The Role of Exercise-Based Cardiac Rehabilitation After Myocardial Infarction on Cholesterol Transfer to HDL
Abstract
:1. Introduction
2. Results
3. Discussion
Impact of Exercise on Other Lipid Parameters, Inflammation, and Maximal Oxygen Consumption
4. Materials and Methods
4.1. Study Design and Participants
4.2. Exercise Training Program
4.3. Laboratory Analyses
4.4. Study Purpose
4.5. Statistical Analyses
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Anderson, L.; Thompson, D.R.; Oldridge, N.; Zwisler, A.-D.; Rees, K.; Martin, N.; Taylor, R.S. Exercise-based cardiac rehabilitation for coronary heart disease. Cochrane Database Syst. Rev. 2016, 1, CD001800. [Google Scholar]
- Mensah, G.A.; Fuster, V.; Murray, C.J.L.; Roth, G.A. Global Burden of Cardiovascular Diseases and Risks Collaborators. Global Burden of Cardiovascular Diseases and Risks, 1990–2022. J. Am. Coll. Cardiol. 2023, 82, 2350–2473. [Google Scholar] [CrossRef] [PubMed]
- Stephens, N.R.; Restrepo, C.S.; Saboo, S.S.; Baxi, A.J. Overview of complications of acute and chronic myocardial infarctions: Revisiting pathogenesis and cross-sectional imaging. Postgrad. Med. J. 2019, 95, 439–450. [Google Scholar] [CrossRef] [PubMed]
- Lopaschuk, G.D.; Ussher, J.R. Evolving Concepts of Myocardial Energy Metabolism: More Than Just Fats and Carbohydrates. Circ. Res. 2016, 119, 1173–1176. [Google Scholar] [CrossRef]
- Kosmas, C.E.; Martinez, I.; Sourlas, A.; Bouza, K.V.; Campos, F.N.; Torres, V.; Montan, P.D.; Guzmaln, E. High-density lipoprotein (HDL) functionality and its relevance to atherosclerotic cardiovascular disease. Drugs Context 2018, 7, 212525. [Google Scholar] [CrossRef]
- Rader, D.J.; Hovingh, G.K. HDL and cardiovascular disease. Lancet 2014, 384, 618–625. [Google Scholar] [CrossRef]
- Rohatgi, A.; Khera, A.; Berry, J.D.; Givens, E.G.; Ayers, C.R.; Wedin, K.E.; Neeland, I.J.; Yuhanna, I.S.; Rader, D.R.; de Lemos, J.A.; et al. HDL cholesterol efflux capacity and incident cardiovascular events. N. Engl. J. Med. 2014, 371, 2383–2393. [Google Scholar] [CrossRef]
- Ballantyne, C.M.; Nambi, V. Markers of inflammation and their clinical significance. Atheroscler. Suppl. 2005, 6, 21–29. [Google Scholar] [CrossRef]
- Soares, A.A.S.; Tavoni, T.M.; de Faria, E.C.; Remalay, A.T.; Maranhão, R.C.; Sposito, A.C. HDL acceptor capacities for cholesterol efflux from macrophages and lipid transfer are both acutely reduced after myocardial infarction. Clin. Chim. Acta 2018, 478, 51–56. [Google Scholar] [CrossRef]
- Lee, J.J.; Chi, G.; Fitzgerald, C.; Kazmi, S.H.A.; Kalayci, A.; Korjian, S.; Duffy, D.; Shaunik, A.; Kingwell, B.; Yeh, R.W.; et al. Cholesterol Efflux Capacity and Its Association With Adverse Cardiovascular Events: A Systematic Review and Meta-Analysis. Front. Cardiovasc. Med. 2021, 8, 774418. [Google Scholar] [CrossRef]
