DC-SIGN of Largemouth Bass (Micropterus salmoides) Mediates Immune Functions against Aeromonas hydrophila through Collaboration with the TLR Signaling Pathway
Abstract
:1. Introduction
2. Results
2.1. Sequence Characters and Multiple Alignments of MsDC-SIGN
2.2. Recombinant Protein of CRD
2.3. PAMP Binding Activity of MsDC-SIGN
2.4. Microbe-Binding Activity of rCRD
2.5. Microbial Binding Activity of rCRD
2.6. Carbohydrate-Binding Specificity of rCRD
2.7. Subcellular Localization of MsDC-SIGN
2.8. Phagocytosis Enhancement Activity of MsDC-SIGN
2.9. Tissue Distribution of Key Genes in MsDC-SIGN and TLR Signaling Pathways
2.10. Expression Patterns of Key Genes in M. salmoides’ C-Type Lectin MsDC-SIGN and TLR Signaling Pathways after Bacterial Stimulation
2.11. Expression Patterns of Key Genes in M. salmoides’ TLR Signaling Pathway after RNA Interference with MsDC-SIGN Gene
3. Materials and Methods
3.1. M. salmoides and Microbes
3.2. Cloning and Sequence Analysis of Full-Length cDNA
3.3. Expression and Purification of rCRD
3.4. The PAMP Binding Assay
3.5. Microbe Binding Assay
3.6. Microbial Agglutination and Ca2+-Dependent Assay
3.7. Carbohydrate-Binding Specificity Assay
3.8. Preparation and Western Blot Identification of rCRD Polyclonal Antibody
3.9. Immunofluorescence Analysis of the Subcellular Localization of MsDC-SIGN
3.10. Phagocytosis Assay of Leukocytes
3.11. RNA Isolation and cDNA Synthesis
3.12. Tissue Distribution of Key Genes in MsDC-SIGN and TLR Signaling Pathways
3.13. Expression Patterns of Key Genes in M. salmoides’ C-Type Lectin MsDC-SIGN and TLR Signaling Pathway after Bacterial Stimulation
3.14. Expression Patterns of Key Genes in M. salmoides’ TLR Signaling Pathway after RNA Interference with MsDC-SIGN Gene
3.15. Data Statistics and Analysis
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Drickamer, K. Evolution of Ca2+-dependent animal lectins. Prog. Nucleic Acid Res. Mol. Biol. 1993, 45, 207–232. [Google Scholar] [PubMed]
- Drickamer, K. C-type lectin-like domains. Curr. Opin. Struct. Biol. 1999, 9, 585–590. [Google Scholar] [CrossRef] [PubMed]
- Soilleux, E.J.; Morris, L.S.; Leslie, G.; Chehimi, J.; Luo, Q.; Levroney, E.; Trowsdale, J.; Montaner, L.J.; Doms, R.W.; Weissman, D.; et al. Constitutive and induced expression of DC-SIGN on dendritic cell and macrophage subpopulations in situ and in vitro. J. Leukoc. Biol. 2002, 71, 445–457. [Google Scholar] [CrossRef] [PubMed]
- Svajger, U.; Anderluh, M.; Jeras, M.; Obermajer, N. C-type lectin DC-SIGN: An adhesion, signalling and antigen-uptake molecule that guides dendritic cells in immunity. Cell. Signal. 2010, 22, 1397–1405. [Google Scholar] [CrossRef] [PubMed]
- Sanchez-Navarro, M.; Rojo, J. Targeting DC-SIGN with carbohydrate multivalent systems. Drug News Perspect. 2010, 23, 557–572. [Google Scholar] [CrossRef] [PubMed]
- Lin, A.-F.; Xiang, L.-X.; Wang, Q.-L.; Dong, W.-R.; Gong, Y.-F.; Shao, J.-Z. The DC-SIGN of Zebrafish: Insights into the Existence of a CD209 Homologue in a Lower Vertebrate and Its Involvement in Adaptive Immunity. J. Immunol. 2009, 183, 7398–7410. [Google Scholar] [CrossRef] [PubMed]
