Green Synthesis of Silver Nanoparticles Using Circaea lutetiana Ethanolic Extract: Phytochemical Profiling, Characterization, and Antimicrobial Evaluation
Abstract
:1. Introduction
2. Results
2.1. Phytochemical Composition of Circaea lutetiana Extracts
2.1.1. Extraction Yield Analysis
2.1.2. Total Phenolic and Flavonoid Contents (TPC and TFC)
2.1.3. HPLC-UV-ESI/MS Analysis
2.1.4. FT-IR Analysis of Circaea lutetiana Extracts
2.2. Green Synthesis and Characterization of Silver Nanoparticles
2.2.1. Synthesis and UV–Vis Spectroscopic Confirmation
2.2.2. Structural and Morphological Features of AgNPs
FT-IR Analysis of the Synthesized AgNPs
XPS Surface Analysis
XRD Crystallographic Analysis
DLS and Zeta Potential Analyses
TEM and SEM-EDX Imaging
2.3. Antibacterial Activity of the Extracts and AgNPs
2.3.1. Comparative Activity of C. lutetiana Extracts
2.3.2. Antimicrobial Activity of Silver Nanoparticles
3. Discussion
4. Materials and Methods
4.1. Reagents, Chemicals, and Standards
4.2. Plant MaterialCollection and Extraction
4.3. Phytochemical Analysis
4.3.1. Total Phenolic and Flavonoid Contents (TPC and TFC)
4.3.2. Analysis of Phenolic Compounds Using High-Performance Liquid Chromatography Coupled with UV and Electrospray Ionization Mass Spectrometry
4.4. Green Synthesis of Silver Nanoparticles
4.5. Characterization of Silver Nanoparticles
4.6. Evaluation of Antimicrobial Activity
4.7. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ANOVA | Analysis of Variance |
AWD | Agar Well Diffusion |
CFU | Colony Forming Units |
DDM | Disc Diffusion Method |
DLS | Dynamic Light Scattering |
DM | Dry Mass |
DMSO | Dimethyl Sulfoxide |
DNA | Deoxyribonucleic Acid |
DPPH | 2,2-Diphenyl-1-picrylhydrazyl |
EDX | Energy Dispersive X-ray Spectroscopy |
FT-IR/FTIR | Fourier Transform Infrared Spectroscopy |
GAE | Gallic Acid Equivalent |
GC-MS | Gas Chromatography–Mass Spectrometry |
HPLC-UV-ESI | HPLC with UV detection and Electrospray Ionization |
IBP | Institute of Botany and Phytointroduction |
ICP-MS | Inductively Coupled Plasma–Mass Spectrometry |
IZD | Inhibition Zone Diameter |
JCPDS | Joint Committee on Powder Diffraction Standards |
NPs | Nanoparticles |
PDI | Polydispersity Index |
QE | Quercetin Equivalent |
ROS | Reactive Oxygen Species |
SD | Standard Deviation |
SEM-EDX | SEM coupled with Energy Dispersive X-ray Analysis |
SPR | Surface Plasmon Resonance |
TEM | Transmission Electron Microscopy |
TFC | Total Flavonoid Content |
TPC | Total Phenolic Content |
UV | Ultraviolet |
XPS | X-ray Photoelectron Spectroscopy |
XRD | X-ray Diffraction |
References
- Shawky, E.M.; Elgindi, M.R.; Ibrahim, H.A.; Baky, M.H. The Potential and Outgoing Trends in Traditional, Phytochemical, Economical, and Ethnopharmacological Importance of Family Onagraceae: A Comprehensive Review. J. Ethnopharmacol. 2021, 281, 114450. [Google Scholar] [CrossRef] [PubMed]
