Extracellular Vesicles in Environmental Toxicological Studies: Association between Urinary Concentrations of Phthalate Metabolites and Exosomal miRNA Expression Profiles
Abstract
:1. Introduction
2. Results
2.1. Phthalate Metabolites
2.2. miR Expression from Urinary Exosomes
2.3. Computational Analysis of miR Targets
3. Discussion
4. Materials and Methods
4.1. Study Population and Sampling Collection
4.2. Extraction of Urinary Exosomes
4.3. Phthalate Exposure Assessment
4.4. Exosomal miR Extraction from Urine and Expression
4.5. miR Target Sequence Computational Analysis
4.6. Statistical Analyses
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Guo, Y.; Weck, J.; Sundaram, R.; Goldstone, A.E.; Louis, G.B.; Kannan, K. Urinary concentrations of phthalates in couples planning pregnancy and its association with 8-hydroxy-2′-deoxyguanosine, a biomarker of oxidative stress: Longitudinal investigation of fertility and the environment study. Environ. Sci. Technol. 2014, 48, 9804–9811. [Google Scholar] [CrossRef] [PubMed]
- Gascon, M.; Valvi, D.; Forns, J.; Casas, M.; Martinez, D.; Julvez, J.; Monfort, N.; Ventura, R.; Sunyer, J.; Vrijheid, M. Prenatal exposure to phthalates and neuropsychological development during childhood. Int. J. Hyg. Envirn. Health 2015, 218, 550–558. [Google Scholar] [CrossRef] [PubMed]
- Baloyi, N.D.; Tekere, M.; Maphangwa, K.W.; Masindi, V. Insights Into the Prevalence and Impacts of Phthalate Esters in Aquatic Ecosystems. Front. Environ. Sci. 2021, 9, 684190. [Google Scholar] [CrossRef]
- Hlisnikova, H.; Petrovicova, I.; Kolena, B.; Sidlovska, M.; Sirotkin, A. Effects and Mechanisms of Phthalates’ Action on Reproductive Processes and Reproductive Health: A Literature Review. Int. J. Environ. Res. Public Health 2020, 17, 6811. [Google Scholar] [CrossRef] [PubMed]
- Chou, C.Y.; Shu, K.H.; Chen, H.C.; Wang, M.C.; Chang, C.C.; Hsu, B.G.; Chen, T.W.; Chen, C.L.; Huang, C.C.; For Taiwan Urothelial Cancer, C. Urine phthalate metabolites are associated with urothelial cancer in chronic kidney disease patients. Chemosphere 2021, 273, 127834. [Google Scholar] [CrossRef]
- Guo, T.; Meng, X.Y.; Liu, X.K.; Wang, J.; Yan, S.; Zhang, X.M.; Wang, M.J.; Ren, S.C.; Huang, Y.H. Associations of phthalates with prostate cancer among the US population. Reprod. Toxicol. 2023, 116, 108337. [Google Scholar] [CrossRef] [PubMed]
- Silva, M.J.; Barr, D.B.; Reidy, J.A.; Malek, N.A.; Hodge, C.C.; Caudill, S.P.; Brock, J.W.; Needham, L.L.; Calafat, A.M. Urinary levels of seven phthalate metabolites in the U.S. population from the National Health and Nutrition Examination Survey (NHANES) 1999–2000. Environ. Health Perspect. 2004, 112, 331–338. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.F.; Qian, H.F. Phthalates and Their Impacts on Human Health. Healthcare 2021, 9, 603. [Google Scholar] [CrossRef]
