A Nanorobotics-Based Approach of Breast Cancer in the Nanotechnology Era
Abstract
:1. Introduction
2. Nano-“Magic Bullets” in BC Theranostics
3. Breast Cancer Hallmark Features
4. Theranostic Roles of Nanomaterials against BC Hallmarks
4.1. Nanomaterials Used against Sustained Proliferative Signaling in BC Cells
4.2. Nanomaterials for Avoiding Evading Growth Suppressors/Evasion of Anti-Growth Signaling in BC
4.3. Anti-Resisting Cell Death Nanomaterials
4.4. Nanomaterials Promoting Anti-Angiogenic Effects
4.5. Anti-Invasion and Anti-Metastatic Nanomaterials
4.6. Genomic Instability, Mutations, Mitosis/Cell Cycle Deregulation
4.7. Nanomaterials Targeting Evading/Avoiding Immune Destruction
4.8. Nanomaterials Targeting Intratumoral/TME Hypoxia
4.9. Nanomedicine for Deregulating Autophagy Modulation
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
Ab | Antibody |
AgNPs | Silver nanoparticles |
AIPH | Alkyl radical initiator |
AP or Apt | Aptamer |
AuNCs | Gold nanocages |
BSA | Bovine serum albumin |
CCm | Cancer cell membrane |
Ce6 | Chlorine 6 |
circRNA | Circular RNA |
CS-NP | Chitosan nanoparticles |
CTA | Circular trivalent aptamer |
CTCs | Circulating tumor cells |
CTL | Cytotoxic T lymphocyte |
Cur | Curcumin |
Cy5 | Cyanine 5 NHS dye |
DM1 | Microtubule polymerization inhibitor mertansine |
DOX | Doxorubicin |
ECM | Extracellular matrix |
EpCAM | Epithelial cell adhesion molecule |
Fe3O4@aC | Glusosamine-based amorphous carbon coating magnetite NPs |
Fe3O4@Dex | Magnetite NPs coated by dextran |
GC | Gemcitabine |
G4 | Fourth generation |
GLUT1 | Glucose transporter 1 |
GSH | Reduced glutathione |
GSH | Glutathione |
GST | Glutathione S-transferase |
HER2 | Human epidermal growth factor receptor 2 |
H2O2 | Hydrogen peroxide |
HIF-1 | Hypoxia-inducible factor-1 |
HFn | Human heavy chain apoferritin |
HIFU | High intensity focused ultrasound |
HOX1 | Heme oxygenase |
HSA | Human serum albumin |
ICAM | Intercellular adhesion molecule-1 |
ICG | Indocyanine green |
iNOS | Inducible nitric oxide synthase |
Lcn2 | Lipocalin 2 |
LPs | Liposomes |
MB | Methylene blue |
MCF7 | Michigan Cancer Foundation-7 |
MPO | Myeloperoxidase |
MRI | Magnetic resonance imaging |
NIR | Near-infrared laser irradiation |
NO | Nitric oxide |
NOTCH3 | Neurogenic locus notch homolog protein 3 |
NPs | Nanoparticles |
NSs | Nanosponges |
NSKs | Nanosponges/nanokillers |
OS | Oxidative stress |
PAI | Photoacoustic imaging |
PDT | Photodynamic therapy |
PEG | Poly(ethylene glycol) |
PFC | Perfluorocarbon |
PFOB | Perfluorooctyl bromide |
PFTBA | Perfluorotributylamine |
PI3K/AKT | Phosphoinositide 3-kinase/protein kinase B |
PLGA | Poly (lactic-co-glycolic acid) NPs |
PNM | Platelet and neutrophil hybrid cell membrane |
Pt | Cisplatin |
QDs | Quantum dots |
RBC | Red blood cell |
RNS | Reactive nitrogen species |
ROS | Reactive oxygen species |
siRNA | Small interfering RNA |
SQSTM | Sequestosome |
TAMs | Tumor associated macrophages |
Tf | Transferrin |
tFNA | Tetrahedral framework nucleic acid |
TME | Tumor microenvironment |
TNBC | Triple negative breast cancer |
TSM | Tumor stromal microenvironment |
USPIO | Ultrasmall superparamagnetic iron oxide |
VEGF | Vascular endothelial growth factor |
References
- Ahire, S.A.; Bachhav, A.A.; Pawar, T.B.; Jagdale, B.S.; Patil, A.V.; Koli, P.B. The Augmentation of nanotechnology era: A concise review on fundamental concepts of nanotechnology and applications in material science and technology. Results Chem. 2022, 4. [Google Scholar] [CrossRef]
- Bayda, S.; Adeel, M.; Tuccinardi, T.; Cordani, M.; Rizzolio, F. The History of Nanoscience and Nanotechnology: From Chemical–Physical Applications to Nanomedicine. Molecules 2020, 25, 112. [Google Scholar] [CrossRef] [PubMed]
- Tang, X.; Loc, W.S.; Dong, C.; Matters, G.L.; Butler, P.J.; Kester, M.; Meyers, C.; Jiang, Y.; Adair, J.H. The use of nanoparticulates to treat breast cancer. Nanomedicine 2017, 12, 2367–2388. [Google Scholar] [CrossRef] [PubMed]
- Wang, G. Editorial: Nanomaterials for biology and medicine. Front. Chem. 2023, 11, 1244175. [Google Scholar] [CrossRef] [PubMed]
- Wang, E.C.; Wang, A.Z. Nanoparticles and their applications in cell and molecular biology. Integr. Biol. 2013, 6, 9–26. [Google Scholar] [CrossRef] [PubMed]
- Pham, S.H.; Choi, Y.; Choi, J. Stimuli-Responsive Nanomaterials for Application in Antitumor Therapy and Drug Delivery. Pharmaceutics 2020, 12, 630. [Google Scholar] [CrossRef]
- Awasthi, A.; Awasthi, K.K.; John, P.J. Nanomaterials in Biology. Environ. Sci. Pollut. Res. 2021, 28, 46334–46335. [Google Scholar] [CrossRef] [PubMed]
- Hu, C.; Pané, S.; Nelson, B. Soft Micro- and Nanorobotics. Annu. Rev. Control Robot. Auton. Syst. 2018, 1, 53–75. [Google Scholar] [CrossRef]
- Dolev, S.; Narayanan, R.P.; Rosenblit, M. Design of nanorobots for exposing cancer cells. Nanotechnology 2019, 30, 315501. [Google Scholar] [CrossRef]
- Chesnitskiy, A.V.; Gayduk, A.E.; Seleznev, V.A.; Prinz, V.Y. Bio-Inspired Micro- and Nanorobotics Driven by Magnetic Field. Materials 2022, 15, 7781. [Google Scholar] [CrossRef]
- Arvidsson, R.; Hansen, S.F. Environmental and health risks of nanorobots: An early review. Environ. Sci. Nano 2020, 7, 2875–2886. [Google Scholar] [CrossRef]
- Yan, M.; Chen, Q.; Liu, T.; Li, X.; Pei, P.; Zhou, L.; Zhou, S.; Zhang, R.; Liang, K.; Dong, J.; et al. Site-selective superassembly of biomimetic nanorobots enabling deep penetration into tumor with stiff stroma. Nat. Commun. 2023, 14, 4628. [Google Scholar] [CrossRef]
- Meloni, G.; Tricinci, O.; Degl’innocenti, A.; Mazzolai, B. A protein-coated micro-sucker patch inspired by octopus for adhesion in wet conditions. Sci. Rep. 2020, 10, 15480. [Google Scholar] [CrossRef]
- Li, T.; Li, J.; Zhang, H.; Chang, X.; Song, W.; Hu, Y.; Shao, G.; Sandraz, E.; Zhang, G.; Li, L.; et al. Magnetically Propelled Fish-Like Nanoswimmers. Small 2016, 12, 6098–6105. [Google Scholar] [CrossRef]
- Wen, S.; Sun, Y.; Chen, S.; Chen, Y. A Intelligent Nanorobots Fish Swarm Strategy for Tumor Targeting. In Bio-Inspired Information and Communications Technologies; Chen, Y., Yao, D., Nakano, T., Eds.; BICT 2023. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering; Springer: Cham, Switzerland, 2023; Volume 512, pp. 280–291. [Google Scholar] [CrossRef]
- Yang, M.; Reif, J. Social DNA Nanorobots. In Visions of DNA Nanotechnology at 40 for the Next 40; Natural Computing Series; Jonoska, N., Winfree, E., Eds.; Springer: Singapore, 2023; pp. 371–396. [Google Scholar] [CrossRef]
