Nanoscale Characterization of Interaction of Nucleosomes with H1 Linker Histone
Abstract
:1. Introduction
2. Results
2.1. Characterization of H3 Nucleosomes and Chromatosomes
2.1.1. Gel Electrophoresis
2.1.2. AFM Characterization of H3 Nucleosomes and Chromatosomes
Morphologies of H3 Nucleosomes and Chromatosomes
Comparative Characterization of H3 Nucleosomes and Chromatosomes
2.2. Characterization of CENP-A Nucleosomes and Chromatosomes
2.2.1. Gel Electrophoresis
2.2.2. AFM Characterization of CENP-A Nucleosomes and Chromatosomes
Morphologies of CENP-A Nucleosomes and Chromatosomes
Comparative Characterization of CENP-A Nucleosomes and Chromatosomes
3. Discussion
4. Materials and Methods
4.1. Preparation of DNA Substrate
4.2. Nucleosome & Chromatosome Assembly
4.2.1. Canonical H3 Nucleosomes and Chromatosomes
4.2.2. Centromeric CENP-A Nucleosomes and Chromatosomes
4.3. Atomic Force Microscopy Imaging in Air
4.4. 5% Polyacrylamide Native-PAGE
4.5. Data Analysis
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Arents, G.; Burlingame, R.W.; Wang, B.C.; Love, W.E.; Moudrianakis, E.N. The Nucleosomal Core Histone Octamer at 3.1 A Resolution: A Tripartite Protein Assembly and a Left-Handed Superhelix. Proc. Natl. Acad. Sci. USA 1991, 88, 10148–10152. [Google Scholar] [CrossRef]
- Becker, P.B. New Embo Member’s Review: Nucleosome Sliding: Facts and Fiction. EMBO J. 2002, 21, 4749–4753. [Google Scholar] [CrossRef] [PubMed]
- Lorch, Y.; Zhang, M.; Kornberg, R.D. Histone Octamer Transfer by a Chromatin-Remodeling Complex. Cell 1999, 96, 389–392. [Google Scholar] [CrossRef] [PubMed]
- Luger, K. Structure and Dynamic Behavior of Nucleosomes. Curr. Opin. Genet. Dev. 2003, 13, 127–135. [Google Scholar] [CrossRef]
- Luger, K.; Mäder, A.W.; Richmond, R.K.; Sargent, D.F.; Richmond, T.J. Crystal Structure of the Nucleosome Core Particle at 2.8 A Resolution. Nature 1997, 389, 251–260. [Google Scholar] [CrossRef] [PubMed]
- Mariño-Ramírez, L.; Kann, M.G.; Shoemaker, B.A.; Landsman, D. Histone Structure and Nucleosome Stability. Expert Rev. Proteom. 2005, 2, 719–729. [Google Scholar] [CrossRef]
- Cutter, A.R.; Hayes, J.J. A Brief Review of Nucleosome Structure. FEBS Lett. 2015, 589, 2914–2922. [Google Scholar] [CrossRef]
- Papamichos-Chronakis, M.; Watanabe, S.; Rando, O.J.; Peterson, C.L. Global Regulation of H2A.Z Localization by the INO80 Chromatin-Remodeling Enzyme Is Essential for Genome Integrity. Cell 2011, 144, 200–213. [Google Scholar] [CrossRef]
- Ngo, T.T.M.; Ha, T. Nucleosomes Undergo Slow Spontaneous Gaping. Nucleic Acids Res. 2015, 43, 3964–3971. [Google Scholar] [CrossRef]
- Armeev, G.A.; Kniazeva, A.S.; Komarova, G.A.; Kirpichnikov, M.P.; Shaytan, A.K. Histone Dynamics Mediate DNA Unwrapping and Sliding in Nucleosomes. Nat. Commun. 2021, 12, 2387. [Google Scholar] [CrossRef] [PubMed]
- Khorasanizadeh, S. The Nucleosome. Cell 2004, 116, 259–272. [Google Scholar] [CrossRef] [PubMed]
