Biomarkers for the Molecular Diagnosis of IgE-Mediated Hymenoptera Venom Allergy in Clinical Practice
Abstract
:1. Introduction
2. Molecular Insect Venom Allergens Used as Biomarkers for the Diagnosis of IgE-Mediated HVA in Clinical Practice
3. IgE Immunoassays Using Biomarkers for the Molecular Diagnosis of IgE-Mediated HVA in Clinical Practice
4. Basophil Activation Test (BAT) for Allergen Components in IgE-Mediated HVA
5. Updated Algorithms for the Diagnosis of HVA Using Molecular Biomarkers in Clinical Practice
6. Discussions on Challenges and Clinical Implications in HVA Patient Management
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Blank, S.; Grosch, J.; Ollert, M.; Bilò, M.B. Precision Medicine in Hymenoptera Venom Allergy: Diagnostics, Biomarkers, and Therapy of Different Endotypes and Phenotypes. Front. Immunol. 2020, 11, 579409. [Google Scholar] [CrossRef]
- Schneider, S.; Gasteiger, C.; Wecker, H.; Höbenreich, J.; Biedermann, T.; Brockow, K.; Zink, A. Successful usage of a chatbot to standardize and automate history taking in Hymenoptera venom allergy. Allergy 2023, 78, 2526–2528. [Google Scholar] [CrossRef]
- Sturm, G.J.; Arzt-Gradwohl, L. An algorithm for the diagnosis and treatment of Hymenoptera venom allergy, 2024 update. Allergy 2024, 79, 2298–2301. [Google Scholar] [CrossRef] [PubMed]
- Dramburg, S.; Hilger, C.; Santos, A.F.; Vecillas, L.d.L.; Aalberse, R.C.; Acevedo, N.; Aglas, L.; Altmann, F.; Arruda, K.L.; Asero, R.; et al. EAACI Molecular Allergology User’s Guide 2.0. Pediatr. Allergy Immunol. 2023, 34 (Suppl. 28), e13854. [Google Scholar] [CrossRef] [PubMed]
- Giovannini, M.; Mori, F.; Barni, S.; Saretta, F.; Arasi, S.; Castagnoli, R.; Liotti, L.; Mastrorilli, C.; Pecoraro, L.; Caminiti, L.; et al. Hymenoptera venom allergy in children. Ital. J. Pediatr. 2024, 50, 262. [Google Scholar] [CrossRef]
- Worm, M.; Moneret-Vautrin, A.; Scherer, K.; Lang, R.; Fernandez-Rivas, M.; Cardona, V.; Kowalski, M.L.; Jutel, M.; Poziomkowska-Gesicka, I.; Papadopoulos, N.G.; et al. First European data from the network of severe allergic reactions (NORA). Allergy 2014, 69, 1397–1404. [Google Scholar] [CrossRef] [PubMed]
- Antonicelli, L.; Bilò, M.B.; Bonifazi, F. Epidemiology of Hymenoptera allergy. Curr. Opin. Allergy Clin. Immunol. 2002, 2, 341–346. [Google Scholar] [CrossRef] [PubMed]
- Bilò, M.B.; Bonifazi, F. The natural history and epidemiology of insect venom allergy: Clinical implications. Clin. Exp. Allergy 2009, 39, 1467–1476. [Google Scholar] [CrossRef] [PubMed]
- Blank, S.; Korošec, P.; Slusarenko, B.O.; Ollert, M.; Hamilton, R.G. Venom Component Allergen IgE Measurement in the Diagnosis and Management of Insect Sting Allergy. J. Allergy Clin. Immunol. Pract. 2024. [Google Scholar] [CrossRef]
- Blank, S.; Haemmerle, S.; Jaeger, T.; Russkamp, D.; Ring, J.; Schmidt-Weber, C.B.; Ollert, M. Prevalence of Hymenoptera venom allergy and sensitization in the population-representative German KORA cohort. Allergo J. Int. 2019, 28, 183–191. [Google Scholar] [CrossRef]
- Golden, D.B.; Marsh, D.G.; Kagey-Sobotka, A.; Freidhoff, L.; Szklo, M.; Valentine, M.D.; Lichtenstein, L.M. Epidemiology of insect venom sensitivity. JAMA 1989, 262, 240–244. [Google Scholar] [CrossRef] [PubMed]
- Biló, B.M.; Rueff, F.; Mosbech, H.; Bonifazi, F.; Oude-Elberink, J.N. EAACI Interest Group on Insect Venom Hypersensitivity. Diagnosis of Hymenoptera venom allergy. Allergy 2005, 60, 1339–1349. [Google Scholar] [CrossRef]
- Sturm, G.J.; Kranzelbinder, B.; Schuster, C.; Sturm, E.M.; Bokanovic, D.; Vollmann, J.; Crailsheim, K.; Hemmer, W.; Aberer, W. Sensitization to Hymenoptera venoms is common, but systemic sting reactions are rare. J. Allergy Clin. Immunol. 2014, 133, 1635–1643.e1. [Google Scholar] [CrossRef] [PubMed]
- Shade, K.C.; Conroy, M.E.; Washburn, N.; Kitaoka, M.; Huynh, D.J.; Laprise, E.; Patil, S.U.; Shreffler, W.G.; Anthony, R.M. Sialylation of immunoglobulin E is a determinant of allergic pathogenicity. Nature 2020, 582, 265–270. [Google Scholar] [CrossRef] [PubMed]
- van de Veen, W.; Stanic, B.; Yaman, G.; Wawrzyniak, M.; Söllner, S.; Akdis, D.G.; Rückert, B.; Akdis, C.A.; Akdis, M. IgG4 production is confined to human IL-10-producing regulatory B cells that suppress antigen-specific immune responses. J. Allergy Clin. Immunol. 2013, 131, 1204–1212. [Google Scholar] [CrossRef] [PubMed]
- Worm, M.; Francuzik, W.; Renaudin, J.M.; Bilo, M.B.; Cardona, V.; Scherer Hofmeier, K.; Köhli, A.; Bauer, A.; Christoff, G.; Cichocka-Jarosz, E.; et al. Factors increasing the risk for a severe reaction in anaphylaxis: An analysis of data from The European Anaphylaxis Registry. Allergy 2018, 73, 1322–1330. [Google Scholar] [CrossRef] [PubMed]
- Bonadonna, P.; Zanotti, R.; Pagani, M.; Bonifacio, M.; Scaffidi, L.; Olivieri, E.; Franchini, M.; Reccardini, F.; Costantino, M.T.; Roncallo, C.; et al. Anaphylactic Reactions After Discontinuation of Hymenoptera Venom Immunotherapy: A Clonal Mast Cell Disorder Should Be Suspected. J. Allergy Clin. Immunol. Pract. 2018, 6, 1368–1372. [Google Scholar] [CrossRef]
- Boggs, N.A.; Tanasi, I.; Hartmann, K.; Zanotti, R.; Gonzalez-de-Olano, D. Mast Cell Disorders and Hymenoptera Venom-Triggered Anaphylaxis: Evaluation and Management. J. Allergy Clin. Immunol. Pract. 2024. [Google Scholar] [CrossRef] [PubMed]
- Alvarez-Twose, I.; Bonadonna, P.; Matito, A.; Zanotti, R.; González-de-Olano, D.; Sánchez-Muñoz, L.; Morgado, J.M.; Orfao, A.; Escribano, L. Systemic mastocytosis as a risk factor for severe Hymenoptera sting-induced anaphylaxis. J. Allergy Clin. Immunol. 2013, 131, 614–615. [Google Scholar] [CrossRef] [PubMed]