- Lebre, F.; Chatterjee, N.; Costa, S.; Fernández-De-Gortari, E.; Lopes, C.; Meneses, J.; Ortiz, L.; Ribeiro, A.R.; Vilas-Boas, V.; Alfaro-Moreno, E. Nanosafety: An Evolving Concept to Bring the Safest Possible Nanomaterials to Society and Environment. Nanomaterials 2022, 12, 1810. [Google Scholar] [CrossRef]
- Gupta, D.; Boora, A.; Thakur, A.; Gupta, T.K. Green and sustainable synthesis of nanomaterials: Recent advancements and limitations. Environ. Res. 2023, 231, 116316. [Google Scholar] [CrossRef] [PubMed]
- Giri, G.; Maddahi, Y.; Zareinia, K. A Brief Review on Challenges in Design and Development of Nanorobots for Medical Applications. Appl. Sci. 2021, 11, 10385. [Google Scholar] [CrossRef]
- Hu, Y. Self-Assembly of DNA Molecules: Towards DNA Nanorobots for Biomedical Applications. Think. Ski. Creativity 2021, 2021, 9807520. [Google Scholar] [CrossRef]
- Kong, X.; Gao, P.; Wang, J.; Fang, Y.; Hwang, K.C. Advances of medical nanorobots for future cancer treatments. J. Hematol. Oncol. 2023, 16, 74. [Google Scholar] [CrossRef] [PubMed]
- Kumar, P.; Mangla, B.; Javed, S.; Ahsan, W.; Musyuni, P.; Sivadasan, D.; Alqahtani, S.S.; Aggarwal, G. A review of nanomaterials from synthetic and natural molecules for prospective breast cancer nanotherapy. Front. Pharmacol. 2023, 14. [Google Scholar] [CrossRef] [PubMed]
- Ediriwickrema, A.; Saltzman, W.M. Nanotherapy for Cancer: Targeting and Multifunctionality in the Future of Cancer Therapies. ACS Biomater. Sci. Eng. 2015, 1, 64–78. [Google Scholar] [CrossRef]
- Alharbi, K.K.; Al-Sheikh, Y.A. Role and implications of nanodiagnostics in the changing trends of clinical diagnosis. Saudi J. Biol. Sci. 2013, 21, 109–117. [Google Scholar] [CrossRef]
- Lv, Y.; Kan, J.; Luo, M.; Yang, C.; Luo, X.; Lin, X.; Li, H.; Li, X.; Li, Y.; Yang, C.; et al. Multifunctional Nanosnowflakes for T1-T2 Double-Contrast Enhanced MRI and PAI Guided Oxygen Self-Supplementing Effective Anti-Tumor Therapy. Int. J. Nanomed. 2022, 17, 4619–4638. [Google Scholar] [CrossRef]
- Puri, R.; Arora, V.; Kabra, A.; Dureja, H.; Hamaal, S. Magnetosomes: A Tool for Targeted Drug Delivery in the Management of Cancer. J. Nanomater. 2022, 2022, 6414585. [Google Scholar] [CrossRef]
- Zhong, D.; Zhang, D.; Xie, T.; Zhou, M. Biodegradable Microalgae-Based Carriers for Targeted Delivery and Imaging-Guided Therapy toward Lung Metastasis of Breast Cancer. Small 2020, 16, e2000819. [Google Scholar] [CrossRef]
- Zhou, J.; Li, K.; Zang, X.; Xie, Y.; Song, J.; Chen, X. ROS-responsive Galactosylated-nanoparticles with Doxorubicin Entrapment for Triple Negative Breast Cancer Therapy. Int. J. Nanomed. 2023, 18, 1381–1397. [Google Scholar] [CrossRef]
- Si, Y.; Zhang, Y.; Ngo, H.G.; Guan, J.-S.; Chen, K.; Wang, Q.; Singh, A.P.; Xu, Y.; Zhou, L.; Yang, E.S.; et al. Targeted Liposomal Chemotherapies to Treat Triple-Negative Breast Cancer. Cancers 2021, 13, 3749. [Google Scholar] [CrossRef]
- Zeng, W.; Luo, Y.; Gan, D.; Zhang, Y.; Deng, H.; Liu, G. Advances in Doxorubicin-based nano-drug delivery system in triple negative breast cancer. Front. Bioeng. Biotechnol. 2023, 11, 1271420. [Google Scholar] [CrossRef]
- Jawad, M.; Öztürk, K.; Jabir, M.S. TNF-α loaded on gold nanoparticles as promising drug delivery system against proliferation of breast cancer cells. Mater. Today Proc. 2021, 42, 3057–3061. [Google Scholar] [CrossRef]
- Zhou, B.; Xue, J.; Wu, R.; Meng, H.; Li, R.; Mo, Z.; Zhai, H.; Chen, X.; Liu, R.; Lai, G.; et al. CREBZF mRNA nanoparticles suppress breast cancer progression through a positive feedback loop boosted by circPAPD4. J. Exp. Clin. Cancer Res. 2023, 42, 138. [Google Scholar] [CrossRef] [PubMed]
- Ji, P.; Wang, X.; Yin, J.; Mou, Y.; Huang, H.; Ren, Z. Selective delivery of curcumin to breast cancer cells by self-targeting apoferritin nanocages with pH-responsive and low toxicity. Drug Deliv. 2022, 29, 986–996. [Google Scholar] [CrossRef] [PubMed]
- Guo, Z.; Gao, X.; Lu, J.; Li, Y.; Jin, Z.; Fahad, A.; Pambe, N.U.; Ejima, H.; Sun, X.; Wang, X.; et al. Apoptosis and Paraptosis Induced by Disulfiram-Loaded Ca2+/Cu2+ Dual-Ions Nano Trap for Breast Cancer Treatment. ACS Nano 2024, 18, 6975–6989. [Google Scholar] [CrossRef] [PubMed]
- Menghini, S.; Vizovisek, M.; Enders, J.; Schuerle, S. Magnetospirillum magneticum triggers apoptotic pathways in human breast cancer cells. Cancer Metab. 2023, 11, 12. [Google Scholar] [CrossRef]
- Abdellatif, A.A.; Alsharidah, M.; Al Rugaie, O.; Tawfeek, H.M.; Tolba, N.S. Silver Nanoparticle-Coated Ethyl Cellulose Inhibits Tumor Necrosis Factor-α of Breast Cancer Cells. Drug Des. Dev. Ther. 2021, 15, 2035–2046. [Google Scholar] [CrossRef]
- Chaudhari, R.; Nasra, S.; Meghani, N.; Kumar, A. MiR-206 conjugated gold nanoparticle based targeted therapy in breast cancer cells. Sci. Rep. 2022, 12, 4713. [Google Scholar] [CrossRef] [PubMed]
- Naderi, S.; Zare, H.; Taghavinia, N.; Irajizad, A.; Aghaei, M.; Panjehpour, M. Cadmium telluride quantum dots induce apoptosis in human breast cancer cell lines. Toxicol. Ind. Heal. 2018, 34, 339–352. [Google Scholar] [CrossRef]
- Seyedi, S.M.R.; Asoodeh, A.; Darroudi, M. The human immune cell simulated anti-breast cancer nanorobot: The efficient, traceable, and dirigible anticancer bio-bot. Cancer Nanotechnol. 2022, 13, 44. [Google Scholar] [CrossRef]
- Yu, X.; Li, X.; Chen, Q.; Wang, S.; Xu, R.; He, Y.; Qin, X.; Zhang, J.; Yang, W.; Shi, L.; et al. High Intensity Focused Ultrasound-Driven Nanomotor for Effective Ferroptosis-Immunotherapy of TNBC. Adv. Sci. 2024, 11, e2305546. [Google Scholar] [CrossRef]
- Wu, W.; Yang, Y.; Liang, Z.; Song, X.; Huang, Y.; Qiu, L.; Qiu, X.; Yu, S.; Xue, W. Near infrared II laser controlled free radical releasing nanogenerator for synergistic nitric oxide and alkyl radical therapy of breast cancer. Nanoscale 2021, 13, 11169–11187. [Google Scholar] [CrossRef]
- Wang, C.; Li, T.; Wang, Z.; Li, Y.; Liu, Y.; Xu, M.; Zhang, Z.; Deng, Y.; Cai, L.; Zhang, C.; et al. Nano-modulators with the function of disrupting mitochondrial Ca2+ homeostasis and photothermal conversion for synergistic breast cancer therapy. J. Nanobiotechnol. 2023, 21, 465. [Google Scholar] [CrossRef]
- Nunes, T.; Pons, T.; Hou, X.; Van Do, K.; Caron, B.; Rigal, M.; Di Benedetto, M.; Palpant, B.; Leboeuf, C.; Janin, A.; et al. Pulsed-laser irradiation of multifunctional gold nanoshells to overcome trastuzumab resistance in HER2-overexpressing breast cancer. J. Exp. Clin. Cancer Res. 2019, 38, 306. [Google Scholar] [CrossRef] [PubMed]
