Comparative Genomic Analysis Reveals Key Changes in the Genome of Acremonium chrysogenum That Occurred During Classical Strain Improvement for Production of Antibiotic Cephalosporin C
Abstract
:1. Introduction
2. Results
2.1. Mutations That Occurred in A. chrysogenum HY by Types and Categories
2.2. Analysis of the Metabolic Repertoire of A. chrysogenum Strains
2.2.1. Secondary Metabolites Produced by A. chrysogenum WT Strain
2.2.2. In Silico Analysis of BGC in A. chrysogenum WT Strain
2.3. Mutations in BGCs of A. chrysogenum HY
2.3.1. Mutations in BGCs with NRPS in A. chrysogenum HY
2.3.2. Mutations in BGCs with PKS in A. chrysogenum HY
2.3.3. Mutations in BGCs with TPC in A. chrysogenum HY
2.3.4. Mutations in Hybrid BGCs in A. chrysogenum HY
2.4. Key Mutations in A. chrysogenum HY
2.4.1. Mutations in Biosynthetic Genes
2.4.2. Mutations in Transporter Genes
2.4.3. Mutations in Regulatory Genes
2.4.4. Mutations in Other Genes
3. Discussion
4. Materials and Methods
4.1. Strains of Microorganisms
4.2. Isolation of gDNA from A. chrysogenum HY
4.3. Whole Genome Sequencing and Assembly
4.4. Defining BGCs and Performing Comparative Analysis
5. Conclusions
Supplementary Materials
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liu, L.; Chen, Z.; Liu, W.; Ke, X.; Tian, X.; Chu, J. Cephalosporin C biosynthesis and fermentation in Acremonium chrysogenum. Appl. Microbiol. Biotechnol. 2022, 106, 6413–6426. [Google Scholar] [CrossRef]
- Elander, R.P. Industrial production of beta-lactam antibiotics. Appl. Microbiol. Biotechnol. 2003, 61, 385–392. [Google Scholar] [CrossRef]
- García-Estrada, C.; Martín, J.-F. Penicillins and Cephalosporins. In Comprehensive Biotechnology; Moo-Young, M., Ed.; Academic Press: Burlington, VT, USA, 2011; Volume 1, pp. 255–268. ISBN 978-0-08-088504-9. [Google Scholar]
- Antibiotics Market Size, Share, Growth & Trends|Forecast, 2032. Available online: https://www.fortunebusinessinsights.com/antibiotics-market-104583 (accessed on 13 September 2024).
- Antibiotics Market Size & Share, Growth Trends 2024–2032. Available online: https://www.gminsights.com/industry-analysis/antibiotics-market (accessed on 13 September 2024).
- Antibiotics Market Size, Share and Analysis|Forecast-2030. Available online: https://www.acumenresearchandconsulting.com/antibiotics-market (accessed on 13 September 2024).
- Gad, S.C. Cephalosporins. In Encyclopedia of Toxicology, 4th ed.; Academic Press: Cambridge, MA, USA, 2024; Volume 2, pp. 705–710. ISBN 9780128243152. [Google Scholar]
- Elander, R.P. Strain Improvement and Preservation of β-Lactam-Producing Microorganisms. In Antibiotics: Containing the Beta-Lactam Structure; Demain, A.L., Solomon, N.A., Eds.; Springer: Berlin/Heidelberg, Germany, 1983; Volume 1, pp. 97–146. [Google Scholar]
- Kim, C.F.; Lee, S.K.Y.; Price, J.; Jack, R.W.; Turner, G.; Kong, R.Y.C. Cloning and Expression Analysis of the pcbAB-pcbC β-Lactam Genes in the Marine Fungus Kallichroma tethys. Appl. Environ. Microbiol. 2003, 69, 1308. [Google Scholar] [CrossRef]
- Pisano, M.A.; Vellozzi, E.M. Production of cephalosporin C by Paecilomyces persicinus P-10. Antimicrob. Agents Chemother. 1974, 6, 447–451. [Google Scholar] [CrossRef]
- Martín, J.F.; Liras, P. Transfer of Secondary Metabolite Gene Clusters: Assembly and Reorganization of the Β-Lactam Gene Cluster from Bacteria to Fungi and Arthropods. In Horizontal Gene Transfer: Breaking Borders between Living Kingdoms; Villa, T.G., Viñas, M., Eds.; Springer International Publishing: Cham, Switzerland, 2019; Volume 1, pp. 337–359. ISBN 9783030218621. [Google Scholar]
- Zhgun, A.A. Industrial Production of Antibiotics in Fungi: Current State, Deciphering the Molecular Basis of Classical Strain Improvement and Increasing the Production of High-Yielding Strains by the Addition of Low-Molecular Weight Inducers. Fermentation 2023, 9, 1027. [Google Scholar] [CrossRef]
- Duan, S.; Yuan, G.; Zhao, Y.; Ni, W.; Luo, H.; Shi, Z.; Liu, F. Simulation of computational fluid dynamics and comparison of cephalosporin C fermentation performance with different impeller combinations. Korean J. Chem. Eng. 2013, 30, 1097–1104. [Google Scholar] [CrossRef]
- Yang, Y.; Xia, J.; Li, J.; Chu, J.; Li, L.; Wang, Y.; Zhuang, Y.; Zhang, S. A novel impeller configuration to improve fungal physiology performance and energy conservation for cephalosporin C production. J. Biotechnol. 2012, 161, 250–256. [Google Scholar] [CrossRef]
- Zhgun, A.A. Fungal BGCs for Production of Secondary Metabolites: Main Types, Central Roles in Strain Improvement, and Regulation According to the Piano Principle. Int. J. Mol. Sci. 2023, 24, 11184. [Google Scholar] [CrossRef] [PubMed]
- Hou, L.W.; Giraldo, A.; Groenewald, J.W.; Rämä, T.; Summerbell, R.C.; Huang, G.Z.; Cai, L.; Crous, P.W. Redisposition of acremonium-like fungi in Hypocreales. Stud. Mycol. 2023, 105, 23. [Google Scholar] [CrossRef]
- Liu, L.; Li, R.; Zhang, X.; Chen, Z.; Mohsin, A.; Hang, H.; Tian, X.; Chu, J. Promoter screening and identification for metabolic regulation in Acremonium chrysogenum. Biotechnol. J. 2024, 19, e2300683. [Google Scholar] [CrossRef]
- Martín, J.F.; Liras, P. Diamine Fungal Inducers of Secondary Metabolism: 1,3-Diaminopropane and Spermidine Trigger Enzymes Involved in β-Alanine and Pantothenic Acid Biosynthesis, Precursors of Phosphopantetheine in the Activation of Multidomain Enzymes. Antibiotics 2024, 13, 826. [Google Scholar] [CrossRef] [PubMed]
- Duan, C.; Wang, S.; Yao, Y.; Pan, Y.; Liu, G. MFS Transporter as the Molecular Switch Unlocking the Production of Cage-Like Acresorbicillinol C. J. Agric. Food Chem. 2024, 72, 19061–19070. [Google Scholar] [CrossRef]
- Houbraken, J.; Frisvad, J.C.; Samson, R.A. Fleming’s penicillin producing strain is not Penicillium chrysogenum but P. rubens. IMA Fungus Glob. Mycol. J. 2011, 2, 87. [Google Scholar] [CrossRef]
- Bayer, E.A.; Fierro, F.; Vaca, I.; Castillo, N.I.; Ovidio García-Rico, R.; Chávez, R. Penicillium chrysogenum, a Vintage Model with a Cutting-Edge Profile in Biotechnology. Microorganisms 2022, 10, 573. [Google Scholar] [CrossRef] [PubMed]
- Bartoshevich, Y.; Novak, M.; Domratcheva, A.; Skrybin, K. Method of Cephalosporin C Biosynthesis by Using New Acremonium chrysogenum Strain RNCM NO F-4081D. Patent RU2426793C2, 20 August 2011. [Google Scholar]
- Brotzu, G. Ricerche su di un nuovo antibiotico. Lav. Dell’Istituto Ig. Cagliari 1948, 1, 1–11. [Google Scholar]
- Acremonium chrysogenum (Thirumalachar et Sukapure) Gams-11550|ATCC. Available online: https://www.atcc.org/products/11550 (accessed on 8 October 2024).