- Golden, D.B.K.; Wang, J.; Waserman, S.; Akin, C.; Campbell, R.L.; Ellis, A.K.; Greenhawt, M.; Lang, D.M.; Ledford, D.K.; Lieberman, J.; et al. Anaphylaxis: A 2023 practice parameter update. Ann. Allergy Asthma Immunol. 2024, 132, 124–176. [Google Scholar] [CrossRef] [PubMed]
- Mingomataj, E.Ç.; Bakiri, A.H.; Ibranji, A.; Sturm, G.J. Unusual reactions to hymenoptera stings: What should we keep in mind? Clin. Rev. Allergy Immunol. 2014, 47, 91–99. [Google Scholar] [CrossRef] [PubMed]
- Reisman, R.E. Unusual reactions to insect stings. Curr. Opin. Allergy Clin. Immunol. 2005, 5, 355–358. [Google Scholar] [CrossRef] [PubMed]
- Castagnoli, R.; Giovannini, M.; Mori, F.; Barni, S.; Pecoraro, L.; Arasi, S.; Saretta, F.; Mastrorilli, C.; Liotti, L.; Caminiti, L.; et al. Unusual Reactions to Hymenoptera Stings: Current Knowledge and Unmet Needs in the Pediatric Population. Front. Med. 2021, 8, 717290. [Google Scholar] [CrossRef]
- Blank, S.; Jakwerth, C.A.; Zissler, U.M.; Schmidt-Weber, C.B. Molecular determination of insect venom allergies. Expert Rev. Mol. Diagn. 2022, 22, 983–986. [Google Scholar] [CrossRef] [PubMed]
- Bilò, M.B.; Cinti, B.; Brianzoni, M.F.; Braschi, M.C.; Bonifazi, M.; Antonicelli, L. Honeybee venom immunotherapy: A comparative study using purified and nonpurified aqueous extracts in patients with normal Basal serum tryptase concentrations. J. Allergy 2012, 2012, 869243. [Google Scholar] [CrossRef] [PubMed]
- Moreno, M.; Giralt, E. Three valuable peptides from bee and wasp venoms for therapeutic and biotechnological use: Melittin, apamin and mastoparan. Toxins 2015, 7, 1126–1150. [Google Scholar] [CrossRef] [PubMed]
- Fitzgerald, K.T.; Flood, A.A. Hymenoptera stings. Clin. Tech. Small Anim. Pract. 2006, 21, 194–204. [Google Scholar] [CrossRef] [PubMed]
- Rostaher, A.; Fischer, N.M.; Vigani, A.; Steblaj, B.; Martini, F.; Brem, S.; Favrot, C.; Kosnik, M. Hymenoptera Venom Immunotherapy in Dogs: Safety and Clinical Efficacy. Animals 2023, 13, 3002. [Google Scholar] [CrossRef] [PubMed]
- Haight, K.L.; Tschinkel, W.R. Patterns of venom synthesis and use in the fire ant, Solenopsis invicta. Toxicon 2003, 42, 673–682. [Google Scholar] [CrossRef] [PubMed]
- Fernández, J. Distribution of vespid species in Europe. Curr. Opin. Allergy Clin. Immunol. 2004, 4, 319–324. [Google Scholar] [CrossRef] [PubMed]
- Korošec, P.; Jakob, T.; Harb, H.; Heddle, R.; Karabus, S.; de Lima Zollner, R.; Selb, J.; Thong, B.Y.; Zaitoun, F.; Golden, D.B.K.; et al. Worldwide perspectives on venom allergy. World Allergy Organ. J. 2019, 12, 100067. [Google Scholar] [CrossRef]
- Menchetti, M.; Schifani, E.; Alicata, A.; Cardador, L.; Sbrega, E.; Toro-Delgado, E.; Vila, R. The invasive ant Solenopsis invicta is established in Europe. Curr. Biol. 2023, 33, R896–R897. [Google Scholar] [CrossRef]
- Schifani, E.; Grunicke, D.; Montechiarini, A.; Pradera, C.; Vila, R.; Menchetti, M. Alien ants spreading through Europe: Brachyponera chinensis and Nylanderia vividula in Italy. Biodivers. Data J. 2024, 12, e123502. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Meléndez, S.; Miranda, A.; García-González, J.J.; Barber, D.; Lombardero, M. Anaphylaxis caused by imported red fire ant stings in Málaga, Spain. J. Investig. Allergol. Clin. Immunol. 2007, 17, 48–49. [Google Scholar] [PubMed]
- Lee, E.K.; Jeong, K.Y.; Lyu, D.P.; Lee, Y.W.; Sohn, J.H.; Lim, K.J.; Hong, C.S.; Park, J.W. Characterization of the major allergens of Pachycondyla chinensis in ant sting anaphylaxis patients. Clin. Exp. Allergy 2009, 39, 602–607. [Google Scholar] [CrossRef] [PubMed]
- Wanandy, T.; Gueven, N.; Davies, N.W.; Brown, S.G.; Wiese, M.D. Pilosulins: A review of the structure and mode of action of venom peptides from an Australian ant Myrmecia pilosula. Toxicon 2015, 98, 54–61. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Zhang, L.; Fang, Y.; Han, B.; Lu, X.; Zhou, T.; Feng, M.; Li, J. Proteome and phosphoproteome analysis of honeybee (Apis mellifera) venom collected from electrical stimulation and manual extraction of the venom gland. BMC Genom. 2013, 14, 766. [Google Scholar] [CrossRef]
- Grossi, V.; Severino, M.; Massolo, A.; Infantino, M.; Laureti, F.; Macchia, D.; Meucci, E.; Francescato, E.; Pantera, B.; Ebbli, A.; et al. Vespa velutina nigrithorax venom allergy: Inhibition studies approach for the choice of specific immunotherapy. Eur. Ann. Allergy Clin. Immunol. 2023, 55, 161–165. [Google Scholar] [CrossRef] [PubMed]
- Pantera, B.; Hoffman, D.R.; Carresi, L.; Cappugi, G.; Turillazzi, S.; Manao, G.; Severino, M.; Spadolini, I.; Orsomando, G.; Moneti, G.; et al. Characterization of the major allergens purified from the venom of the paper wasp Polistes gallicus. Biochim. Biophys. Acta. 2003, 1623, 72–81. [Google Scholar] [CrossRef] [PubMed]
- de Graaf, D.C.; Aerts, M.; Danneels, E.; Devreese, B. Bee, wasp and ant venomics pave the way for a component-resolved diagnosis of sting allergy. J. Proteom. 2009, 72, 145–154. [Google Scholar] [CrossRef] [PubMed]
- Hilger, C.; Villaseñor, A.; Hoffmann-Sommergruber, K.; Santos, A.; de la Vecillas, L.; Dramburg, S.; Blank, S.; Kuehn, A.; Giovannini, M.; Castagnoli, R. Molecular Allergology Pocket Guide; The European Academy of Allergy and Clinical Immunology (EAACI): Zurich, Switzerland, 2024. [Google Scholar]
- Elieh Ali Komi, D.; Shafaghat, F.; Zwiener, R.D. Immunology of Bee Venom. Clin. Rev. Allergy Immunol. 2018, 54, 386–396. [Google Scholar] [CrossRef] [PubMed]
- King, T.P.; Wittkowski, K.M. Hyaluronidase and hyaluronan in insect venom allergy. Int. Arch. Allergy Immunol. 2011, 156, 205–211. [Google Scholar] [CrossRef] [PubMed]