- Koch, H.M.; Ruther, M.; Schutze, A.; Conrad, A.; Palmke, C.; Apel, P.; Bruning, T.; Kolossa-Gehring, M. Phthalate metabolites in 24-h urine samples of the German Environmental Specimen Bank (ESB) from 1988 to 2015 and a comparison with US NHANES data from 1999 to 2012. Int. J. Hyg. Environ. Health 2017, 220, 130–141. [Google Scholar] [CrossRef]
- Serrano, S.E.; Braun, J.; Trasande, L.; Dills, R.; Sathyanarayana, S. Phthalates and diet: A review of the food monitoring and epidemiology data. Environ. Health 2014, 13, 43. [Google Scholar] [CrossRef]
- Hauser, R.; Calafat, A.M. Phthalates and human health. Occup. Environ. Med. 2005, 62, 806–818. [Google Scholar] [CrossRef]
- Koch, H.M.; Lorber, M.; Christensen, K.L.Y.; Palmke, C.; Koslitz, S.; Bruning, T. Identifying sources of phthalate exposure with human biomonitoring: Results of a 48 h fasting study with urine collection and personal activity patterns. Int. J. Hyg. Environ. Health 2013, 216, 672–681. [Google Scholar] [CrossRef]
- Giuliani, A.; Zuccarini, M.; Cichelli, A.; Khan, H.; Reale, M. Critical Review on the Presence of Phthalates in Food and Evidence of Their Biological Impact. Int. J. Environ. Res. Public Health 2020, 17, 5655. [Google Scholar] [CrossRef]
- Wang, Y.; Zhu, H.; Kannan, K. A Review of Biomonitoring of Phthalate Exposures. Toxics 2019, 7, 21. [Google Scholar] [CrossRef]
- Erdbrugger, U.; Blijdorp, C.J.; Bijnsdorp, I.V.; Borras, F.E.; Burger, D.; Bussolati, B.; Byrd, J.B.; Clayton, A.; Dear, J.W.; Falcon-Perez, J.M.; et al. Urinary extracellular vesicles: A position paper by the Urine Task Force of the International Society for Extracellular Vesicles. J. Extracell. Vesicles 2021, 10, e12093. [Google Scholar] [CrossRef]
- Pietrangelo, T.; Santangelo, C.; Bondi, D.; Cocci, P.; Piccinelli, R.; Piacenza, F.; Rosato, E.; Azman, S.N.A.; Binetti, E.; Farina, M.; et al. Endurance-dependent urinary extracellular vesicle signature: Shape, metabolic miRNAs, and purine content distinguish triathletes from inactive people. Pflug. Arch. Eur. J. Physiol. 2023, 475, 691–709. [Google Scholar] [CrossRef]
- Ueda, K. Effect of environmental chemicals on the genes and the gene expression. Yakugaku Zasshi 2009, 129, 1501–1506. [Google Scholar] [CrossRef]
- Patel, C.J.; Butte, A.J. Predicting environmental chemical factors associated with disease-related gene expression data. BMC Med. Genom. 2010, 3, 17. [Google Scholar] [CrossRef]
- Hays, S.M.; Aylward, L.L.; Blount, B.C. Variation in Urinary Flow Rates According to Demographic Characteristics and Body Mass Index in NHANES: Potential Confounding of Associations between Health Outcomes and Urinary Biomarker Concentrations. Environ. Health Perspect. 2015, 123, 293–300. [Google Scholar] [CrossRef]
- Hauser, R.; Meeker, J.D.; Park, S.; Silva, M.J.; Calafat, A.M. Temporal variability of urinary phthalate metabolite levels in men of reproductive age. Environ. Health Perspect. 2004, 112, 1734–1740. [Google Scholar] [CrossRef]
- Teitelbaum, S.L.; Britton, J.A.; Calafat, A.M.; Ye, X.; Silva, M.J.; Reidy, J.A.; Galvez, M.P.; Brenner, B.L.; Wolff, M.S. Temporal variability in urinary concentrations of phthalate metabolites, phytoestrogens and phenols among minority children in the United States. Environ. Res. 2008, 106, 257–269. [Google Scholar] [CrossRef]