- Ojeda, N.; Salazar, C.; Cardenas, C.; Marshall, S.H. Expression of DC-SIGN-like C-Type Lectin Receptors in Salmo salar. Dev. Comp. Immunol. 2020, 113, 103806. [Google Scholar] [CrossRef] [PubMed]
- Du, X.; Wang, G.-H.; Su, Y.-L.; Zhang, M.; Hu, Y.-H. Black rockfish C-type lectin, SsCTL4: A pattern recognition receptor that promotes bactericidal activity and virus escape from host immune defense. Fish Shellfish Immunol. 2018, 79, 340–350. [Google Scholar]
- Gupta, N.; Regar, H.; Verma, V.K.; Prusty, D.; Mishra, A.; Prajapati, V.K. Receptor-ligand based molecular interaction to discover adjuvant for immune cell TLRs to develop next-generation vaccine. Int. J. Biol. Macromol. 2020, 152, 535–545. [Google Scholar] [CrossRef] [PubMed]
- McKiel, L.A.; Woodhouse, K.A.; Fitzpatrick, L.E. A macrophage reporter cell assay to examine Toll-like receptor-mediated nf-kb/ap-1 signaling on adsorbed protein layers on polymeric surfaces. Jove-J. Vis. Exp. 2020. [Google Scholar] [CrossRef]
- Boltana, S.; Roher, N.; Goetz, F.W.; MacKenzie, S.A. PAMPs, PRRs and the genomics of gram negative bacterial recognition in fish. Dev. Comp. Immunol. 2011, 35, 1195–1203. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Wang, L.; Zhang, D.; Li, F.; Wang, M.; Huan, M.; Zhang, H.; Song, L. A novel C-type lectin from crab Eriocheir sinensis functions as pattern recognition receptor enhancing cellular encapsulation. Fish Shellfish Immunol. 2013, 34, 832–842. [Google Scholar] [CrossRef]
- Gao, Z.; Ye, C.; Zhou, L.; Zhang, Y.; Ge, Y.; Chen, W.; Pan, J. Evaluation of the β-barrel outer membrane protein VP1243 as a candidate antigen for a cross-protective vaccine against Vibrio infections. Microb. Pathog. 2020, 147, 104419. [Google Scholar] [CrossRef]
- Wu, T.; Xiang, Y.; Liu, T.; Wang, X.; Ren, X.; Ye, T.; Li, G. Oncolytic vaccinia virus expressing aphrocallistes vastus lectin as a cancer therapeutic agent. Mar. Drugs 2019, 17, 363. [Google Scholar] [CrossRef]
- Li, G.C.; Gao, Y.J.; Cui, L.Z.; Wu, L.Q.; Yang, X.Y.; Chen, J. Anguilla japonica lectin 1 delivery through adenovirus vector induces apoptotic cancer cell death through interaction with PRMT5. J. Gene Med. 2016, 18, 65–74. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.; Feng, C.; Zhou, L.; Li, Z.; Zhang, Y.; Pan, J. Impacts of Ser/Thr protein kinase stk1 on the proteome, twitching motility, and competitive advantage in pseudomonas aeruginosa. Front. Microbiol. 2021, 12, 738690. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Ye, T.; Jin, M.; Wang, W.; Hui, K.M.; Ren, Q. Three members of Ras GTPase superfamily are response to white spot syndrome virus challenge in Marsupenaeus japonicus. Fish Shellfish Immunol. 2016, 55, 623–631. [Google Scholar] [CrossRef] [PubMed]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCTMethod. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
- Cambi, A.; Koopman, M.; Figdor, C.G. How C-type lectins detect pathogens. Cell. Microbiol. 2005, 7, 481–488. [Google Scholar] [CrossRef]