- Spillner, E.; Blank, S.; Jakob, T. Hymenoptera allergens: From venom to “venome”. Front. Immunol. 2014, 5, 77. [Google Scholar] [CrossRef] [PubMed]
- Jovanovic, D.; Peric-Popadic, A.; Djuric, V.; Stojanovic, M.; Lekic, B.; Milicevic, O.; Bonaci-Nikolic, B. Molecular diagnostics and inhibition of cross-reactive carbohydrate determinants in Hymenoptera venom allergy. Clin. Transl. Allergy 2023, 13, e12230. [Google Scholar] [CrossRef] [PubMed]
- Schrautzer, C.; Bokanovic, D.; Hemmer, W.; Lang, R.; Hawranek, T.; Schwarz, I.; Aberer, W.; Sturm, E.; Sturm, G.J. Sensitivity and specificity of Hymenoptera allergen components depend on the diagnostic assay employed. J. Allergy Clin. Immunol. 2016, 137, 1603–1605. [Google Scholar] [CrossRef] [PubMed]
- Burzyńska, M.; Piasecka-Kwiatkowska, D. A Review of Honeybee Venom Allergens and Allergenicity. Int. J. Mol. Sci. 2021, 22, 8371. [Google Scholar] [CrossRef]
- Köhler, J.; Blank, S.; Müller, S.; Bantleon, F.; Frick, M.; Huss-Marp, J.; Lidholm, J.; Spillner, E.; Jakob, T. Component resolution reveals additional major allergens in patients with honeybee venom allergy. J. Allergy Clin. Immunol. 2014, 133, 1383–1389.e6. [Google Scholar] [CrossRef] [PubMed]
- Blank, S.; Seismann, H.; Michel, Y.; McIntyre, M.; Cifuentes, L.; Braren, I.; Grunwald, T.; Darsow, U.; Ring, J.; Bredehorst, R.; et al. Api m 10, a genuine A. mellifera venom allergen, is clinically relevant but underrepresented in therapeutic extracts. Allergy 2011, 66, 1322–1329. [Google Scholar] [CrossRef]
- Ruiz, B.; Serrano, P.; Verdú, M.; Moreno, C. Sensitization to Api m 1, Api m 2, and Api m 4: Association with safety of bee venom immunotherapy. Ann. Allergy Asthma Immunol. 2015, 114, 350–352. [Google Scholar] [CrossRef]
- Hoffman, D.R. Hymenoptera venom allergens. Clin. Rev. Allergy Immunol. 2006, 30, 109–128. [Google Scholar] [CrossRef] [PubMed]
- Kopač, P.; Custovic, A.; Zidarn, M.; Šilar, M.; Šelb, J.; Bajrović, N.; Eržen, R.; Košnik, M.; Korošec, P. Biomarkers of the Severity of Honeybee Sting Reactions and the Severity and Threshold of Systemic Adverse Events During Immunotherapy. J. Allergy Clin. Immunol. Pract. 2021, 9, 3157–3163.e5. [Google Scholar] [CrossRef] [PubMed]
- Jakob, T.; Rauber, M.M.; Perez-Riverol, A.; Spillner, E.; Blank, S. The Honeybee Venom Major Allergen Api m 10 (Icarapin) and Its Role in Diagnostics and Treatment of Hymenoptera Venom Allergy. Curr. Allergy Asthma Rep. 2020, 20, 48. [Google Scholar] [CrossRef] [PubMed]
- Bidovec-Stojkovič, U.; Vachová, M.; Košnik, Ž.; Košnik, M.; Panzner, P.; Volfand, J.; Homšak, M.; Berce, V.; Korošec, P. Methodological and diagnostic relevance of IgEs to recombinant allergens Api m 1 and Ves v 5 determined by the multiplex test ImmunoCAP ISAC. Clin. Exp. Allergy 2020, 50, 981–983. [Google Scholar] [CrossRef] [PubMed]
- Jakob, T.; Spillner, E. Comparing sensitivity of Hymenoptera allergen components on different diagnostic assay systems: Comparing apples and oranges? J. Allergy Clin. Immunol. 2017, 139, 1066–1067. [Google Scholar] [CrossRef]
- Sturm, G.J.; Schrautzer, C.; Arzt, L.; Aberer, W. Reply. J. Allergy Clin. Immunol. 2017, 139, 1067–1068. [Google Scholar] [CrossRef] [PubMed]
- Lambert, C.; Birnbaum, J.; Dzviga, C.; Hutt, N.; Apoil, P.A.; Bienvenu, F.; Drouet, M.; Beauvillain, C.; Brabant, S.; Guilloux, L.; et al. Antigen 5-spiked Vespula and Polistes venom extracts for Vespid allergy diagnostics: A French multicenter study. Ann. Allergy Asthma Immunol. 2018, 120, 435–437. [Google Scholar] [CrossRef] [PubMed]
- Kukkonen, A.K.; Pelkonen, A.S.; Edelman, S.M.; Kauppi, P.M.; Mäkelä, M.J. Component-resolved diagnosis in selecting patients for yellowjacket venom immunotherapy. Ann. Allergy Asthma Immunol. 2018, 120, 184–189. [Google Scholar] [CrossRef]
- Zink, A.; Schuster, B.; Winkler, J.; Eyerich, K.; Darsow, U.; Brockow, K.; Eberlein, B.; Biedermann, T. Allergy and sensitization to Hymenoptera venoms in unreferred adults with a high risk of sting exposure. World Allergy Organ. J. 2019, 12, 100039. [Google Scholar] [CrossRef] [PubMed]
- Bazon, M.L.; Silveira, L.H.; Simioni, P.U.; Brochetto-Braga, M.R. Current Advances in Immunological Studies on the Vespidae Venom Antigen 5: Therapeutic and Prophylaxis to Hypersensitivity Responses. Toxins 2018, 10, 305. [Google Scholar] [CrossRef] [PubMed]
- Caruso, B.; Bonadonna, P.; Bovo, C.; Melloni, N.; Lombardo, C.; Senna, G.; Lippi, G. Wasp venom allergy screening with recombinant allergen testing. Diagnostic performance of rPol d 5 and rVes v 5 for differentiating sensitization to Vespula and Polistes subspecies. Clin. Chim. Acta 2016, 453, 170–173. [Google Scholar] [CrossRef]
- Whyte, A.F.; Popescu, F.D.; Carlson, J. Tabanidae insect (horsefly and deerfly) allergy in humans: A review of the literature. Clin. Exp. Allergy 2020, 50, 886–893. [Google Scholar] [CrossRef] [PubMed]
- An, S.; Ma, D.; Wei, J.F.; Yang, X.; Yang, H.W.; Yang, H.; Xu, X.; He, S.; Lai, R. A novel allergen Tab y 1 with inhibitory activity of platelet aggregation from salivary glands of horseflies. Allergy 2011, 66, 1420–1427. [Google Scholar] [CrossRef] [PubMed]
- Ma, D.; Li, Y.; Dong, J.; An, S.; Wang, Y.; Liu, C.; Yang, X.; Yang, H.; Xu, X.; Lin, D.; et al. Purification and characterization of two new allergens from the salivary glands of the horsefly, Tabanus yao. Allergy 2011, 66, 101–109. [Google Scholar] [CrossRef] [PubMed]