- Guerin, M.; Silvain, J.; Gall, J.; Darabi, M.; Berthet, M.; Frisdal, E.; Hauguel-Moreau, M.; Zeitouni, M.; Kerneis, M.; Lattuca, B.; et al. Association of Serum Cholesterol Efflux Capacity with Mortality in Patients with ST-Segment Elevation Myocardial Infarction. J. Am. Coll. Cardiol. 2018, 72, 3259–3269. [Google Scholar] [CrossRef] [PubMed]
- Silvain, J.; Materne, C.; Zeitouni, M.; Procopi, N.; Guedeney, P.; Brugier, D.; Galier, S.; Lhomme, M.; Ponnaiah, M.; Guillas, I.; et al. Defective biological activities of high-density lipoprotein identify patients at highest risk of recurrent cardiovascular event. Eur. J. Prev. Cardiol. 2024, zwae356. [Google Scholar] [CrossRef] [PubMed]
- Lo Prete, A.C.; Dina, C.H.; Azevedo, C.H.; Puk, C.G.; Lopez, N.H.M.; Hueb, W.A.; Maranhão, R.C. In vitro simultaneous transfer of lipids to HDL in coronary artery disease and in statin treatment. Lipids 2009, 44, 917–924. [Google Scholar] [CrossRef] [PubMed]
- Dong, Z.; Hou, L.; Luo, W.; Pan, L.-H.; Li, X.; Tan, H.-P.; Wu, R.-D.; Lu, H.; Yao, K.; Mu, M.-D.; et al. Myocardial infarction drives trained immunity of monocytes, accelerating atherosclerosis. Eur. Heart J. 2024, 45, 669–684. [Google Scholar] [CrossRef] [PubMed]
- Natarajan, N.; Dutta, P. ‘Training’ of innate immunity following myocardial infarction exacerbates atherosclerosis. Eur. Heart J. 2024, 45, 685–687. [Google Scholar] [CrossRef]
- Martinez, D.G.; Nicolau, J.C.; Lage, R.L.; Toschi-Dias, E.; de Matos, L.D.N.J.; Alves, M.J.N.N.; Trombetta, I.C.; Dias da Silva, V.J.; Middlekauff, H.R.; Negrão, M.J.; et al. Effects of long-term exercise training on autonomic control in myocardial infarction patients. Hypertension 2011, 58, 1049–1056. [Google Scholar] [CrossRef]
- Winzer, E.B.; Woitek, F.; Linke, A. Physical Activity in the Prevention and Treatment of Coronary Artery Disease. J. Am. Heart Assoc. 2018, 7, e007725. [Google Scholar] [CrossRef]
- Chen, Y.W.; Apostolakis, S.; Lip, G.Y. Exercise-induced changes in inflammatory processes: Implications for thrombogenesis in cardiovascular disease. Ann. Med. 2014, 46, 439–455. [Google Scholar] [CrossRef]
- Kodama, S.; Saito, K.; Tanaka, S.; Maki, M.; Yachi, Y.; Asumi, M.; Sugawara, A.; Totsuka, K.; Shimano, H.; Ohashi, Y.; et al. Cardiorespiratory fitness as a quantitative predictor of all-cause mortality and cardiovascular events in healthy men and women: A meta-analysis. JAMA 2009, 301, 2024–2035. [Google Scholar] [CrossRef]
- Nystoriak, M.A.; Bhatnagar, A. Cardiovascular Effects and Benefits of Exercise. Front. Cardiovasc. Med. 2018, 5, 135. [Google Scholar] [CrossRef]