- Zhgun, A.A.; Eldarov, M.A. Spermidine and 1,3-Diaminopropane Have Opposite Effects on the Final Stage of Cephalosporin C Biosynthesis in High-Yielding Acremonium chrysogenum Strain. Int. J. Mol. Sci. 2022, 23, 14625. [Google Scholar] [CrossRef] [PubMed]
- Zhgun, A.A.; Eldarov, M.A. Polyamines Upregulate Cephalosporin C Production and Expression of β-Lactam Biosynthetic Genes in High-Yielding Acremonium chrysogenum Strain. Molecules 2021, 26, 6636. [Google Scholar] [CrossRef] [PubMed]
- Dumina, M.V.; Zhgun, A.A.; Novak, M.I.; Domratcheva, A.G.; Petukhov, D.V.; Dzhavakhiya, V.V.; Eldarov, M.A.; Bartoshevitch, I.E. Comparative gene expression profiling reveals key changes in expression levels of cephalosporin C biosynthesis and transport genes between low and high-producing strains of Acremonium chrysogenum. World J. Microbiol. Biotechnol. 2014, 30, 2933–2941. [Google Scholar] [CrossRef] [PubMed]
- Zhgun, A.A.; Ivanova, M.A.; Domracheva, A.G.; Novak, M.I.; Elidarov, M.A.; Skryabin, K.G.; Bartoshevich, Y.E. Genetic transformation of the mycelium fungi Acremonium chrysogenum. Appl. Biochem. Microbiol. 2008, 44, 600–607. [Google Scholar] [CrossRef]
- Kalebina, T.S.; Selyakh, I.O.; Gorkovskii, A.A.; Bezsonov, E.E.; El’darov, M.A.; Novak, M.I.; Domracheva, A.G.; Bartoshevich, Y.E. Structure peculiarities of cell walls of Acremonium chrysogenum—An autotroph of cephalosporin C. Appl. Biochem. Microbiol. 2010, 46, 614–619. [Google Scholar] [CrossRef]
- Valiakhmetov, A.I.; Trilisenko, L.V.; Vagabov, V.M.; Bartoshevich, I.E.; Kulaev, I.S.; Novak, M.I.; Domracheva, A.G.; El’darov, M.A.; Skriabin, K.G. The concentration dynamics of inorganic polyphosphates during the cephalosporin C synthesis by Acremonium chrysogenum. Prikl. Biokhim. Mikrobiol. 2010, 46, 198–204. [Google Scholar] [CrossRef]
- Zhgun, A.; Dumina, M.; Valiakhmetov, A.; Eldarov, M. The critical role of plasma membrane H+-ATPase activity in cephalosporin C biosynthesis of Acremonium chrysogenum. PLoS ONE 2020, 15, e0238452. [Google Scholar] [CrossRef]
- Bartoshevich, Y.E.; Zaslavskaya, P.L.; Novak, M.J.; Yudina, O.D. Acremonium chrysogenum differentiation and biosynthesis of cephalosporin. J. Basic Microbiol. 1990, 30, 313–320. [Google Scholar] [CrossRef]
- Hyvönen, M.T.; Keinänen, T.A.; Nuraeva, G.K.; Yanvarev, D.V.; Khomutov, M.; Khurs, E.N.; Kochetkov, S.N.; Vepsäläinen, J.; Zhgun, A.A.; Khomutov, A.R. Hydroxylamine analogue of agmatine: Magic bullet for arginine decarboxylase. Biomolecules 2020, 10, 406. [Google Scholar] [CrossRef] [PubMed]
- Valdés-Santiago, L.; Cervantes-Chávez, J.A.; León-Ramírez, C.G.; Ruiz-Herrera, J. Polyamine Metabolism in Fungi with Emphasis on Phytopathogenic Species. J. Amino Acids 2012, 2012, 837932. [Google Scholar] [CrossRef] [PubMed]
- Dumina, M.V.; Zhgun, A.A.; Domracheva, A.G.; Novak, M.I.; El’darov, M.A. Chromosomal polymorphism of Acremonium chrysogenum strains producing cephalosporin C. Russ. J. Genet. 2012, 48, 778–784. [Google Scholar] [CrossRef]
- Specht, T.; Dahlmann, T.A.; Zadra, I.; Kürnsteiner, H.; Kück, U. Complete Sequencing and Chromosome-Scale Genome Assembly of the Industrial Progenitor Strain P2niaD18 from the Penicillin Producer Penicillium chrysogenum. Genome Announc. 2014, 2, 577–591. [Google Scholar] [CrossRef] [PubMed]
- Martín, J.F. Insight into the Genome of Diverse Penicillium chrysogenum Strains: Specific Genes, Cluster Duplications and DNA Fragment Translocations. Int. J. Mol. Sci. 2020, 21, 3936. [Google Scholar] [CrossRef]
- Fierro, F.; Barredo, J.L.; Díez, B.; Gutierrez, S.; Fernández, F.J.; Martín, J.F. The penicillin gene cluster is amplified in tandem repeats linked by conserved hexanucleotide sequences. Proc. Natl. Acad. Sci. USA 1995, 92, 6200–6204. [Google Scholar] [CrossRef] [PubMed]
- van den Berg, M.A.; Westerlaken, I.; Leeflang, C.; Kerkman, R.; Bovenberg, R.A.L. Functional characterization of the penicillin biosynthetic gene cluster of Penicillium chrysogenum Wisconsin54-1255. Fungal Genet. Biol. 2007, 44, 830–844. [Google Scholar] [CrossRef]
- Newbert, R.W.; Barton, B.; Greaves, P.; Harper, J.; Turner, G. Analysis of a commercially improved Penicillium chrysogenum strain series: Involvement of recombinogenic regions in amplification and deletion of the penicillin biosynthesis gene cluster. J. Ind. Microbiol. Biotechnol. 1997, 19, 18–27. [Google Scholar] [CrossRef] [PubMed]
- Salo, O.V.; Ries, M.; Medema, M.H.; Lankhorst, P.P.; Vreeken, R.J.; Bovenberg, R.A.L.; Driessen, A.J.M. Genomic mutational analysis of the impact of the classical strain improvement program on β-lactam producing Penicillium chrysogenum. BMC Genom. 2015, 16, 937. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.Q.; Zhong, J.; Zhao, Y.; Xiao, J.; Liu, J.; Dai, M.; Zheng, G.; Zhang, L.; Yu, J.; Wu, J.; et al. Genome sequencing of high-penicillin producing industrial strain of Penicillium chrysogenum. BMC Genom. 2014, 15, 1–12. [Google Scholar] [CrossRef]
- Bailey, S.F.; Morales, L.A.A.; Kassen, R. Effects of Synonymous Mutations beyond Codon Bias: The Evidence for Adaptive Synonymous Substitutions from Microbial Evolution Experiments. Genome Biol. EVolume 2021, 13, evab141. [Google Scholar] [CrossRef]
- Adicillin. Available online: https://drugcentral.org/drugcard/3421 (accessed on 13 November 2024).