- Bilò, M.B.; Martini, M.; Bonadonna, P.; Cinti, B.; Da Re, M.; Gabrielli, O.; Olivieri, F.; Salgarolo, V.; Zanoni, G.; Villalta, D. Prevalence of Pol d 1 Sensitization in Polistes dominula Allergy and Its Diagnostic Role in Vespid Double-Positivity. J. Allergy Clin. Immunol. Pract. 2021, 9, 3781–3787. [Google Scholar] [CrossRef] [PubMed]
- Blank, S.; Bazon, M.L.; Grosch, J.; Schmidt-Weber, C.B.; Brochetto-Braga, M.R.; Bilò, M.B.; Jakob, T. Antigen 5 Allergens of Hymenoptera Venoms and Their Role in Diagnosis and Therapy of Venom Allergy. Curr. Allergy Asthma Rep. 2020, 20, 58. [Google Scholar] [CrossRef]
- Monsalve, R.I.; Vega, A.; Marqués, L.; Miranda, A.; Fernández, J.; Soriano, V.; Cruz, S.; Domínguez-Noche, C.; Sánchez-Morillas, L.; Armisen-Gil, M.; et al. Component-resolved diagnosis of vespid venom-allergic individuals: Phospholipases and antigen 5s are necessary to identify Vespula or Polistes sensitization. Allergy 2012, 67, 528–536. [Google Scholar] [CrossRef] [PubMed]
- Schiener, M.; Eberlein, B.; Moreno-Aguilar, C.; Pietsch, G.; Serrano, P.; McIntyre, M.; Schwarze, L.; Russkamp, D.; Biedermann, T.; Spillner, E.; et al. Application of recombinant antigen 5 allergens from seven allergy-relevant Hymenoptera species in diagnostics. Allergy 2017, 72, 98–108. [Google Scholar] [CrossRef]
- Savi, E.; Peveri, S.; Makri, E.; Pravettoni, V.; Incorvaia, C. Comparing the ability of molecular diagnosis and CAP-inhibition in identifying the really causative venom in patients with positive tests to Vespula and Polistes species. Clin. Mol. Allergy 2016, 14, 3. [Google Scholar] [CrossRef] [PubMed]
- Monsalve, R.I.; Gutiérrez, R.; Hoof, I.; Lombardero, M. Purification and molecular characterization of phospholipase, antigen 5 and hyaluronidases from the venom of the Asian hornet (Vespa velutina). PLoS ONE 2020, 15, e0225672. [Google Scholar] [CrossRef]
- Quercia, O.; Cova, V.; Martini, M.; Cortellini, G.; Murzilli, F.; Bignardi, D.; Cilia, M.; Scarpa, A.; Bilò, M.B. CAP-Inhibition, Molecular Diagnostics, and Total IgE in the Evaluation of Polistes and Vespula Double Sensitization. Int. Arch. Allergy Immunol. 2018, 177, 365–369. [Google Scholar] [CrossRef]
- Potiwat, R.; Sitcharungsi, R. Ant allergens and hypersensitivity reactions in response to ant stings. Asian Pac. J. Allergy Immunol. 2015, 33, 267–275. [Google Scholar] [PubMed]
- Jeong, K.Y.; Yi, M.H.; Son, M.; Lyu, D.; Lee, J.H.; Yong, T.S.; Park, J.W. IgE Reactivity of Recombinant Pac c 3 from the Asian Needle Ant (Pachycondyla chinensis). Int. Arch. Allergy Immunol. 2016, 169, 93–100. [Google Scholar] [CrossRef]
- Popescu, F.D.; Vieru, M. Precision medicine allergy immunoassay methods for assessing immunoglobulin E sensitization to aeroallergen molecules. World J. Methodol. 2018, 8, 17–36. [Google Scholar] [CrossRef]
- Kleine-Tebbe, J.; Jakob, T. Molecular allergy diagnostics using IgE singleplex determinations: Methodological and practical considerations for use in clinical routine: Part 18 of the Series Molecular Allergology. Allergo J. Int. 2015, 24, 185–197. [Google Scholar] [CrossRef]
- Neis, M.M.; Merk, H.F. Value of component-based diagnostics in IgE-mediated hymenoptera sting reactions. Cutan. Ocul. Toxicol. 2012, 31, 117–123. [Google Scholar] [CrossRef] [PubMed]
- Thermo Fisher Scientific. Immunodiagnostics Product Catalog 2024. Available online: www.abacusdx.com/media/PU_ProductCatalogue_2024.pdf (accessed on 18 October 2024).
- Watanabe, M.; Hirata, H.; Arima, M.; Hayashi, Y.; Chibana, K.; Yoshida, N.; Ikeno, Y.; Fukushima, Y.; Komura, R.; Okazaki, K.; et al. Measurement of Hymenoptera venom specific IgE by the IMMULITE 3gAllergy in subjects with negative or positive results by ImmunoCAP. Asia Pac. Allergy. 2012, 2, 195–202. [Google Scholar] [CrossRef] [PubMed]
- Siemens Healthcare. Allergy Menu. Available online: https://marketing.webassets.siemens-healthineers.com/667ff707799b2896/6da8b9913b44/30-21-DX-999-76_IMMULITE-Allergy_Menu_FINAL.pdf (accessed on 18 October 2024).
- Pfender, N.; Lucassen, R.; Offermann, N.; Schulte-Pelkum, J.; Fooke, M.; Jakob, T. Evaluation of a Novel Rapid Test System for the Detection of Specific IgE to Hymenoptera Venoms. J. Allergy 2012, 2012, 862023. [Google Scholar] [CrossRef] [PubMed]
- Cabrera, C.M.; Palacios-Cañas, A.; Joyanes-Romo, J.B.; Urra, J.M.; Mur, P. Basophil activation test as alternative method to CAP-inhibition in patients with double sensitization to vespid venoms. Mol. Immunol. 2022, 149, 59–65. [Google Scholar] [CrossRef] [PubMed]
- Caruso, B.; Bonadonna, P.; Severino, M.G.; Manfredi, M.; Dama, A.; Schiappoli, M.; Rizzotti, P.; Senna, G.; Passalacqua, G. Evaluation of the IgE cross-reactions among vespid venoms. A possible approach for the choice of immunotherapy. Allergy 2007, 62, 561–564. [Google Scholar] [CrossRef] [PubMed]
- Straumann, F.; Bucher, C.; Wüthrich, B. Double sensitization to honeybee and wasp venom: Immunotherapy with one or with both venoms? Value of FEIA inhibition for the identification of the cross-reacting ige antibodies in double-sensitized patients to honeybee and wasp venom. Int. Arch. Allergy Immunol. 2000, 123, 268–274. [Google Scholar] [CrossRef]
- Euroimmun. Euroline Allergy—Efficient Multiparameter Profiles. Available online: www.euroimmun.com/documents/Indications/Allergology/Multiplex-immunoblots/Euroline/DP_3000_I_UK_D.pdf (accessed on 18 October 2024).
- Euroimmun. Insect Venoms. Available online: www.euroimmun.com/products/allergy-diagnostics/id/insect-venoms/ (accessed on 18 October 2024).
- Macro Array Diagnostics. ALEX2® Allergen List. Available online: https://macroarraydx.com.ua/downloads/alex2_allergen_list_en.pdf (accessed on 20 October 2024).