- Yang, T.; Yao, Q.; Cao, F.; Liu, Q.; Liu, B.; Wang, X.-H. Silver nanoparticles inhibit the function of hypoxia-inducible factor-1 and target genes: Insight into the cytotoxicity and antiangiogenesis. Int. J. Nanomed. 2016, 11, 6679–6692. [Google Scholar] [CrossRef]
- Guo, P.; Yang, J.; Jia, D.; Moses, M.A.; Auguste, D.T. ICAM-1-Targeted, Lcn2 siRNA-Encapsulating Liposomes are Potent Anti-angiogenic Agents for Triple Negative Breast Cancer. Theranostics 2016, 6, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Sun, K.; Yu, W.; Ji, B.; Chen, C.; Yang, H.; Du, Y.; Song, M.; Cai, H.; Yan, F.; Su, R. Saikosaponin D loaded macrophage membrane-biomimetic nanoparticles target angiogenic signaling for breast cancer therapy. Appl. Mater. Today 2019, 18, 100505. [Google Scholar] [CrossRef]
- Ye, H.; Wang, K.; Lu, Q.; Zhao, J.; Wang, M.; Kan, Q.; Zhang, H.; Wang, Y.; He, Z.; Sun, J. Nanosponges of circulating tumor-derived exosomes for breast cancer metastasis inhibition. Biomaterials 2020, 242, 119932. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Xu, H.; Li, S.; Lin, M.; Lu, Y.; Liu, K.; Katanaev, V.; Denisov, E.V.; Jia, L. Long cruising aptamer-albumin nanobots intelligently capture and restrain circulating tumor cells. Nano Today 2023, 53. [Google Scholar] [CrossRef]
- Zhai, Y.; Ran, W.; Su, J.; Lang, T.; Meng, J.; Wang, G.; Zhang, P.; Li, Y. Traceable Bioinspired Nanoparticle for the Treatment of Metastatic Breast Cancer via NIR-Trigged Intracellular Delivery of Methylene Blue and Cisplatin. Adv. Mater. 2018, 30, e1802378. [Google Scholar] [CrossRef] [PubMed]
- Olmos, S.P.; Torres, R.D.; Elbakrawy, E.; Hughes, L.; Mckenna, J.; Hill, M.A.; Kadhim, M.; Noguera, P.R.; Bolanos-Garcia, V.M. Combinatorial Use of Chitosan Nanoparticles, Reversine, and Ionising Radiation on Breast Cancer Cells Associated with Mitosis Deregulation. Biomolecules 2019, 9, 186. [Google Scholar] [CrossRef]
- Kang, T.-W.; Kim, H.-S.; Lee, B.-C.; Shin, T.-H.; Choi, S.W.; Kim, Y.-J.; Lee, H.-Y.; Jung, Y.-K.; Seo, K.-W.; Kang, K.-S. Mica Nanoparticle, STB-HO Eliminates the Human Breast Carcinoma Cells by Regulating the Interaction of Tumor with its Immune Microenvironment. Sci. Rep. 2015, 5, 17515. [Google Scholar] [CrossRef] [PubMed]
- Ma, W.; Zhang, Y.; Shao, X.; Xie, X.; Mao, C.; Cui, W.; Li, Q.; Shi, J.; Li, J.; Fan, C.; et al. An Intelligent DNA Nanorobot with in Vitro Enhanced Protein Lysosomal Degradation of HER2. Nano Lett. 2019, 19, 4505–4517. [Google Scholar] [CrossRef]
- Lewińska, A.; Radoń, A.; Gil, K.; Błoniarz, D.; Ciuraszkiewicz, A.; Kubacki, J.; Kądziołka-Gaweł, M.; Łukowiec, D.; Gębara, P.; Krogul-Sobczak, A.; et al. Carbon-Coated Iron Oxide Nanoparticles Promote Reductive Stress-Mediated Cytotoxic Autophagy in Drug-Induced Senescent Breast Cancer Cells. ACS Appl. Mater. Interfaces 2024, 16, 15457–15478. [Google Scholar] [CrossRef] [PubMed]
- Valent, P.; Groner, B.; Schumacher, U.; Superti-Furga, G.; Busslinger, M.; Kralovics, R.; Zielinski, C.; Penninger, J.M.; Kerjaschki, D.; Stingl, G.; et al. Paul Ehrlich (1854-1915) and His Contributions to the Foundation and Birth of Translational Medicine. J. Innate Immun. 2016, 8, 111–120. [Google Scholar] [CrossRef] [PubMed]
- Blair, J. Making magic bullets. Nat. Microbiol. 2017, 2, 17110. [Google Scholar] [CrossRef]
- Tewabe, A.; Abate, A.; Tamrie, M.; Seyfu, A.; Siraj, E.A. Targeted Drug Delivery—From Magic Bullet to Nanomedicine: Principles, Challenges, and Future Perspectives. J. Multidiscip. Heal. 2021, 14, 1711–1724. [Google Scholar] [CrossRef]
- Pumera, M. Electrochemically powered self-propelled electrophoretic nanosubmarines. Nanoscale 2010, 2, 1643–1649. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.; Ni, R.; Chen, Y. Targeting breast cancer stem cells by a self-assembled, aptamer-conjugated DNA nanotrain with preloading doxorubicin. Int. J. Nanomed. 2019, 14, 6831–6842. [Google Scholar] [CrossRef]
- Hameed, M.K.; Parambath, J.B.M.; Gul, M.T.; Khan, A.A.; Park, Y.; Han, C.; Mohamed, A.A. Arylated gold nanostars aided SERS study of breast cancer cells. Appl. Surf. Sci. 2022, 583, 152504. [Google Scholar] [CrossRef]
- Fatima, S.W.; Imtiyaz, K.; Alam Rizvi, M.M.; Khare, S.K. Microbial transglutaminase nanoflowers as an alternative nanomedicine for breast cancer theranostics. RSC Adv. 2021, 11, 34613–34630. [Google Scholar] [CrossRef] [PubMed]
- Patel, H.; Parekh, K.; Gamarra, L.F.; Mamani, J.B.; Alves, A.d.H.; Neto, A.F. In vitro evaluation of magnetic fluid hyperthermia therapy on breast cancer cells using monodispersed Mn0.5Zn0.5Fe2O4 nanoflowers. J. Magn. Magn. Mater. 2023, 587. [Google Scholar] [CrossRef]
- Liang, L.; Huo, W.; Wang, B.; Cao, L.; Huo, H.; Liu, Y.; Jin, Y.; Yang, X. DNAzyme-Based nanoflowers for reversing P-glycoprotein-mediated multidrug resistance in breast cancer. J. Colloid Interface Sci. 2021, 608, 2985–2993. [Google Scholar] [CrossRef]
- Cao, H.; Li, C.; Qi, W.; Meng, X.; Tian, R.; Qi, Y.; Yang, W.; Li, J. Synthesis, cytotoxicity and antitumour mechanism investigations of polyoxometalate doped silica nanospheres on breast cancer MCF-7 cells. PLOS ONE 2017, 12, e0181018. [Google Scholar] [CrossRef]
- Arjama, M.; Mehnath, S.; Jeyaraj, M. Self-assembled hydrogel nanocube for stimuli responsive drug delivery and tumor ablation by phototherapy against breast cancer. Int. J. Biol. Macromol. 2022, 213, 435–446. [Google Scholar] [CrossRef] [PubMed]
- White, B.E.; White, M.K.; Alsudani, Z.A.N.; Watanabe, F.; Biris, A.S.; Ali, N. Cellular Uptake of Gold Nanorods in Breast Cancer Cell Lines. Nanomaterials 2022, 12, 937. [Google Scholar] [CrossRef] [PubMed]
- Yin, Y.; Hao, Y.; Wang, N.; Yang, P.; Li, N.; Zhang, X.; Song, Y.; Feng, X.; Ma, W. PPy nanoneedle based nanoplatform capable of overcoming biological barriers for synergistic chemo-photothermal therapy. RSC Adv. 2020, 10, 7771–7779. [Google Scholar] [CrossRef] [PubMed]
- Safarkhani, M.; Moghaddam, S.S.; Taghavimandi, F.; Bagherzadeh, M.; Fatahi, Y.; Park, U.; Radmanesh, F.; Huh, Y.S.; Rabiee, N. Bioengineered Smart Nanocarriers for Breast Cancer Treatment: Adorned Carbon-Based Nanocomposites with Silver and Palladium Complexes for Efficient Drug Delivery. ACS Omega 2023, 9, 1183–1195. [Google Scholar] [CrossRef] [PubMed]
