A Cross-Sectional Study of Glomerular Hyperfiltration in Polycystic Ovary Syndrome
Abstract
:1. Introduction
2. Results
2.1. Demographic Data
2.2. Demographic Data (Figure 1)
2.3. Inflammatory Markers (Figure 2)
2.4. Markers of Chronic Kidney Disease (Figure 3)
2.5. Renal Tubule Injury Markers (Figure 4)
2.6. Complement Markers (Supplemental Figures S1–S3)
2.7. Follow up of Controls and PCOS Subjects (Figure 6)
3. Discussion
4. Materials and Methods
4.1. Subjects
4.2. Sample Analysis
4.3. Data Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Azziz, R.; Woods, K.S.; Reyna, R.; Key, T.J.; Knochenhauer, E.S.; Yildiz, B.O. The prevalence and features of the polycystic ovary syndrome in an unselected population. J. Clin. Endocrinol. Metab. 2004, 89, 2745–2749. [Google Scholar] [CrossRef] [PubMed]
- Sathyapalan, T.; Atkin, S.L. Recent advances in cardiovascular aspects of polycystic ovary syndrome. Eur. J. Endocrinol. Eur. Fed. Endocr. Soc. 2012, 166, 575–583. [Google Scholar] [CrossRef] [PubMed]
- Dargham, S.R.; Ahmed, L.; Kilpatrick, E.S.; Atkin, S.L. The prevalence and metabolic characteristics of polycystic ovary syndrome in the Qatari population. PLoS ONE 2017, 12, e0181467. [Google Scholar] [CrossRef] [PubMed]
- Du, Y.; Li, F.; Li, S.; Ding, L.; Liu, M. Causal relationship between polycystic ovary syndrome and chronic kidney disease: A Mendelian randomization study. Front. Endocrinol. 2023, 14, 1120119. [Google Scholar] [CrossRef] [PubMed]
- Ye, H.Y.; Song, Y.L.; Ye, W.T.; Xiong, C.X.; Li, J.M.; Miao, J.H.; Shen, W.W.; Li, X.L.; Zhou, L.L. Serum granulosa cell-derived TNF-α promotes inflammation and apoptosis of renal tubular cells and PCOS-related kidney injury through NF-κB signaling. Acta Pharmacol. Sin. 2023, 44, 2432–2444. [Google Scholar] [CrossRef] [PubMed]
- Behboudi-Gandevani, S.; Amiri, M.; Cheraghi, L.; Amanollahi Soudmand, S.; Azizi, F.; Ramezani Tehrani, F. The risk of chronic kidney disease among women with polycystic ovary syndrome: A long-term population-based cohort study. Clin. Endocrinol. 2020, 93, 590–597. [Google Scholar] [CrossRef] [PubMed]
- Bhati, M.; Prabhu, Y.D.; Renu, K.; Vellingiri, B.; Thiagarajan, P.; Panda, A.; Chakraborty, R.; Myakala, H.; Valsala Gopalakrishnan, A. Role of TGF-β signalling in PCOS associated focal segmental glomerulosclerosis. Clin. Chim. Acta 2020, 510, 244–251. [Google Scholar] [CrossRef] [PubMed]
- Gozukara, I.O.; Gozukara, K.H.; Kucur, S.K.; Karakılıc, E.U.; Keskin, H.; Akdeniz, D.; Aksoy, A.N.; Carlıoglu, A. Association of Glomerular Filtration Rate with Inflammation in Polycystic Ovary Syndrome. Int. J. Fertil. Steril. 2015, 9, 176–182. [Google Scholar]
- Can, M.; Duran, C.; Guney, I.; Elmas, H.; Ayhan, M.; Erdem, S.S. The relationship between glomerular filtration rate, and metabolic and inflammatory parameters in obese and non-obese patients with polycystic ovary syndrome. Clin. Investig. Arter. 2020, 32, 256–262. [Google Scholar]
- Rotterdam ESHRE/ASRM-Sponsored PCOS Consensus Workshop Group. Revised 2003 consensus on diagnostic criteria and long-term health risks related to polycystic ovary syndrome (PCOS). Hum Reprod. 2004, 19, 41–47. [Google Scholar] [CrossRef]