- Kozhantayeva, A.; Iskakova, Z.; Ibrayeva, M.; Sapiyeva, A.; Arkharbekova, M.; Tashenov, Y. Phytochemical Insights and Therapeutic Potential of Chamaenerion angustifolium and Chamaenerion latifolium. Molecules 2025, 30, 1186. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.; Deng, M. Onagraceae. In Identification and Control of Common Weeds; Springer: Cham, Switzerland, 2017; Volume 2, pp. 785–813. [Google Scholar]
- Kozhantayeva, A.; Tashenov, Y.; Tosmaganbetova, K.; Tazhkenova, G.; Mashan, T.; Bazarkhankyzy, A.; Iskakova, Z.; Sapiyeva, A.; Gabbassova, A. Circaea lutetiana (L) Plant and Its Chemical Composition. Rasayan J. Chem. 2022, 15, 1653–1659. [Google Scholar] [CrossRef]
- Kozhantayeva, A.; Rakhmadiyeva, S. Research of Polyphenolic Compounds of Circaea lutetiana L. Chem. Bull. Kazakh Natl. Univ. 2020, 3, 18–27. [Google Scholar] [CrossRef]
- Nikzat, S.; Ghasemzadeh-Baraki, S.; Naghiloo, S. The Influence of Environmental Heterogeneity on the Morphological and Genetic Diversity of Circaea lutetiana (Onagraceae) in Hyrcanian Forests. An. Jard. Bot. Madr. 2021, 78, e110. [Google Scholar] [CrossRef]
- Averett, J.E.; Boufford, D.E. The Flavonoids and Flavonoid Systematics of Circaea (Circaeeae, Onagraceae). Syst. Bot. 1985, 10, 363–373. [Google Scholar] [CrossRef]
- Xie, L.; Wagner, W.L.; Ree, R.H.; Berry, P.E.; Wen, J. Molecular Phylogeny, Divergence Time Estimates, and Historical Biogeography of Circaea (Onagraceae) in the Northern Hemisphere. Mol. Phylogenet. Evol. 2009, 53, 995–1009. [Google Scholar] [CrossRef]
- Muñoz, F.; Dutartre, G. Un Taxon Critique et Remarquable du Haut-Beaujolais, Circaea × intermedia Ehrh. (Myrtales, Onagraceae). Publ. Soc. Linn. Lyon 2007, 76, 1–9. [Google Scholar]
- Granica, S.; Piwowarski, J.P.; Kiss, A.K. Polyphenol Composition of Extract from Aerial Parts of Circaea lutetiana L. and Its Antioxidant and Anti-Inflammatory Activity In Vitro. Acta Biol. Cracov. Ser. Bot. 2013, 55, 16–22. [Google Scholar] [CrossRef]
- Wagner, W.L.; Hoch, P.C.; Raven, P.H. Revised Classification of the Onagraceae. Syst. Bot. Monogr. 2007, 83, 1–240. [Google Scholar]
- Granica, S.; Kiss, A.K. Secondary Metabolites from Aerial Parts of Circaea lutetiana L. Biochem. Syst. Ecol. 2013, 46, 104–106. [Google Scholar] [CrossRef]
- Kozhantayeva, A.; Rakhmadiyeva, S.; Ozek, G. Evaluation of Metal Content of Circaea lutetiana (L) Plant. J. Chem. Technol. Metall. 2022, 57, 114–118. [Google Scholar]
- Boufford, D.E.; Raven, P.H.; Averett, J.E. Glycoflavones in Circaea. Biochem. Syst. Ecol. 1978, 6, 59–60. [Google Scholar] [CrossRef]
- Mutalik, C.; Nivedita; Sneka, C.; Krisnawati, D.I.; Yougbaré, S.; Hsu, C.-C.; Kuo, T.-R. Zebrafish Insights into Nanomaterial Toxicity: A Focused Exploration on Metallic, Metal Oxide, Semiconductor, and Mixed-Metal Nanoparticles. Int. J. Mol. Sci. 2024, 25, 1926. [Google Scholar] [CrossRef] [PubMed]
- Okafor, F.; Janen, A.; Kukhtareva, T.; Edwards, V.; Curley, M. Green Synthesis of Silver Nanoparticles, Their Characterization, Application and Antibacterial Activity. Int. J. Environ. Res. Public Health 2013, 10, 5221–5238. [Google Scholar] [CrossRef]
