Practice variations in the treatment of febrile infants among pediatric emergency physicians. Pediatrics 2009, 124, 439–445. [Google Scholar] [CrossRef] [PubMed]
- Stol, K.; Nijman, R.G.; van Herk, W.; van Rossum, A.M.C. Biomarkers for Infection in Children: Current Clinical Practice and Future Perspectives. Pediatr. Infect. Dis. J. 2019, 38, S7–S13. [Google Scholar] [CrossRef] [PubMed]
- Tsao, Y.-T.; Tsai, Y.-H.; Liao, W.-T.; Shen, C.-J.; Shen, C.-F.; Cheng, C.-M. Differential Markers of Bacterial and Viral Infections in Children for Point-of-Care Testing. Trends Mol. Med. 2020, 26, 1118–1132. [Google Scholar] [CrossRef] [PubMed]
- Greenhow, T.L.; Hung, Y.-Y.; Herz, A.M.; Losada, E.; Pantell, R.H. The changing epidemiology of serious bacterial infections in young infants. Pediatr. Infect. Dis. J. 2014, 33, 595–599. [Google Scholar] [CrossRef] [PubMed]
- Tullus, K.; Shaikh, N. Urinary tract infections in children. Lancet 2020, 395, 1659–1668. [Google Scholar] [CrossRef] [PubMed]
- Buonsenso, D.; Sodero, G.; Valentini, P. Transcript host-RNA signatures to discriminate bacterial and viral infections in febrile children. Pediatr. Res. 2022, 91, 454–463. [Google Scholar] [CrossRef] [PubMed]
- Mahajan, P.; Kuppermann, N.; Mejias, A.; Suarez, N.; Chaussabel, D.; Casper, T.C.; Smith, B.; Alpern, E.R.; Anders, J.; Atabaki, S.M.; et al. Association of RNA Biosignatures With Bacterial Infections in Febrile Infants Aged 60 Days or Younger. JAMA 2016, 316, 846–857. [Google Scholar] [CrossRef]
- Herberg, J.A.; Kaforou, M.; Wright, V.J.; Shailes, H.; Eleftherohorinou, H.; Hoggart, C.J.; Cebey-López, M.; Carter, M.J.; Janes, V.A.; Gormley, S.; et al. Diagnostic Test Accuracy of a 2-Transcript Host RNA Signature for Discriminating Bacterial vs Viral Infection in Febrile Children. JAMA 2016, 316, 835–845. [Google Scholar] [CrossRef]
- Kaforou, M.; Herberg, J.A.; Wright, V.J.; Coin, L.J.M.; Levin, M. Diagnosis of Bacterial Infection Using a 2-Transcript Host RNA Signature in Febrile Infants 60 Days or Younger. JAMA 2017, 317, 1577–1578. [Google Scholar] [CrossRef]
- Pennisi, I.; Rodriguez-Manzano, J.; Moniri, A.; Kaforou, M.; Herberg, J.A.; Levin, M.; Georgiou, P. Translation of a Host Blood RNA Signature Distinguishing Bacterial From Viral Infection Into a Platform Suitable for Development as a Point-of-Care Test. JAMA Pediatr. 2021, 175, 417–419. [Google Scholar] [CrossRef]
- Vejledninger, Instrukser og Politikker (VIP) Region Hovedstaden, Denmark Urinvejsinfektion—Peroral Eller Intravenøs Antibiotika Til Børn i Alderen 4–12 Uger. Available online: https://vip.regionh.dk/VIP/Admin/vipportal.nsf/index.html (accessed on 10 January 2024).