- Sachdeva, G.; Gainder, S.; Suri, V.; Sachdeva, N.; Chopra, S. Comparison of the Different PCOS Phenotypes Based on Clinical Metabolic, and Hormonal Profile, and their Response to Clomiphene. Indian J. Endocrinol. Metab. 2019, 23, 326–331. [Google Scholar]
- Shilpasree, A.S.; Patil, V.S.; Revanasiddappa, M.; Patil, V.P.; Ireshnavar, D. Renal Dysfunction in Prediabetes: Confirmed by Glomerular Hyperfiltration and Albuminuria. J. Lab. Physicians 2021, 13, 257–262. [Google Scholar] [CrossRef]
- Yang, Y.; Xu, G. Update on Pathogenesis of Glomerular Hyperfiltration in Early Diabetic Kidney Disease. Front. Endocrinol. 2022, 13, 872918. [Google Scholar] [CrossRef]
- Chang, H.C.; Huang, C.J.; Yang, A.C.; Cheng, H.M.; Chuang, S.Y.; Yu, W.C.; Chiang, C.E.; Chen, C.H.; Sung, S.H. Role of Heart Rate Variability in Association Between Glomerular Hyperfiltration and All-Cause Mortality. J. Am. Heart Assoc. 2021, 10, e021585. [Google Scholar] [CrossRef]
- Wada, J.; Makino, H. Inflammation and the pathogenesis of diabetic nephropathy. Clin. Sci. 2013, 124, 139–152. [Google Scholar] [CrossRef] [PubMed]
- Sato, Y.; Yanagita, M. Immune cells and inflammation in AKI to CKD progression. Am. J. Physiol. Ren. Physiol. 2018, 315, F1501–F1512. [Google Scholar] [CrossRef]
- Sathyapalan, T.; Atkin, S.L. Mediators of inflammation in polycystic ovary syndrome in relation to adiposity. Mediat. Inflamm. 2010, 2010, 758656. [Google Scholar] [CrossRef] [PubMed]
- Moin, A.S.M.; Sathyapalan, T.; Butler, A.E.; Atkin, S.L. Classical and alternate complement factor overexpression in non-obese weight matched women with polycystic ovary syndrome does not correlate with vitamin D. Front. Endocrinol. 2022, 13, 935750. [Google Scholar] [CrossRef] [PubMed]
- Butler, A.E.; Moin, A.S.M.; Sathyapalan, T.; Atkin, S.L. Components of the Complement Cascade Differ in Polycystic Ovary Syndrome. Int. J. Mol. Sci. 2022, 23, 12232. [Google Scholar] [CrossRef]
- Butler, A.E.; Moin, A.S.M.; Sathyapalan, T.; Atkin, S.L. Complement Dysregulation in Obese Versus Nonobese Polycystic Ovary Syndrome Patients. Cells 2023, 12, 2002. [Google Scholar] [CrossRef]
- Braga, P.C.; Alves, M.G.; Rodrigues, A.S.; Oliveira, P.F. Mitochondrial Pathophysiology on Chronic Kidney Disease. Int. J. Mol. Sci. 2022, 23, 1776. [Google Scholar] [CrossRef]
- Uçkan, K.; Demir, H.; Turan, K.; Sarıkaya, E.; Demir, C. Role of Oxidative Stress in Obese and Nonobese PCOS Patients. Int. J. Clin. Pract. 2022, 2022, 4579831. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Bao, Y.; Zhou, X.; Zheng, L. Polycystic ovary syndrome and mitochondrial dysfunction. Reprod. Biol. Endocrinol. 2019, 17, 67. [Google Scholar] [CrossRef] [PubMed]
- Kanbay, M.; Ertuglu, L.A.; Afsar, B.; Ozdogan, E.; Kucuksumer, Z.S.; Ortiz, A.; Covic, A.; Kuwabara, M.; Cherney, D.Z.I.; van Raalte, D.H.; et al. Renal hyperfiltration defined by high estimated glomerular filtration rate: A risk factor for cardiovascular disease and mortality. Diabetes Obes. Metab. 2019, 21, 2368–2383. [Google Scholar] [CrossRef]