- Mohamed, H.E.A.; Thema, T.; Dhlamini, M.S. Green Synthesis of CuO Nanoparticles via Hyphaene thebaica Extract and Their Optical Properties. Mater. Today Proc. 2020, 36, 591–594. [Google Scholar] [CrossRef]
- Reddy, K.R. Green Synthesis, Morphological and Optical Studies of CuO Nanoparticles. J. Mol. Struct. 2017, 1150, 553–557. [Google Scholar] [CrossRef]
- Shaik, M.R.; Khan, M.; Kuniyil, M.; Al-Warthan, A.; Alkhathlan, H.Z.; Siddiqui, M.R.H.; Shaik, J.P.; Ahamed, A.; Mahmood, A.; Khan, M.; et al. Plant-Extract-Assisted Green Synthesis of Silver Nanoparticles Using Origanum vulgare L. Extract and Their Microbicidal Activities. Sustainability 2018, 10, 913. [Google Scholar] [CrossRef]
- Abdelghany, T.M.; Al-Rajhi, A.M.H.; Al Abboud, M.A.; Alawlaqi, M.M.; Magdah, A.G.; Helmy, E.A.M.; Mabrouk, A.S. Recent Advances in Green Synthesis of Silver Nanoparticles and Their Applications: About Future Directions. BioNanoSci. 2018, 8, 5–16. [Google Scholar] [CrossRef]
- Salayová, A.; Bedlovičová, Z.; Daneu, N.; Baláž, M.; Bujňáková, Z.L.; Balážová, Ľ.; Tkáčiková, Ľ. Green Synthesis of Silver Nanoparticles with Antibacterial Activity Using Various Medicinal Plant Extracts: Morphology and Antibacterial Efficacy. Nanomaterials 2021, 11, 1005. [Google Scholar] [CrossRef]
- Ahmad, N.; Sharma, S.; Singh, V.N.; Shamsi, S.F.; Fatma, A.; Mehta, B.R. Biosynthesis of Silver Nanoparticles from Desmodium triflorum: A Novel Approach towards Weed Utilization. Biotechnol. Res. Int. 2011, 2011, 454090. [Google Scholar] [CrossRef] [PubMed]
- Alsaiari, N.S.; Alzahrani, F.M.; Amari, A.; Osman, H.; Harharah, H.N.; Elboughdiri, N.; Tahoon, M.A. Plant and Microbial Approaches as Green Methods for the Synthesis of Nanomaterials: Synthesis, Applications, and Future Perspectives. Molecules 2023, 28, 463. [Google Scholar] [CrossRef] [PubMed]
- Huston, M.; DeBella, M.; DiBella, M.; Gupta, A. Green Synthesis of Nanomaterials. Nanomaterials 2021, 11, 2130. [Google Scholar] [CrossRef] [PubMed]
- Ariyamuthu, R.; Murali, G.; Arumugam, N.; Almansour, A.I.; Sudarshan, K.; Jeyaram, S. Bio-Mediated Green Synthesis of Copper Oxide Nanoparticles Using Plant Extract and Its Applications to Optical Switching in Nonlinear Optics. Part. Sci. Technol. 2025, 43, 393–399. [Google Scholar] [CrossRef]
- Rathaiah, M.; Venkataramana, B.; Sudarshan, K.; Naidu, B.V.K. Newly Green Synthesized ZnO Nanoparticles and Their Effective Influence on Photocatalytic and Antimicrobial Activities. Chem. Sel. 2025, 10, e202406149. [Google Scholar] [CrossRef]
- Agatonovic-Kustrin, S.; Ristivojevic, P.; Gegechkori, V.; Litvinova, T.M.; Morton, D.W. Essential Oil Quality and Purity Evaluation via FT-IR Spectroscopy and Pattern Recognition Techniques. Appl. Sci. 2020, 10, 7294. [Google Scholar] [CrossRef]
- Varshney, R.; Mishra, R.; Das, N.; Sircar, D.; Roy, P. A Comparative Analysis of Various Flavonoids in the Regulation of Obesity and Diabetes: An In Vitro and In Vivo Study. J. Funct. Foods 2019, 59, 194–205. [Google Scholar] [CrossRef]
- Nivetha, K.; Prasanna, G. GC-MS and FT-IR Analysis of Nigella sativa L. Seeds. Int. J. Adv. Res. Biol. Sci. 2016, 3, 45–54. [Google Scholar]