- Burton, H.S.; Abraham, E.P. Isolation of antibiotics from a species of Cephalosporium. Cephalosporins P1, P2, P3, P4 and P5. Biochem. J. 1951, 50, 168. [Google Scholar] [CrossRef] [PubMed]
- Cao, Z.Q.; Lv, J.M.; Liu, Q.; Qin, S.Y.; Chen, G.D.; Dai, P.; Zhong, Y.; Gao, H.; Yao, X.S.; Hu, D. Biosynthetic study of cephalosporin p1 reveals a multifunctional p450 enzyme and a site-selective acetyltransferase. ACS Chem. Biol. 2020, 15, 44–51. [Google Scholar] [CrossRef] [PubMed]
- Druzhinina, I.S.; Kubicek, E.M.; Kubicek, C.P. Several steps of lateral gene transfer followed by events of “birth-and-death” evolution shaped a fungal sorbicillinoid biosynthetic gene cluster. BMC Evol. Biol. 2016, 16, 269. [Google Scholar] [CrossRef]
- Chen, G.; Chu, J. Characterization of Two Polyketide Synthases Involved in Sorbicillinoid Biosynthesis by Acremonium chrysogenum Using the CRISPR/Cas9 System. Appl. Biochem. Biotechnol. 2019, 188, 1134–1144. [Google Scholar] [CrossRef] [PubMed]
- Duan, C.; Wang, S.; Huo, R.; Li, E.; Wang, M.; Ren, J.; Pan, Y.; Liu, L.; Liu, G. Sorbicillinoid Derivatives with the Radical Scavenging Activities from the Marine-Derived Fungus Acremonium chrysogenum C10. J. Fungi 2022, 8, 530. [Google Scholar] [CrossRef]
- Gsaller, F.; Blatzer, M.; Abt, B.; Schrettl, M.; Lindner, H.; Haas, H. The first promoter for conditional gene expression in Acremonium chrysogenum: Iron starvation-inducible mir1P. J. Biotechnol. 2013, 163, 77–80. [Google Scholar] [CrossRef]
- Macheleidt, J.; Mattern, D.J.; Fischer, J.; Netzker, T.; Weber, J.; Schroeckh, V.; Valiante, V.; Brakhage, A.A. Regulation and Role of Fungal Secondary Metabolites. Annu. Rev. Genet. 2016, 50, 371–392. [Google Scholar] [CrossRef] [PubMed]
- Guzmán-Chávez, F.; Zwahlen, R.D.; Bovenberg, R.A.L.; Driessen, A.J.M. Engineering of the filamentous fungus penicillium chrysogenumas cell factory for natural products. Front. Microbiol. 2018, 9, 2768. [Google Scholar] [CrossRef]
- Terfehr, D.; Dahlmann, T.A.; Specht, T.; Zadra, I.; Kürnsteiner, H.; Kück, U. Genome Sequence and Annotation of Acremonium chrysogenum, Producer of the β-Lactam Antibiotic Cephalosporin C. Genome Announc. 2014, 2, e00948-14. [Google Scholar] [CrossRef] [PubMed]
- Blin, K.; Shaw, S.; Augustijn, H.E.; Reitz, Z.L.; Biermann, F.; Alanjary, M.; Fetter, A.; Terlouw, B.R.; Metcalf, W.W.; Helfrich, E.J.N.; et al. antiSMASH 7.0: New and improved predictions for detection, regulation, chemical structures and visualisation. Nucleic Acids Res. 2023, 51, W46–W50. [Google Scholar] [CrossRef]
- Nickles, G.R.; Oestereicher, B.; Keller, N.P.; Drott, M.T. Mining for a new class of fungal natural products: The evolution, diversity, and distribution of isocyanide synthase biosynthetic gene clusters. Nucleic Acids Res. 2023, 51, 7220. [Google Scholar] [CrossRef]
- Ullán, R.V.; Casqueiro, J.; Bañuelos, O.; Fernández, F.J.; Gutiérrez, S.; Martín, J.F. A novel epimerization system in fungal secondary metabolism involved in the conversion of isopenicillin N into penicillin N in Acremonium chrysogenum. J. Biol. Chem. 2002, 277, 46216–46225. [Google Scholar] [CrossRef] [PubMed]
- Martín, J.F. Transport systems, intracellular traffic of intermediates and secretion of β-lactam antibiotics in fungi. Fungal Biol. Biotechnol. 2020, 7, 6. [Google Scholar] [CrossRef]
- Ullán, R.V.; Teijeira, F.; Guerra, S.M.; Vaca, I.; Martín, J.F. Characterization of a novel peroxisome membrane protein essential for conversion of isopenicillin N into cephalosporin C. Biochem. J. 2010, 432, 227–236. [Google Scholar] [CrossRef]
- Teijeira, F.; Ullán, R.V.; Guerra, S.M.; García-Estrada, C.; Vaca, I.; Martín, J.F. The transporter CefM involved in translocation of biosynthetic intermediates is essential for cephalosporin production. Biochem. J. 2009, 418, 113–124. [Google Scholar] [CrossRef]
- Dumina, M.V.; Zhgun, A.A.; Kerpichnikov, I.V.; Domracheva, A.G.; Novak, M.I.; Valiachmetov, A.Y.; Knorre, D.A.; Severin, F.F.; Eldarov, M.A.; Bartoshevich, Y.E. Functional analysis of MFS protein CefT involved in the transport of beta-lactam antibiotics in Acremonium chrysogenum and Saccharomyces cerevisiae. Appl. Biochem. Microbiol. 2013, 49, 368–377. [Google Scholar] [CrossRef]
- Teijeira, F.; Ullán, R.V.; Fernández-Aguado, M.; Martín, J.F. CefR modulates transporters of beta-lactam intermediates preventing the loss of penicillins to the broth and increases cephalosporin production in Acremonium chrysogenum. Metab. Eng. 2011, 13, 532–543. [Google Scholar] [CrossRef]
- Salo, O.; Guzmán-Chávez, F.; Ries, M.I.; Lankhorst, P.P.; Bovenberg, R.A.L.; Vreeken, R.J.; Driessen, A.J.M. Identification of a Polyketide Synthase Involved in Sorbicillin Biosynthesis by Penicillium chrysogenum. Appl. Environ. Microbiol. 2016, 82, 3971–3978. [Google Scholar] [CrossRef]
- Schrettl, M.; Bignell, E.; Kragl, C.; Sabiha, Y.; Loss, O.; Eisendle, M.; Wallner, A.; Arst, H.N.; Haynes, K.; Haas, H. Distinct roles for intra- and extracellular siderophores during Aspergillus fumigatus infection. PLoS Pathog. 2007, 3, 1195–1207. [Google Scholar] [CrossRef] [PubMed]
- Kessler, N.; Schuhmann, H.; Morneweg, S.; Linne, U.; Marahiel, M.A. The Linear Pentadecapeptide Gramicidin is Assembled by Four Multimodular Nonribosomal Peptide Synthetases that Comprise 16 Modules with 56 Catalytic Domains. J. Biol. Chem. 2004, 279, 7413–7419. [Google Scholar] [CrossRef] [PubMed]
- Guzmán-Chávez, F.; Salo, O.; Nygård, Y.; Lankhorst, P.P.; Bovenberg, R.A.L.; Driessen, A.J.M. Mechanism and regulation of sorbicillin biosynthesis by Penicillium chrysogenum. Microb. Biotechnol. 2017, 10, 958. [Google Scholar] [CrossRef] [PubMed]
- Al Fahad, A.; Abood, A.; Fisch, K.M.; Osipow, A.; Davison, J.; Avramović, M.; Butts, C.P.; Piel, J.; Simpson, T.J.; Cox, R.J. Oxidative dearomatisation: The key step of sorbicillinoid biosynthesis. Chem. Sci. 2013, 5, 523–527. [Google Scholar] [CrossRef]