- Bemanian, M.H.; Shokouhi Shoormasti, R.; Arshi, S.; Jafari, M.; Shokri, S.; Fallahpour, M.; Nabavi, M.; Zaremehrjardi, F. The role of molecular diagnosis in anaphylactic patients with dual or triple-sensitization to Hymenoptera venoms. Allergy Asthma Clin. Immunol. 2024, 20, 22. [Google Scholar] [CrossRef] [PubMed]
- Tuppo, L.; Giangrieco, I.; Alessandri, C.; Ricciardi, T.; Rafaiani, C.; Ciancamerla, M.; Ferrara, R.; Zennaro, D.; Bernardi, M.L.; Tamburrini, M.; et al. Pomegranate chitinase III: Identification of a new allergen and analysis of sensitization patterns to chitinases. Mol. Immunol. 2018, 103, 89–95. [Google Scholar] [CrossRef] [PubMed]
- Bonadonna, P.; Korosec, P.; Nalin, F.; Golden, D.B.K. Venom Anaphylaxis: Decision Points for a More Aggressive Workup. J. Allergy Clin. Immunol. Pract. 2023, 11, 2024–2031. [Google Scholar] [CrossRef] [PubMed]
- Schmidle, P.; Blank, S.; Altrichter, S.; Hoetzenecker, W.; Brockow, K.; Darsow, U.; Biedermann, T.; Eberlein, B. Basophil Activation Test in Double-Sensitized Patients with Hymenoptera Venom Allergy: Additional Benefit of Component-Resolved Diagnostics. J. Allergy Clin. Immunol. Pract. 2023, 11, 2890–2899.e2. [Google Scholar] [CrossRef] [PubMed]
- Waldherr, S.; Hils, M.; Köberle, M.; Brockow, K.; Darsow, U.; Blank, S.; Biedermann, T.; Eberlein, B. Basophil activation in insect venom allergy: Comparison of an established test using liquid reagents with a test using 5-color tubes with dried antibody reagents. BMC Immunol. 2024, 25, 23. [Google Scholar] [CrossRef]
- Eberlein-König, B.; Varga, R.; Mempel, M.; Darsow, U.; Behrendt, H.; Ring, J. Comparison of basophil activation tests using CD63 or CD203c expression in patients with insect venom allergy. Allergy 2006, 61, 1084–1085. [Google Scholar] [CrossRef]
- Depince-Berger, A.E.; Sidi-Yahya, K.; Jeraiby, M.; Lambert, C. Basophil activation test: Implementation and standardization be-tween systems and between instruments. Cytom. Part A. 2017, 91, 261–269. [Google Scholar] [CrossRef]
- Eberlein, B.; Brockow, K.; Darsow, U.; Biedermann, T.; Blank, S. Basophil activation test in Hymenoptera venom allergy. Allergol. Select 2024, 8, 293–298. [Google Scholar] [CrossRef] [PubMed]
- Eberlein, B. Basophil Activation as Marker of Clinically Relevant Allergy and Therapy Outcome. Front. Immunol. 2020, 11, 1815. [Google Scholar] [CrossRef] [PubMed]
- Hemmings, O.; Kwok, M.; McKendry, R.; Santos, A.F. Basophil Activation Test: Old and New Applications in Allergy. Curr. Allergy Asthma Rep. 2018, 18, 77. [Google Scholar] [CrossRef]
- Korošec, P.; Šilar, M.; Eržen, R.; Čelesnik, N.; Bajrović, N.; Zidarn, M.; Košnik, M. Clinical routine utility of basophil activation testing for diagnosis of hymenoptera-allergic patients with emphasis on individuals with negative venom-specific IgE antibodies. Int. Arch. Allergy Immunol. 2013, 161, 363–368. [Google Scholar] [CrossRef]
- Hoffmann, H.J.; Santos, A.F.; Mayorga, C.; Nopp, A.; Eberlein, B.; Ferrer, M.; Rouzaire, P.; Ebo, D.G.; Sabato, V.; Sanz, M.L.; et al. The clinical utility of basophil activation testing in diagnosis and monitoring of allergic disease. Allergy 2015, 70, 1393–1405. [Google Scholar] [CrossRef] [PubMed]
- Buhlmann CAST® Allergen List. Available online: www.buhlmannlabs.ch/wp-content/uploads/2023/01/Allergen-List-LA014ML-27-E.pdf (accessed on 18 October 2024).
- Balzer, L.; Pennino, D.; Blank, S.; Seismann, H.; Darsow, U.; Schnedler, M.; McIntyre, M.; Ollert, M.W.; Durham, S.R.; Spillner, E.; et al. Basophil activation test using recombinant allergens: Highly specific diagnostic method complementing routine tests in wasp venom allergy. PLoS ONE 2014, 9, e108619. [Google Scholar] [CrossRef] [PubMed]
- Sturm, G.J.; Biló, M.B.; Bonadonna, P.; Hemmer, W.; Caruso, B.; Bokanovic, D.; Aberer, W. Ves v 5 can establish the diagnosis in patients without detectable specific IgE to wasp venom and a possible north-south difference in Api m 1 sensitization in Europe. J. Allergy Clin. Immunol. 2012, 130, 817. [Google Scholar] [CrossRef] [PubMed]
- Grosch, J.; Eberlein, B.; Waldherr, S.; Pascal, M.; San Bartolomé, C.; De La Roca Pinzón, F.; Dittmar, M.; Hilger, C.; Ollert, M.; Biedermann, T.; et al. Characterization of New Allergens from the Venom of the European Paper Wasp Polistes dominula. Toxins 2021, 13, 559. [Google Scholar] [CrossRef] [PubMed]
- Schiener, M.; Hilger, C.; Eberlein, B.; Pascal, M.; Kuehn, A.; Revets, D.; Planchon, S.; Pietsch, G.; Serrano, P.; Moreno-Aguilar, C.; et al. The high molecular weight dipeptidyl peptidase IV Pol d 3 is a major allergen of Polistes dominula venom. Sci. Rep. 2018, 8, 1318. [Google Scholar] [CrossRef] [PubMed]
- Urra, J.M.; Pérez-Lucendo, I.; Extremera, A.; Feo-Brito, F.; Alfaya, T. The Method for Selecting Basophils Might Be Determinant in the Basophil Activation Test in Patients with Mastocytosis. J. Investig. Allergol. Clin. Immunol. 2020, 30, 65–67. [Google Scholar] [CrossRef]
- Michalet, X.; Pinaud, F.F.; Bentolila, L.A.; Tsay, J.M.; Doose, S.; Li, J.J.; Sundaresan, G.; Wu, A.M.; Gambhir, S.S.; Weiss, S. Quantum dots for live cells, in vivo imaging, and diagnostics. Science 2005, 307, 538–544. [Google Scholar] [CrossRef] [PubMed]
- Koren, A.; Lunder, M.; Molek, P.; Kopač, P.; Zahirović, A.; Gattinger, P.; Mittermann, I.; Valenta, R.; Korošec, P. Fluorescent labeling of major honeybee allergens Api m 1 and Api m 2 with quantum dots and the development of a multiplex basophil activation test. Allergy 2020, 75, 1753–1756. [Google Scholar] [CrossRef]