- Peersen, K.; Munkhaugen, J.; Gullestad, L.; Liodden, T.; Moum, T.; Dalmmen, T.; Perk, J.; Otterstad, J.E. The role of cardiac rehabilitation in secondary prevention after coronary events. Eur. J. Prev. Cardiol. 2017, 24, 1360–1368. [Google Scholar] [CrossRef] [PubMed]
- Ruiz-Ramie, J.J.; Barber, J.L.; Sarzynski, M.A. Effects of exercise on HDL functionality. Curr. Opin. Lipidol. 2019, 30, 16–23. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Chen, C.; Spanos, M.; Li, G.; Lu, R.; Bei, Y.; Xiao, J. Exercise training maintains cardiovascular health: Signaling pathways involved and potential therapeutics. Signal Transduct. Target. Ther. 2022, 7, 306. [Google Scholar] [CrossRef] [PubMed]
- Gibson, C.M.; Duffy, D.; Korjian, S.; Bahit, M.C.; Chi, G.; Alexander, J.H.; Lincoff, A.M.; Heise, M.; Tricoci, P.; Deckelbaum, L.I.; et al. Apolipoprotein A1 Infusions and Cardiovascular Outcomes after Acute Myocardial Infarction. N. Engl. J. Med. 2024, 390, 1560–1571. [Google Scholar] [CrossRef]
- Salzwedel, A.; Jensen, K.; Rauch, B.; Doherty, P.; Metzendorf, M.-I.; Hackbusch, M.; Völler, H.; Schmid, J.-P.; Davos, C.H. Effectiveness of comprehensive cardiac rehabilitation in coronary artery disease patients treated according to contemporary evidence based medicine: Update of the Cardiac Rehabilitation Outcome Study (CROS-II). Eur. J. Prev. Cardiol. 2020, 27, 1756–1774. [Google Scholar] [CrossRef]
- Casella-Filho, A.; Chagas, A.C.; Maranhão, R.C.; Trombetta, I.C.; Cesena, F.H.; Silva, V.M.; Tanus-Santos, J.E.; Negrão, C.E.; da Luz, P.L. Effect of exercise training on plasma levels and functional properties of high-density lipoprotein cholesterol in the metabolic syndrome. Am. J. Cardiol. 2011, 107, 1168–1172. [Google Scholar] [CrossRef]
- Braga, P.G.S.; Freitas, F.R.; Bachi, A.L.L.; Amirato, G.R.; Baroni, R.V.; Alves, M.J.N.N.; Vieira, R.P.; Vaisberg, M.W.; Aldin, M.N.; Filho, R.K.; et al. Regular Practice of Physical Activity Improves Cholesterol Transfers to High-Density Lipoprotein (HDL) and Other HDL Metabolic Parameters in Older Adults. Nutrients 2023, 15, 4871. [Google Scholar] [CrossRef]
- Koba, S.; Ayaori, M.; Uto-Kondo, H.; Furuyama, F.; Yokata, Y.; Tsunoda, F.; Shoji, M.; Ikewaki, K.; Kobayashi, Y. Beneficial Effects of Exercise-Based Cardiac Rehabilitation on High-Density Lipoprotein-Mediated Cholesterol Efflux Capacity in Patients with Acute Coronary Syndrome. J. Atheroscler. Thromb. 2016, 23, 865–877. [Google Scholar] [CrossRef]
- Furuyama, F.; Koba, S.; Yokota, Y.; Tsunoda, F.; Shoji, M.; Kobayashi, Y. Effects of Cardiac Rehabilitation on High-Density Lipoprotein-mediated Cholesterol Efflux Capacity and Paraoxonase-1 Activity in Patients with Acute Coronary Syndrome. J. Atheroscler. Thromb. 2018, 25, 153–169. [Google Scholar] [CrossRef]