- Wang, Z.; Su, C.; Zhang, Y.; Shangguan, S.; Wang, R.; Su, J. Key enzymes involved in the utilization of fatty acids by Saccharomyces cerevisiae: A review. Front. Microbiol. 2023, 14, 1294182. [Google Scholar] [CrossRef]
- Robert, J.; Marchesini, S.; Delessert, S.; Poirier, Y. Analysis of the β-oxidation of trans-unsaturated fatty acid in recombinant Saccharomyces cerevisiae expressing a peroxisomal PHA synthase reveals the involvement of a reductase-dependent pathway. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 2005, 1734, 169–177. [Google Scholar] [CrossRef] [PubMed]
- Martín, J.-F.; García-Estrada, C.; Ullán, R.V. Transport of substrates into peroxisomes: The paradigm of β-lactam biosynthetic intermediates. Biomol. Concepts 2013, 4, 197–211. [Google Scholar] [CrossRef]
- Liu, X.Y.; Ouyang, L.L.; Zhou, Z.G. Phospholipid: Diacylglycerol acyltransferase contributes to the conversion of membrane lipids into triacylglycerol in Myrmecia incisa during the nitrogen starvation stress. Sci. Rep. 2016, 6, 26610. [Google Scholar] [CrossRef] [PubMed]
- McCombe, C.L.; Catanzariti, A.M.; Greenwood, J.R.; Desai, A.M.; Outram, M.A.; Yu, D.S.; Ericsson, D.J.; Brenner, S.E.; Dodds, P.N.; Kobe, B.; et al. A rust-fungus Nudix hydrolase effector decaps mRNA in vitro and interferes with plant immune pathways. New Phytol. 2023, 239, 222–239. [Google Scholar] [CrossRef] [PubMed]
- de Poel, B.V.; Van Der Straeten, D. 1-aminocyclopropane-1-carboxylic acid (ACC) in plants: More than just the precursor of ethylene! Front. Plant Sci. 2014, 5, 640. [Google Scholar] [CrossRef] [PubMed]
- Chagué, V. Ethylene Production by Fungi: Biological Questions and Future Developments Towards a Sustainable Polymers Industry. In Handbook of Hydrocarbon and Lipid Microbiology; Timmis, K.N., Ed.; Springer: Berlin/Heidelberg, Germany, 2010; Volume 1, pp. 3011–3020. ISBN 978-3-540-77587-4. [Google Scholar]
- Hudson, B.P.; Martinez-Yamout, M.A.; Dyson, H.J.; Wright, P.E. Recognition of the mRNA AU-rich element by the zinc finger domain of TIS11d. Nat. Struct. Mol. Biol. 2004, 11, 257–264. [Google Scholar] [CrossRef] [PubMed]
- Murn, J.; Teplova, M.; Zarnack, K.; Shi, Y.; Patel, D.J. Recognition of distinct RNA motifs by the clustered CCCH zinc fingers of neuronal protein Unkempt. Nat. Struct. Mol. Biol. 2015, 23, 16–23. [Google Scholar] [CrossRef] [PubMed]
- Tants, J.N.; Oberstrass, L.; Weigand, J.E.; Schlundt, A. Structure and RNA-binding of the helically extended Roquin CCCH-type zinc finger. Nucleic Acids Res. 2024, 52, 9838–9853. [Google Scholar] [CrossRef]
- Shaw, G.; Kamen, R. A conserved AU sequence from the 3’ untranslated region of GM-CSF mRNA mediates selective mRNA degradation. Cell 1986, 46, 659–667. [Google Scholar] [CrossRef]
- Halbout, M.; Bury, M.; Hanet, A.; Gerin, I.; Graff, J.; Killian, T.; Gatto, L.; Vertommen, D.; Bommer, G.T. SUZ domain–containing proteins have multiple effects on nonsense-mediated decay target transcripts. J. Biol. Chem. 2023, 299, 105095. [Google Scholar] [CrossRef] [PubMed]
- Crozat, E.; Grainge, I. FtsK DNA translocase: The fast motor that knows where it’s going. Chembiochem 2010, 11, 2232–2243. [Google Scholar] [CrossRef]
- Tomoni, A.; Lees, J.; Santana, A.G.; Bolanos-Garcia, V.M.; Bastida, A. Pseudokinases: From Allosteric Regulation of Catalytic Domains and the Formation of Macromolecular Assemblies to Emerging Drug Targets. Catalysts 2019, 9, 778. [Google Scholar] [CrossRef]
- Zhang, C.; Zhang, F. The Multifunctions of WD40 Proteins in Genome Integrity and Cell Cycle Progression. J. Genom. 2015, 3, 40. [Google Scholar] [CrossRef] [PubMed]
- Li, Z. Regulation of the cell division cycle in Trypanosoma brucei. Eukaryot. Cell 2012, 11, 1180–1190. [Google Scholar] [CrossRef] [PubMed]
- Dörter, I.; Momany, M. Fungal Cell Cycle: A Unicellular Versus Multicellular Comparison. Microbiol. Spectr. 2016, 4. [Google Scholar] [CrossRef]
- Hirano, T. SMC proteins and chromosome mechanics: From bacteria to humans. Philos. Trans. R. Soc. B Biol. Sci. 2005, 360, 507. [Google Scholar] [CrossRef] [PubMed]
- Schwartz, M.A.; Shapiro, L. An SMC ATPase mutant disrupts chromosome segregation in Caulobacter. Mol. Microbiol. 2011, 82, 1359. [Google Scholar] [CrossRef] [PubMed]
- Minnen, A.; Bürmann, F.; Wilhelm, L.; Anchimiuk, A.; Diebold-Durand, M.L.; Gruber, S. Control of Smc Coiled Coil Architecture by the ATPase Heads Facilitates Targeting to Chromosomal ParB/parS and Release onto Flanking DNA. Cell Rep. 2016, 14, 2003–2016. [Google Scholar] [CrossRef]
- Vickridge, E.; Planchenault, C.; Cockram, C.; Junceda, I.G.; Espéli, O. Management of E. coli sister chromatid cohesion in response to genotoxic stress. Nat. Commun. 2017, 8, 14618. [Google Scholar] [CrossRef]
- Tallada, V.A.; Tanaka, K.; Yanagida, M.; Hagan, I.M. The S. pombe mitotic regulator Cut12 promotes spindle pole body activation and integration into the nuclear envelope. J. Cell Biol. 2009, 185, 875. [Google Scholar] [CrossRef]
- Kniola, B.; O’Toole, E.; McIntosh, J.R.; Mellone, B.; Allshire, R.; Mengarelli, S.; Hultenby, K.; Ekwall, K. The Domain Structure of Centromeres is Conserved from Fission Yeast to Humans. Mol. Biol. Cell 2001, 12, 2767. [Google Scholar] [CrossRef] [PubMed]
- Luo, Z.; Xiong, D.; Tian, C. The Roles of Gti1/Pac2 Family Proteins in Fungal Growth, Morphogenesis, Stress Response, and Pathogenicity. Mol. Plant-Microbe Interact. 2024, 37, 488–497. [Google Scholar] [CrossRef]
- Kunitomo, H.; Sugimoto, A.; Yamamoto, M.; Wilkinson, C.R.M. Schizosaccharomyces pombe pac2+ controls the onset of sexual development via a pathway independent of the cAMP cascade. Curr. Genet. 1995, 28, 32–38. [Google Scholar] [CrossRef] [PubMed]
- Brandão, M.M.; Silva-Brandão, K.L.; Costa, F.F.; Saad, S.T.O. Phylogenetic Analysis of RhoGAP Domain-Containing Proteins. Genom. Proteom. Bioinform. 2006, 4, 182. [Google Scholar] [CrossRef]