- Lai, W.K.M.; Pugh, B.F. Understanding Nucleosome Dynamics and Their Links to Gene Expression and DNA Replication. Nat. Rev. Mol. Cell Biol. 2017, 18, 548–562. [Google Scholar] [CrossRef] [PubMed]
- Tsankov, A.M.; Thompson, D.A.; Socha, A.; Regev, A.; Rando, O.J. The Role of Nucleosome Positioning in the Evolution of Gene Regulation. PLoS Biol. 2010, 8, e1000414. [Google Scholar] [CrossRef] [PubMed]
- Rudnizky, S.; Malik, O.; Bavly, A.; Pnueli, L.; Melamed, P.; Kaplan, A. Nucleosome Mobility and the Regulation of Gene Expression: Insights from Single-molecule Studies. Protein Sci. 2017, 26, 1266–1277. [Google Scholar] [CrossRef] [PubMed]
- Mellor, J. The Dynamics of Chromatin Remodeling at Promoters. Mol. Cell 2005, 19, 147–157. [Google Scholar] [CrossRef]
- Bai, L.; Morozov, A.V. Gene Regulation by Nucleosome Positioning. Trends Genet. 2010, 26, 476–483. [Google Scholar] [CrossRef]
- Klemm, S.L.; Shipony, Z.; Greenleaf, W.J. Chromatin Accessibility and the Regulatory Epigenome. Nat. Rev. Genet. 2019, 20, 207–220. [Google Scholar] [CrossRef] [PubMed]
- Fyodorov, D.V.; Zhou, B.-R.; Skoultchi, A.I.; Bai, Y. Emerging Roles of Linker Histones in Regulating Chromatin Structure and Function. Nat. Rev. Mol. Cell Biol. 2018, 19, 192–206. [Google Scholar] [CrossRef]
- Hergeth, S.P.; Schneider, R. The H1 Linker Histones: Multifunctional Proteins beyond the Nucleosomal Core Particle. EMBO Rep. 2015, 16, 1439–1453. [Google Scholar] [CrossRef]
- Th’ng, J.P.H.; Sung, R.; Ye, M.; Hendzel, M.J. H1 Family Histones in the Nucleus. J. Biol. Chem. 2005, 280, 27809–27814. [Google Scholar] [CrossRef]
- Dombrowski, M.; Engeholm, M.; Dienemann, C.; Dodonova, S.; Cramer, P. Histone H1 Binding to Nucleosome Arrays Depends on Linker DNA Length and Trajectory. Nat. Struct. Mol. Biol. 2022, 29, 493–501. [Google Scholar] [CrossRef] [PubMed]
- Hao, F.; Kale, S.; Dimitrov, S.; Hayes, J.J. Unraveling Linker Histone Interactions in Nucleosomes. Curr. Opin. Struct. Biol. 2021, 71, 87–93. [Google Scholar] [CrossRef] [PubMed]
- McBryant, S.J.; Lu, X.; Hansen, J.C. Multifunctionality of the Linker Histones: An Emerging Role for Protein-Protein Interactions. Cell Res. 2010, 20, 519–528. [Google Scholar] [CrossRef] [PubMed]
- Zhou, B.-R.; Jiang, J.; Feng, H.; Ghirlando, R.; Xiao, T.S.; Bai, Y. Structural Mechanisms of Nucleosome Recognition by Linker Histones. Mol. Cell 2015, 59, 628–638. [Google Scholar] [CrossRef] [PubMed]
- Clark, D.J. Nucleosome Positioning, Nucleosome Spacing and the Nucleosome Code. J. Biomol. Struct. Dyn. 2010, 27, 781–793. [Google Scholar] [CrossRef] [PubMed]
- An, W.; Leuba, S.H.; Van Holde, K.; Zlatanova, J. Linker Histone Protects Linker DNA on Only One Side of the Core Particle and in a Sequence-Dependent Manner. Proc. Natl. Acad. Sci. USA 1998, 95, 3396–3401. [Google Scholar] [CrossRef] [PubMed]
- Chikhirzhina, E.V.; Starkova, T.Y.; Polyanichko, A.M. The Role of Linker Histones in Chromatin Structural Organization. 2. Interaction with DNA and Nuclear Proteins. Biophysics 2020, 65, 202–212. [Google Scholar] [CrossRef]