- Premaratne, E.; Macisaac, R.J.; Tsalamandris, C.; Panagiotopoulos, S.; Smith, T.; Jerums, G. Renal hyperfiltration in type 2 diabetes: Effect of age-related decline in glomerular filtration rate. Diabetologia 2005, 48, 2486–2493. [Google Scholar] [CrossRef]
- Penno, G.; Orsi, E.; Solini, A.; Bonora, E.; Fondelli, C.; Trevisan, R.; Vedovato, M.; Cavalot, F.; Gruden, G.; Laviola, L.; et al. Renal hyperfiltration is independently associated with increased all-cause mortality in individuals with type 2 diabetes: A prospective cohort study. BMJ Open Diabetes Res. Care 2020, 8, e001481. [Google Scholar] [CrossRef]
- Abdalla, M.A.; Shah, N.; Deshmukh, H.; Sahebkar, A.; Östlundh, L.; Al-Rifai, R.H.; Atkin, S.L.; Sathyapalan, T. Effect of pharmacological interventions on lipid profiles and C-reactive protein in polycystic ovary syndrome: A systematic review and meta-analysis. Clin. Endocrinol. 2022, 96, 443–459. [Google Scholar] [CrossRef]
- Phelan, N.; O’Connor, A.; Kyaw Tun, T.; Correia, N.; Boran, G.; Roche, H.M.; Gibney, J. Leucocytosis in women with polycystic ovary syndrome (PCOS) is incompletely explained by obesity and insulin resistance. Clin. Endocrinol. 2013, 78, 107–113. [Google Scholar] [CrossRef] [PubMed]
- Murty, M.S.; Sharma, U.K.; Pandey, V.B.; Kankare, S.B. Serum cystatin C as a marker of renal function in detection of early acute kidney injury. Indian J. Nephrol. 2013, 23, 180–183. [Google Scholar] [CrossRef]
- Correa, S.; Morrow, D.A.; Braunwald, E.; Davies, R.Y.; Goodrich, E.L.; Murphy, S.A.; Cannon, C.P.; O’Donoghue, M.L. Cystatin C for Risk Stratification in Patients After an Acute Coronary Syndrome. J. Am. Heart Assoc. 2018, 7, e009077. [Google Scholar] [CrossRef]
- Benoit, S.W.; Ciccia, E.A.; Devarajan, P. Cystatin C as a biomarker of chronic kidney disease: Latest developments. Expert. Rev. Mol. Diagn. 2020, 20, 1019–1026. [Google Scholar] [CrossRef] [PubMed]
- Fang, W.C.; Chen, H.Y.; Chu, S.C.; Wang, P.H.; Lee, C.C.; Wu, I.W.; Sun, C.Y.; Hsu, H.J.; Chen, C.Y.; Chen, Y.C.; et al. Serum Cystatin C Levels Could Predict Rapid Kidney Function Decline in A Community-Based Population. Biomedicines 2022, 10, 2789. [Google Scholar] [CrossRef] [PubMed]
- Feng, B.; Lu, Y.; Ye, L.; Yin, L.; Zhou, Y.; Chen, A. Mendelian randomization study supports the causal association between serum cystatin C and risk of diabetic nephropathy. Front. Endocrinol. 2022, 13, 1043174. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.H.; Sharma, A.P.; Yasin, A.; Lindsay, R.M.; Clark, W.F.; Filler, G. Hyperfiltration affects accuracy of creatinine eGFR measurement. Clin. J. Am. Soc. Nephrol. CJASN 2011, 6, 274–280. [Google Scholar] [CrossRef] [PubMed]
- Brodbeck, W.G.; Kuttner-Kondo, L.; Mold, C.; Medof, M.E. Structure/function studies of human decay-accelerating factor. Immunology 2000, 101, 104–111. [Google Scholar] [CrossRef] [PubMed]
- Toomey, C.B.; Cauvi, D.M.; Pollard, K.M. The role of decay accelerating factor in environmentally induced and idiopathic systemic autoimmune disease. Autoimmune Dis. 2014, 2014, 452853. [Google Scholar] [CrossRef] [PubMed]
- Stepniewska, J.; Dolegowska, B.; Golembiewska, E.; Marchelek-Mysliwiec, M.; Domanski, M.; Ciechanowski, K.; Zair, L. The activation of complement system in different types of renal replacement therapy. J. Physiol. Pharmacol. 2020, 71, 275–281. [Google Scholar]