- Sravan Kumar, S.; Manoj, P.; Giridhar, P. Fourier Transform Infrared Spectroscopy (FTIR) Analysis, Chlorophyll Content and Antioxidant Properties of Native and Defatted Foliage of Green Leafy Vegetables. J. Food Sci. Technol. 2015, 52, 8131–8139. [Google Scholar] [CrossRef]
- Khatri, P.; Rana, J.S.; Jamdagni, P.; Sindhu, A. Phytochemical Screening, GC-MS and FT-IR Analysis of Methanolic Extract Leaves of Elettaria cardamomum. Int. J. Res. 2017, 5, 213–224. [Google Scholar] [CrossRef]
- Habeeb Rahuman, H.B.; Dhandapani, R.; Narayanan, S.; Palanivel, V.; Paramasivam, R.; Subbarayalu, R.; Thangavelu, S.; Muthupandian, S. Medicinal Plants Mediated Green Synthesis of Silver Nanoparticles and Their Biomedical Applications. IET Nanobiotechnol. 2022, 16, 115–144. [Google Scholar] [CrossRef] [PubMed]
- Zulfiqar, Z.; Khan, R.R.M.; Summer, M.; Saeed, Z.; Pervaiz, M.; Rasheed, S.; Shehzad, B.; Kabir, F.; Ishaq, S. Plant-Mediated Green Synthesis of Silver Nanoparticles: Synthesis, Characterization, Biological Applications, and Toxicological Considerations: A Review. Biocatal. Agric. Biotechnol. 2024, 90, 103121. [Google Scholar] [CrossRef]
- Balčiūnaitienė, A.; Liaudanskas, M.; Puzerytė, V.; Viškelis, J.; Janulis, V.; Viškelis, P.; Griškonis, E.; Jankauskaitė, V. Eucalyptus globulus and Salvia officinalis Extracts Mediated Green Synthesis of Silver Nanoparticles and Their Application as an Antioxidant and Antimicrobial Agent. Plants 2022, 11, 1085. [Google Scholar] [CrossRef]
- Singla, S.; Jana, A.; Thakur, R.; Kumari, C.; Goyal, S.; Pradhan, J. Green Synthesis of Silver Nanoparticles Using Oxalis griffithii Extract and Assessing Their Antimicrobial Activity. OpenNano 2022, 7, 100047. [Google Scholar] [CrossRef]
- Lou, Z.; Wang, H.; Zhu, S.; Ma, C.; Wang, Z. Antibacterial Activity and Mechanism of Action of Chlorogenic Acid. J. Food Sci. 2011, 76, M398–M403. [Google Scholar] [CrossRef]
- Kalinowska, M.; Sienkiewicz-Gromiuk, J.; Świderski, G.; Pietryczuk, A.; Cudowski, A.; Lewandowski, W. Zn(II) Complex of Plant Phenolic Chlorogenic Acid: Antioxidant, Antimicrobial and Structural Studies. Materials 2020, 13, 3745. [Google Scholar] [CrossRef] [PubMed]
- Hadidi, M.; Liñán-Atero, R.; Tarahi, M.; Christodoulou, M.C.; Aghababaei, F. The Potential Health Benefits of Gallic Acid: Therapeutic and Food Applications. Antioxidants 2024, 13, 1001. [Google Scholar] [CrossRef]
- Zhang, O.L.; Niu, J.Y.; Yin, I.X.; Yu, O.Y.; Mei, M.L.; Chu, C.H. Antibacterial Properties of the Antimicrobial Peptide Gallic Acid-Polyphemusin I (GAPI). Antibiotics 2023, 12, 1350. [Google Scholar] [CrossRef]
- Kępa, M.; Miklasińska-Majdanik, M.; Wojtyczka, R.D.; Idzik, D.; Korzeniowski, K.; Smoleń-Dzirba, J.; Wąsik, T.J. Antimicrobial Potential of Caffeic Acid against Staphylococcus aureus Clinical Strains. Biomed. Res. Int. 2018, 2018, 7413504. [Google Scholar] [CrossRef]