- Zhou, B.-R.; Feng, H.; Kato, H.; Dai, L.; Yang, Y.; Zhou, Y.; Bai, Y. Structural Insights into the Histone H1-Nucleosome Complex. Proc. Natl. Acad. Sci. USA 2013, 110, 19390–19395. [Google Scholar] [CrossRef]
- Luque, A.; Collepardo-Guevara, R.; Grigoryev, S.; Schlick, T. Dynamic Condensation of Linker Histone C-Terminal Domain Regulates Chromatin Structure. Nucleic Acids Res. 2014, 42, 7553–7560. [Google Scholar] [CrossRef]
- Wang, S.; Vogirala, V.K.; Soman, A.; Berezhnoy, N.V.; Liu, Z.B.; Wong, A.S.W.; Korolev, N.; Su, C.-J.; Sandin, S.; Nordenskiöld, L. Linker Histone Defines Structure and Self-Association Behaviour of the 177 Bp Human Chromatosome. Sci. Rep. 2021, 11, 380. [Google Scholar] [CrossRef]
- Rudnizky, S.; Khamis, H.; Ginosar, Y.; Goren, E.; Melamed, P.; Kaplan, A. Extended and Dynamic Linker Histone-DNA Interactions Control Chromatosome Compaction. Mol. Cell 2021, 81, 3410–3421.e4. [Google Scholar] [CrossRef]
- Woods, D.C.; Rodríguez-Ropero, F.; Wereszczynski, J. The Dynamic Influence of Linker Histone Saturation within the Poly-Nucleosome Array. J. Mol. Biol. 2021, 433, 166902. [Google Scholar] [CrossRef] [PubMed]
- Luque, A.; Ozer, G.; Schlick, T. Correlation among DNA Linker Length, Linker Histone Concentration, and Histone Tails in Chromatin. Biophys. J. 2016, 110, 2309–2319. [Google Scholar] [CrossRef] [PubMed]
- Perišić, O.; Portillo-Ledesma, S.; Schlick, T. Sensitive Effect of Linker Histone Binding Mode and Subtype on Chromatin Condensation. Nucleic Acids Res. 2019, 47, 4948–4957. [Google Scholar] [CrossRef]
- Foltz, D.R.; Jansen, L.E.T.; Bailey, A.O.; Yates, J.R.; Bassett, E.A.; Wood, S.; Black, B.E.; Cleveland, D.W. Centromere-Specific Assembly of CENP-A Nucleosomes Is Mediated by HJURP. Cell 2009, 137, 472–484. [Google Scholar] [CrossRef]
- Maddox, P.S.; Corbett, K.D.; Desai, A. Structure, Assembly and Reading of Centromeric Chromatin. Curr. Opin. Genet. Dev. 2012, 22, 139–147. [Google Scholar] [CrossRef] [PubMed]
- Cho, U.-S.; Harrison, S.C. Recognition of the Centromere-Specific Histone Cse4 by the Chaperone Scm3. Proc. Natl. Acad. Sci. USA 2011, 108, 9367–9371. [Google Scholar] [CrossRef]
- Fukagawa, T.; Earnshaw, W.C. The Centromere: Chromatin Foundation for the Kinetochore Machinery. Dev. Cell 2014, 30, 496–508. [Google Scholar] [CrossRef] [PubMed]
- Dalal, Y.; Wang, H.; Lindsay, S.; Henikoff, S. Tetrameric Structure of Centromeric Nucleosomes in Interphase Drosophila Cells. PLoS Biol. 2007, 5, e218. [Google Scholar] [CrossRef] [PubMed]
- Tachiwana, H.; Kagawa, W.; Shiga, T.; Osakabe, A.; Miya, Y.; Saito, K.; Hayashi-Takanaka, Y.; Oda, T.; Sato, M.; Park, S.-Y.; et al. Crystal Structure of the Human Centromeric Nucleosome Containing CENP-A. Nature 2011, 476, 232–235. [Google Scholar] [CrossRef]
- De Rop, V.; Padeganeh, A.; Maddox, P.S. CENP-A: The Key Player behind Centromere Identity, Propagation, and Kinetochore Assembly. Chromosoma 2012, 121, 527–538. [Google Scholar] [CrossRef]