- Yu, G.; Sun, W.; Wang, W.; Le, C.; Liang, D.; Shuai, L. Overexpression of microRNA-202-3p in bone marrow mesenchymal stem cells improves cerebral ischemia-reperfusion injury by promoting angiogenesis and inhibiting inflammation. Aging 2021, 13, 11877–11888. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.C.; Li, H.L.; Cheng, L.; Zhang, Z.Y.; Wang, H.; Lv, T.D.; Lin, J.; Zhou, L.Q. Inflammatory Stimuli Significantly Change the miRNA Profile of Human Adipose-Derived Stem Cells. Stem Cells Int. 2018, 2018, 1340341. [Google Scholar] [CrossRef]
- Ferrante, M.; Cristaldi, A.; Oliveri Conti, G. Oncogenic Role of miRNA in Environmental Exposure to Plasticizers: A Systematic Review. J. Pers. Med. 2021, 11, 500. [Google Scholar] [CrossRef] [PubMed]
- Renaud, L.; Silveira, W.A.D.; Hazard, E.S.; Simpson, J.; Falcinelli, S.; Chung, D.; Carnevali, O.; Hardiman, G. The Plasticizer Bisphenol A Perturbs the Hepatic Epigenome: A Systems Level Analysis of the miRNome. Genes 2017, 8, 269. [Google Scholar] [CrossRef] [PubMed]
- Addo, K.A.; Palakodety, N.; Hartwell, H.J.; Tingare, A.; Fry, R.C. Placental microRNAs: Responders to environmental chemicals and mediators of pathophysiology of the human placenta. Toxicol. Rep. 2020, 7, 1046–1056. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Xing, Q.W.; Wu, X.L.; Zhang, L.; Tang, M.; Tang, J.Y.; Wang, J.Z.; Han, P.; Wang, S.Q.; Wang, W.; et al. Di-n-butyl phthalate epigenetically induces reproductive toxicity via the PTEN/AKT pathway. Cell Death Dis. 2019, 10, 307. [Google Scholar] [CrossRef] [PubMed]
- Liang, Y.; Zhu, D.X.; Zhu, L.M.; Hou, Y.C.; Hou, L.D.; Huang, X.; Li, L.J.; Wang, Y.; Li, L.; Zou, H.M.; et al. Dichloroacetate Overcomes Oxaliplatin Chemoresistance in Colorectal Cancer through the miR-543/PTEN/Akt/mTOR Pathway. J. Cancer 2019, 10, 6037–6047. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Guo, J.C.; Zhang, X.X. MiR-202-5p/PTEN mediates doxorubicin-resistance of breast cancer cells via PI3K/Akt signaling pathway. Cancer Biol. Ther. 2019, 20, 989–998. [Google Scholar] [CrossRef]
- Tankiewicz, M.; Olkowska, E.; Berg, A.; Wolska, L. Advancement in Determination of Phthalate Metabolites by Gas Chromatography Eliminating Derivatization Step. Front. Chem. 2019, 7, 928. [Google Scholar] [CrossRef]
- Tkaczyk, A.; Jedziniak, P. Dilute-and-Shoot HPLC-UV Method for Determination of Urinary Creatinine as a Normalization Tool in Mycotoxin Biomonitoring in Pigs. Molecules 2020, 25, 2445. [Google Scholar] [CrossRef] [PubMed]
- Kalman, S.; Garbett, K.A.; Vereczkei, A.; Shelton, R.C.; Korade, Z.; Mirnics, K. Metabolic stress-induced microRNA and mRNA expression profiles of human fibroblasts. Exp. Cell Res. 2014, 320, 343–353. [Google Scholar] [CrossRef] [PubMed]