- Ruëff, F.; Bauer, A.; Becker, S.; Brehler, R.; Brockow, K.; Chaker, A.M.; Darsow, U.; Fischer, J.; Fuchs, T.; Gerstlauer, M.; et al. Diagnosis and treatment of Hymenoptera venom allergy: S2k Guideline of the German Society of Allergology and Clinical Immunology (DGAKI) in collaboration with the Arbeitsgemeinschaft für Berufs- und Umweltdermatologie e.V. (ABD), the Medical Association of German Allergologists (AeDA), the German Society of Dermatology (DDG), the German Society of Oto-Rhino-Laryngology, Head and Neck Surgery (DGHNOKC), the German Society of Pediatrics and Adolescent Medicine (DGKJ), the Society for Pediatric Allergy and Environmental Medicine (GPA), German Respiratory Society (DGP), and the Austrian Society for Allergy and Immunology (ÖGAI). Allergol. Select 2023, 7, 154–190. [Google Scholar] [CrossRef]
- Scherer, K.; Bircher, A.J.; Heijnen, I.A. Diagnosis of stinging insect allergy: Utility of cellular in-vitro tests. Curr. Opin. Allergy Clin. Immunol. 2009, 9, 343–350. [Google Scholar] [CrossRef] [PubMed]
- Sainte-Laudy, J.; Sabbah, A.; Drouet, M.; Lauret, M.G.; Loiry, M. Diagnosis of venom allergy by flow cytometry. Correlation with clinical history, skin tests, specific IgE, histamine and leukotriene C4 release. Clin. Exp. Allergy 2000, 30, 1166–1171. [Google Scholar] [CrossRef]
- Steering Committee Authors; Review Panel Members. A WAO-ARIA-GA2LEN consensus document on molecular-based allergy diagnosis (PAMD@): Update 2020. World Allergy Organ. J. 2020, 13, 100091. [Google Scholar] [CrossRef]
- Kleine-Tebbe, J.; Jappe, U. Molecular allergy diagnostic tests: Development and relevance in clinical practice. Allergol. Select. 2017, 1, 169–189. [Google Scholar] [CrossRef] [PubMed]
- Tischler, S.; Trautmann, A.; Goebeler, M.; Stoevesandt, J. Bee/Vespula Venom-Specific IgE Ratio Greater Than 5:1 Indicates Culprit Insect in Double-Sensitized Patients. J. Allergy Clin. Immunol. Pract. 2024. [Google Scholar] [CrossRef] [PubMed]
- Carballada González, F.; Abel-Fernández, E.; González Guzmán, L.A.; Pineda de la Losa, F. Component-Based Assessment of the Main Allergens in Honeybee Venom in a Spanish Allergic Population. J. Investig. Allergol. Clin. Immunol. 2024. Epub ahead of print. [Google Scholar] [CrossRef]
- Valles, S.M.; Strong, C.A.; Callcott, A.M. Development of a lateral flow immunoassay for rapid field detection of the red imported fire ant, Solenopsis invicta (Hymenoptera: Formicidae). Anal. Bioanal. Chem. 2016, 408, 4693–4703. [Google Scholar] [CrossRef] [PubMed]
- Giraldo-Tugores, M.; Vaquero-Rey, A.; Santacruz-Santos, M.; Rodríguez-Martín, E.; De Andrés, A.; Ballester-Gonzalez, R.; Barra-Castro, A.; Fernández-Lozano, C.; Martinez-Botas, J.; Antolín-Amérigo, D. Application of In Vitro Tests to Establish an Accurate Diagnosis of Double Sensitization to Vespula and Polistes Species. J. Investig. Allergol. Clin. Immunol. 2023, 33, 414–416. [Google Scholar] [CrossRef] [PubMed]
- Ruiz-Leon, B.; Serrano, P.; Vidal, C.; Moreno-Aguilar, C. Management of Double Sensitization to Vespids in Europe. Toxins 2022, 14, 126. [Google Scholar] [CrossRef] [PubMed]
- Eberlein, B.; Krischan, L.; Darsow, U.; Ollert, M.; Ring, J. Double positivity to bee and wasp venom: Improved diagnostic procedure by recombinant allergen-based IgE testing and basophil activation test including data about cross-reactive carbohydrate determinants. J. Allergy Clin. Immunol. 2012, 130, 155–161. [Google Scholar] [CrossRef] [PubMed]
- Sturm, G.J.; Jin, C.; Kranzelbinder, B.; Hemmer, W.; Sturm, E.M.; Griesbacher, A.; Heinemann, A.; Vollmann, J.; Altmann, F.; Crailsheim, K.; et al. Inconsistent results of diagnostic tools hamper the differentiation between bee and vespid venom allergy. PLoS ONE 2011, 6, e20842. [Google Scholar] [CrossRef] [PubMed]
- Grosch, J.; Eberlein, B.; Waldherr, S.; Pascal, M.; Dorn, B.; San Bartolomé, C.; De La Roca Pinzón, F.; Schiener, M.; Darsow, U.; Biedermann, T.; et al. Comparative Assessment of the Allergenicity of Hyaluronidases from Polistes dominula (Pol d 2), Vespula vulgaris (Ves v 2), and Apis mellifera Venom (Api m 2). Toxins 2024, 16, 498. [Google Scholar] [CrossRef] [PubMed]
- Sturm, G.J.; Varga, E.M.; Roberts, G.; Mosbech, H.; Bilò, M.B.; Akdis, C.A.; Antolín-Amérigo, D.; Cichocka-Jarosz, E.; Gawlik, R.; Jakob, T.; et al. EAACI guidelines on allergen immunotherapy: Hymenoptera venom allergy. Allergy 2018, 73, 744–764. [Google Scholar] [CrossRef]
- Bertlich, M.; Weber, F.; Bertlich, I.; Kendziora, B.; Rueff, F.; Spiegel, J.L.; French, L.E.; Oppel, E. Characteristics of patients with anaphylaxis to European hornet (Vespa crabro) venom compared to anaphylaxis to wasp (Vespula spp.) venom in southern Germany. Int. Arch. Allergy Immunol. 2024, 1–23. [Google Scholar] [CrossRef]
- Sturm, G.J.; Boni, E.; Antolín-Amérigo, D.; Bilò, M.B.; Breynaert, C.; Fassio, F.; Spriggs, K.; Vega, A.; Ricciardi, L.; Arzt-Gradwohl, L.; et al. Allergy to stings and bites from rare or locally important arthropods: Worldwide distribution, available diagnostics and treatment. Allergy 2023, 78, 2089–2108. [Google Scholar] [CrossRef] [PubMed]
- Treudler, R.; Worm, M.; Bauer, A.; Dickel, H.; Heine, G.; Jappe, U.; Klimek, L.; Raulf, M.; Wedi, B.; Wieczorek, D.; et al. Occupational anaphylaxis: A Position Paper of the German Society of Allergology and Clinical Immunology (DGAKI). Allergol. Select. 2024, 8, 407–424. [Google Scholar] [CrossRef] [PubMed]
- Frick, M.; Fischer, J.; Helbling, A.; Ruëff, F.; Wieczorek, D.; Ollert, M.; Pfützner, W.; Müller, S.; Huss-Marp, J.; Dorn, B.; et al. Predominant Api m 10 sensitization as risk factor for treatment failure in honey bee venom immunotherapy. J. Allergy Clin. Immunol. 2016, 138, 1663–1671.e9. [Google Scholar] [CrossRef] [PubMed]
- Ruiz-León, B.; Navas, A.; Serrano, P.; Espinazo, M.; Labrador-Horrillo, M.; Monsalve, R.I.; Jurado, A.; Moreno-Aguilar, C. Successful Adaptation of Bee Venom Immunotherapy in a Patient Monosensitized to Api m 10. J. Investig. Allergol. Clin. Immunol. 2020, 30, 296–298. [Google Scholar] [CrossRef]
Hymenoptera Insect from the Apidae Family | Allergen | Biochemical Name | MW (kDa) |
---|---|---|---|
Tribe Apini (honeybees) | |||