- Peng, J.; Chen, J.; Xie, F.; Bao, W.; Xu, H.; Wang, H.; Xu, Y.; Du, Z. Herceptin-conjugated paclitaxel loaded PCL-PEG worm-like nanocrystal micelles for the combinatorial treatment of HER2-positive breast cancer. Biomaterials 2019, 222, 119420. [Google Scholar] [CrossRef] [PubMed]
- Sun, S.; Liu, Y.; He, C.; Hu, W.; Liu, W.; Huang, X.; Wu, J.; Xie, F.; Chen, C.; Wang, J.; et al. Combining NanoKnife with M1 oncolytic virus enhances anticancer activity in pancreatic cancer. Cancer Lett. 2021, 502, 9–24. [Google Scholar] [CrossRef]
- Xie, B.; Yang, X.; Zhang, R.; Guo, J.; Chen, Z.; He, Y. Hollow and Porous Fe3C-NC Nanoballoons Nanozymes for Cancer Cell H2O2 Detection. Sensors Actuators B Chem. 2021, 347, 130597. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, Y.; Doungchawee, J.; Castellanos-García, L.J.; Sikora, K.N.; Jeon, T.; Goswami, R.; Fedeli, S.; Gupta, A.; Huang, R.; et al. Bioorthogonal nanozymes for breast cancer imaging and therapy. J. Control. Release 2023, 357, 31–39. [Google Scholar] [CrossRef]
- Dehariya, D.; Eswar, K.; Tarafdar, A.; Balusamy, S.; Rengan, A.K. Recent advances of nanobubble-based systems in cancer therapeutics: A Review. Biomed. Eng. Adv. 2023, 5. [Google Scholar] [CrossRef]
- Jugniot, N.; Massoud, T.F.; Dahl, J.J.; Paulmurugan, R. Biomimetic nanobubbles for triple-negative breast cancer targeted ultrasound molecular imaging. J. Nanobiotechnol. 2022, 20, 267. [Google Scholar] [CrossRef]
- Ombredane, A.S.; Araujo, V.H.; Borges, C.O.; Costa, P.L.; Landim, M.G.; Pinheiro, A.C.; Szlachetka, O.; Benedito, L.E.; Espindola, L.S.; Dias, D.J.; et al. Nanoemulsion-based systems as a promising approach for enhancing the antitumoral activity of pequi oil (Caryocar brasilense Cambess.) in breast cancer cells. J. Drug Deliv. Sci. Technol. 2020, 58, 101819. [Google Scholar] [CrossRef]
- Bakherad, H.; Ghasemi, F.; Hosseindokht, M.; Zare, H. Nanobodies; new molecular instruments with special specifications for targeting, diagnosis and treatment of triple-negative breast cancer. Cancer Cell Int. 2022, 22, 245. [Google Scholar] [CrossRef]
- Gajdosova, V.; Lorencova, L.; Kasak, P.; Tkac, J. Electrochemical Nanobiosensors for Detection of Breast Cancer Biomarkers. Sensors 2020, 20, 4022. [Google Scholar] [CrossRef]
- Zhang, L.; Burns, N.; Ji, Z.; Sun, S.; Deutscher, S.L.; Carson, W.E.; Guo, P. Nipple fluid for breast cancer diagnosis using the nanopore of Phi29 DNA-packaging motor. Nanomed. Nanotechnol. Biol. Med. 2023, 48, 102642. [Google Scholar] [CrossRef] [PubMed]
- Si, P.; Yu, W.; Li, C.; Chen, H.; Zhang, E.; Gu, J.; Wang, R.; Shi, J. Oxygen-independent alkyl radical nanogenerator enhances breast cancer therapy. Nanomed. Nanotechnol. Biol. Med. 2023, 48, 102630. [Google Scholar] [CrossRef] [PubMed]
- Bahreyni, A.; Mohamud, Y.; Luo, H. Emerging nanomedicines for effective breast cancer immunotherapy. J. Nanobiotechnol. 2020, 18, 180. [Google Scholar] [CrossRef]
- Zhang, X.; Galenkamp, N.S.; van der Heide, N.J.; Moreno, J.; Maglia, G.; Kjems, J. Specific Detection of Proteins by a Nanobody-Functionalized Nanopore Sensor. ACS Nano 2023, 17, 9167–9177. [Google Scholar] [CrossRef]
- Neagu, A.-N.; Whitham, D.; Bruno, P.; Morrissiey, H.; Darie, C.A.; Darie, C.C. Omics-Based Investigations of Breast Cancer. Molecules 2023, 28, 4768. [Google Scholar] [CrossRef]
- Tiambeng, T.N.; Roberts, D.S.; Brown, K.A.; Zhu, Y.; Chen, B.; Wu, Z.; Mitchell, S.D.; Guardado-Alvarez, T.M.; Jin, S.; Ge, Y. Nanoproteomics enables proteoform-resolved analysis of low-abundance proteins in human serum. Nat. Commun. 2020, 11, 3903. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhu, M.; Zhu, J.; Xu, F.; Chen, Y. Nanoproteomics deciphers the prognostic value of EGFR family proteins-based liquid biopsy. Anal. Biochem. 2023, 671, 115133. [Google Scholar] [CrossRef]
- Liu, J.; Ding, G.; Chen, S.; Xue, C.; Chen, M.; Wu, X.; Yuan, Q.; Zheng, J.; Yang, R. Multifunctional Programmable DNA Nanotrain for Activatable Hypoxia Imaging and Mitochondrion-Targeted Enhanced Photodynamic Therapy. ACS Appl. Mater. Interfaces 2021, 13, 9681–9690. [Google Scholar] [CrossRef]
- Minh, T.; Ncibi, M.; Srivastava, V.; Doshi, B.; Sillanpää, M. Micro/nano-machines for spilled-oil cleanup and recovery: A review. Chemosphere 2021, 271, 129516. [Google Scholar] [CrossRef]
- Chattha, G.M.; Arshad, S.; Kamal, Y.; Chattha, M.A.; Asim, M.H.; Raza, S.A.; Mahmood, A.; Manzoor, M.; Dar, U.I.; Arshad, A. Nanorobots: An innovative approach for DNA-based cancer treatment. J. Drug Deliv. Sci. Technol. 2023, 80. [Google Scholar] [CrossRef]
- Rajendran, S.; Sundararajan, P.; Awasthi, A.; Rajendran, S. Nanorobotics in Medicine: A Systematic Review of Advances, Challenges, and Future Prospects with a Focus on Cell Therapy, Invasive Surgery, and Drug Delivery. Precis. Nanomed. 2024, 7, 1221–1232. [Google Scholar] [CrossRef]
- Aggarwal, M.; Kumar, S. The Use of Nanorobotics in the Treatment Therapy of Cancer and Its Future Aspects: A Review. Cureus 2022, 14. [Google Scholar] [CrossRef]
- Peng, X.; Tang, S.; Tang, D.; Zhou, D.; Li, Y.; Chen, Q.; Wan, F.; Lukas, H.; Han, H.; Zhang, X.; et al. Autonomous metal-organic framework nanorobots for active mitochondria-targeted cancer therapy. Sci. Adv. 2023, 9, eadh1736. [Google Scholar] [CrossRef]
- Buchke, S.; Sharma, M.; Bora, A.; Relekar, M.; Bhanu, P.; Kumar, J. Mitochondria-Targeted, Nanoparticle-Based Drug-Delivery Systems: Therapeutics for Mitochondrial Disorders. Life 2022, 12, 657. [Google Scholar] [CrossRef]
- Liu, Y.; Jia, H.-R.; Han, X.; Wu, F.-G. Endoplasmic reticulum-targeting nanomedicines for cancer therapy. Smart Mater. Med. 2021, 2, 334–349. [Google Scholar] [CrossRef]
- Milane, L.S.; Dolare, S.; Ren, G.; Amiji, M. Combination Organelle Mitochondrial Endoplasmic Reticulum Therapy (COMET) for Multidrug Resistant Breast Cancer. J. Control. Release 2023, 363, 435–451. [Google Scholar] [CrossRef]
- Liu, Q.; Zhang, X.; Zhang, J. Exosome-Based Nanoplatforms: The Emerging Tools for Breast Cancer Therapy. Front. Oncol. 2022, 12, 898605. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.; Liu, Y.; Du, Y.; Peng, X.; Liu, Z. Cellular organelles as drug carriers for disease treatment. J. Control. Release 2023, 363, 114–135. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Liu, S.; Guan, J.; Mou, F. “Motile-targeting” drug delivery platforms based on micro/nanorobots for tumor therapy. Front. Bioeng. Biotechnol. 2022, 10, 1002171. [Google Scholar] [CrossRef]