- Ghiso, J.; Saball, E.; Leoni, J.; Rostagno, A.; Frangione, B. Binding of cystatin C to C4: The importance of sense-antisense peptides in their interaction. Proc. Natl. Acad. Sci. USA 1990, 87, 1288–1291. [Google Scholar] [CrossRef] [PubMed]
- Swami, V.; Tran, U.S.; Stieger, S.; Aavik, T.; Ranjbar, H.A.; Adebayo, S.O.; Afhami, R.; Ahmed, O.; Aimé, A.; Akel, M.; et al. Body appreciation around the world: Measurement invariance of the Body Appreciation Scale-2 (BAS-2) across 65 nations, 40 languages, gender identities, and age. Body Image 2023, 46, 449–466. [Google Scholar] [CrossRef]
- Low, S.; Zhang, X.; Wang, J.; Yeoh, L.Y.; Liu, Y.L.; Ang, K.K.L.; Tang, W.E.; Kwan, P.Y.; Tavintharan, S.; Sum, C.F.; et al. Long-term prospective observation suggests that glomerular hyperfiltration is associated with rapid decline in renal filtration function: A multiethnic study. Diabetes Vasc. Dis. Res. Off. J. Int. Soc. Diabetes Vasc. Dis. 2018, 15, 417–423. [Google Scholar] [CrossRef]
- McMeekin, H.; Townrow, S.; Barnfield, M.; Bradley, A.; Fongenie, B.; McGowan, D.R.; Memmott, M.; Porter, C.A.; Wickham, F.; Vennart, N.; et al. Tailoring the sampling time of single-sample GFR measurement according to expected renal function: A multisite audit. EJNMMI Phys. 2022, 9, 73. [Google Scholar] [CrossRef] [PubMed]
- NICE Evidence Reviews Collection. Evidence Reviews for the Diagnostic Accuracy of eGFR Calculations in Adults, Children, and Young People from Black, Asian and Other Minority Ethnic Groups with CKD: Chronic Kidney Disease: Evidence Review A; National Institute for Health and Care Excellence (NICE): London, UK, 2021. [Google Scholar]
- Levey, A.S.; Stevens, L.A.; Schmid, C.H.; Zhang, Y.L.; Castro, A.F., 3rd; Feldman, H.I.; Kusek, J.W.; Eggers, P.; Van Lente, F.; Greene, T.; et al. A new equation to estimate glomerular filtration rate. Ann. Intern. Med. 2009, 150, 604–612. [Google Scholar] [CrossRef] [PubMed]
- Lopez-Silva, C.; Surapaneni, A.; Coresh, J.; Reiser, J.; Parikh, C.R.; Obeid, W.; Grams, M.E.; Chen, T.K. Comparison of Aptamer-Based and Antibody-Based Assays for Protein Quantification in Chronic Kidney Disease. Clin. J. Am. Soc. Nephrol. CJASN 2022, 17, 350–360. [Google Scholar] [CrossRef] [PubMed]
- Cox, H.J.; Bhandari, S.; Rigby, A.S.; Kilpatrick, E.S. Mortality at low and high estimated glomerular filtration rate values: A ‘U’ shaped curve. Nephron. Clin. Pract. 2008, 110, c67–c72. [Google Scholar] [CrossRef]
- Cunningham, T.K.; Allgar, V.; Dargham, S.R.; Kilpatrick, E.; Sathyapalan, T.; Maguiness, S.; Mokhtar Rudin, H.R.; Abdul Ghani, N.M.; Latiff, A.; Atkin, S.L. Association of Vitamin D Metabolites With Embryo Development and Fertilization in Women With and Without PCOS Undergoing Subfertility Treatment. Front. Endocrinol. 2019, 10, 13. [Google Scholar] [CrossRef]
- Matsushita, K.; Mahmoodi, B.K.; Woodward, M.; Emberson, J.R.; Jafar, T.H.; Jee, S.H.; Polkinghorne, K.R.; Shankar, A.; Smith, D.H.; Tonelli, M.; et al. Comparison of risk prediction using the CKD-EPI equation and the MDRD study equation for estimated glomerular filtration rate. JAMA 2012, 307, 1941–1951. [Google Scholar] [CrossRef] [PubMed]