- Weis, W.I.; Taylor, M.E.; Drickamer, K. The C-type lectin superfamily in the immune system. Immunol. Rev. 1998, 163, 19–34. [Google Scholar] [CrossRef] [PubMed]
- Mann, K.; Weiss, I.M.; Andre, S.; Gabius, H.J.; Fritz, M. The amino-acid sequence of the abalone (Haliotis laevigata) nacre protein perlucin. Detection of a functional C-type lectin domain with galactose/mannose specificity. Eur. J. Biochem. 2000, 267, 5257–5264. [Google Scholar] [CrossRef] [PubMed]
- Appelmelk, B.J.; van Die, I.; van Vliet, S.J.; Vandenbroucke-Grauls, C.M.J.E.; Geijtenbeek, T.B.H.; van Kooyk, Y. Cutting edge: Carbohydrate profiling identifies new pathogens that interact with dendritic cell-specific ICAM-3-grabbing nonintegrin on dendritic cells. J. Immunol. 2003, 170, 1635–1639. [Google Scholar] [CrossRef] [PubMed]
- Iobst, S.T.; Wormald, M.R.; Weis, W.I.; Dwek, R.A.; Drickamer, K. Binding of sugar ligands to Ca2+-dependent animal lectins. I. Analysis of mannose binding by site-directed mutagenesis and NMR. J. Biol. Chem. 1994, 269, 15505–15511. [Google Scholar] [CrossRef] [PubMed]
- Geijtenbeek, T.B.; Torensma, R.; van Vliet, S.J.; van Duijnhoven, G.C.; Adema, G.J.; van Kooyk, Y.; Figdor, C.G. Identification of DC-SIGN, a novel dendritic cell-specific ICAM-3 receptor that supports primary immune responses. Cell 2000, 100, 575–585. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Zhang, J.; Kong, X.; Zhao, X.; Pei, C.; Li, L. A C-type lectin, Nattectin-like protein (CaNTC) in Qihe crucian carp Carassius auratus: Binding ability with LPS, PGN and various bacteria, and agglutinating activity against bacteria. Fish Shellfish Immunol. 2017, 67, 382–392. [Google Scholar] [CrossRef] [PubMed]
- Turville, S.; Wilkinson, J.; Cameron, P.; Dable, J.; Cunningham, A.L. The role of dendritic cell C-type lectin receptors in HIV pathogenesis. J. Leukoc. Biol. 2003, 74, 710–718. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Huang, M.; Zhang, H.; Wang, L.; Wang, H.; Wang, L.; Qiu, L.; Song, L. CfLec-3 from scallop: An entrance to non-self recognition mechanism of invertebrate C-type lectin. Sci. Rep. 2015, 5, 10068. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.; Skurnik, M.; Zhang, S.-S.; Schwartz, O.; Kalyanasundaram, R.; Bulgheresi, S.; He, J.J.; Klena, J.D.; Hinnebusch, B.J.; Chen, T. Human dendritic cell-specific intercellular adhesion molecule-grabbing nonintegrin (CD209) is a receptor for Yersinia pestis that promotes phagocytosis by dendritic cells. Infect. Immun. 2008, 76, 2070–2079. [Google Scholar] [CrossRef]
- Jiang, S.; Sun, L. Tongue Sole CD209: A pattern-recognition receptor that binds a broad range of microbes and promotes phagocytosis. Int. J. Mol. Sci. 2017, 18, 1848. [Google Scholar] [CrossRef] [PubMed]
- Whyte, S.K. The innate immune response of finfish—A review of current knowledge. Fish Shellfish Immunol. 2007, 23, 1127–1151. [Google Scholar] [CrossRef]
- Zapata, A.; Amemiya, C.T. Phylogeny of lower vertebrates and their immunological structures. Curr. Top. Microbiol. Immunol. 2000, 248, 67–107. [Google Scholar] [PubMed]