Apis mellifera (European honeybee, Western honeybee) | Api m 1 # | Phospholipase A2 | 16 |
Api m 2 | Hyaluronidase | 44 | |
Api m 3 | Acid phosphatase | 43 | |
Api m 4 | Melittin | 3 | |
Api m 5 | Dipeptidyl peptidase IV | 100 | |
Api m 6 | Protease inhibitor | 8 | |
Api m 7 | CUB serine protease ## | 39 | |
Api m 8 | Carboxylesterase | 70 | |
Api m 9 | Serine carboxypeptidase | 60 | |
Api m 10 | Icarapin variant 2 | 50–55 | |
Api m 11 | Major royal jelly protein | 50 * | |
Api m 12 | Vitellogenin | 200 | |
Apis cerana (Asian honeybee) | Api c 1 | Phospholipase A2 | 16 |
Apis dorsata (Southeast Asian giant honeybee) | Api d 1 | Phospholipase A2 | 16 |
Tribe Bombini (bumble bees) | |||
Bombus terrestris (European bumblebee) | Bom t 1 | Phospholipase A2 | 16 |
Bom t 4 | Protease | 27 | |
Bombus pensylvanicus (American bumblebee) | Bom p 1 | Phospholipase A2 | 16 |
Bom p 4 | Protease | 27 |
Hymenoptera Insect from the Vespidae Family, the Vespinae Subfamily | Allergen | Biochemical Name | MW (kDa) |
---|---|---|---|
Genus Vespinae (short-headed wasps, yellow jackets, with nests usually underground/cavities) | |||
Vespula vulgaris (European common wasp, European common yellow jacket) | Ves v 1 # | Phospholipase A1B | 34 |
Ves v 2 | Hyaluronidase | 38 | |
Ves v 3 | Dipeptidyl peptidase IV | 100 | |
Ves v 5 # | Wasp venom antigen 5 | 23 | |
Ves v 6 | Vitellogenin | 200 | |
Vespula germanica (German wasp, German yellow jacket) | Ves g 5 | Wasp venom antigen 5 | 23 |
Vespula maculifrons (Eastern North American yellow jacket) | Ves m 1 | Phospholipase A1B | 34 |
Ves m 2 | Hyaluronidase | 46 | |
Ves m 5 | Wasp venom antigen 5 | 23 | |
Vespula pensylvanica (Western North American yellow jacket) | Ves p 5 | Wasp venom antigen 5 | 23 |
Vespula squamosa (Southern North American yellow jacket) | Ves s 1 | Phospholipase A1B | 34 |
Ves s 5 | Wasp venom antigen 5 | 23 | |
Vespula flavopisola (North American downy yellow jacket) | Ves f 5 | Wasp venom antigen 5 | 23 |
Vespula vidua (North American widow yellow jacket) | Ves vi 5 | Wasp venom antigen 5 | 23 |
Genus Dolichovespula (long-headed wasps, hornet-like yellow jackets, with nests usually aerial) | |||
Dolichovespula arenaria (North American common yellow hornet, common aerial yellowjacket) | Dol a 5 | Wasp venom antigen 5 | 23 |
Dolichovespula maculata (North American bald-faced hornet, white-faced hornet, blackjacket, white-tailed hornet, bald-faced aerial yellowjacket, bull wasp) | Dol m 1 | Phospholipase A1B | 34 |
Dol m 2 | Hyaluronidase | 42 | |
Dol m 5 | Wasp venom antigen 5 | 23 | |
Genus Vespa (hornets, with nests aerial/underground/cavities) | |||
Vespa crabro (European hornet) | Vesp c 1 | Phospholipase A1B | 34 |
Vesp c 5 | Wasp venom antigen 5 | 23 | |
Vespa velutina (Asian yellow-legged hornet, Asian predatory wasp invasive in Europe) | Vesp v 1 | Phospholipase A1 | 36.1 |
Vesp v 5 | Wasp venom antigen 5 | 23 | |
Vespa magnifica (Asian giant hornet) | Vesp ma 2 | Hyaluronidase | 35 |
Vesp ma 5 | Wasp venom antigen 5 | 25 | |
Vespa mandarinia (Asian giant hornet) | Vesp m 1 | Phospholipase A1B | 34 |
Vesp m 5 | Wasp venom antigen 5 | 23 |
Hymenoptera Insect from the Vespidae Family, the Polistinae Subfamily | Allergen | Biochemical Name | MW (kDa) |
---|---|---|---|
Tribe Polistini (paper wasps) | |||
Polistes dominula (also known as Polistes dominulus) (European paper wasp, Mediterranean paper wasp) | Pol d 1 # | Phospholipase A1 | 34 |
Pol d 2 | Hyaluronidase | 50 | |
Pol d 3 | Dipeptidyl peptidase IV | 100 | |
Pol d 4 | Serine protease | 33 | |
Pol d 5 # | Wasp venom antigen 5 | 23 | |
Polistes gallicus (French paper wasp) | Pol g 1 | Phospholipase A1 | 33.475 |
Pol g 5 | Wasp venom antigen 5 | 24 | |
Polistes fuscatus (North American dark paper wasp) | Pol f 5 | Wasp venom antigen 5 | 23 |
Polistes exclamans (North American Guinea paper wasp) | Pol e 1 | Phospholipase A1 | 34 |
Pol e 4 | Serine protease | 33 | |
Pol e 5 | Wasp venom antigen 5 | 23 | |
Polistes annularis (North American ringed paper wasp) | Pol a 1 | Phospholipase A1B | 34 |
Pol a 2 | Hyaluronidase | 38 | |
Pol a 5 | Wasp venom antigen 5 | 23 | |
Polistes metricus (North American metric paper wasp) | Pol m 5 | Wasp venom antigen 5 | 23 |
Tribe Epiponini (Neotropical wasps) | |||
Polybia paulista (South American swarm-founding wasp) | Poly p 1 | Phospholipase A1 | 34 |
Poly p 2 | Hyaluronidase | 33 | |
Poly p 5 | Wasp venom antigen 5 | 21.19 | |
Polybia scutellaris (South American wasp camoati) | Poly s 5 | Wasp venom antigen 5 | 23 |
Hymenoptera Insect from the Formicidae Family | Allergen | Biochemical Name | MW (kDa) |
---|---|---|---|
Tribe Solenopsidini | |||
Solenopsis invicta (red imported fire ant in Southern US, native from South America) | Sol i 1 | Phospholipase A1B | 18 |
Sol i 2 | Ant venom, group 2 | 14 | |
Sol i 3 | Venom antigen 5 | 26 | |
Sol i 4 | Ant venom, group 4 | 12 | |
Solenopsis richteri (black imported fire ant in Southeast US, native from South America) | Sol r 2 | Ant venom, group 2 | 13 |
Sol r 3 | Venom antigen 5 | 24 | |
Solenopsis geminata (Central and South American/tropical native fire ant) | Sol g 2 | Ant venom, group 2 | 13 |
Sol g 3 | Venom antigen 5 | 24 | |
Sol g 4 | Ant venom, group 4 | 12 | |
Solenopsis saevissima (South American native fire ant) | Sol s 2 | Ant venom, group 2 | 13 |
Sol s 3 | Venom antigen 5 | 24 | |
Tribe Ponerini | |||
Brachyponera/Pachycondyla chinensis (Asian needle ant) | Pac c 3 | Venom antigen 5 | 23 |
Tribe Myrmeciini | |||
Myrmecia pilosula (Australian jumper ant, jack jumper ant, hopper ant) | Myr p 1 | [Ile5]pilosulin-1 | 7.5, 5.5 |
Myr p 2 | pilosulin-3 | 8.5, 2–4 | |
Myr p 3 | pilosulin-4.1 | 8.2 |
Venom Allergen | Latin Name, Protein Group | Code | Singleplex Assays | |
---|---|---|---|---|
Hymenoptera natural wve-s | ||||
Honey bee venom | wve Apis mellifera | i1 | ImmunoCAP® FEIA | Immulite® CLIA |