- Kim, S.H.; Vlijm, R.; Van Der Torre, J.; Dalal, Y.; Dekker, C. CENP-A and H3 Nucleosomes Display a Similar Stability to Force-Mediated Disassembly. PLoS ONE 2016, 11, e0165078. [Google Scholar] [CrossRef] [PubMed]
- Mitra, S.; Srinivasan, B.; Jansen, L.E.T. Stable Inheritance of CENP-A Chromatin: Inner Strength versus Dynamic Control. J. Cell Biol. 2020, 219, e202005099. [Google Scholar] [CrossRef] [PubMed]
- Quénet, D.; Dalal, Y. The CENP-A Nucleosome: A Dynamic Structure and Role at the Centromere. Chromosome Res. 2012, 20, 465–479. [Google Scholar] [CrossRef]
- Stormberg, T.; Lyubchenko, Y.L. The Sequence Dependent Nanoscale Structure of CENP-A Nucleosomes. Int. J. Mol. Sci. 2022, 23, 11385. [Google Scholar] [CrossRef]
- Zhou, K.; Gebala, M.; Woods, D.; Sundararajan, K.; Edwards, G.; Krzizike, D.; Wereszczynski, J.; Straight, A.F.; Luger, K. CENP-N Promotes the Compaction of Centromeric Chromatin. Nat. Struct. Mol. Biol. 2022, 29, 403–413. [Google Scholar] [CrossRef]
- Melters, D.P.; Neuman, K.C.; Bentahar, R.S.; Rakshit, T.; Dalal, Y. Single Molecule Analysis of CENP-A Chromatin by High-Speed Atomic Force Microscopy. eLife 2023, 12, e86709. [Google Scholar] [CrossRef]
- Menshikova, I.; Menshikov, E.; Filenko, N.; Lyubchenko, Y.L. Nucleosomes Structure and Dynamics: Effect of CHAPS. Int. J. Biochem. Mol. Biol. 2011, 2, 129–137. [Google Scholar]
- Stormberg, T.; Stumme-Diers, M.; Lyubchenko, Y.L. Sequence-dependent Nucleosome Nanoscale Structure Characterized by Atomic Force Microscopy. FASEB J. 2019, 33, 10916–10923. [Google Scholar] [CrossRef]
- Lowary, P.T.; Widom, J. New DNA Sequence Rules for High Affinity Binding to Histone Octamer and Sequence-Directed Nucleosome Positioning. J. Mol. Biol. 1998, 276, 19–42. [Google Scholar] [CrossRef] [PubMed]
- Würtz, M.; Aumiller, D.; Gundelwein, L.; Jung, P.; Schütz, C.; Lehmann, K.; Tóth, K.; Rohr, K. DNA Accessibility of Chromatosomes Quantified by Automated Image Analysis of AFM Data. Sci. Rep. 2019, 9, 12788. [Google Scholar] [CrossRef]
- Chen, Y.; Tokuda, J.M.; Topping, T.; Meisburger, S.P.; Pabit, S.A.; Gloss, L.M.; Pollack, L. Asymmetric Unwrapping of Nucleosomal DNA Propagates Asymmetric Opening and Dissociation of the Histone Core. Proc. Natl. Acad. Sci. USA 2017, 114, 334–339. [Google Scholar] [CrossRef]
- Cotton, R.W.; Barbara, A. Nucleosome Dissociation at Physiological Ionic Strengths. Nucleic Acids Res. 1981, 9, 445–457. [Google Scholar] [CrossRef] [PubMed]
- Das, S.K.; Huynh, M.T.; Lee, T.-H. Spontaneous Histone Exchange between Nucleosomes. J. Biol. Chem. 2023, 299, 105037. [Google Scholar] [CrossRef]
- Shlyakhtenko, L.S.; Lushnikov, A.Y.; Lyubchenko, Y.L. Dynamics of Nucleosomes Revealed by Time-Lapse Atomic Force Microscopy. Biochemistry 2009, 48, 7842–7848. [Google Scholar] [CrossRef]
- Winogradoff, D.; Aksimentiev, A. Molecular Mechanism of Spontaneous Nucleosome Unraveling. J. Mol. Biol. 2019, 431, 323–335. [Google Scholar] [CrossRef] [PubMed]