- ’t Hoen, L.A.; Bogaert, G.; Radmayr, C.; Dogan, H.S.; Nijman, R.J.M.; Quaedackers, J.; Rawashdeh, Y.F.; Silay, M.S.; Tekgul, S.; Bhatt, N.R.; et al. Update of the EAU/ESPU guidelines on urinary tract infections in children. J. Pediatr. Urol. 2021, 17, 200–207. [Google Scholar] [CrossRef]
- McTaggart, S.; Danchin, M.; Ditchfield, M.; Hewitt, I.; Kausman, J.; Kennedy, S.; Trnka, P.; Williams, G. KHA-CARI guideline: Diagnosis and treatment of urinary tract infection in children. Nephrology 2015, 20, 55–60. [Google Scholar] [CrossRef]
- Colborn, J.M.; Ylöstalo, J.H.; Koita, O.A.; Cissé, O.H.; Krogstad, D.J. Human Gene Expression in Uncomplicated Plasmodium falciparum Malaria. J. Immunol. Res. 2015, 2015, 162639. [Google Scholar] [CrossRef]
- Barral-Arca, R.; Gómez-Carballa, A.; Cebey-López, M.; Bello, X.; Martinón-Torres, F.; Salas, A. A Meta-Analysis of Multiple Whole Blood Gene Expression Data Unveils a Diagnostic Host-Response Transcript Signature for Respiratory Syncytial Virus. Int. J. Mol. Sci. 2020, 21, 1831. [Google Scholar] [CrossRef]
- Anderson, S.T.; Kaforou, M.; Brent, A.J.; Wright, V.J.; Banwell, C.M.; Chagaluka, G.; Crampin, A.C.; Dockrell, H.M.; French, N.; Hamilton, M.S.; et al. Diagnosis of childhood tuberculosis and host RNA expression in Africa. N. Engl. J. Med. 2014, 370, 1712–1723. [Google Scholar] [CrossRef]
- Liew, C.-C.; Ma, J.; Tang, H.-C.; Zheng, R.; Dempsey, A.A. The peripheral blood transcriptome dynamically reflects system wide biology: A potential diagnostic tool. J. Lab. Clin. Med. 2006, 147, 126–132. [Google Scholar] [CrossRef]
- Abraham, S.N.; Miao, Y. The nature of immune responses to urinary tract infections. Nat. Rev. Immunol. 2015, 15, 655–663. [Google Scholar] [CrossRef] [PubMed]
- Nourshargh, S.; Alon, R. Leukocyte migration into inflamed tissues. Immunity 2014, 41, 694–707. [Google Scholar] [CrossRef] [PubMed]
- Funaro, A.; Spagnoli, G.C.; Momo, M.; Knapp, W.; Malavasi, F. Stimulation of T cells via CD44 requires leukocyte-function-associated antigen interactions and interleukin-2 production. Hum. Immunol. 1994, 40, 267–278. [Google Scholar] [CrossRef]
- Rudberg, P.C.; Tholander, F.; Thunnissen, M.M.G.M.; Samuelsson, B.; Haeggstrom, J.Z. Leukotriene A4 hydrolase: Selective abrogation of leukotriene B4 formation by mutation of aspartic acid 375. Proc. Natl. Acad. Sci. USA 2002, 99, 4215–4220. [Google Scholar] [CrossRef]
- Meertens, L.; Labeau, A.; Dejarnac, O.; Cipriani, S.; Sinigaglia, L.; Bonnet-Madin, L.; Le Charpentier, T.; Hafirassou, M.L.; Zamborlini, A.; Cao-Lormeau, V.-M.; et al. Axl Mediates ZIKA Virus Entry in Human Glial Cells and Modulates Innate Immune Responses. Cell Rep. 2017, 18, 324–333. [Google Scholar] [CrossRef]
- Mueller, S.N.; Rouse, B.T. 27—Immune responses to viruses. In Clinical Immunology, 3rd ed.; Rich, R.R., Fleisher, T.A., Shearer, W.T., Schroeder, H.W., Frew, A.J., Weyand, C.M., Eds.; Mosby: Edinburgh, UK, 2008; pp. 421–431. Available online: https://www.sciencedirect.com/science/article/pii/B9780 (accessed on 15 January 2024)ISBN 978-0-323-04404-2.