- Sarzynski, M.A.; Ruiz-Ramie, J.J.; Barber, J.L.; Slentz, C.A.; Apolzan, J.W.; McGarrah, R.W.; Harris, M.N.; Church, T.S.; Borja, M.S.; He, Y.; et al. Effects of Increasing Exercise Intensity and Dose on Multiple Measures of HDL (High-Density Lipoprotein) Function. Arterioscler. Thromb. Vasc. Biol. 2018, 38, 943–952. [Google Scholar] [CrossRef]
- Franczyk, B.; Gluba-Brzózka, A.; Ciałkowska-Rysz, A.; Ławiński, J.; Rysz, J. The Impact of Aerobic Exercise on HDL Quantity and Quality: A Narrative Review. Int. J. Mol. Sci. 2023, 24, 4653. [Google Scholar] [CrossRef] [PubMed]
- Doewes, R.I.; Gharibian, G.; Zadeh, F.A.; Zaman, B.A.; Vahdat, S.; Akhavan-Sigari, R. An Updated Systematic Review on the Effects of Aerobic Exercise on Human Blood Lipid Profile. Curr. Probl. Cardiol. 2023, 48, 101108. [Google Scholar] [CrossRef] [PubMed]
- Ciliberti, G.; Guerra, F.; Pizzi, C.; Merlo, M.; Zilio, F.; Bianco, F.; Mancone, M.; Zaffalon, D.; Gioscia, R.; Bergamaschi, L.; et al. Characteristics of patients with recurrent acute myocardial infarction after MINOCA. Prog. Cardiovasc. Dis. 2023, 81, 42–47. [Google Scholar] [CrossRef] [PubMed]
- Zheng, G.; Qiu, P.; Xia, R.; Lin, H.; Ye, B.; Tao, J.; Chen, L. Effect of Aerobic Exercise on Inflammatory Markers in Healthy Middle-Aged and Older Adults: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Front. Aging Neurosci. 2019, 11, 98. [Google Scholar] [CrossRef]
- Lavie, C.J.; Church, T.S.; Milani, R.V.; Earnest, C.P. Impact of physical activity, cardiorespiratory fitness, and exercise training on markers of inflammation. J. Cardiopulm. Rehabil. Prev. 2011, 31, 137–145. [Google Scholar] [CrossRef]
- Grochulska, A.; Glowinski, S.; Bryndal, A. Cardiac Rehabilitation and Physical Performance in Patients after Myocardial Infarction: Preliminary Research. J. Clin. Med. 2021, 10, 2253. [Google Scholar] [CrossRef]
- Kirolos, I.; Yakoub, D.; Pendola, F.; Picado, O.; Kirolos, A.; Levine, Y.; Jha, S.; Kabra, R.; Cave, B.; Khouzam, R.N. Cardiac physiology in post myocardial infarction patients: The effect of cardiac rehabilitation programs-a systematic review and update meta-analysis. Ann. Transl. Med. 2019, 7, 416. [Google Scholar] [CrossRef]
- Guo, Y. Nicotine dependence affects cardiopulmonary endurance and physical activity in college students in Henan, China. Tob. Induc. Dis. 2023, 21, 86. [Google Scholar] [CrossRef]
- Dalçóquio, T.F.; Alves Dos Santos, M.; Silva Alves, L.; Arantes, F.B.B.; Ferreira-Santos, L.; Rondon, M.U.P.B.; Furtado, R.H.M.; Ferrari, A.G.; Rizzo, P.R.G.; Salsoso, R.; et al. Effects of exercise on platelet reactivity after myocardial infarction: A randomized clinical trial. Platelets 2023, 34, 2139821. [Google Scholar] [CrossRef]
- Thygesen, K.; Alpert, J.S.; Jaffe, A.S.; Simoons, M.L.; Chaitman, B.R.; White, H.D. Third universal definition of myocardial infarction. J. Am. Coll. Cardiol. 2012, 60, 1581–1598. [Google Scholar] [CrossRef]