Bumble bee venom | wve Bombus terrestris | i205 | ImmunoCAP® FEIA | |
Common wasp/yellow jacket venom | wve Vespula vulgaris | i3 | ImmunoCAP® FEIA | Immulite® CLIA |
White-faced hornet venom | wve Dolichovespula maculata | i2 | ImmunoCAP® FEIA | Immulite® CLIA |
Yellow hornet venom | wve Dolichovespula arenaria | i5 | ImmunoCAP® FEIA | Immulite® CLIA |
European hornet venom | wve Vespa crabro | i75 | ImmunoCAP® FEIA | Immulite® CLIA |
Asian hornet venom | wve Vespa velutina | U1223 * | ImmunoCAP® FEIA | |
North American paper wasps | wve Polistes spp. | i4 ** | ImmunoCAP® FEIA | Immulite® CLIA |
European paper wasp venom | wve Polistes dominula | i77 | ImmunoCAP® FEIA | |
Red imported fire ant venom | wve Solenopsis invicta | i70 | ImmunoCAP® FEIA | Immulite® CLIA |
Hymenoptera venom allergen components | ||||
rApi m 1 honey bee venom | phospholipase A2 Apis mellifera | i208 | ImmunoCAP® FEIA | Immulite® CLIA |
rApi m 2 honey bee venom | hyaluronidase Apis mellifera | i214 | ImmunoCAP® FEIA | Immulite® CLIA |
rApi m 3 honey bee venom | acid phosphatase Apis mellifera | i215 | ImmunoCAP® FEIA | |
sApi m 4 honey bee venom | melittin Apis mellifera | U1273 * | ImmunoCAP® FEIA | |
rApi m 5 honey bee venom | dipeptidyl peptidase Apis mellifera | i216 | ImmunoCAP® FEIA | |
rApi m 10 honey bee venom | icarapin Apis mellifera | i217 | ImmunoCAP® FEIA | |
rVes v 1 common wasp venom | phospholipase A1 Vespula vulgaris | i211 | ImmunoCAP® FEIA | |
rVes v 5 common wasp venom | venom antigen 5 Vespula vulgaris | i209 | ImmunoCAP® FEIA | Immulite® CLIA |
rPol d 5 paper wasp venom | venom antigen 5 Polistes dominula | i210 | ImmunoCAP® FEIA |
Venom Allergen | Latin Name, Protein Group | Code | Multiparameter Euroline™ Assays |
---|---|---|---|
Hymenoptera natural wve-s | |||
Honey bee venom | wve Apis mellifera | i1 | DPA-Dx * insect venoms 3, SE1 |
Common wasp venom | wve Vespula vulgaris | i3 | DPA-Dx * insect venoms 3, SE1 |
Hornet venom | wve Vespa crabro | i75 | DPA-Dx * insect venoms 3, SE1 |
Polistes venom | wve Vespa dominula | i77 | DPA-Dx * insect venoms SE1 |
Hymenoptera venom allergen components | |||
rApi m 1 honey bee venom | phospholipase A2 Apis mellifera | i208 | DPA-Dx * insect venoms 3, SE1 |
rApi m 2 honey bee venom | hyaluronidase Apis mellifera | i213 | DPA-Dx * insect venoms 3, SE1 |
rApi m 10 honey bee venom | icarapin variant 2 Apis mellifera | i216 | DPA-Dx * insect venoms 3, SE1 |
rVes v 1 common wasp venom | phospholipase A1 Vespula vulgaris | i211 | DPA-Dx * insect venoms 3, SE1 |
rVes v 5 common wasp venom | venom antigen 5 Vespula vulgaris | i209 | DPA-Dx * insect venoms 3, SE1 |
rPol d 1 paper wasp venom | phospholipase A1 Polistes dominula | i220 | DPA-Dx * insect venoms SE1 |
rPol d 5 paper wasp venom | venom antigen 5 Polistes dominula | i210 | DPA-Dx * insect venoms SE1 |
Venom Allergen | Latin Name, Protein Group | Code | Multiplex Assay |
---|---|---|---|
Hymenoptera natural wve-s | |||
Honeybee venom | wve Apis mellifera | i1 | ALEX2® |
Common wasp venom | wve Vespula vulgaris | i3 | ALEX2® |
Long-headed wasp venom | wve Dolichovespula spp. | i25 | ALEX2® |
Paper wasp venom | wve Polistes spp. | i4 | ALEX2® |
Fire ant venom | wve Solenopsis richteri & Solenopsis invicta | i70 | ALEX2® |
Hymenoptera venom allergen components | |||
nApi m 1 honeybee venom | phospholipase A2 Apis mellifera | i208 | ALEX2® |
rApi m 10 honeybee venom | icarapin variant 2 Apis mellifera | i217 | ALEX2® |
rVes v 1 common wasp venom | phospholipase A1 Vespula vulgaris | i211 | ALEX2® |
rVes v 5 common wasp venom | venom antigen 5 Vespula vulgaris | i209 | ALEX2® |
rPol d 5 paper wasp venom | venom antigen 5 Polistes dominulus | i210 | ALEX2® |
Venom Allergen | Latin Name, Protein Group | Code | Source | BAT Assay |
---|---|---|---|---|
Hymenoptera natural wve-s | ||||
Honey bee venom | wve Apis mellifera | BAG2-I1 | native venom | FlowCAST® |
Wasp venom | wve Vespula spp. | BAG2-I3 | native venom | FlowCAST® |
Hornet venom | wve Vespa crabro | BAG2-I75 | native venom | FlowCAST® |
Paper wasp venom | wve Polistes dominula | BAG2-I77 | native venom | FlowCAST® |
Hymenoptera venom allergen components | ||||
nApi m 1 honey bee venom | phospholipase A2 Apis mellifera | i208 | native venom | FlowCAST® |
rApi m 10 honey bee venom | icarapin Apis mellifera | i217 | Sf9 insect cells or E. coli | FlowCAST® |
rVes v 1 common wasp venom | phospholipase A1 Vespula vulgaris | i211 | Sf9 insect cells | FlowCAST® |
rVes v 5 common wasp venom | venom antigen 5 Vespula vulgaris | i209 | Sf9 insect cells | FlowCAST® |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Popescu, F.-D.; Preda, M.; Antolín-Amérigo, D.; Rodríguez-Otero, N.; Ramírez-Mateo, E.; Smolinska, S. Biomarkers for the Molecular Diagnosis of IgE-Mediated Hymenoptera Venom Allergy in Clinical Practice. Int. J. Mol. Sci. 2025, 26, 270. https://doi.org/10.3390/ijms26010270
Popescu F-D, Preda M, Antolín-Amérigo D, Rodríguez-Otero N, Ramírez-Mateo E, Smolinska S. Biomarkers for the Molecular Diagnosis of IgE-Mediated Hymenoptera Venom Allergy in Clinical Practice. International Journal of Molecular Sciences. 2025; 26(1):270. https://doi.org/10.3390/ijms26010270
Chicago/Turabian StylePopescu, Florin-Dan, Mariana Preda, Darío Antolín-Amérigo, Natalia Rodríguez-Otero, Elena Ramírez-Mateo, and Sylwia Smolinska. 2025. "Biomarkers for the Molecular Diagnosis of IgE-Mediated Hymenoptera Venom Allergy in Clinical Practice" International Journal of Molecular Sciences 26, no. 1: 270. https://doi.org/10.3390/ijms26010270
APA StylePopescu, F.-D., Preda, M., Antolín-Amérigo, D., Rodríguez-Otero, N., Ramírez-Mateo, E., & Smolinska, S. (2025). Biomarkers for the Molecular Diagnosis of IgE-Mediated Hymenoptera Venom Allergy in Clinical Practice. International Journal of Molecular Sciences, 26(1), 270. https://doi.org/10.3390/ijms26010270