- Krishnan, V.; Rather, H.; Rajagopal, K.; Shanthi, M.; Sheriff, K.; Illiyas, M.; Rather, R.A.; Manikandan, E.; Uvarajan, S.; Bhaskar, M.; et al. Synthesis of Silver Nanoparticles (Ag NPs) for Anticancer Activities of the Crude Extract of Syzygium aromaticum. J. Photochem. Photobiol. B Biol. 2016, 167, 282. [Google Scholar]
- Sánchez-Navarro, M.C.; Ruiz-Torres, C.A.; Niño-Martínez, N.; Sánchez-Sánchez, R.; Martínez-Castañón, G.A.; DeAlba-Montero, I.; Ruíz, F. Cytotoxic and Bactericidal Effect of Silver Nanoparticles Obtained by Green Synthesis Using Annona muricata Extract and Functionalized with 5-Fluorouracil. Bioinorg. Chem. Appl. 2018, 2018, 6506381. [Google Scholar] [CrossRef] [PubMed]
- Bao, Y.; Tian, C.; Yu, H.; He, J.; Song, K.; Guo, J.; Zhou, X.; Zhuo, O.; Liu, S. In Situ Green Synthesis of Graphene Oxide–Silver Nanoparticles Composite Using Gallic Acid. Front. Chem. 2022, 10, 905781. [Google Scholar] [CrossRef]
- Mikhailova, E.O. Green Silver Nanoparticles: An Antibacterial Mechanism. Antibiotics 2024, 14, 5. [Google Scholar] [CrossRef] [PubMed]
- Bantho, S.; Naidoo, Y.; Dewir, Y.H.; Singh, M.; Lin, J.; Bantho, A. Synthesis, Characterization and Biological Activity of Silver Nanoparticles Generated Using the Leaf and Stembark Extract of Combretum erythrophyllum. Anti-Cancer Agents Med. Chem. 2023, 23, 1545. [Google Scholar] [CrossRef]
- Rambau, U.; Masevhe, N.A.; Samie, A. Green Synthesis of Gold and Copper Nanoparticles by Lannea discolor: Characterization and Antibacterial Activity. Inorganics 2024, 12, 36. [Google Scholar] [CrossRef]
- Pasupuleti, V.R.; Prasad, T.; Sheikh, R.A.; Balam, S.K.; Narasimhulu, G.; Reddy, C.S.; Rahman, I.A.; Gan, S.H. Biogenic Silver Nanoparticles Using Rhinacanthus nasutus Leaf Extract: Synthesis, Spectral Analysis, and Antimicrobial Studies. Int. J. Nanomed. 2021, 16, 8305. [Google Scholar] [CrossRef]
- Velgosová, O.; Dolinská, S.; Mražíková, A.; Briančin, J. Effect of P. kessleri Extracts Treatment on AgNPs Synthesis. Inorg. Nano-Met. Chem. 2020, 50, 842. [Google Scholar] [CrossRef]
- Asimuddin, M.; Shaik, M.R.; Fathima, N.; Afreen, M.S.; Adil, S.F.; Siddiqui, M.R.H.; Jamil, K.; Khan, M. Study of Antibacterial Properties of Ziziphus mauritiana-Based Green Synthesized Silver Nanoparticles against Various Bacterial Strains. Sustainability 2020, 12, 1484. [Google Scholar] [CrossRef]
- Vasil’kov, A.; Batsalova, T.; Dzhambazov, B.; Naumkin, A. XPS Study of Silver and Copper Nanoparticles Demonstrated Selective Anticancer, Proapoptotic, and Antibacterial Properties. Surf. Interface Anal. 2022, 54, 189–202. [Google Scholar] [CrossRef]
- Sharma, R.; Dhillon, A.; Kumar, D. Mentha-Stabilized Silver Nanoparticles for High-Performance Colorimetric Detection of Al (III) in Aqueous Systems. Sci. Rep. 2018, 8, 5189. [Google Scholar] [CrossRef]
- Alamier, W.M.; Oteef, M.D.Y.; Bakry, A.M.; Hasan, N.; Ismail, K.S.; Awad, F.S. Green Synthesis of Silver Nanoparticles Using Acacia ehrenbergiana Plant Cortex Extract for Efficient Removal of Rhodamine B Cationic Dye from Wastewater and the Evaluation of Antimicrobial Activity. ACS Omega 2023, 8, 18901–18914. [Google Scholar] [CrossRef] [PubMed]