- Fan, Y.; Nikitina, T.; Zhao, J.; Fleury, T.J.; Bhattacharyya, R.; Bouhassira, E.E.; Stein, A.; Woodcock, C.L.; Skoultchi, A.I. Histone H1 Depletion in Mammals Alters Global Chromatin Structure but Causes Specific Changes in Gene Regulation. Cell 2005, 123, 1199–1212. [Google Scholar] [CrossRef]
- Onoa, B.; Díaz-Celis, C.; Cañari-Chumpitaz, C.; Lee, A.; Bustamante, C. Real-Time Multistep Asymmetrical Disassembly of Nucleosomes and Chromatosomes Visualized by High-Speed Atomic Force Microscopy. ACS Cent. Sci. 2024, 10, 122–137. [Google Scholar] [CrossRef] [PubMed]
- Woods, D.C.; Wereszczynski, J. Elucidating the Influence of Linker Histone Variants on Chromatosome Dynamics and Energetics. Nucleic Acids Res. 2020, 48, 3591–3604. [Google Scholar] [CrossRef]
- Falk, S.J.; Lee, J.; Sekulic, N.; Sennett, M.A.; Lee, T.-H.; Black, B.E. CENP-C Directs a Structural Transition of CENP-A Nucleosomes Mainly through Sliding of DNA Gyres. Nat. Struct. Mol. Biol. 2016, 23, 204–208. [Google Scholar] [CrossRef]
- Filliaux, S.; Sun, Z.; Lyubchenko, Y.L. Nanoscale Structure, Interactions, and Dynamics of Centromere Nucleosomes. Biomacromolecules 2024, 25, 4715–4727. [Google Scholar] [CrossRef] [PubMed]
- Konrad, S.F.; Vanderlinden, W.; Frederickx, W.; Brouns, T.; Menze, B.H.; De Feyter, S.; Lipfert, J. High-Throughput AFM Analysis Reveals Unwrapping Pathways of H3 and CENP-A Nucleosomes. Nanoscale 2021, 13, 5435–5447. [Google Scholar] [CrossRef]
- Gansen, A.; Hieb, A.R.; Böhm, V.; Tóth, K.; Langowski, J. Closing the Gap between Single Molecule and Bulk FRET Analysis of Nucleosomes. PLoS ONE 2013, 8, e57018. [Google Scholar] [CrossRef] [PubMed]
- Lyubchenko, Y.L. Nanoscale Nucleosome Dynamics Assessed with Time-Lapse AFM. Biophys. Rev. 2014, 6, 181–190. [Google Scholar] [CrossRef]
- Farr, S.E.; Woods, E.J.; Joseph, J.A.; Garaizar, A.; Collepardo-Guevara, R. Nucleosome Plasticity Is a Critical Element of Chromatin Liquid–Liquid Phase Separation and Multivalent Nucleosome Interactions. Nat. Commun. 2021, 12, 2883. [Google Scholar] [CrossRef]
- Wang, Y.; Stormberg, T.; Hashemi, M.; Kolomeisky, A.B.; Lyubchenko, Y.L. Beyond Sequence: Internucleosomal Interactions Dominate Array Assembly. J. Phys. Chem. B 2022, 126, 10813–10821. [Google Scholar] [CrossRef]
- Stormberg, T.; Vemulapalli, S.; Filliaux, S.; Lyubchenko, Y.L. Effect of Histone H4 Tail on Nucleosome Stability and Internucleosomal Interactions. Sci. Rep. 2021, 11, 24086. [Google Scholar] [CrossRef] [PubMed]
- Dendooven, T.; Zhang, Z.; Yang, J.; McLaughlin, S.H.; Schwab, J.; Scheres, S.H.W.; Yatskevich, S.; Barford, D. Cryo-EM Structure of the Complete Inner Kinetochore of the Budding Yeast Point Centromere. Sci. Adv. 2023, 9, eadg7480. [Google Scholar] [CrossRef] [PubMed]
- Morioka, S.; Oishi, T.; Hatazawa, S.; Kakuta, T.; Ogoshi, T.; Umeda, K.; Kodera, N.; Kurumizaka, H.; Shibata, M. High-Speed Atomic Force Microscopy Reveals the Nucleosome Sliding and DNA Unwrapping/Wrapping Dynamics of Tail-Less Nucleosomes. Nano Lett. 2024, 24, 5246–5254. [Google Scholar] [CrossRef]