- Zhang, S.; Scott, E.Y.; Singh, J.; Chen, Y.; Zhang, Y.; Elsayed, M.; Chamberlain, M.D.; Shakiba, N.; Adams, K.; Yu, S.; et al. The optoelectronic microrobot: A versatile toolbox for micromanipulation. Proc. Natl. Acad. Sci. USA 2019, 116, 14823–14828. [Google Scholar] [CrossRef] [PubMed]
- Zhou, H.; Mayorga-Martinez, C.C.; Pané, S.; Zhang, L.; Pumera, M. Magnetically Driven Micro and Nanorobots. Chem. Rev. 2021, 121, 4999–5041. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Chen, J.; Su, G.; Mei, J.; Li, J. A Review of Single-Cell Microrobots: Classification, Driving Methods and Applications. Micromachines 2023, 14, 1710. [Google Scholar] [CrossRef] [PubMed]
- Zhou, M.; Yin, Y.; Zhao, J.; Zhou, M.; Bai, Y.; Zhang, P. Applications of microalga-powered microrobots in targeted drug delivery. Biomater. Sci. 2023, 11, 7512–7530. [Google Scholar] [CrossRef]
- Singh, A.V.; Ansari, M.H.D.; Mahajan, M.; Srivastava, S.; Kashyap, S.; Dwivedi, P.; Pandit, V.; Katha, U. Sperm Cell Driven Microrobots—Emerging Opportunities and Challenges for Biologically Inspired Robotic Design. Micromachines 2020, 11, 448. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Zhou, T.; Li, S.; Feng, J.; Li, W.; Li, L.; Zhou, X.; Wang, M.; Li, F.; Zhao, X.; et al. Living Magnetotactic Microrobots Based on Bacteria with a Surface-Displayed CRISPR/Cas12a System for Penaeus Viruses Detection. ACS Appl. Mater. Interfaces 2023, 15, 47930–47938. [Google Scholar] [CrossRef]
- Gwisai, T.; Mirkhani, N.; Christiansen, M.G.; Nguyen, T.T.; Ling, V.; Schuerle, S. Magnetic torque–driven living microrobots for increased tumor infiltration. Sci. Robot. 2022, 7, eabo0665. [Google Scholar] [CrossRef]
- Huang, H.; Lang, Y.; Wang, S.; Zhou, M. Microalgae-based drug delivery systems in biomedical applications. Eng. Regen. 2024, in press. [CrossRef]
- Shen, H.; Cai, S.; Wang, Z.; Ge, Z.; Yang, W. Magnetically driven microrobots: Recent progress and future development. Mater. Des. 2023, 227. [Google Scholar] [CrossRef]
- Stanley, S. Biological nanoparticles and their influence on organisms. Curr. Opin. Biotechnol. 2014, 28, 69–74. [Google Scholar] [CrossRef] [PubMed]
- Kotakadi, S.M.; Borelli, D.P.R.; Nannepaga, J.S. Therapeutic Applications of Magnetotactic Bacteria and Magnetosomes: A Review Emphasizing on the Cancer Treatment. Front. Bioeng. Biotechnol. 2022, 10, 789016. [Google Scholar] [CrossRef]
- Song, X.; Fu, W.; Cheang, U.K. Immunomodulation and delivery of macrophages using nano-smooth drug-loaded magnetic microrobots for dual targeting cancer therapy. iScience 2022, 25, 104507. [Google Scholar] [CrossRef] [PubMed]
- Hanahan, D.; Weinberg, R.A. The Hallmarks of Cancer. Cell 2000, 100, 57–70. [Google Scholar] [CrossRef]
- Hanahan, D.; Weinberg, R.A. Hallmarks of cancer: The next generation. Cell 2011, 144, 646–674. [Google Scholar] [CrossRef] [PubMed]
- Hanahan, D. Hallmarks of Cancer: New Dimensions. Cancer Discov. 2022, 12, 31–46. [Google Scholar] [CrossRef]
- Naser, R.; Fakhoury, I.; El-Fouani, A.; Abi-Habib, R.; El-Sibai, M. Role of the tumor microenvironment in cancer hallmarks and targeted therapy (Review). Int. J. Oncol. 2022, 62, 23. [Google Scholar] [CrossRef]
- Huang, T.; Song, X.; Yang, Y.; Wan, X.; Alvarez, A.A.; Sastry, N.; Feng, H.; Hu, B.; Cheng, S.-Y. Autophagy and Hallmarks of Cancer. Crit. Rev. Oncog. 2018, 23, 247–267. [Google Scholar] [CrossRef]
- Saha, T.; Solomon, J.; Samson, A.O.; Gil-Henn, H. Invasion and Metastasis as a Central Hallmark of Breast Cancer. J. Clin. Med. 2021, 10, 3498. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Yuan, J.; Xu, K.; Li, S.; Liu, Y. Nanotechnology Reprogramming Metabolism for Enhanced Tumor Immunotherapy. ACS Nano 2024, 18, 1846–1864. [Google Scholar] [CrossRef]
- Feitelson, M.A.; Arzumanyan, A.; Kulathinal, R.J.; Blain, S.W.; Holcombe, R.F.; Mahajna, J.; Marino, M.; Martinez-Chantar, M.L.; Nawroth, R.; Sanchez-Garcia, I.; et al. Sustained proliferation in cancer: Mechanisms and novel therapeutic targets. Semin. Cancer Biol. 2015, 35, S25–S54. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Wu, M.-Y.; Jiang, M.; Zhi, Q.; Bian, X.; Xu, M.-D.; Gong, F.-R.; Hou, J.; Tao, M.; Shou, L.-M.; et al. TNF-α sensitizes chemotherapy and radiotherapy against breast cancer cells. Cancer Cell Int. 2017, 17, 13. [Google Scholar] [CrossRef]
- Yalamarty, S.S.K.; Filipczak, N.; Khan, M.M.; Torchilin, V.P. Role of circular RNA and its delivery strategies to cancer – An overview. J. Control. Release 2023, 356, 306–315. [Google Scholar] [CrossRef] [PubMed]
- Amin, A.R.; Karpowicz, P.A.; Carey, T.E.; Arbiser, J.; Nahta, R.; Chen, Z.G.; Dong, J.-T.; Kucuk, O.; Khan, G.N.; Huang, G.S.; et al. Evasion of anti-growth signaling: A key step in tumorigenesis and potential target for treatment and prophylaxis by natural compounds. Semin. Cancer Biol. 2015, 35, S55–S77. [Google Scholar] [CrossRef]
- Sun, L.; Liu, Y.; Yang, N.; Ye, X.; Liu, Z.; Wu, J.; Zhou, M.; Zhong, W.; Cao, M.; Zhang, J.; et al. Gold nanoparticles inhibit tumor growth via targeting the Warburg effect in a c-Myc-dependent way. Acta Biomater. 2023, 158, 583–598. [Google Scholar] [CrossRef]
- Zhang, Z.; Yao, Y.; Yuan, Q.; Lu, C.; Zhang, X.; Yuan, J.; Hou, K.; Zhang, C.; Du, Z.; Gao, X.; et al. Gold clusters prevent breast cancer bone metastasis by suppressing tumor-induced osteoclastogenesis. Theranostics 2020, 10, 4042–4055. [Google Scholar] [CrossRef]
- Nel, J.; Elkhoury, K.; Velot, É.; Bianchi, A.; Acherar, S.; Francius, G.; Tamayol, A.; Grandemange, S.; Arab-Tehrany, E. Functionalized liposomes for targeted breast cancer drug delivery. Bioact. Mater. 2023, 24, 401–437. [Google Scholar] [CrossRef]
- Yu, J.; Xu, J.; Jiang, R.; Yuan, Q.; Ding, Y.; Ren, J.; Jiang, D.; Wang, Y.; Wang, L.; Chen, P.; et al. Versatile chondroitin sulfate-based nanoplatform for chemo-photodynamic therapy against triple-negative breast cancer. Int. J. Biol. Macromol. 2024, 130709. [Google Scholar] [CrossRef]
- Yuan, L.; Cai, Y.; Zhang, L.; Liu, S.; Li, P.; Li, X. Promoting Apoptosis, a Promising Way to Treat Breast Cancer With Natural Products: A Comprehensive Review. Front. Pharmacol. 2022, 12, 801662. [Google Scholar] [CrossRef]
- Hayes, J.D.; Dinkova-Kostova, A.T.; Tew, K.D. Oxidative Stress in Cancer. Cancer Cell 2020, 38, 167–197. [Google Scholar] [CrossRef]
- Bhaskar, S.; Lim, S. Engineering protein nanocages as carriers for biomedical applications. NPG Asia Mater. 2017, 9, e371. [Google Scholar] [CrossRef]
- Dong, X.; Li, Y.; Sheng, X.; Zhou, W.; Sun, A.; Dai, H. Mitochondria-related signaling pathways involved in breast cancer regulate ferroptosis. Genes Dis. 2024, 11, 358–366. [Google Scholar] [CrossRef]