Variables | Control Group (N = 31) | Exercise Group (N = 31) | p-Value |
---|---|---|---|
Age (mean ± SD) | 58.5 ± 10.8 | 59.8 ± 9 | 0.60 |
Male Sex | 74.2% | 74.2% | 1.00 |
History of HTN | 67.7% | 48.4% | 0.12 |
History of DM | 41.9% | 22.6% | 0.10 |
Previous Stroke | 12.9% | 6.5% | 0.39 |
Previous MI | 12.9% | 12.9% | 1.00 |
Previous CABG | 6.5% | 6.5% | 1.00 |
Previous PCI | 12.9% | 12.9% | 1.00 |
Current Smoking | 19.4% | 35.5% | 0.15 |
STEMI | 51.6% | 64.5% | 0.30 |
GRACE Score | 130.3 ± 31.1 | 138.4 ± 24.3 | 0.30 |
LVEF | 54.7 ± 7.3% | 55.7 ± 6.3% | 0.27 |
Creatinine (mg/dL—mean ± SD) | 1.09 ± 0.2 | 1.01 ± 0.2 | 0.24 |
MDRD (mL/min—mean ± SD) | 74.81 ± 23.5 | 82.87 ± 23.57 | 0.18 |
us-Troponin I (pg/mL—median 25th-75th percentile) | 25 (2.9–50) | 38.4 (11.8–50) | 0.23 |
DAPT | 100% | 100% | 1.00 |
Statin | 96.8% | 100% | 0.31 |
Betablocker | 66.7% | 83.9% | 0.14 |
ACEI or ARB | 67.7% | 77.4% | 0.40 |
Variables | Baseline | Follow-Up | p-Value |
---|---|---|---|
Transfer of EC to HDL | 2.53 ± 0.83 | 2.74 ± 0.64 | 0.032 |
Transfer of UC to HDL | 4.08 ± 1.2 | 4.40 ± 1.06 | 0.021 |
Variables | Control Group (N = 31) | Exercise Group (N = 31) | p-Value |
---|---|---|---|
Transfer of EC to HDL at baseline | 2.60 ± 0.89 | 2.45 ± 0.77 | 0.480 |
Transfer of EC to HDL at follow-up | 2.75 ± 0.73 | 2.73 ± 0.54 | 0.863 |
p-value * | 0.32 | 0.034 | |
Transfer of UC to HDL at baseline | 4.17 ± 1.35 | 3.99 ± 1.05 | 0.559 |
Transfer of UC to HDL at follow-up | 4.45 ± 1.22 | 4.34 ± 0.89 | 0.678 |
p-value * | 0.18 | 0.053 | |
Difference follow-up—baseline for EC | 0.15 ± 0.84 | 0.27 ± 0.69 | 0.533 |
Difference follow-up—baseline for UC | 0.28 ± 1.14 | 0.35 ± 0.96 | 0.804 |
Control Group (N = 31) | Exercise Group (N = 31) | p-Value | OR (95% CI) | p-int | |
---|---|---|---|---|---|
EC above the mean at baseline (%) | 48.4 | 41.9 | 0.610 | 0.77 (0.28–2.10) | 0.783 |
EC above the mean at follow-up (%) | 58.1 | 61.3 | 0.796 | 1.44 (0.41–3.16) | |
p-value * | 0.366 | 0.083 | |||
UC above the mean at baseline (%) | 87.1 | 87.1 | 1.000 | 1.00 (0.23–4.41) | NA |
UC above the mean at follow-up (%) | 96.8 | 96.8 | 1.000 | 1.00 (0.06–16.74) | |
p-value * | 0.083 | 0.058 |
Variables | Control Group (N = 31) | Exercise Group (N = 31) | p-Value |
---|---|---|---|
HDL–cholesterol at baseline (mg/dL) * | 38 ± 10 | 38 ± 8 | 0.891 |
HDL–cholesterol at follow-up (mg/dL) * | 40 ± 10 | 42 ± 10 | 0.713 |
Difference baseline minus follow-up * | 0.92 ± 9.43 | 4.54 ± 6.70 | 0.109 |
p-value + | <0.001 | <0.001 | |
LDL–cholesterol at baseline (mg/dL) * | 66 ± 26 | 71 ± 24 | 0.422 |
LDL–cholesterol at follow-up (mg/dL) * | 79 ± 34 | 76 ± 27 | 0.634 |