- Moon, S.Y.; Zheng, Y. Rho GTPase-activating proteins in cell regulation. Trends Cell Biol. 2003, 13, 13–22. [Google Scholar] [CrossRef] [PubMed]
- Calvo, A.M.; Wilson, R.A.; Bok, J.W.; Keller, N.P. Relationship between Secondary Metabolism and Fungal Development. Microbiol. Mol. Biol. Rev. 2002, 66, 447–459. [Google Scholar] [CrossRef] [PubMed]
- Fribourg, S.; Braun, I.C.; Izaurralde, E.; Conti, E. Structural Basis for the Recognition of a Nucleoporin FG Repeat by the NTF2-like Domain of the TAP/p15 mRNA Nuclear Export Factor. Mol. Cell 2001, 8, 645–656. [Google Scholar] [CrossRef]
- Lorkovic, Z. RNA-Binding Proteins in Fungi and Their Role in mRNA Localization. In RNA Binding Proteins; Lorkovic, Z., Ed.; CRC Press: Boca Raton, FL, USA, 2020; Volume 1, pp. 93–106. [Google Scholar]
- Sazer, S.; Dasso, M. The Ran decathlon: Multiple roles of Ran. J. Cell Sci. 2000, 113, 1111–1118. [Google Scholar] [CrossRef]
- Dallastella, M.; de Oliveira, W.K.; Rodrigues, M.L.; Goldenberg, S.; Alves, L.R. The characterization of RNA-binding proteins and RNA metabolism-related proteins in fungal extracellular vesicles. Front. Cell. Infect. Microbiol. 2023, 13, 1247329. [Google Scholar] [CrossRef] [PubMed]
- Künzler, M.; Gerstberger, T.; Stutz, F.; Bischoff, F.R.; Hurt, E. Yeast Ran-Binding Protein 1 (Yrb1) Shuttles between the Nucleus and Cytoplasm and is Exported from the Nucleus via a CRM1 (XPO1)-Dependent Pathway. Mol. Cell. Biol. 2000, 20, 4295. [Google Scholar] [CrossRef] [PubMed]
- Lee, L.; Rodriguez, J.; Tsukiyama, T. Chromatin remodeling factors Isw2 and Ino80 regulate checkpoint activity and chromatin structure in S phase. Genetics 2015, 199, 1077–1091. [Google Scholar] [CrossRef]
- Dang, W.; Sutphin, G.L.; Dorsey, J.A.; Otte, G.L.; Cao, K.; Perry, R.M.; Wanat, J.J.; Saviolaki, D.; Murakami, C.J.; Tsuchiyama, S.; et al. Inactivation of Yeast Isw2 Chromatin Remodeling Enzyme Mimics Longevity Effect of Calorie Restriction via Induction of Genotoxic Stress Response. Cell Metab. 2014, 19, 952–966. [Google Scholar] [CrossRef]
- Barreiro, C.; Martín, J.F.; García-Estrada, C. Proteomics shows new faces for the old penicillin producer Penicillium chrysogenum. J. Biomed. Biotechnol. 2012, 2012, 105109. [Google Scholar] [CrossRef] [PubMed]
- Yao, G.; Han, N.; Zheng, H.; Wang, L. The Histone Deacetylase HstD Regulates Fungal Growth, Development and Secondary Metabolite Biosynthesis in Aspergillus terreus. Int. J. Mol. Sci. 2023, 24, 12569. [Google Scholar] [CrossRef] [PubMed]
- Hsu, C.H.; Liu, C.Y.; Lo, K.Y. Mutations of ribosomal protein genes induce overexpression of catalase in Saccharomyces cerevisiae. FEMS Yeast Res. 2024, 24, foae005. [Google Scholar] [CrossRef]
- Justice, M.C.; Ku, T.; Hsu, M.J.; Carniol, K.; Schmatz, D.; Nielsen, J. Mutations in Ribosomal Protein L10e Confer Resistance to the Fungal-specific Eukaryotic Elongation Factor 2 Inhibitor Sordarin. J. Biol. Chem. 1999, 274, 4869–4875. [Google Scholar] [CrossRef]
- Crouzet, M.; Begueret, J. Altered ribosomal proteins in mutants of the fungus Podospora anserina. J. Biol. Chem. 1980, 255, 4996–4999. [Google Scholar] [CrossRef] [PubMed]
- Mullis, A.; Lu, Z.; Zhan, Y.; Wang, T.Y.; Rodriguez, J.; Rajeh, A.; Chatrath, A.; Lin, Z. Parallel Concerted Evolution of Ribosomal Protein Genes in Fungi and its Adaptive Significance. Mol. Biol. Evol. 2020, 37, 455–468. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, T.-T.; Stahl, G.; Déquard-Chablat, M.; Contamine, V.; Denmat, S.H.-L. The eukaryotic ribosomal protein S15/uS19 is involved in fungal development and its C-terminal tail contributes to stop codon recognition. bioRxiv 2020, 2020.02.09.940346. [Google Scholar] [CrossRef]
- Khonsari, B.; Klassen, R. Impact of Pus1 Pseudouridine Synthase on Specific Decoding Events in Saccharomyces cerevisiae. Biomolecules 2020, 10, 729. [Google Scholar] [CrossRef]
- Guerin, M.; Parodi, A.J. The UDP-Glucose:Glycoprotein Glucosyltransferase is Organized in at Least Two Tightly Bound Domains from Yeast to Mammals. J. Biol. Chem. 2003, 278, 20540–20546. [Google Scholar] [CrossRef]
- Fischer, F.; Langer, J.D.; Osiewacz, H.D. Identification of potential mitochondrial CLPXP protease interactors and substrates suggests its central role in energy metabolism. Sci. Rep. 2015, 5, 18375. [Google Scholar] [CrossRef]
- Yu, A.Y.H.; Houry, W.A. ClpP: A distinctive family of cylindrical energy-dependent serine proteases. FEBS Lett. 2007, 581, 3749–3757. [Google Scholar] [CrossRef] [PubMed]
- Osiewacz, H.D. Mitochondrial quality control in aging and lifespan control of the fungal aging model Podospora anserina. Biochem. Soc. Trans. 2011, 39, 1488–1492. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Feng, R.; Luo, P.; Zhang, Y.; Lu, L. Synergistic effects of putative Ca2+-binding sites of calmodulin in fungal development, temperature stress and virulence of Aspergillus fumigatus. Virulence 2024, 15, 2290757. [Google Scholar] [CrossRef]
- Kim, M.H.; Choi, Y.J.; Kwon, B.; Choo, Y.M.; Yu, K.Y.; Kim, J. Regulation of secondary metabolism by calmodulin signaling in filamentous fungi. Rev. Iberoam. Micol. 2019, 36, 167–168. [Google Scholar] [CrossRef] [PubMed]
- Mehta, N.; Patil, R.; Baghela, A. Differential physiological prerequisites and gene expression profiles of conidial anastomosis tube and germ tube formation in colletotrichum gloeosporioides. J. Fungi 2021, 7, 509. [Google Scholar] [CrossRef] [PubMed]
- Gibbs, G.M.; Roelants, K.; O’Bryan, M.K. The CAP superfamily: Cysteine-rich secretory proteins, antigen 5, and pathogenesis-related 1 proteins--roles in reproduction, cancer, and immune defense. Endocr. Rev. 2008, 29, 865–897. [Google Scholar] [CrossRef] [PubMed]