- Liu, N.; Chen, M. Crosstalk between ferroptosis and cuproptosis: From mechanism to potential clinical application. Biomed. Pharmacother. 2024, 171, 116115. [Google Scholar] [CrossRef]
- Xu, C.; Chen, Y.; Yu, Q.; Song, J.; Jin, Y.; Gao, X. Compounds targeting ferroptosis in breast cancer: Progress and their therapeutic potential. Front. Pharmacol. 2023, 14, 1243286. [Google Scholar] [CrossRef]
- Ko, M.J.; Min, S.; Hong, H.; Yoo, W.; Joo, J.; Zhang, Y.S.; Kang, H.; Kim, D.-H. Magnetic nanoparticles for ferroptosis cancer therapy with diagnostic imaging. Bioact. Mater. 2024, 32, 66–97. [Google Scholar] [CrossRef]
- Xu, C.-C.; Lin, Y.-F.; Huang, M.-Y.; Zhang, X.-L.; Wang, P.; Huang, M.-Q.; Lu, J.-J. Paraptosis: A non-classical paradigm of cell death for cancer therapy. Acta Pharmacol. Sin. 2023, 45, 223–237. [Google Scholar] [CrossRef]
- Li, Y.; Li, Z. Potential Mechanism Underlying the Role of Mitochondria in Breast Cancer Drug Resistance and Its Related Treatment Prospects. Front. Oncol. 2021, 11. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, H.; Wang, M.; Schmid, T.; Xin, Z.; Kozhuharova, L.; Yu, W.-K.; Huang, Y.; Cai, F.; Biskup, E. Hypoxia in Breast Cancer—Scientific Translation to Therapeutic and Diagnostic Clinical Applications. Front. Oncol. 2021, 11. [Google Scholar] [CrossRef]
- Sadlecki, P.; Bodnar, M.; Grabiec, M.; Marszalek, A.; Walentowicz, P.; Sokup, A.; Zegarska, J.; Walentowicz-Sadlecka, M. The Role of Hypoxia-Inducible Factor-1α, Glucose Transporter-1, (GLUT-1) and Carbon Anhydrase IX in Endometrial Cancer Patients. BioMed Res. Int. 2014, 2014, 616850. [Google Scholar] [CrossRef]
- Kurihara, T.; Westenskow, P.D.; Friedlander, M. Hypoxia-Inducible Factor (HIF)/Vascular Endothelial Growth Factor (VEGF) Signaling in the Retina. Adv. Exp. Med. Biol 2014, 801, 275–281. [Google Scholar] [CrossRef]
- Garg, A.; Lai, W.-C.; Chopra, H.; Agrawal, R.; Singh, T.; Chaudhary, R.; Dubey, B.N. Nanosponge: A promising and intriguing strategy in medical and pharmaceutical Science. Heliyon 2024, 10, e23303. [Google Scholar] [CrossRef]
- Tiwari, K.; Bhattacharya, S. The ascension of nanosponges as a drug delivery carrier: Preparation, characterization, and applications. J. Mater. Sci. Mater. Med. 2022, 33, 28. [Google Scholar] [CrossRef]
- Iravani, S.; Varma, R.S. Nanosponges for Drug Delivery and Cancer Therapy: Recent Advances. Nanomaterials 2022, 12, 2440. [Google Scholar] [CrossRef]
- Zhu, L.; Yu, X.; Cao, T.; Deng, H.; Tang, X.; Lin, Q.; Zhou, Q. Immune cell membrane-based biomimetic nanomedicine for treating cancer metastasis. Acta Pharm. Sin. B 2023, 13, 2464–2482. [Google Scholar] [CrossRef]
- Garanina, A.S.; Vishnevskiy, D.A.; Chernysheva, A.A.; Valikhov, M.P.; Malinovskaya, J.A.; Lazareva, P.A.; Semkina, A.S.; Abakumov, M.A.; Naumenko, V.A. Neutrophil as a Carrier for Cancer Nanotherapeutics: A Comparative Study of Liposome, PLGA, and Magnetic Nanoparticles Delivery to Tumors. Pharmaceuticals 2023, 16, 1564. [Google Scholar] [CrossRef]
- Zhang, Q.; Dehaini, D.; Zhang, Y.; Zhou, J.; Chen, X.; Zhang, L.; Fang, R.H.; Gao, W.; Zhang, L. Neutrophil membrane-coated nanoparticles inhibit synovial inflammation and alleviate joint damage in inflammatory arthritis. Nat. Nanotechnol. 2018, 13, 1182–1190. [Google Scholar] [CrossRef]
- Fang, Z.; Fang, J.; Gao, C.; Gao, R.; Lin, P.; Yu, W. Recent trends in platelet membrane-cloaked nanoparticles for application of inflammatory diseases. Drug Deliv. 2022, 29, 2805–2814. [Google Scholar] [CrossRef]
- Wavhale, R.D.; Dhobale, K.D.; Rahane, C.S.; Chate, G.P.; Tawade, B.V.; Patil, Y.N.; Gawade, S.S.; Banerjee, S.S. Water-powered self-propelled magnetic nanobot for rapid and highly efficient capture of circulating tumor cells. Commun. Chem. 2021, 4, 159. [Google Scholar] [CrossRef]
- Rasool, R.; Ullah, I.; Mubeen, B.; Alshehri, S.; Imam, S.S.; Ghoneim, M.M.; Alzarea, S.I.; Al-Abbasi, F.A.; Murtaza, B.N.; Kazmi, I.; et al. Theranostic Interpolation of Genomic Instability in Breast Cancer. Int. J. Mol. Sci. 2022, 23, 1861. [Google Scholar] [CrossRef]
- Bielski, C.M.; Taylor, B.S. Homing in on genomic instability as a therapeutic target in cancer. Nat. Commun. 2021, 12, 3663. [Google Scholar] [CrossRef]
- McAinsh, A.D.; Kops, G.J.P.L. Principles and dynamics of spindle assembly checkpoint signalling. Nat. Rev. Mol. Cell Biol. 2023, 24, 543–559. [Google Scholar] [CrossRef]
- Prajumwongs, P.; Waenphimai, O.; Vaeteewoottacharn, K.; Wongkham, S.; Sawanyawisuth, K. Reversine, a selective MPS1 inhibitor, induced autophagic cell death via diminished glucose uptake and ATP production in cholangiocarcinoma cells. PeerJ 2021, 9, e10637. [Google Scholar] [CrossRef]
- Wang, M.; Zhang, C.; Song, Y.; Wang, Z.; Wang, Y.; Luo, F.; Xu, Y.; Zhao, Y.; Wu, Z.; Xu, Y. Mechanism of immune evasion in breast cancer. OncoTargets Ther. 2017, 10, 1561–1573. [Google Scholar] [CrossRef]
- Wang, S.; Wang, J.; Chen, Z.; Luo, J.; Guo, W.; Sun, L.; Lin, L. Targeting M2-like tumor-associated macrophages is a potential therapeutic approach to overcome antitumor drug resistance. npj Precis. Oncol. 2024, 8, 31. [Google Scholar] [CrossRef]
- D’Avanzo, N.; Torrieri, G.; Figueiredo, P.; Celia, C.; Paolino, D.; Correia, A.; Moslova, K.; Teesalu, T.; Fresta, M.; Santos, H.A. LinTT1 peptide-functionalized liposomes for targeted breast cancer therapy. Int. J. Pharm. 2021, 597, 120346. [Google Scholar] [CrossRef]
- Li, Q.; Ming, R.; Huang, L.; Zhang, R. Versatile Peptide-Based Nanosystems for Photodynamic Therapy. Pharmaceutics 2024, 16, 218. [Google Scholar] [CrossRef]
- Mas-Bargues, C.; Sanz-Ros, J.; Román-Domínguez, A.; Inglés, M.; Gimeno-Mallench, L.; El Alami, M.; Viña-Almunia, J.; Gambini, J.; Viña, J.; Borrás, C. Relevance of Oxygen Concentration in Stem Cell Culture for Regenerative Medicine. Int. J. Mol. Sci. 2019, 20, 1195. [Google Scholar] [CrossRef]
- Chen, Z.; Han, F.; Du, Y.; Shi, H.; Zhou, W. Hypoxic microenvironment in cancer: Molecular mechanisms and therapeutic interventions. Signal Transduct. Target. Ther. 2023, 8, 70. [Google Scholar] [CrossRef]
- Zhang, J.; Tang, K.; Fang, R.; Liu, J.; Liu, M.; Ma, J.; Wang, H.; Ding, M.; Wang, X.; Song, Y.; et al. Nanotechnological strategies to increase the oxygen content of the tumor. Front. Pharmacol. 2023, 14, 1140362. [Google Scholar] [CrossRef]