- Zapata, A.; Diez, B.; Cejalvo, T.; Frias, C.G.-D.; Cortes, A. Ontogeny of the immune system of fish. Fish Shellfish Immunol. 2006, 20, 126–136. [Google Scholar] [CrossRef] [PubMed]
- Rocha, B. The extrathymic T-cell differentiation in the murine gut. Immunol. Rev. 2007, 215, 166–177. [Google Scholar] [CrossRef] [PubMed]
- Medzhitov, R.; Janeway, C.A., Jr. Innate immunity: The virtues of a nonclonal system of recognition. Cell 1997, 91, 295–298. [Google Scholar] [CrossRef] [PubMed]
- Gu, Y.P.; Chen, K.; Xi, B.W.; Xie, J.; Bing, X.W. Protective effects of paeonol against lipopolysaccharide-induced liver oxidative stress and inflammation in gibel carp (Carassius auratus gibelio). Comp. Biochem. Physiol. C-Toxicol. Pharmacol. 2022, 257, 109339. [Google Scholar] [CrossRef] [PubMed]
- Gringhuis, S.I.; den Dunnen, J.; Litjens, M.; Hof, B.V.H.; van Kooyk, Y.; Geijtenbeek, T.B.H. C-type lectin DC-SIGN modulates toll-like receptor signaling via Raf-1 kinase-dependent acetylation of transcription factor NF-κB. Immunity 2007, 26, 605–616. [Google Scholar] [CrossRef] [PubMed]
Primer Name | Primer Sequence (5′–3′) |
---|---|
β-actin-F | CCACCACAGCCGAGAGGGAA |
β-actin-R | TCATGGTGGATGGGGCCAGG |
MsDC-SIGN-F | ACGCCTACTGGTTTGGAATCAC |
MsDC-SIGN-R | ATGTAGCCACAGTCCTCGTCAAT |
RAF1-F | TCTACCTCCCAAACCAGCA |
RAF1-R | CAGTGTTCCAATCCATCCG |
IL10-F | AAGCCAGCAGCATCATTACCACT |
IL10-R | AGAACCAGGACGGACAGGAGG |
TLR4-F | TGATGCTTCTTGCTGGCTGC |
TLR4-R | CAATCACCTTTCGGCTTTTATGG |
NF-κB2-F | TGGCTGCCGAAACCGCT |
NF-κB2-R | GCTGGACGAGGACACGCTG |
Gene Name | Sequence | |
---|---|---|
Sense (5’–3’) | Antisense (5’–3’) | |
MsDC-SIGN-siRNA | GUUUCUGUGGAAUCUUCUACC | UAGAAGAUUCCACAGAAACGU |
NC | UUCUCCGAACGUGUCACGUTT | ACGUGACACGUUCGGAGAATT |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, M.; Liu, J.; Yuan, Z.; Xu, Y.; Guo, Y.; Yang, S.; Fei, H. DC-SIGN of Largemouth Bass (Micropterus salmoides) Mediates Immune Functions against Aeromonas hydrophila through Collaboration with the TLR Signaling Pathway. Int. J. Mol. Sci. 2024, 25, 5013. https://doi.org/10.3390/ijms25095013
Huang M, Liu J, Yuan Z, Xu Y, Guo Y, Yang S, Fei H. DC-SIGN of Largemouth Bass (Micropterus salmoides) Mediates Immune Functions against Aeromonas hydrophila through Collaboration with the TLR Signaling Pathway. International Journal of Molecular Sciences. 2024; 25(9):5013. https://doi.org/10.3390/ijms25095013
Chicago/Turabian StyleHuang, Mengmeng, Jingwen Liu, Zhenzhen Yuan, Youxing Xu, Yang Guo, Shun Yang, and Hui Fei. 2024. "DC-SIGN of Largemouth Bass (Micropterus salmoides) Mediates Immune Functions against Aeromonas hydrophila through Collaboration with the TLR Signaling Pathway" International Journal of Molecular Sciences 25, no. 9: 5013. https://doi.org/10.3390/ijms25095013
APA StyleHuang, M., Liu, J., Yuan, Z., Xu, Y., Guo, Y., Yang, S., & Fei, H. (2024). DC-SIGN of Largemouth Bass (Micropterus salmoides) Mediates Immune Functions against Aeromonas hydrophila through Collaboration with the TLR Signaling Pathway. International Journal of Molecular Sciences, 25(9), 5013. https://doi.org/10.3390/ijms25095013