Difference baseline minus follow-up * | 46.63 ± 53.05 | 59.93 ± 42.99 | 0.306 |
p-value + | 0.017 | <0.001 | |
Total cholesterol at baseline (mg/dL) * | 129 ± 30 | 135 ± 30 | 0.373 |
Total cholesterol at follow-up (mg/dL) * | 148 ± 39 | 141 ± 32 | 0.488 |
Difference baseline minus follow-up * | 67.37 ± 65.11 | 69.78 ± 48.70 | 0.876 |
p-value + | 0.016 | 0.138 | |
Triglycerides at baseline (mg/dL) ⟂ | 94 (75–150) | 98 (78–168) | 0.720 |
Triglycerides at follow-up (mg/dL) ⟂ | 120 (74–201) | 103 (71–149) | 0.499 |
Difference baseline minus follow-up ⟂ | 52 (7–139) | 18.5 (−23.5–61) | 0.046 |
p-value + | 0.276 | 0.806 |
Variables | Control Group (N = 31) | Exercise Group (N = 31) | p-Value |
---|---|---|---|
CRP at baseline ⟂ (mg/dL) | 1.80 (0.64–3.33) | 1.26 (0.46–3.99) | 0.607 |
CRP at follow-up ⟂ (mg/dL) | 1.58 (0.74–2.91) | 1.00 (0.35–4.04) | 0.184 |
p-value + | 0.719 | 0.060 | |
Peak VO2 at baseline ⟂ (mL·kg−1·min−1) | 20.00 (16.75–24.55) | 22.1 (17.20–26.20) | 0.459 |
Peak VO2 at follow-up * (mL·kg−1·min−1) | 21.58 ± 4.98 | 24.25 ± 6.76 | 0.092 |
p-value + | 0.176 | 0.005 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nicolau, J.C.; Dalcoquio, T.F.; Giraldez, R.R.; Freitas, F.R.; Nicolau, A.M.; Furtado, R.H.M.; Tavoni, T.M.; Baracioli, L.M.; Lima, F.G.; Ferrari, A.G.; et al. The Role of Exercise-Based Cardiac Rehabilitation After Myocardial Infarction on Cholesterol Transfer to HDL. Int. J. Mol. Sci. 2025, 26, 419. https://doi.org/10.3390/ijms26010419
Nicolau JC, Dalcoquio TF, Giraldez RR, Freitas FR, Nicolau AM, Furtado RHM, Tavoni TM, Baracioli LM, Lima FG, Ferrari AG, et al. The Role of Exercise-Based Cardiac Rehabilitation After Myocardial Infarction on Cholesterol Transfer to HDL. International Journal of Molecular Sciences. 2025; 26(1):419. https://doi.org/10.3390/ijms26010419
Chicago/Turabian StyleNicolau, Jose C., Talia F. Dalcoquio, Roberto R. Giraldez, Fatima R. Freitas, Andre M. Nicolau, Remo H. M. Furtado, Thauany M. Tavoni, Luciano M. Baracioli, Felipe G. Lima, Aline G. Ferrari, and et al. 2025. "The Role of Exercise-Based Cardiac Rehabilitation After Myocardial Infarction on Cholesterol Transfer to HDL" International Journal of Molecular Sciences 26, no. 1: 419. https://doi.org/10.3390/ijms26010419
APA StyleNicolau, J. C., Dalcoquio, T. F., Giraldez, R. R., Freitas, F. R., Nicolau, A. M., Furtado, R. H. M., Tavoni, T. M., Baracioli, L. M., Lima, F. G., Ferrari, A. G., Rondon, M. U. P. B., Salsoso, R., Alves, M. J. N. N., Arantes, F. B. B., Santos, M. A., Alves, L. S., Negrao, C. E., & Maranhão, R. C. (2025). The Role of Exercise-Based Cardiac Rehabilitation After Myocardial Infarction on Cholesterol Transfer to HDL. International Journal of Molecular Sciences, 26(1), 419. https://doi.org/10.3390/ijms26010419