- Martel, S.; Mohammadi, M. Switching between Magnetotactic and Aerotactic Displacement Controls to Enhance the Efficacy of MC-1 Magneto-Aerotactic Bacteria as Cancer-Fighting Nanorobots. Micromachines 2016, 7, 97. [Google Scholar] [CrossRef]
- Jiang, W.; Liang, M.; Lei, Q.; Li, G.; Wu, S. The Current Status of Photodynamic Therapy in Cancer Treatment. Cancers 2023, 15, 585. [Google Scholar] [CrossRef]
- Fang, H.; Gai, Y.; Wang, S.; Liu, Q.; Zhang, X.; Ye, M.; Tan, J.; Long, Y.; Wang, K.; Zhang, Y.; et al. Biomimetic oxygen delivery nanoparticles for enhancing photodynamic therapy in triple-negative breast cancer. J. Nanobiotechnol. 2021, 19, 81. [Google Scholar] [CrossRef]
- Gao, M.; Liang, C.; Song, X.; Chen, Q.; Jin, Q.; Wang, C.; Liu, Z. Erythrocyte-Membrane-Enveloped Perfluorocarbon as Nanoscale Artificial Red Blood Cells to Relieve Tumor Hypoxia and Enhance Cancer Radiotherapy. Adv. Mater. 2017, 29. [Google Scholar] [CrossRef]
- Wu, Q.; Sharma, D. Autophagy and Breast Cancer: Connected in Growth, Progression, and Therapy. Cells 2023, 12, 1156. [Google Scholar] [CrossRef]
- López-Méndez, T.B.; Sánchez-Álvarez, M.; Trionfetti, F.; Pedraz, J.L.; Tripodi, M.; Cordani, M.; Strippoli, R.; González-Valdivieso, J. Nanomedicine for autophagy modulation in cancer therapy: A clinical perspective. Cell Biosci. 2023, 13, 44. [Google Scholar] [CrossRef]
- Laha, D.; Pramanik, A.; Maity, J.; Mukherjee, A.; Pramanik, P.; Laskar, A.; Karmakar, P. Interplay between autophagy and apoptosis mediated by copper oxide nanoparticles in human breast cancer cells MCF7. Biochim. et Biophys. Acta (BBA) Gen. Subj. 2014, 1840, 1–9. [Google Scholar] [CrossRef]
- Horimoto, Y.; Ishizuka, Y.; Ueki, Y.; Higuchi, T.; Arakawa, A.; Saito, M. Comparison of tumors with HER2 overexpression versus HER2 amplification in HER2-positive breast cancer patients. BMC Cancer 2022, 22, 242. [Google Scholar] [CrossRef]
Hallmarks of Cancer | Nanomaterials/Nanotherapies against BC Hallmarks | Functions | References |
---|---|---|---|
| Functionalized PEGylated gold NPs for TNF-α delivery (GNPs-TNFα). | Inhibition of the proliferation (AMJ13 BC cells), mitochondrial damage and apoptosis promotion. | [31] |
CREBZF mRNA NPs: circPAPD4-miR-1269a. | Inhibition of the proliferation and promotion of apoptosis by overexpression of CREBZF and inactivation of the STAT3 pathway; reduction in cell cycle progression, and the suppression of proliferation in vivo and in vitro (MCF7, SKBR-3, BT474, BT549, MDA-MB-468). | [32] | |
| Urchin-head/hollow tail nanorobots (UHHTNs-AuNS/SiO2 core/shell NPs): @-AuNS coated with a SiO2 shell. | TSM remodeling by reducing stromal cell viability and ECM denaturation; suppression of tumor growth in a bone metastasis female mouse model of TNBC and anticancer efficacy in different subcutaneous tumor models. | [12] |
ROS-responsive galactosylated NPs (DOX@NPs). | Inhibit/suppress the growth of TNBC (4T1) in vitro and in vivo, and trigger apoptosis and cell cycle arrest. | [28] | |
Lipo-drugs for combined chemotherapy: antibody-liposome-GC/DM1 (EGFR mAb-lipo-drugs) | The combination of GC and DM1 inhibits TNBC growth in vitro and in vivo (MDA-MB-231, MDA-MB-468) and reduces drug resistance. | [29] | |
Chondroitin sulfate-based nanoplatforms/NPs (CSA-ss-Ce6/CSSC and DOX-loaded CSSC) | Under NIR, CSSC-D enhanced ROS generation and cytotoxicity/growth tumor inhibition against TNBC cells (4T1, MDA-MB-231) and 4T1-bearing Balb/c mice model. | [122] | |
| Magnetotactic bacteria (MTB): Magnetospirillum magneticum (AMB-1) | Magnetically targeted bacterial BC therapy, leading to increased apoptosis, and interfere with the proliferation of MDA-MB-231 BC cells. | [35] |
Silver NPs-coated ethyl cellulose (AgNPs-EC). | Induce apoptosis in MCF7 BC cells; act as inhibitors of TNF-α production. | [36] | |
Functionalized PEG capped gold NPs (AuNPs) system for the miR-206 delivery/mimicry. | Induce apoptosis in MCF7 BC cells by NOTCH3 downregulation, arrest cell cycle, effective in luminal A subtype of BC treatment. | [37] | |
cadmium telluride quantum dots: CdTe QDs, high yield CdTe QDs, CdTe/CdS core/shell QDs | induce apoptosis in MDA-MB-468 and MCF7 BC cell lines | [38] | |
Nanocages for ROS-mediated apoptosis: Cur@HFn—hollow cage-like molecule of HFn loaded with curcumin (Cur) that decomposes in an acidic pH and reassembles to a neutral pH. | Strong cytotoxicity in BC cell models (murine 4T1 and MDA-MB-231 BC cell lines, 4T1 tumor-bearing mouse), low systemic toxicity, high in vitro therapeutic effects; enhances intracellular ROS in cancer cells, ROS-mediated DNA damage, BC cells apoptosis. | [33] | |
Human immune cell stimulated anti-BC nanorobot (hisABC-NB): iNOS and MPO enzymes on the folate-linked chitosan-coated Fe3O4 NPs functionalized with folic acid as BC cells detector. | Reduced MCF7 by inducing ROS/RNS and OS, cancer cell apoptosis and cell cycle arrest; useful for MRI-mediated traceability. | [39] | |
Nanorobots for ferroptosis-immunotherapy: HIFU-driven nanomotor/NP-G/P driven by HIFU- high intensity focused ultrasound-driven nanomotor (PLGA NPs loaded with PFOB). | Activates ferroptosis-mediated antitumor immunity in TNBC models, leading to tumor regression and metastasis prevention; HIFU induces cell stress, triggering the expression of ferroptosis-associated genes (HOX1, GST, SQSTM etc.). | [40] | |
Free radical releasing nanogenerator for synergistic NO and alkyl radical therapy of BC: P(IR/BNN6/AIPH)@Lip-RGD. | Inhibits breast tumors growth, induces cancer cells apoptosis via a mitochondria-mediated apoptotic pathway and generation of mitochondrial ROS, downregulates Bcl-2, accelerate cytochrome c release and triggers a cascade of apoptosis-related caspase-3 and caspase-9. | [41] | |
Ca2+ nanogenerator/nano-modulator: SA/Cur@CaCO3-ICG (SCCI)—curcumin (Cur) and indocyanine green (ICG) into CaCO3- NPs, crosslinking sodium alginate (SA). | Induces large amounts of ROS followed by tumor cell apoptosis or directly kills tumor cells, reducing mitochondrial membrane potential and downregulating ATP production by producing large amounts of Ca 2+ and acidic pH. | [42] | |
Ca2+/Cu2+ dual-ion nanotrap (disulfiram (DSF)-loaded amorphous calcium carbonate NPs) : Cu2+-tannic acid metal phenolic network embedded onto amorphous calcium carbonate NPs surface, followed by mDSPE-PEG/lipid capping. | Released Ca2+ causes mitochondrial calcium overload and H2O2 overexpression; Ca2+/ROS-associated mitochondrial dysfunction causes paraptosis cell death; released Cu2+ will ultimately induce cell apoptosis. | [34] | |