- Eyileten, C.; Wicik, Z.; Jarosz-Popek, J.; Czajka, P.; Fitas, A.; Wolska, M.; Nowak, A.; Jakubik, D.; Postula, M.; Pare, G.; et al. Fingerprint of novel circulating microRNAs identify patients with stroke-embolic stroke of undetermined source. Eur. Heart J. 2021, 42, 2061. [Google Scholar] [CrossRef]
- Li, C.H.; Tang, S.C.; Wong, C.H.; Wang, Y.; Jiang, J.D.; Chen, Y.C. Berberine induces miR-373 expression in hepatocytes to inactivate hepatic steatosis associated AKT-S6 kinase pathway. Eur. J. Pharmacol. 2018, 825, 107–118. [Google Scholar] [CrossRef] [PubMed]
- Rottiers, V.; Naar, A.M. MicroRNAs in metabolism and metabolic disorders. Nat. Rev. Mol. Cell Biol. 2012, 13, 239–250. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Luo, T.Y.; Wang, L.; Wu, J.; Guo, S.X. MicroRNA-19a-3p enhances the proliferation and insulin secretion, while it inhibits the apoptosis of pancreatic cells via the inhibition of SOCS3. Int. J. Mol. Med. 2016, 38, 1515–1524. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Hao, Z.; Hu, L.; Qiao, L.; Luo, Y.; Hu, J.; Liu, X.; Li, S.; Zhao, F.; Shen, J.; et al. MicroRNA-199a-3p regulates proliferation and milk fat synthesis of ovine mammary epithelial cells by targeting VLDLR. Front. Vet. Sci. 2022, 9, 948873. [Google Scholar] [CrossRef]
- Lo Curto, A.; Taverna, S.; Costa, M.A.; Passantino, R.; Augello, G.; Adamo, G.; Aiello, A.; Colomba, P.; Zizzo, C.; Zora, M.; et al. Can Be miR-126-3p a Biomarker of Premature Aging? An Ex Vivo and In Vitro Study in Fabry Disease. Cells 2021, 10, 356. [Google Scholar] [CrossRef]
- Ziemann, M.; Lim, S.C.; Kang, Y.L.; Samuel, S.; Sanchez, I.L.; Gantier, M.; Stojanovski, D.; McKenzie, M. MicroRNA-101-3p Modulates Mitochondrial Metabolism via the Regulation of Complex II Assembly. J. Mol. Biol. 2022, 434, 167361. [Google Scholar] [CrossRef]
- Li, L.; Wu, F.Q.; Xie, Y.; Xu, W.; Xiong, G.; Xu, Y.; Huang, S.L.; Wu, Y.Q.; Jiang, X.H. MiR-202-3p Inhibits Foam Cell Formation and is Associated with Coronary Heart Disease Risk in a Chinese Population. Int. Heart J. 2020, 61, 153–159. [Google Scholar] [CrossRef]
- Lange, T.; Stracke, S.; Rettig, R.; Lendeckel, U.; Kuhn, J.; Schluter, R.; Rippe, V.; Endlich, K.; Endlich, N. Identification of miR-16 as an endogenous reference gene for the normalization of urinary exosomal miRNA expression data from CKD patients. PLoS ONE 2017, 12, e0183435. [Google Scholar] [CrossRef] [PubMed]
- Paraskevopoulou, M.D.; Georgakilas, G.; Kostoulas, N.; Vlachos, I.S.; Vergoulis, T.; Reczko, M.; Filippidis, C.; Dalamagas, T.; Hatzigeorgiou, A.G. DIANA-microT web server v5.0: Service integration into miRNA functional analysis workflows. Nucleic Acids Res. 2013, 41, W169–W173. [Google Scholar] [CrossRef] [PubMed]
- Zhu, M.M.; Huang, C.; Ma, X.; Wu, R.; Zhu, W.W.; Li, X.T.; Liang, Z.F.; Deng, F.F.; Wu, J.S.; Geng, S.S.; et al. Phthalates promote prostate cancer cell proliferation through activation of ERK5 and p38. Environ. Toxicol. Pharmacol. 2018, 63, 29–33. [Google Scholar] [CrossRef] [PubMed]
All | Selected Categories | ||
---|---|---|---|