- Shafiq, A.; Deshmukh, A.R.; AbouAitah, K.; Kim, B.-S. Green Synthesis of Controlled Shape Silver Nanostructures and Their Peroxidase, Catalytic Degradation, and Antibacterial Activity. J. Funct. Biomater. 2023, 14, 325. [Google Scholar] [CrossRef]
- Bu, Y.; Kushwaha, A.; Goswami, L.; Kim, B.-S. Green Production of Functionalized Few-Layer Graphene–Silver Nanocomposites Using Gallnut Extract for Antibacterial Application. Micromachines 2022, 13, 1232. [Google Scholar] [CrossRef]
- Sahu, N.; Soni, D.; Chandrashekhar, B.; Sarangi, B.K.; Satpute, D.; Pandey, R.A. Synthesis and Characterization of Silver Nanoparticles Using Cynodon dactylon Leaves and Assessment of Their Antibacterial Activity. Bioprocess Biosyst. Eng. 2013, 36, 999–1004. [Google Scholar] [CrossRef]
- Ruban, P.; Reddy, L.J.S.; Manickam, R.; Rathinam, R.; Ali, S.M.; Rajkumar, S.; Sharma, S.; Sudhakara, P.; Eldin, E.M.T. Green Synthesis, Characterizations, and Antibacterial Activity of Silver Nanoparticles from Themeda quadrivalvis, in Conjugation with Macrolide Antibiotics Against Respiratory Pathogens. Rev. Adv. Mater. Sci. 2023, 62, 20220301. [Google Scholar]
- Shalaby, T.I.; Mahmoud, O.A.; El Batouti, G.A.; Ibrahim, E.E. Green Synthesis of Silver Nanoparticles: Synthesis, Characterization and Antibacterial Activity. Nanosci. Nanotechnol. 2015, 5, 23–29. [Google Scholar]
- Rodriguez-Loya, J.; Lerma, M.; Gardea-Torresdey, J.L. Dynamic Light Scattering and Its Application to Control Nanoparticle Aggregation in Colloidal Systems: A Review. Micromachines 2024, 15, 24. [Google Scholar] [CrossRef] [PubMed]
- Manasa, M.; Gouthamchandra, K.; Devegowda, D.; Dharmesh, S.M. Green Synthesis of Silver Nanoparticles Using Mussaenda frondosa Leaf Extract and Its Antimicrobial Activity. Mater. Today Proc. 2021, 43, 1356–1360. [Google Scholar]
- Ramya, M.; Subapriya, M.S. Green Synthesis of Silver Nanoparticles. Int. J. Pharm. Med. Biol. Sci. 2012, 1, 54–57. [Google Scholar]
- Wahab, S.; Khan, T.; Adil, M.; Khan, A. Mechanistic Aspects of Plant-Based Silver Nanoparticles Against Multi-Drug Resistant Bacteria. Heliyon 2021, 7, e07448. [Google Scholar] [CrossRef]
- Karthiga, P.; Shankar, T.; Karthick, K.; Swarnalatha, K. Phytomediated Synthesis of Silver Nanoparticles Against Microbial Pathogens and Cytotoxicity on Human Breast Cancer Cells (MCF-7). Resour.-Eff. Technol. 2020, 1, 16. [Google Scholar] [CrossRef] [PubMed]
- Kozhantayeva, A.; Tursynova, N.; Kolpek, A.; Aibuldinov, Y.; Tursynova, A.; Mashan, T.; Mukazhanova, Z.; Ibrayeva, M.; Zeinuldina, A.; Nurlybayeva, A.; et al. Phytochemical Profiling, Antioxidant and Antimicrobial Potentials of Ethanol and Ethyl Acetate Extracts of Chamaenerion latifolium L. Pharmaceuticals 2024, 17, 996. Pharmaceuticals 2024, 17, 996. [Google Scholar] [CrossRef]
- Ghaffari-Moghaddam, M.; Hadi-Dabanlou, R.; Khajeh, M.; Rakhshanipour, M.; Shameli, K. Green Synthesis of Silver Nanoparticles Using Plant Extracts. Korean J. Chem. Eng. 2014, 31, 548–557. [Google Scholar] [CrossRef]