- Kollmann, T.R.; Kampmann, B.; Mazmanian, S.K.; Marchant, A.; Levy, O. Protecting the Newborn and Young Infant from Infectious Diseases: Lessons from Immune Ontogeny. Immunity 2017, 46, 350–363. [Google Scholar] [CrossRef]
- Kukurba, K.R.; Montgomery, S.B. RNA Sequencing and Analysis. Cold Spring Harb. Protoc. 2015, 2015, 951–969. [Google Scholar] [CrossRef]
- Martino, D.J.; Tulic, M.K.; Gordon, L.; Hodder, M.; Richman, T.R.; Metcalfe, J.; Prescott, S.L.; Saffery, R. Evidence for age-related and individual-specific changes in DNA methylation profile of mononuclear cells during early immune development in humans. Epigenetics 2011, 6, 1085–1094. [Google Scholar] [CrossRef]
- Hoeksema, M.; van Eijk, M.; Haagsman, H.P.; Hartshorn, K.L. Histones as mediators of host defense, inflammation and thrombosis. Future Microbiol. 2016, 11, 441–453. [Google Scholar] [CrossRef]
- Karavanaki, K.; Koufadaki, A.M.; Soldatou, A.; Tsentidis, C.; Sourani, M.; Gougourelas, D.; Haliotis, F.A.; Stefanidis, C.J. Fever duration during treated urinary tract infections and development of permanent renal lesions. Arch. Dis. Child. 2019, 104, 466–470. [Google Scholar] [CrossRef]
- Mola, G.; Wenger, T.R.; Salomonsson, P.; Knudsen, I.J.D.; Madsen, J.L.; Møller, S.; Olsen, B.H.; Vinicoff, P.G.; Thorup, J.; Cortes, D. Selective imaging modalities after first pyelonephritis failed to identify significant urological anomalies, despite normal antenatal ultrasounds. Acta Paediatr. 2017, 106, 1176–1183. [Google Scholar] [CrossRef] [PubMed]
- Dobin, A.; Davis, C.A.; Schlesinger, F.; Drenkow, J.; Zaleski, C.; Jha, S.; Batut, P.; Chaisson, M.; Gingeras, T.R. STAR: Ultrafast universal RNA-seq aligner. Bioinformatics 2013, 29, 15–21. [Google Scholar] [CrossRef] [PubMed]
- Tange, O. GNU Parallel 20200922 (‘Ginsburg’) [Internet]. Zenodo. 2020. Available online: https://zenodo.org/record/4045386 (accessed on 18 July 2023).
- Love, M.I.; Huber, W.; Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014, 15, 550. [Google Scholar] [CrossRef]
- Korotkevich, G.; Sukhov, V.; Budin, N.; Shpak, B.; Artyomov, M.N.; Sergushichev, A. Fast gene set enrichment analysis. bioRxiv 2021, 060012. [Google Scholar] [CrossRef]
- Murtagh, F.; Legendre, P. Ward’s Hierarchical Agglomerative Clustering Method: Which Algorithms Implement Ward’s Criterion? J. Classif. 2014, 31, 274–295. [Google Scholar] [CrossRef]
- Sidiropoulos, N.; Sohi, S.H.; Pedersen, T.L.; Porse, B.T.; Winther, O.; Rapin, N.; Bagger, F.O. SinaPlot: An Enhanced Chart for Simple and Truthful Representation of Single Observations Over Multiple Classes. J. Comput. Graph. Stat. 2018, 27, 673–676. [Google Scholar] [CrossRef]
Overall (N = 121) | UTI with Bacteremia (n = 7) | UTI without Bacteremia (n = 46) | Definite Viral Infection (n = 33) | Probable Viral Infection (n = 18) | Non-Infection (n = 17) | p-Value | |
---|---|---|---|---|---|---|---|
Age (days) | 38 (20–61) | 19 (14–48) | 54 (30–63) | 37 (20–60) | 44 (30–67) | 25 (19–38) | 0.134 |
Sex (male) | 75 (62%) | 4 (57%) | 35 (76%) | 15 (45%) | 10 (56%) | 11 (65%) | 0.077 |
