SPAST Intragenic CNVs Lead to Hereditary Spastic Paraplegia via a Haploinsufficiency Mechanism
Abstract
:1. Introduction
2. Materials and Methods
2.1. DNA
2.2. RNA
2.3. Copy Number Screening
2.4. Breakpoint Analysis by Long-Range PCR and Sequencing
2.5. cDNA Sequencing
2.6. Real-Time PCR
3. Results
3.1. SPAST Gene Deletion/Duplication
3.2. Breakpoint Analysis and cDNA Sequencing
3.3. SPAST Gene Expression Analysis
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lo Giudice, T.; Lombardi, F.; Santorelli, F.M.; Kawarai, T.; Orlacchio, A. Hereditary spastic paraplegia: Clinical-genetic characteristics and evolving molecular mechanisms. Exp. Neurol. 2014, 261, 518–539. [Google Scholar] [CrossRef] [PubMed]
- Ruano, L.; Melo, C.; Silva, M.C.; Coutinho, P. The global epidemiology of hereditary ataxia and spastic paraplegia: A systematic review of prevalence studies. Neuroepidemiology 2014, 42, 174–183. [Google Scholar] [CrossRef] [PubMed]
- Boone, P.M.; Liu, P.; Zhang, F.; Carvalho, C.M.B.; Towne, C.F.; Batish, S.D.; Lupski, J.R. Alu-specific microhomology-mediated deletion of the final exon of SPAST in three unrelated subjects with hereditary spastic paraplegia. Genet. Med. 2011, 13, 582–592. [Google Scholar] [CrossRef] [PubMed]
- Boone, P.M.; Yuan, B.; Campbell, I.M.; Scul, J.C.; Withers, M.A.; Baggett, B.C.; Lupski, J.R. The Alu-Rich Genomic Architecture of SPAST Predisposes to Diverse and Functionally Distinct Disease-Associated CNV Alleles. Am. J. Hum. Genet. 2014, 95, 143–161. [Google Scholar] [CrossRef] [PubMed]
- Jahic, A.; Erichsen, A.K.; Deufel, T.; Tallaksen, C.M.; Beetz, C. A polymorphic Alu insertion that mediates distinct disease-associated deletions. Eur. J. Hum. Genet. 2016, 24, 1371–1374. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Houck, C.M.; Rinehart, F.P.; Schmid, C.W. A ubiquitous family of repeated DNA sequences in the human genome. J. Mol. Biol. 1979, 132, 289–306. [Google Scholar] [PubMed]
- Rubin, C.M.; Houck, C.M.; Deininger, P.L.; Friedmann, T.; Schmid, C.W. Partial nucleotide sequence of the 300-nucleotide interspersed repeated human DNA sequences. Nature 1980, 284, 372–374. [Google Scholar] [CrossRef] [PubMed]
- Cabana, G.S.; Hulsey, B.I.; Pack, F.L. Research Methods in Human Skeletal Biology; DiGangi, E.A., Moore, M.K., Eds.; Chapter 16—Molecular Methods; Academic Press: Cambridge, MA, USA, 2013; pp. 449–480. ISBN 9780123851895. [Google Scholar] [CrossRef]
- Batzer, M.; Deininger, P. Alu repeats and human genomic diversity. Nat. Rev. Genet. 2002, 3, 370–379. [Google Scholar] [CrossRef] [PubMed]
- Sebat, J.; Lakshmi, B.; Troge, J.; Alexander, J.; Young, J.; Lundin, P.; Månér, S.; Massa, H.; Walker, M.; Chi, M.; et al. Large-scale copy number polymorphism in the human genome. Science 2004, 305, 525–528. [Google Scholar] [CrossRef] [PubMed]
- Denton, K.R.; Lei, L.; Grenier, J.; Rodionov, V.; Blackstone, C.; Li, X.J. Loss of spastin function results in disease-specific axonal defects in human pluripotent stem cell-based models of hereditary spastic paraplegia. Stem Cells 2014, 32, 414–423. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Solowska, J.M.; Morfini, G.; Falnikar, A.; Himes, B.T.; Brady, S.T.; Huang, D.; Baas, P.W. Quantitative and functional analyses of spastin in the nervous system: Implications for hereditary spastic paraplegia. J. Neurosci. 2008, 28, 2147–2157. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Sulek, A.; Elert, E.; Rajkiewicz, M.; Zdzienicka, E.; Stepniak, I.; Krysa, W.; Zaremba, J. Screening for the hereditary spastic paraplaegias SPG4 and SPG3A with the multiplex ligation-dependent probe amplification technique in a large population of affected individuals. Neurol. Sci. 2013, 34, 239–242. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Brown, A. Rapid movement of microtubules in axons. Curr. Biol. 2002, 12, 1496–1501. [Google Scholar] [PubMed]
- Yu, W.; Qiang, L.; Solowska, J.M.; Karabay, A.; Korulu, S.; Baas, P.W. The microtubule-severing proteins spastin and katanin participate differently in the formation of axonal branches. Mol. Biol. Cell 2008, 19, 1485–1498. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Beetz, C.; Nygren, A.O.; Schickel, J.; Auer-Grumbach, M.; Bürk, K.; Heide, G.; Kassubek, J.; Klimpe, S.; Klopstock, T.; Kreuz, F.; et al. High frequency of partial SPAST deletions in autosomal dominant hereditary spastic paraplegia. Neurology 2006, 67, 1926–1930. [Google Scholar] [CrossRef] [PubMed]