- Mammari, N.; Lamouroux, E.; Boudier, A.; Duval, R.E. Current Knowledge on the Oxidative-Stress-Mediated Antimicrobial Properties of Metal-Based Nanoparticles. Microorganisms 2022, 10, 437. [Google Scholar] [CrossRef]
- Godoy-Gallardo, M.; Eckhard, U.; Delgado, L.M.; de Roo Puente, Y.J.; Hoyos-Nogués, M.; Gil, F.J.; Perez, R.A. Antibacterial Approaches in Tissue Engineering Using Metal Ions and Nanoparticles: From Mechanisms to Applications. Bioact. Mater. 2021, 6, 4470–4490. [Google Scholar] [CrossRef] [PubMed]
- Alavi, M.; Hamblin, M.R. Antibacterial Silver Nanoparticles: Effects on Bacterial Nucleic Acids. Cell. Mol. Biomed. Rep. 2023, 3, 35–40. [Google Scholar] [CrossRef]
- Balouiri, M.; Sadiki, M.; Ibnsouda, S.K. Methods for In Vitro Evaluating Antimicrobial Activity: A Review. J. Pharm. Anal. 2016, 6, 71–79. [Google Scholar] [CrossRef]
- Singleton, V.L.; Rossi, J.A. Colorimetry of Total Phenolics with Phosphomolybdic-Phosphotungstic Acid Reagents. Am. J. Enol. Vitic. 1965, 16, 144–158. [Google Scholar] [CrossRef]
- Suleimenova, D.; Tashenov, Y.; Baptayev, B.; Balanay, M.P. Enhanced Efficiency and Stability of Dye-Sensitized Solar Cells Utilizing FeCo2S4; Nanowires as Pt-Free Counter Electrodes. J. Photochem. Photobiol. A Chem. 2024, 457, 115908. [Google Scholar] [CrossRef]
- Issatayev, N.; Abdumutaliyeva, D.; Tashenov, Y.; Yeskozha, D.; Seipiyev, A.; Bakenov, Z.; Nurpeissova, A. Three-Dimensional Carbon Coated and High Mass-Loaded NiO@Ni Foam Anode with High Specific Capacity for Lithium Ion Batteries. RSC Adv. 2024, 14, 40069–40076. [Google Scholar] [CrossRef]
- Ibrayeva, A.; Imanbekova, Z.; Abibulla, U.; Tashenov, Y.; Baptayev, B.; Balanay, M.P. Enhancing the Stability and Efficiency of Dye-Sensitized Solar Cells with MIL-125 Metal–Organic Framework as an Electrolyte Additive. Sci. Rep. 2025, 15, 5883. [Google Scholar] [CrossRef] [PubMed]
- Assali, M.; Mlitat, A.; Yacoub, A.; Hasson, A.; Mousa, A. Green Synthesis of Silver Nanoparticles Loaded with Doxorubicin in Polylactide Nanoparticles for Effective Cancer Therapy. J. Clust. Sci. 2024, 35, 2813–2821. [Google Scholar] [CrossRef]
- Tashenov, Y.; Suleimenova, D.; Baptayev, B.; Adilov, S.; Balanay, M.P. Efficient One-Step Synthesis of a Pt-Free Zn0.76Co0.24S Counter Electrode for Dye-Sensitized Solar Cells and Its Versatile Application in Photoelectrochromic Devices. Nanomaterials 2023, 13, 2812. [Google Scholar] [CrossRef] [PubMed]
- Kulzhanova, K.; Tekebayeva, Z.; Temirbekova, A.; Bazarhankyzy, A.; Temirkhanov, A.; Bissenova, G.; Mkilima, T.; Sarmurzina, Z. Isolation and Characterization of Bacterial Strains with Organic-Degrading Potential for Municipal Wastewater Treatment. J. Ecol. Eng. 2024, 25, 55–69. [Google Scholar] [CrossRef]
Extract | TPC (mg GAEs/g DM) * | TFC (mg QEs/g DM) * |
---|---|---|
Cir-EtOAc | 14.23 ± 0.85 | 7.24 ± 0.18 |
Cir-EtOH | 89.16 ± 1.15 | 8.06 ± 0.32 |
Peak No. | RT (min) | [M+H]− (m/z) | Identified Metabolite | Subclass | Molecular Formula | Cir-EtOH * | Cir-EtOAc * |
---|---|---|---|---|---|---|---|
1 | 3.92 | 179 | Caffeic acid | Phenolic acid | C9H8O4 | 9.80 | 0.34 |