Gestational age (weeks) | 39 (38–40) | 38 (38–41) | 39 (38–40) | 39 (38–40) | 39 (38–40) | 38 (37–39) | 0.259 |
Birth weight (g) | 3555 (3083–3446) | 3413 (3160–3446) | 3710 (3450–3980) | 3496 (2950–3910) | 3650 (3162–3964) | 3168 (2886–3350) | 0.042 |
CRP (max) | 14 (3–48) | 160 (112–174) | 38 (20–75) | 6 (3–24) | 6 (1–19) | 1 (1–1) | <0.001 |
WBC (max) | 12.2 (8.8–16.2) | 15.4 (12.7–21.1) | 14.4 (11.7–18.2) | 9.7 (8.2–13.9) | 10.9 (8.3–13.4) | 7.9 (7.3–10.1) | <0.001 |
ANC (max) | 4.6 (2.2–8.6) | 8.8 (6.1–13.5) | 7.0 (4.5–9.2) | 3.2 (1.4–8.0) | 2.5 (1.9–5.0) | 2.0 (1.1–2.5) | <0.001 |
ALC (max) | 5.3 (4.3–6.6) | 5.2 (4.2–6.0) | 5.6 (4.6–6.6) | 5.0 (3.3–6.3) | 5.7 (4.8–7.8) | 4.7 (4.2–5.7) | 0.301 |
Received antibiotics | 76 (63%) | 7 (100%) | 46 (100%) | 14 (42%) | 9 (50%) | 0 (0%) | <0.001 |
NES | adj p-Value | |
---|---|---|
REACTOME: Antiviral mechanism by IFN stimulated genes | ↓ | <0.0001 |
REACTOME: Complement cascade | ↓ | <0.0001 |
REACTOME: Initial triggering of complement | ↓ | <0.0001 |
REACTOME: Creation of C4 and C2 activators | ↓ | <0.0001 |
REACTOME: FCERI mediated NF KB activation | ↓ | <0.0001 |
REACTOME: | ↓ | <0.0001 |
REACTOME: FCGR3A mediated IL10 synthesis | ↓ | <0.0001 |
REACTOME: Antigen activates B cell receptor BCR leading to generation of second messengers | ↓ | <0.0001 |
REACTOME: Signaling by the B cell receptor BCR | ↓ | <0.0001 |
IGLV5 37 target genes | ↓ | <0.0001 |
GSE34205: Healthy vs. flu inf infant pbmc dn | ↓ | <0.0001 |
GSE34205: RSV vs. flu inf infant pbmc dn | ↓ | <0.0001 |
GSE6269: Flu vs. e coli inf pbmc up | ↓ | <0.0001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dungu, K.H.S.; Carlsen, E.L.M.; Glenthøj, J.P.; Schmidt, L.S.; Jørgensen, I.M.; Cortes, D.; Poulsen, A.; Vissing, N.H.; Bagger, F.O.; Nygaard, U. Host RNA Expression Signatures in Young Infants with Urinary Tract Infection: A Prospective Study. Int. J. Mol. Sci. 2024, 25, 4857. https://doi.org/10.3390/ijms25094857
Dungu KHS, Carlsen ELM, Glenthøj JP, Schmidt LS, Jørgensen IM, Cortes D, Poulsen A, Vissing NH, Bagger FO, Nygaard U. Host RNA Expression Signatures in Young Infants with Urinary Tract Infection: A Prospective Study. International Journal of Molecular Sciences. 2024; 25(9):4857. https://doi.org/10.3390/ijms25094857
Chicago/Turabian StyleDungu, Kia Hee Schultz, Emma Louise Malchau Carlsen, Jonathan Peter Glenthøj, Lisbeth Samsø Schmidt, Inger Merete Jørgensen, Dina Cortes, Anja Poulsen, Nadja Hawwa Vissing, Frederik Otzen Bagger, and Ulrikka Nygaard. 2024. "Host RNA Expression Signatures in Young Infants with Urinary Tract Infection: A Prospective Study" International Journal of Molecular Sciences 25, no. 9: 4857. https://doi.org/10.3390/ijms25094857
APA StyleDungu, K. H. S., Carlsen, E. L. M., Glenthøj, J. P., Schmidt, L. S., Jørgensen, I. M., Cortes, D., Poulsen, A., Vissing, N. H., Bagger, F. O., & Nygaard, U. (2024). Host RNA Expression Signatures in Young Infants with Urinary Tract Infection: A Prospective Study. International Journal of Molecular Sciences, 25(9), 4857. https://doi.org/10.3390/ijms25094857