- Matsuzawa, M.; Nakayama, T.; Sato, M.H.; Hirano, T. Systematic expression analysis of cysteine-rich secretory proteins, antigen 5, and pathogenesis-related 1 protein (CAP) superfamily in Arabidopsis. Plant Direct 2024, 8, e70003. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, A.A.; El-Housseiny, G.S.; Aboshanab, K.M.; Stratmann, A.; Yassien, M.A.; Hassouna, N.A. Scaling up production of cephalosporin C by Acremonium chrysogenum W42-I in a fermenter using submerged fermentation. AMB Express 2024, 14, 121. [Google Scholar] [CrossRef] [PubMed]
- Van Den Berg, M.A.; Albang, R.; Albermann, K.; Badger, J.H.; Daran, J.M.; Driessen, A.J.M.; Garcia-Estrada, C.; Fedorova, N.D.; Harris, D.M.; Heijne, W.H.M.; et al. Genome sequencing and analysis of the filamentous fungus Penicillium chrysogenum. Nat. Biotechnol. 2008, 26, 1161–1168. [Google Scholar] [CrossRef] [PubMed]
- Harris, D.M.; van der Krogt, Z.A.; Klaassen, P.; Raamsdonk, L.M.; Hage, S.; van den Berg, M.A.; Bovenberg, R.A.L.; Pronk, J.T.; Daran, J.-M. Exploring and dissecting genome-wide gene expression responses of Penicillium chrysogenum to phenylacetic acid consumption and penicillinG production. BMC Genom. 2009, 10, 75. [Google Scholar] [CrossRef]
- Cox, R.J.; Simpson, T.J. Fungal Type I Polyketide Synthases. In Methods in Enzymology.Complex Enzymes in Microbial Natural Product Biosynthesis, Part B: Polyketides, Aminocoumarins and Carbohydrates; Hopwood, D.A., Ed.; Academic Press: Cambridge, MA, USA, 2009; Volume 459, pp. 49–78. ISBN 9780123745910. [Google Scholar]
- Kadotani, N.; Nakayashiki, H.; Tosa, Y.; Mayama, S. One of the two Dicer-like proteins in the filamentous fungi Magnaporthe oryzae genome is responsible for hairpin RNA-triggered RNA silencing and related small interfering RNA accumulation. J. Biol. Chem. 2004, 279, 44467–44474. [Google Scholar] [CrossRef]
- Yin, C.; Zhu, H.; Jiang, Y.; Shan, Y.; Gong, L. Silencing Dicer-Like Genes Reduces Virulence and sRNA Generation in Penicillium italicum, the Cause of Citrus Blue Mold. Cells 2020, 9, 363. [Google Scholar] [CrossRef]
- Kamei, M.; Ameri, A.J.; Ferraro, A.R.; Bar-Peled, Y.; Zhao, F.; Ethridge, C.L.; Lail, K.; Amirebrahimi, M.; Lipzen, A.; Ng, V.; et al. Imitation Switch is required for normal chromatin structure and gene repression in PRC2 target domains. Proc. Natl. Acad. Sci. USA 2021, 118, e2010003118. [Google Scholar] [CrossRef] [PubMed]
- Morrison, O.; Thakur, J. Molecular Complexes at Euchromatin, Heterochromatin and Centromeric Chromatin. Int. J. Mol. Sci. 2021, 22, 6922. [Google Scholar] [CrossRef] [PubMed]
- García-Estrada, C.; Barreiro, C.; Jami, M.-S.; Martín-González, J.; Martín, J.-F. The inducers 1,3-diaminopropane and spermidine cause the reprogramming of metabolism in Penicillium chrysogenum, leading to multiple vesicles and penicillin overproduction. J. Proteom. 2013, 85, 129–159. [Google Scholar] [CrossRef] [PubMed]
- Grau, M.F.; Entwistle, R.; Oakley, C.E.; Wang, C.C.C.; Oakley, B.R. Overexpression of an LaeA-like Methyltransferase Upregulates Secondary Metabolite Production in Aspergillus nidulans. ACS Chem. Biol. 2019, 14, 1643–1651. [Google Scholar] [CrossRef]
- Zhgun, A.A.; Nuraeva, G.K.; Eldarov, M.A. The Role of LaeA and LovE Regulators in Lovastatin Biosynthesis with Exogenous Polyamines in Aspergillus terreus. Appl. Biochem. Microbiol. 2019, 55, 639–648. [Google Scholar] [CrossRef]
- Lin, C.J.; Hou, Y.H.; Chen, Y.L. The histone acetyltransferase GcnE regulates conidiation and biofilm formation in Aspergillus fumigatus. Med. Mycol. 2020, 58, 248–259. [Google Scholar] [CrossRef]
- Itoh, E.; Odakura, R.; Oinuma, K.I.; Shimizu, M.; Masuo, S.; Takaya, N. Sirtuin E is a fungal global transcriptional regulator that determines the transition from the primary growth to the stationary phase. J. Biol. Chem. 2017, 292, 11043. [Google Scholar] [CrossRef] [PubMed]
- Bayram, Ö.; Braus, G.H. Coordination of secondarymetabolism and development in fungi: The velvet familyof regulatory proteins. FEMS Microbiol. Rev. 2012, 36, 1–24. [Google Scholar] [CrossRef] [PubMed]
- Hou, X.; Liu, L.; Xu, D.; Lai, D.; Zhou, L. Involvement of LaeA and Velvet Proteins in Regulating the Production of Mycotoxins and Other Fungal Secondary Metabolites. J. Fungi 2024, 10, 561. [Google Scholar] [CrossRef]
- Martín, J.F. Key role of LaeA and velvet complex proteins on expression of β-lactam and PR-toxin genes in Penicillium chrysogenum: Cross-talk regulation of secondary metabolite pathways. J. Ind. Microbiol. Biotechnol. 2017, 44, 525–535. [Google Scholar] [CrossRef]
- Calvo, A.M.; Dabholkar, A.; Wyman, E.M.; Lohmar, J.M.; Cary, J.W. Beyond morphogenesis and secondary metabolism: Function of Velvet proteins and LaeA in fungal pathogenesis. Appl. Environ. Microbiol. 2024, 90, e0081924. [Google Scholar] [CrossRef] [PubMed]
- Bayram, Ö.; Krappmann, S.; Ni, M.; Jin, W.B.; Helmstaedt, K.; Valerius, O.; Braus-Stromeyer, S.; Kwon, N.J.; Keller, N.P.; Yu, J.H.; et al. VelB/VeA/LaeA complex coordinates light signal with fungal development and secondary metabolism. Science 2008, 320, 1504–1506. [Google Scholar] [CrossRef]
- Terfehr, D.; Dahlmann, T.A.; Kück, U. Transcriptome analysis of the two unrelated fungal β-lactam producers Acremonium chrysogenum and Penicillium chrysogenum: Velvet-regulated genes are major targets during conventional strain improvement programs. BMC Genom. 2017, 18, 272. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Gao, W.; Pan, Y.; Liu, G. Metabolic engineering of Acremonium chrysogenum for improving cephalosporin C production independent of methionine stimulation. Microb. Cell Fact. 2018, 17, 87. [Google Scholar] [CrossRef]
- Zhgun, A.A. Random Mutagenesis of Filamentous Fungi Stains for High-Yield Production of Secondary Metabolites: The Role of Polyamines. In Genotoxicity and Mutagenicity—Mechanisms and Test Methods, Chapter 2; Soloneski, S., Larramendy, M.L., Eds.; IntechOpen: London, UK, 2021; pp. 25–41. ISBN 978-1-83880-041-3. [Google Scholar]