ZIF-67@DOX-TPP nanorobot: mitochondriotropic DOX-triphenylphosphonium inside zeolitic imidazolate framework-67 NPs. | Designed for mitochondria-targeted drug delivery; ZIF-67 body decomposes H2O2 in tumor cells, induces mitochondria-mediated apoptosis and mitochondrial dysregulation and has in vitro and in vivo anticancer effects and suppresses cancer metastasis. | [89] | |
| Anti-angiogenic silver NPs (AgNPs). | Inhibit angiogenesis in MCF7 BC cells through the disruption of the HIF signaling pathway and downregulation of HIF target genes (VEGF-A and GLUT1). | [44] |
Multifunctional gold nanoshells. | Inhibition of tumor growth/inhibition of proliferation due to an anti-angiogenic effect, and increased apoptosis; combined with photothermal therapy, can overcome trastuzumab resistance in HER2-overexpressing BC cells. | [43] | |
Anti-angiogenic liposomal siRNA delivery system: ICAM-Lcn2-LPs. | Targets and binds to ICAM-1 from hTNBC MDA-MB-231 BC cells; induces Lcn2 knockdown, and reduces VEGF and angiogenesis in vitro and in vivo. | [45] | |
Macrophage-mimicking NPs/DDSs (SCMNPs): saikosaponin D (SsD) loaded macrophage membrane hybridized with T7 peptide on the surface of PLGA NPs. | Inhibit VEGFR, AKT and ERK related to the angiogenic pathway, tumor growth and metastasis of BC cells in vitro and in vivo. | [46] | |
| Anti-metastatic nanosponges/nanokillers: bionic PNM-camouflaging AuNCs loaded with DOX. | Combined with chemo and photothermal therapy, capture and clear CTCs, neutralize migrating tumor-derived exosomes, inhibit invasion and metastasis in 4T1 xenograft and orthotopic BC-bearing mice. | [47] |
Long cruising anti-metastatic aptamer-albumin nanobots: CTA-HSA—three hairpin-shape nucleic acid APs targeting EpCAM used to produce biostable CTA conjugated with HSA. | Cruise in blood longer, capture more CTCs, escape the immune clearance, inhibit invasion/adhesion and cell cycle of CTCs, induce CTCs apoptosis and prevent CTC- induced metastasis | [48] | |
CTL-inspired nanovesicles (MPV) with a cell membrane-derived shell and MB and Pt loaded gelatin nanogel core. | Generate contrast for tumor photo-acoustic imaging, produce hypothermia upon laser irradiation, enabling photothermal imaging and deep tumor penetration; kill 4T1 BC cells, resulting in primary tumor regression and inhibition of pulmonary metastasis. | [49] | |
Mg-based Janus nanobots (MFN): (Mg)-Fe3O4-based Magneto-Fluorescent Nanorobot-shell of Fe3O4 NPs with EpCAM antibody/transferrin for targeting CTCs, Cy5 for fluorescent labelling and G4 dendrimer for multiple conjugation and GSH linker (Mg-Fe3O4-GSH-G4-Cy5-Ab/Tf). | Self-propelled in blood, and capture CTCs (MCF7 cells) with high efficiency, | [142] | |
| Chitosan-NPs (CS-NPs) treated with reversine and X-ray irradiation. | CS-NPs affect mitosis and cell viability and sensitize MCF7 BC cells to X-ray irradiation by passive or targeted bioaccumulation in cancer cells; reversine induces premature exit from mitosis, aneuploidy and cell death. | [50] |
| Mica NPs (STB-HO) | anticancer and immunostimulatory effect; increase susceptibility of MCF7 BC cells to immune cells and stimulate the immunocytes to eliminate BC cells | [51] |
LinTT1 peptide-functionalized liposomes loaded with DOX and sorafenib. | Targets p32 overexpressed by BC cells (MCF7, MDA-MB-231) and TAMs/oncogenic M2 macrophages in hypoxic area of tumor. | [149] | |
| Multimodal nano-snowflakes: UMC (USPIO@MnO2@Ce6)—honeycomb-like MnO2 to load Ce6 as photosintetizer and ultrasmall superparamagnetic iron oxide NPs. | Used both for multimodal MRI/PAI-guided antitumor therapy, targeting intratumoral hypoxia; aggregates to the tumor region and promotes the decomposition of H2O2 to O2, enhancing the therapeutic effect of Ce6 for PDT under laser irradiation; inhibit tumor growth. | [25] |
Biomimetic nanoscale systems based on cell membranes (CMs)-coated NPs for high oxygen delivery: CCm-HSA-ICG-PFTBA—CCm-coated human serum albumin-indocyanine green-doped perfluorotributylamine/perfluorocarbon (PFC); PFC@PLGA-RBCM NPs– RBC-mimic system by encapsulating PFC within PLGA. | Targets tumor tissue, alleviates hypoxia in TME, enhances PDT efficacy in TNBC 4T1 BC cell line and 4T1 BALB/c mice xenografts. | [156,157] | |
Oxygen-independent free-radical (alkyl radical) nanogenerator: CuS/AIPH@BSA—copper monosulfide NPs coated with BSA and loaded onto the alkyl radical initiator 2,2′-azabis(2-imidazoline) dihydrochloride. | Photothermal exposure accelerates BSA dissociation and exposes CuS, preventing GSH-mediated free radical consumption and providing oxygen-independent enhanced free radical treatment of hypoxic BC. | [78] | |
| Carbon-coated iron oxide NPs: Fe3O4@aC NPs. | Hyperthermia and OS-mediated anticancer effects: decreased ROS production, increased level of antioxidant proteins, cell cycle inhibitors, proinflammatory and autophagic biomarkers, nucleolar stress, apototic cell death in drug-induced senescent BC cells (Hs 578T, BT-20, MDA-MB-468, MDA-MB-175-VII) and promoted reductive stress-mediated cytotoxicity in non-senescent BC cells. | [53] |
DNA-based nanorobot (HApt-tFNA): anti-HER2 AP on a tetrahedral framework nucleic acid. | HER2-HApt-tFNA induces HER2-mediated endocytosis, digestion in lysosomes, reduction of HER2 amount on the cell surfaces, inhibition of PI3K/AKT pathway, cell apoptosis, arrested cell growth. | [52] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Neagu, A.-N.; Jayaweera, T.; Weraduwage, K.; Darie, C.C. A Nanorobotics-Based Approach of Breast Cancer in the Nanotechnology Era. Int. J. Mol. Sci. 2024, 25, 4981. https://doi.org/10.3390/ijms25094981
Neagu A-N, Jayaweera T, Weraduwage K, Darie CC. A Nanorobotics-Based Approach of Breast Cancer in the Nanotechnology Era. International Journal of Molecular Sciences. 2024; 25(9):4981. https://doi.org/10.3390/ijms25094981
Chicago/Turabian StyleNeagu, Anca-Narcisa, Taniya Jayaweera, Krishan Weraduwage, and Costel C. Darie. 2024. "A Nanorobotics-Based Approach of Breast Cancer in the Nanotechnology Era" International Journal of Molecular Sciences 25, no. 9: 4981. https://doi.org/10.3390/ijms25094981
APA StyleNeagu, A.-N., Jayaweera, T., Weraduwage, K., & Darie, C. C. (2024). A Nanorobotics-Based Approach of Breast Cancer in the Nanotechnology Era. International Journal of Molecular Sciences, 25(9), 4981. https://doi.org/10.3390/ijms25094981