Characteristics | Low (<5.6 μg/mL) | High (≥5.6 μg/mL) | |
Age (yr) (mean, SD) | 41.97 (8.97) | 45.12 (5.95) | 39.00 (10.42) |
BMI * (Kg/m2) (mean, SD) | 25.56 (2.80) | 25.89 (2.98) | 25.24 (2.98) |
Urinary phthalate concentrations (median, 25th and 75th) | |||
MiBP (μg/mL) | 3.68 (2.97–4.27) | 3.06 (2.33–3.68) | 4.41 (3.83–4.89) |
MBP (μg/mL) | 0.86 (0.60–1.18) | 0.60 (0.31–0.79) | 1.19 (0.88–1.69) |
MBzP (μg/mL) | 0.14 (0.11–0.38) | 0.16 (0.07–0.32) | 0.14 (0.11–0.39) |
5-oxo-MEHP (μg/mL) | 0.06 (0.03–0.34) | 0.02 (0.02–0.04) | 0.23 (0.04–0.40) |
MEHP (μg/mL) | 0.58 (0.07–1.10) | 0.15 (0.06–1.06) | 0.82 (0.27–1.78) |
Σ phthalate metabolites (μg/mL) | 5.52 (4.18–7.67) | 4.18 (3.92–4.47) | 7.71 (6.33–8.51) |
Phthalate concentrations corrected for urine creatinine (median, 25th and 75th) | |||
MiBP (µg/g) | 74.07 (59.48–91.96) | 57.87 (42.44–71.11) | 91.69 (76.09–106.48) |
MBP (µg/g) | 18.57 (12.25–29.57) | 12.03 (5.87–15.95) | 29.57 (21.74–52.84) |
MBzP (µg/g) | 3.13 (1.96–5.16) | 3.24 (1.43–4.93) | 3.13 (2.57–5.22) |
5-oxo-MEHP (µg/g) | 1.54 (0.63–6.28) | 0.50 (0.40–0.82) | 3.13 (0.97–6.85) |
MEHP (µg/g) | 12.12 (1.73–21.57) | 2.31 (1.22–17.77) | 15.54 (4.43–34.79) |
Σ phthalate metabolites (µg/g) | 112.70 (79.98–172.0) | 79.87 (72.29–86.03) | 172.01 (141.55–183.51) |
Model 1 a | Model 2 b | ||||
---|---|---|---|---|---|
Compound | Outcome | B | p-Value | B | p-Value |
Σ phthalate metabolites | miR-543 | 0.683 (0.424; 0.941) | <0.001 | 0.538 (0.276; 0.800) | 0.001 |
MiBP | 0.517 (0.214; 0.820) | 0.001 | 0.373 (0.017; 0.728) | 0.040 | |
MBP | 0.642 (0.370; 0.913) | <0.001 | 0.527 (0.282; 0.772) | <0.001 | |
5-oxo-MEHP | −0.703 (−0.995; −0.451) | <0.001 | −0.669 (−0.904; −0.434) | <0.001 | |
MiBP | miR-518e | −0.580 (−0.868; −0.291) | <0.001 | −0.485 (−0.847; −0.123) | 0.010 |
MiBP | miR-373-3p | 0.461 (0.147; 0.776) | <0.001 | 0.227 (−0.154; 0.607) | 0.233 |
5-oxo-MEHP | miR-34a-5p | −0.575 (−0.864; −0.285) | <0.001 | −0.449 (−0.795; −0.203) | 0.002 |
MiBP | miR-19a-3p | 0.355 (0.024; 0.686) | 0.036 | 0.414 (−0.014; 0.842) | 0.058 |
MBzP | miR-199a-3p | −0.346 (−0.679; −0.014) | 0.042 | −0.405 (−0.736; −0.075) | 0.018 |
5-oxo-MEHP | miR-29a-3p | −0.338 (−0.671; −0.004) | 0.047 | −0.213 (−0.576; 0.150) | 0.239 |
MBzP | miR-122-5p | −0.420 (−0.742; −0.100) | 0.012 | −0.490 (−0.831; −0.149) | 0.006 |
5-oxo-MEHP | miR-101-3p | 0.426 (0.105; −0.746) | 0.011 | 0.458 (0.081; 0.835) | 0.019 |
Σ phthalate metabolites | miR-202 | 0.513 (0.209; 0.813) | 0.002 | 0.492 (0.148; 0.837) | 0.007 |
MiBP | 0.404 (0.080; 0.728) | 0.016 | 0.491 (0.079; 0.904) | 0.021 | |
MBP | 0.523 (0.221; 0.825) | 0.001 | 0.491 (0.168; 0.815) | 0.004 | |
5-oxo-MEHP | −0.433 (−0.572; −0.114) | 0.009 | −0.439 (−0.810; −0.068) | 0.022 |
KEGG Pathway | ID | p-Value | Gene Count |
---|---|---|---|
Colorectal cancer | (hsa05210) | 0.04 | 32 |
miR-202-3p | 12 | ||
miR-543 | 26 | ||
Pathways in cancer | (hsa05200) | 0.04 | 183 |
miR-202-3p | 60 | ||
miR-543 | 157 | ||
p53 signaling | (hsa04115) | 0.04 | 38 |