- Kahal, H.; Halama, A.; Aburima, A.; Bhagwat, A.M.; Butler, A.E.; Grauman, J.; Suhre, K.; Sathyapalan, T.; Atkin, S.L. Effect of induced hypoglycemia on inflammation and oxidative stress in type 2 diabetes and control subjects. Sci. Rep. 2020, 10, 4750. [Google Scholar] [CrossRef] [PubMed]
- Kraemer, S.; Vaught, J.D.; Bock, C.; Gold, L.; Katilius, E.; Keeney, T.R.; Kim, N.; Saccomano, N.A.; Wilcox, S.K.; Zichi, D.; et al. From SOMAmer-based biomarker discovery to diagnostic and clinical applications: A SOMAmer-based, streamlined multiplex proteomic assay. PLoS ONE 2011, 6, e26332. [Google Scholar] [CrossRef]
- Thöni, S.; Keller, F.; Denicolò, S.; Buchwinkler, L.; Mayer, G. Biological variation and reference change value of the estimated glomerular filtration rate in humans: A systematic review and meta-analysis. Front. Med. 2022, 9, 1009358. [Google Scholar] [CrossRef]
Baseline Demographics | Controls eGFR < 126 mL/min (n = 97) | PCOS Normal Filtrators (PCOS-nonGH) eGFR < 126 mL/min (n = 76) | PCOS Hyperfiltrators (PCOS-GH) eGFR > 126 mL/min (n = 62) | PCOS Super Hyperfiltrators Subset (PCOS-SGH) eGFR > 142 mL/min (n = 25) |
---|---|---|---|---|
Mean (SD) | Mean (SD) | Mean (SD) | Mean (SD) | |
Age (years) | 29.6 (6.5) | 29.7 (5.9) | 25.1 (5.8) ** | 26.2 (5.8) |
BMI (kg/m2) | 26.7 (6.6) | 34.4 (8.0) ** | 33.5 (7.1) ** | 36.1 (7.4) ** |
Body weight (kg) | 74.4 (18.4) | 96.9 (24.4) ** | 94.1 (22.5) ** | 100.5 (22.5) ** |
Insulin (IU/mL) | 6.2 (3.2) | 11.1 (6.3) * | 9.6 (6.6) | 7.1 (4.9) |
HOMA-IR | 1.6 (0.2) | 2.4 (1.8) # | 1.7 (1.2) | 1.6 (1.3) |
CRP (mg/L) | 2.4 (3.9) | 4.5 (4.5) * | 5.0 (5.3) ** | 5.0 (4.8) # |
SHBG (nmol/L) | 77.5 (78.4) | 39.3 (27.0) ** | 43.4 (49.3) * | 34.5 (36.7) * |
Testosterone (nmol/L) | 1.05 (0.48) | 1.7 (1.0) ** | 1.6 (1.1) * | 1.6 (0.8) * |
AMH (ng/mL) | 20.1 (18.1) | 38.0 (24.0) * | 49.3 (20.3) ** | 51.8 (30.8) * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Butler, A.E.; Lubbad, W.; Akbar, S.; Kilpatrick, E.S.; Sathyapalan, T.; Atkin, S.L. A Cross-Sectional Study of Glomerular Hyperfiltration in Polycystic Ovary Syndrome. Int. J. Mol. Sci. 2024, 25, 4899. https://doi.org/10.3390/ijms25094899
Butler AE, Lubbad W, Akbar S, Kilpatrick ES, Sathyapalan T, Atkin SL. A Cross-Sectional Study of Glomerular Hyperfiltration in Polycystic Ovary Syndrome. International Journal of Molecular Sciences. 2024; 25(9):4899. https://doi.org/10.3390/ijms25094899
Chicago/Turabian StyleButler, Alexandra E., Walaa Lubbad, Shahzad Akbar, Eric S. Kilpatrick, Thozhukat Sathyapalan, and Stephen L. Atkin. 2024. "A Cross-Sectional Study of Glomerular Hyperfiltration in Polycystic Ovary Syndrome" International Journal of Molecular Sciences 25, no. 9: 4899. https://doi.org/10.3390/ijms25094899
APA StyleButler, A. E., Lubbad, W., Akbar, S., Kilpatrick, E. S., Sathyapalan, T., & Atkin, S. L. (2024). A Cross-Sectional Study of Glomerular Hyperfiltration in Polycystic Ovary Syndrome. International Journal of Molecular Sciences, 25(9), 4899. https://doi.org/10.3390/ijms25094899