- Depienne, C.; Fedirko, E.; Forlani, S.; Cazeneuve, C.; Ribaï, P.; Feki, I.; Tallaksen, C.; Nguyen, K.; Stankoff, B.; Ruberg, M.; et al. Exon deletions of SPG4 are a frequent cause of hereditary spastic paraplegia. J. Med. Genet. 2007, 44, 281–284. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ottaviani, D.; LeCain, M.; Sheer, D. The role of microhomology in genomic structural variation. Trends Genet. 2014, 30, 85–94. [Google Scholar] [CrossRef] [PubMed]
- Solowska, J.M.; Garbern, J.Y.; Baas, P.W. Evaluation of loss of function as an explanation for SPG4-based hereditary spastic paraplegia. Hum. Mol. Genet. 2010, 19, 2767–2779. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Solowska, J.M.; Baas, P.W. Hereditary spastic paraplegia SPG4: What is known and not known about the disease. Brain 2015, 138, 2471–2484. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
Family ID | SPAST Exonic Deletion/Duplication | Numer of Affected Family Members | Breakpoint Analysis | cDNA | Gene Expression Analysis | Age at Onset | Clinical Assesment | SPRS Score |
---|---|---|---|---|---|---|---|---|
Fam73 | exon 1 deletion | 2 | - | - | - | 45 | na | na |
Fam84 | exon 1 deletion | 1 | - | - | - | 20 | pure spastic paraplegia | na |
Fam137 | exon 1 deletion | 1 | - | - | - | 51 | pure spastic paraplegia | 12 |
Fam10 | exons 1–3 deletion | 2 | - | - | NMD | 27–35 | pure spastic paraplegia | 27 |
Fam40 | exons 1–4 deletion | 2 | - | - | NMD | 18–47 | pure spastic parapegia | 2–15 |
Fam100 | exons 1–9 deletion | 3 | NAHR | - | NMD | 8–40 | pure spastic paraplegia | 17–20 |
Fam23 | exons 4–7 deletion | 7 | NAHR | breakpoint sequence | non NMD | 1–44 | spastic paraplegia, polyneuropathy in one patient | 37–41 |
Fam38 | exons 5–7 deletion | 3 | NAHR | breakpoint sequence | non NMD | 12–52 | spastic paraplegia, dysarthria in one patient | 14–25 |
Fam17 | exon 8 deletion | 5 | NAHR | non NMD | 6–50 | pure spastic paraplegia | 18–31 | |
Fam81 | exons 8–17 deletion | 3 | - | - | non NMD | 1–18 | spastic paraplegia, myoclonic seizures in one patient | 32 |
Fam87 | exons 10–12 deletion | 3 | NAHR | breakpoint sequence | NMD | 5–40 | pure spastic paraplegia | 25 |
Fam14 | exons 10–17 deletion | 2 | - | - | - | 5 | pure spastic paraplegia | na |
Fam39 | exons 10–17 deletion | 1 | - | - | non NMD | 4 | pure spastic paraplegia | 28 |
Fam37 | exons 14–15 duplication | 2 | NAHR | breakpoint sequence | - | 15 | pure spastic paraplegia | 14 |
Fam2 | exons 14–16 deletion | 6 | - | breakpoint sequence | non NMD | 10–35 | pure spastic paraplegia | 23–27 |
Fam36 | exons 14–16 deletion | 2 | - | breakpoint sequence | non NMD | 25–50 | pure spastic paraplegia | 46 |
Fam149 | exons 14–16 deletion | 5 | - | - | non NMD | 7–50 | pure spastic paraplegia, head dropping in one patient | 3–41 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Elert-Dobkowska, E.; Stepniak, I.; Radziwonik-Fraczyk, W.; Jahic, A.; Beetz, C.; Sulek, A. SPAST Intragenic CNVs Lead to Hereditary Spastic Paraplegia via a Haploinsufficiency Mechanism. Int. J. Mol. Sci. 2024, 25, 5008. https://doi.org/10.3390/ijms25095008
Elert-Dobkowska E, Stepniak I, Radziwonik-Fraczyk W, Jahic A, Beetz C, Sulek A. SPAST Intragenic CNVs Lead to Hereditary Spastic Paraplegia via a Haploinsufficiency Mechanism. International Journal of Molecular Sciences. 2024; 25(9):5008. https://doi.org/10.3390/ijms25095008
Chicago/Turabian StyleElert-Dobkowska, Ewelina, Iwona Stepniak, Wiktoria Radziwonik-Fraczyk, Amir Jahic, Christian Beetz, and Anna Sulek. 2024. "SPAST Intragenic CNVs Lead to Hereditary Spastic Paraplegia via a Haploinsufficiency Mechanism" International Journal of Molecular Sciences 25, no. 9: 5008. https://doi.org/10.3390/ijms25095008
APA StyleElert-Dobkowska, E., Stepniak, I., Radziwonik-Fraczyk, W., Jahic, A., Beetz, C., & Sulek, A. (2024). SPAST Intragenic CNVs Lead to Hereditary Spastic Paraplegia via a Haploinsufficiency Mechanism. International Journal of Molecular Sciences, 25(9), 5008. https://doi.org/10.3390/ijms25095008