miR-202-3p | 15 | ||
miR-543 | 34 | ||
PI3K-Akt signaling | (hsa04151) | 0.04 | 159 |
miR-202-3p | 57 | ||
miR-543 | 135 | ||
FoxO signaling | (hsa04068) | 0.01 | 71 |
miR-202-3p | 24 | ||
miR-543 | 66 | ||
TGF-beta signaling | (hsa04350) | 0.005 | 46 |
miR-202-3p | 12 | ||
miR-543 | 43 |
miRs | Sequences | Threshold Cycle (Ct) (Mean ± SD) | References |
---|---|---|---|
miR-543 | AAACATTCGCGGTGCACTTCTT | 28.0 ± 1.4 | [32] |
miR-518e-3p | AAAGCGCUUCCCUUCAGAGUG | 25.5 ± 1.3 | [33] |
miR-373-3p | GAAGTGCTTCGATTTTGGGGTGT | 19.0 ± 0.7 | [34] |
miR-34a-5p | TGGCAGTGTCTTAGCTGGTTGT | 25.1 ± 1.1 | [35] |
miR-19a-3p | TGTGCAAATCTATGCAAAACTGA | 26.8 ± 1.3 | [36] |
miR-199a-3p | ACAGTAGTCTGCACATTGGTTA | 27.5 ± 0.8 | [37] |
miR-29a-3p | TAGCACCATCTGAAATCGGTTA | 23.1 ± 0.9 | [35] |
miR-378a-5p | CTCCTGACTCCAGGTCCTGTGT | 24.6 ± 0.5 | [35] |
miR-126-3p | TCGTACCGTGAGTAATAATGCG | 23.6 ± 0.5 | [38] |
LET-7b-5p | TGAGGTAGTAGGTTGTGTGGTT | 27.8 ± 1.1 | [35] |
miR-122-5p | TGGAGTGTGACAATGGTGTTTG | 20.3 ± 0.6 | [35] |
miR-101-3p | TACAGTACTGTGATAACTGAA | 26.3 ± 1.1 | [39] |
miR-202-3p | AGAGGTATAGGGCATGGGAA | 22.3 ± 1.7 | [40] |
miR-16-5p | TAGCAGCACGTAAATATTGGCG | 23.4 ± 0.3 | [41] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cocci, P.; Bondi, D.; Santangelo, C.; Pietrangelo, T.; Verratti, V.; Cichelli, A.; Caprioli, G.; Nzekoue, F.K.; Nguefang, M.L.K.; Sagratini, G.; et al. Extracellular Vesicles in Environmental Toxicological Studies: Association between Urinary Concentrations of Phthalate Metabolites and Exosomal miRNA Expression Profiles. Int. J. Mol. Sci. 2024, 25, 4876. https://doi.org/10.3390/ijms25094876
Cocci P, Bondi D, Santangelo C, Pietrangelo T, Verratti V, Cichelli A, Caprioli G, Nzekoue FK, Nguefang MLK, Sagratini G, et al. Extracellular Vesicles in Environmental Toxicological Studies: Association between Urinary Concentrations of Phthalate Metabolites and Exosomal miRNA Expression Profiles. International Journal of Molecular Sciences. 2024; 25(9):4876. https://doi.org/10.3390/ijms25094876
Chicago/Turabian StyleCocci, Paolo, Danilo Bondi, Carmen Santangelo, Tiziana Pietrangelo, Vittore Verratti, Angelo Cichelli, Giovanni Caprioli, Franks Kamgang Nzekoue, Manuella Lesly Kouamo Nguefang, Gianni Sagratini, and et al. 2024. "Extracellular Vesicles in Environmental Toxicological Studies: Association between Urinary Concentrations of Phthalate Metabolites and Exosomal miRNA Expression Profiles" International Journal of Molecular Sciences 25, no. 9: 4876. https://doi.org/10.3390/ijms25094876
APA StyleCocci, P., Bondi, D., Santangelo, C., Pietrangelo, T., Verratti, V., Cichelli, A., Caprioli, G., Nzekoue, F. K., Nguefang, M. L. K., Sagratini, G., Mosconi, G., & Palermo, F. A. (2024). Extracellular Vesicles in Environmental Toxicological Studies: Association between Urinary Concentrations of Phthalate Metabolites and Exosomal miRNA Expression Profiles. International Journal of Molecular Sciences, 25(9), 4876. https://doi.org/10.3390/ijms25094876