- Willcockson, M.A.; Healton, S.E.; Weiss, C.N.; Bartholdy, B.A.; Botbol, Y.; Mishra, L.N.; Sidhwani, D.S.; Wilson, T.J.; Pinto, H.B.; Maron, M.I.; et al. H1 Histones Control the Epigenetic Landscape by Local Chromatin Compaction. Nature 2021, 589, 293–298. [Google Scholar] [CrossRef]
- Pascal, C.; Zonszain, J.; Hameiri, O.; Gargi-Levi, C.; Lev-Maor, G.; Tammer, L.; Levy, T.; Tarabeih, A.; Roy, V.R.; Ben-Salmon, S.; et al. Human Histone H1 Variants Impact Splicing Outcome by Controlling RNA Polymerase II Elongation. Mol. Cell 2023, 83, 3801–3817.e8. [Google Scholar] [CrossRef] [PubMed]
- Sokolova, V.; Sarkar, S.; Tan, D. Histone Variants and Chromatin Structure, Update of Advances. Comput. Struct. Biotechnol. J. 2023, 21, 299–311. [Google Scholar] [CrossRef]
- Liu, C.; Yu, J.; Song, A.; Wang, M.; Hu, J.; Chen, P.; Zhao, J.; Li, G. Histone H1 Facilitates Restoration of H3K27me3 during DNA Replication by Chromatin Compaction. Nat. Commun. 2023, 14, 4081. [Google Scholar] [CrossRef] [PubMed]
- Verdaasdonk, J.S.; Bloom, K. Centromeres: Unique Chromatin Structures That Drive Chromosome Segregation. Nat. Rev. Mol. Cell Biol. 2011, 12, 320–332. [Google Scholar] [CrossRef]
- Nassar, R.; Thompson, L.; Fouquerel, E. Molecular Mechanisms Protecting Centromeres from Self-Sabotage and Implications for Cancer Therapy. NAR Cancer 2023, 5, zcad019. [Google Scholar] [CrossRef]
- Giunta, S.; Hervé, S.; White, R.R.; Wilhelm, T.; Dumont, M.; Scelfo, A.; Gamba, R.; Wong, C.K.; Rancati, G.; Smogorzewska, A.; et al. CENP-A Chromatin Prevents Replication Stress at Centromeres to Avoid Structural Aneuploidy. Proc. Natl. Acad. Sci. USA 2021, 118, e2015634118. [Google Scholar] [CrossRef]
- Harasymiw, L.A.; Tank, D.; McClellan, M.; Panigrahy, N.; Gardner, M.K. Centromere Mechanical Maturation during Mammalian Cell Mitosis. Nat. Commun. 2019, 10, 1761. [Google Scholar] [CrossRef]
- Ferrand, J.; Rondinelli, B.; Polo, S.E. Histone Variants: Guardians of Genome Integrity. Cells 2020, 9, 2424. [Google Scholar] [CrossRef]
- Djeghloul, D.; Dimond, A.; Cheriyamkunnel, S.; Kramer, H.; Patel, B.; Brown, K.; Montoya, A.; Whilding, C.; Wang, Y.-F.; Futschik, M.E.; et al. Loss of H3K9 Trimethylation Alters Chromosome Compaction and Transcription Factor Retention during Mitosis. Nat. Struct. Mol. Biol. 2023, 30, 489–501. [Google Scholar] [CrossRef]
- Hauer, M.H.; Gasser, S.M. Chromatin and Nucleosome Dynamics in DNA Damage and Repair. Genes Dev. 2017, 31, 2204–2221. [Google Scholar] [CrossRef] [PubMed]
- Eichten, S.R.; Schmitz, R.J.; Springer, N.M. Epigenetics: Beyond Chromatin Modifications and Complex Genetic Regulation. Plant Physiol. 2014, 165, 933–947. [Google Scholar] [CrossRef]
- Pan, C.; Fan, Y. Role of H1 Linker Histones in Mammalian Development and Stem Cell Differentiation. Biochim. Biophys. Acta BBA Gene Regul. Mech. 2016, 1859, 496–509. [Google Scholar] [CrossRef] [PubMed]