- Murray Stewart, T.; Dunston, T.T.; Woster, P.M.; Casero, R.A. Polyamine catabolism and oxidative damage. J. Biol. Chem. 2018, 293, 18736–18745. [Google Scholar] [CrossRef]
- Lee, C.-Y.; Su, G.-C.; Huang, W.-Y.; Ko, M.-Y.; Yeh, H.-Y.; Chang, G.-D.; Lin, S.-J.; Chi, P. Promotion of homology-directed DNA repair by polyamines. Nat. Commun. 2019, 10, 65. [Google Scholar] [CrossRef] [PubMed]
- Perez-Leal, O.; Merali, S. Regulation of polyamine metabolism by translational control. Amino Acids 2012, 42, 611–617. [Google Scholar] [CrossRef] [PubMed]
- Perrin, R.M.; Fedorova, N.D.; Bok, J.W.; Cramer, R.A.; Wortman, J.R.; Kim, H.S.; Nierman, W.C.; Keller, N.P. Transcriptional regulation of chemical diversity in Aspergillus fumigatus by LaeA. PLoS Pathog. 2007, 3, e50. [Google Scholar] [CrossRef] [PubMed]
- Wu, M.; Crismaru, C.G.; Salo, O.; Bovenberg, R.A.L.; Driessena, A.J.M. Impact of Classical Strain Improvement of Penicillium rubens on Amino Acid Metabolism during β-Lactam Production. Appl. Environ. Microbiol. 2020, 86, e01561-19. [Google Scholar] [CrossRef]
- García-Estrada, C.; Martín, J.F.; Cueto, L.; Barreiro, C. Omics Approaches Applied to Penicillium chrysogenum and Penicillin Production: Revealing the Secrets of Improved Productivity. Genes 2020, 11, 712. [Google Scholar] [CrossRef] [PubMed]
- Newton, G.G.; Abraham, E.P. Isolation of cephalosporin C, a penicillin-like antibiotic containing D-alpha-aminoadipic acid. Biochem. J. 1956, 62, 651–658. [Google Scholar] [CrossRef] [PubMed]
- Depristo, M.A.; Banks, E.; Poplin, R.; Garimella, K.V.; Maguire, J.R.; Hartl, C.; Philippakis, A.A.; Del Angel, G.; Rivas, M.A.; Hanna, M.; et al. A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat. Genet. 2011, 43, 491. [Google Scholar] [CrossRef]
- GATK, A Genomic Analysis Toolkit Focused on Variant Discovery. Available online: https://gatk.broadinstitute.org/hc/en-us (accessed on 13 September 2024).
- antiSMASH Fungal Version. Available online: https://fungismash.secondarymetabolites.org/#!/start (accessed on 29 November 2023).
- BLAST: Basic Local Alignment Search Tool. Available online: https://blast.ncbi.nlm.nih.gov/blast/Blast.cgi (accessed on 15 October 2024).
- Lu, G.; Moriyama, E.N. Vector NTI, a balanced all-in-one sequence analysis suite. Brief. Bioinform. 2004, 5, 378–388. [Google Scholar] [CrossRef]
Nutrient Medium | Phenotype | A. chrysogenum WT | A. chrysogenum HY | Reference |
---|---|---|---|---|
Complex agarized (CPA) medium | Colony size, mm 1 | 12–15 | 0.5–5 | [26] |
Heterogeneity in colony size | − | + | ||
Yellow-cream coloration | + | − | ||
Aerial mycelium | + | − | [28] | |
Czapek-Dox agarized (CDA) medium | Conidia formation | Normal | Reduced | |
Sensitivity to ODC inhibitors | High | Low | [33] | |
Czapek-Dox (CD) medium | Intracellular polyamine content | Normal | Increased by 4–5 times | |
Complex (CP) medium | Cell wall | Normal | Thinned | [29] |
Intracellular ATP content | Normal | Reduced by 3–4 times | [30,31] | |
Activity of plasma membrane H+-ATPase | Normal | Reduced by ~2 times | ||
Main morphological forms during CPC production | Mycelium, conidia | Oidia (or arthrospores) | [32] | |
Dry biomass | Normal | Reduced by ~2 times | [27] | |
CPC production, mg/L | 25–70 | 12,000+ |
Category of Mutation | Number of Mutations |
---|---|
HIGH | 56 |
MODERATE | 532 |
LOW | 373 |
MODIFIER | 2769 |
TOTAL by categories | 3730 |
TOTAL in genome | 3472 1 |
Gene | Product | Mutation | |||
---|---|---|---|---|---|
Accession № | Length, AA | Annotated as | Type | Position | |
ACRE_072830 | KFH41986 | 500 | Aldehyde dehydrogenase-like protein | Stop gained | c.452C>A|p.Ser151* |
ACRE_051330 | KFH44073 | 569 | Succinyl-CoA--L-malate CoA-transferase beta subunit-like | Stop gained | c.1355C>A|p.Ser452* |
ACRE_025660 | KFH46670 | 581 | Putative epoxide hydrolase-like | Frameshift variant | c.454delC| p.Leu152fs |
ACRE_061140 | KFH43164 | 557 | Pisatin demethylase-like protein | Frameshift variant | c.980delA|p.Tyr327fs |
ACRE_071740 | KFH42113 | 298 | Formyltetrahydrofolate deformylase-like protein | Stop lost and splice region variant | c.896A>C| p.Ter299Serext*? |
ACRE_067920 | KFH42477 | 475 | Esterase-like protein | Stop gained | c.979C>T|p.Arg327* |
ACRE_009560 | KFH48096 | 306 | Peroxisomal 2,4-dienoyl-CoA reductase (NADPH2) | Frameshift variant | c.44dupA|p.Asp15fs |
ACRE_090470 | KFH40296 | 419 | Putative CDP-alcohol phosphatidyltransferase class-I family protein-like | Stop gained | c.26T>G|p.Leu9* |
ACRE_054620 | KFH43751 | 627 | Phospholipid:diacylglycerol acyltransferase-like protein | Stop gained | c.878T>A|p.Leu293* |
ACRE_084300 | KFH40859 | 560 | Hypothetical protein (with galactosyltransferase domain) | Stop gained | c.1093G>T|p.Glu365* |
ACRE_070590 | KFH42213 | 236 | NAD(P)H-hydrate epimerase-like protein | Stop gained and splice region variant | c.280C>T|p.Gln94* |
ACRE_007400 | KFH48403 | 207 | Hypothetical protein (with NUDIX_Hydrolase region) | Frameshift variant and start lost | c.1dupA|p.Met1fs |
ACRE_081590 | KFH41138 | 355 | 4-dimethylallyltryptophan N-methyltransferase-like protein | Stop gained | c.805C>T|p.Arg269* |
ACRE_065750 | KFH42725 | 398 | 1-aminocyclopropane-1-carboxylate synthase-like protein | Frameshift variant | c.1107_1110dupCCCG| p.Lys371fs |
ACRE_012290 | KFH47892 | 8601 | Nonribosomal peptide synthetases 4 | Stop gained | c.19633C>T|p.Gln6545* |
ACRE_060650 | KFH43187 | 2566 | Polyketide synthase 10 | Stop gained | c.2097T>A|p.Tyr699* |
Gene | Product | Mutation | ||||
---|---|---|---|---|---|---|
Accession № | Length, AA | Annotated as | Transporter Class | Type | Position | |
ACRE_087850 | KFH40525 | 1142 | Calcium-transporting ATPase-like | P-type Na+-ATPase | Stop gained | 1577G>A|p.Trp526* |
ACRE_075010 | KFH41796 | 1549 | Metal resistance protein-like | ABC | Splice donor variant and intron variant | c.3159+1G>A |
ACRE_057310 | KFH43509 | 487 | Transporter-like protein | MFS | Frameshift variant | c.416_420delTGGGA|p.Val139fs |