- Dabin, J.; Giacomini, G.; Petit, E.; Polo, S.E. New Facets in the Chromatin-Based Regulation of Genome Maintenance. DNA Repair. 2024, 140, 103702. [Google Scholar] [CrossRef]
- Routh, A.; Sandin, S.; Rhodes, D. Nucleosome Repeat Length and Linker Histone Stoichiometry Determine Chromatin Fiber Structure. Proc. Natl. Acad. Sci. USA 2008, 105, 8872–8877. [Google Scholar] [CrossRef] [PubMed]
- Stumme-Diers, M.P.; Banerjee, S.; Hashemi, M.; Sun, Z.; Lyubchenko, Y.L. Nanoscale Dynamics of Centromere Nucleosomes and the Critical Roles of CENP-A. Nucleic Acids Res. 2018, 46, 94–103. [Google Scholar] [CrossRef]
- Stumme-Diers, M.P.; Stormberg, T.; Sun, Z.; Lyubchenko, Y.L. Probing The Structure And Dynamics Of Nucleosomes Using Atomic Force Microscopy Imaging. J. Vis. Exp. 2019, 58820. [Google Scholar] [CrossRef]
- Miyagi, A.; Ando, T.; Lyubchenko, Y.L. Dynamics of Nucleosomes Assessed with Time-Lapse High-Speed Atomic Force Microscopy. Biochemistry 2011, 50, 7901–7908. [Google Scholar] [CrossRef]
- Harwood, A.J. Native Polyacrylamide Gel Electrophoresis. In Nucleic Acid Protocols Handbook; The Humana Press: Totowa, NJ, USA, 2000; Volume 869, pp. 73–75. ISBN 978-1-59259-038-4. [Google Scholar]
- Kuznetsov, V.I.; Haws, S.A.; Fox, C.A.; Denu, J.M. General Method for Rapid Purification of Native Chromatin Fragments. J. Biol. Chem. 2018, 293, 12271–12282. [Google Scholar] [CrossRef]
- Stormberg, T.; Filliaux, S.; Baughman, H.E.R.; Komives, E.A.; Lyubchenko, Y.L. Transcription Factor NF-κB Unravels Nucleosomes. Biochim. Biophys. Acta BBA Gen. Subj. 2021, 1865, 129934. [Google Scholar] [CrossRef]
H3 | CENP-A | |||
---|---|---|---|---|
Parameter | Nucleosome | Chromatosome | Nucleosome | Chromatosome |
Wrapping (bp) | 143 ± 16 bp | 161 ± 21 bp | 127 ± 9 bp | 125 ± 8 bp |
150 ± 9 bp | ||||
End-to-End distance (nm) | 52 ± 22 nm | 24 ±13 nm | 46 ± 25 nm | 21 ± 11 nm |
Angle between the arms (degrees) | 90 ± 35° | 38 ± 18° | 65 ± 16° | 49 ± 27 ° |
108 ± 19° |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rafa, A.Y.; Filliaux, S.; Lyubchenko, Y.L. Nanoscale Characterization of Interaction of Nucleosomes with H1 Linker Histone. Int. J. Mol. Sci. 2025, 26, 303. https://doi.org/10.3390/ijms26010303
Rafa AY, Filliaux S, Lyubchenko YL. Nanoscale Characterization of Interaction of Nucleosomes with H1 Linker Histone. International Journal of Molecular Sciences. 2025; 26(1):303. https://doi.org/10.3390/ijms26010303
Chicago/Turabian StyleRafa, Ahmed Yesvi, Shaun Filliaux, and Yuri L. Lyubchenko. 2025. "Nanoscale Characterization of Interaction of Nucleosomes with H1 Linker Histone" International Journal of Molecular Sciences 26, no. 1: 303. https://doi.org/10.3390/ijms26010303
APA StyleRafa, A. Y., Filliaux, S., & Lyubchenko, Y. L. (2025). Nanoscale Characterization of Interaction of Nucleosomes with H1 Linker Histone. International Journal of Molecular Sciences, 26(1), 303. https://doi.org/10.3390/ijms26010303