ACRE_072140 | KFH42066 | 433 | D-galactonate transporter-like | MFS | Stop lost and splice region | 1300T>C|p.Ter434Glnext*? |
ACRE_045230 | KFH4469 | 538 | Hypothetical protein (with DinF/NorM/MATE region for Na+-driven multidrug efflux pump) | MATE | Splice acceptor variant and intron variant | c.1054-2A>G |
Gene | Product | Mutation | ||||
---|---|---|---|---|---|---|
Accession № | Length, AA | Annotated as | Regulatory Motive | Type | Position | |
ACRE_051010 | KFH44144 | 290 | Hypothetical protein (putative bZIP transcription factor) | bZIP | Frameshift variant | c.483dupA|p.Val162fs |
ACRE_021680 | KFH47037 | 399 | Hypothetical protein (homologous to fungal transcription activators) | - | Stop gained | c.373A>T|p.Lys125* |
ACRE_072410 | KFH42038 | 1116 | Hypothetical protein (with Zf C3H1 motif) | ICP4 Zf C3H1 | Stop gained | c.1910C>A|p.Ser637* |
ACRE_088010 | KFH40507 | 783 | R3H domain-containing protein-like | ICP4, R3H, SUZ, FtsK | Stop gained | c.55G>T|p.Glu19* |
ACRE_043640 | KFH44855 | 413 | Serine/threonine-protein kinase-like | Ser/Thr PK | Stop gained and splice region variant | c.1148T>A|p.Leu383* |
ACRE_078410 | KFH41460 | 437 | Protein kinase-like protein | Ser/Thr PK | Frameshift variant | c.450delC|p.Ile151fs |
ACRE_032470 | KFH45953 | 986 | Protein kinase-like protein | PK_SCY1 | Stop gained | c.2401C>T|p.Gln801* |
ACRE_045800 | KFH44600 | 1216 | Stress response-like protein | NST1 BARX RCC4 | Frameshift variant | c.2228delA|p.Lys743fs |
ACRE_084130 | KFH40881 | 333 | Meiotically up-regulated gene 80 protein-like protein | CYCLINScPCL1 | Stop gained | c.777G>A|p.Trp259* |
ACRE_058580 | KFH43389 | 318 | Meiotic recombination protein-like protein | WD40 | Stop gained | c.15T>G|p.Tyr5* |
ACRE_032540 | KFH45961 | 712 | DNA replication licensing factor-like protein | Zf-primase | Stop lost and splice region variant | c.2137T>A|p.Ter713Lysext*? |
ACRE_022590 | KFH46929 | 678 | Hypothetical protein(with Smc domain) | Smc Cut12 | Frameshift variant | c.1779dupT|p.Ala594fs |
ACRE_009030 | KFH48345 | 439 | cAMP-independent regulatory protein-like protein | Gti1_Pac2 zf-C4H2 | Frameshift variant | c.667delT|p.Tyr223fs |
ACRE_069720 | KFH42294 | 248 | Hypothetical protein (close to rhoGAP proteins) | rhoGAP | Frameshift variant | c.695delA|p.Lys232fs |
ACRE_001040 | KFH48908 | 531 | Putative-like protein (with NTF2, RRM) | NTF2 RRM | Splice acceptor variant and intron variant | c.1309-2A>C |
ACRE_063590 | KFH42915 | 348 | Putative RNA-binding protein-like protein | RRM | Stop lost and splice region variant | p.Ter349Leuext*? |
ACRE_077340 | KFH41538 | 687 | Ran-binding protein-like | Ran-BPM ICP4 SPRY-LisH | Frameshift variant | c.1131_1138dupGCTTGGCG|p.Glu380fs |
ACRE_068240 | KFH42443 | 955 | Imitation switch two complex protein-like protein | WAC_Acf1_DNA_bd DDT WHIM1 WSD | Frameshift variant | c.1058_1064delACTCCTT|p.Asp353fs |
ACRE_064570 | KFH42797 | 1081 | Hypothetical protein (with region for histone deacetylation protein Rxt3) | CAF1 | Frameshift variant | c.298delG|p.Glu100fs |
Gene | Product | Mutation | |||
---|---|---|---|---|---|
Accession № | Length, AA | Annotated as | Type | Position | |
ACRE_053830 | KFH43833 | 225 | 40S ribosomal protein S11-B-like protein | Frameshift variant | c.359delC|p.Ser120fs |
ACRE_023690 | KFH46815 | 303 | 60S ribosomal protein L5-like protein | Stop lost and splice region variant | c.911A>T|p.Ter304Leuext*? |
ACRE_025760 | KFH46655 | 510 | tRNA pseudouridine synthase-like protein | Stop lost and splice region variant | c.1531T>C|p.Ter511Glnext*? |
ACRE_034480 | KFH45737 | 1488 | UDP-glucose:glycoprotein glucosyltransferase-like protein | Frameshift variant | c.95dupA|p.Ala33fs |
ACRE_049880 | KFH44226 | 595 | Mitochondrial clpX-like chaperone-like protein | Stop gained | c.1162C>T|p.Arg388* |
ACRE_029210 | KFH46306 | 149 | Calmodulin-like protein | Stop lost and splice region variant | c.449A>G|p.Ter150Trpext*? |
ACRE_02341 | KFH46844 | 225 | Spherulin-like protein | Frameshift variant | c.41delC|p.Pro14fs |
ACRE_031710 | KFH46018 | 248 | Hypothetical protein (with CAP domain) | Frameshift variant | c.616_620delAGGGG|p.Arg206fs |
Strain | Total | Non-Cording | Cording | Reference | ||||
---|---|---|---|---|---|---|---|---|
Synonymous | Non-Synonymous | Termination Mutation | Frameshift | Nonsense | ||||
Wis54-1244 1 | 455 | 240 | 55 | 151 | 2 | 6 | 1 | [120] |
DS176902nd SCI 2 | 2056 | 1187 | 271 | 558 | 3 | 13 | 24 | [121] |
DS17690Total 3 | 2511 | 1427 | 326 | 709 | 5 | 19 | 25 | [41] |
RNCM 408D 4 | 3472 | 2511 | 373 | 532 | 12 | 23 | 21 | current |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhgun, A.A. Comparative Genomic Analysis Reveals Key Changes in the Genome of Acremonium chrysogenum That Occurred During Classical Strain Improvement for Production of Antibiotic Cephalosporin C. Int. J. Mol. Sci. 2025, 26, 181. https://doi.org/10.3390/ijms26010181
Zhgun AA. Comparative Genomic Analysis Reveals Key Changes in the Genome of Acremonium chrysogenum That Occurred During Classical Strain Improvement for Production of Antibiotic Cephalosporin C. International Journal of Molecular Sciences. 2025; 26(1):181. https://doi.org/10.3390/ijms26010181
Chicago/Turabian StyleZhgun, Alexander A. 2025. "Comparative Genomic Analysis Reveals Key Changes in the Genome of Acremonium chrysogenum That Occurred During Classical Strain Improvement for Production of Antibiotic Cephalosporin C" International Journal of Molecular Sciences 26, no. 1: 181. https://doi.org/10.3390/ijms26010181
APA StyleZhgun, A. A. (2025). Comparative Genomic Analysis Reveals Key Changes in the Genome of Acremonium chrysogenum That Occurred During Classical Strain Improvement for Production of Antibiotic Cephalosporin C. International Journal of Molecular Sciences, 26(1), 181. https://doi.org/10.3390/ijms26010181