2 | 5.09 | 169 | Gallic acid | Phenolic acid | C7H6O5 | 15.1 | 3.40 |
3 | 13.47 | 353 | Chlorogenic acid | Phenolic acid (glycoside) | C16H18O9 | 10.5 | _ |
4 | 19.17 | 609 | Rutin | Flavonoid (glycoside) | C27H30O16 | 1.20 | _ |
5 | 20.03 | 463 | Quercetin 3-glucoside | Flavonoid (glycoside) | C21H19O12 | 0.10 | 0.03 |
6 | 20.35 | 301 | Not identified | – | – | – | – |
7 | 20.79 | 163 | p-Coumaric acid | Phenolic acid | C9H8O3 | 14.6 | – |
8 | 21.93 | 193 | Ferulic acid | Phenolic acid | C10H10O4 | – | 0.10 |
9 | 22.70 | 359 | Rosmarinic acid | Phenolic acid | C18H16O8 | 0.29 | – |
10 | 35.36 | 269 | Apigenin | Flavonoid | C15H10O5 | – | 0.02 |
Microorganisms Tested | Gram Type | Extract | Positive Control | |
---|---|---|---|---|
Cir-EtOH | Cir-EtoAc | Penicillin, IZD, mm | ||
Bacillus cereus | Gram + | NA | NA | NA |
Straphylococcus aureus | Gram + | 0.59 ± 0.18 a | NA | 13.08 ± 0.80 |
Escherichia coli | Gram − | 1.07 ± 0.24 a | NA | NA |
Klebsiella pneumonia | Gram − | 2.54 ± 0.36 b | NA | NA |
Microorganisms Tested | Gram Type | AgNPs | Positive Control | ||
---|---|---|---|---|---|
DDM | AWD | Penicillin, IZD, mm(DDM) | Penicillin, IZD, mm (AWD) | ||
Bacillus cereus | Gram + | NA | NA | NA | NA |
Straphylococcusaureus | Gram + | 2.94 ± 0.20 b | 5.12 ± 0.39 a | 16.15 ± 0.87 | 15.86 ± 0.73 |
Escherichia coli | Gram − | 1.26 ± 0.21 a | 5.86 ± 0.51 a | NA | NA |
Klebsiella pneumonia | Gram − | 3.92 ± 0.12 c | 3.64 ± 0.33 b | NA | NA |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Iskakova, Z.; Kozhantayeva, A.; Temirbekova, A.; Mukhtubayeva, S.; Bissenova, G.; Tekebayeva, Z.; Almagambetov, K.; Tashenov, Y.; Sarmurzina, Z. Green Synthesis of Silver Nanoparticles Using Circaea lutetiana Ethanolic Extract: Phytochemical Profiling, Characterization, and Antimicrobial Evaluation. Int. J. Mol. Sci. 2025, 26, 5505. https://doi.org/10.3390/ijms26125505
Iskakova Z, Kozhantayeva A, Temirbekova A, Mukhtubayeva S, Bissenova G, Tekebayeva Z, Almagambetov K, Tashenov Y, Sarmurzina Z. Green Synthesis of Silver Nanoparticles Using Circaea lutetiana Ethanolic Extract: Phytochemical Profiling, Characterization, and Antimicrobial Evaluation. International Journal of Molecular Sciences. 2025; 26(12):5505. https://doi.org/10.3390/ijms26125505
Chicago/Turabian StyleIskakova, Zhanar, Akmaral Kozhantayeva, Aliya Temirbekova, Saule Mukhtubayeva, Gulmira Bissenova, Zhanar Tekebayeva, Kairtai Almagambetov, Yerbolat Tashenov, and Zinigul Sarmurzina. 2025. "Green Synthesis of Silver Nanoparticles Using Circaea lutetiana Ethanolic Extract: Phytochemical Profiling, Characterization, and Antimicrobial Evaluation" International Journal of Molecular Sciences 26, no. 12: 5505. https://doi.org/10.3390/ijms26125505
APA StyleIskakova, Z., Kozhantayeva, A., Temirbekova, A., Mukhtubayeva, S., Bissenova, G., Tekebayeva, Z., Almagambetov, K., Tashenov, Y., & Sarmurzina, Z. (2025). Green Synthesis of Silver Nanoparticles Using Circaea lutetiana Ethanolic Extract: Phytochemical Profiling, Characterization, and Antimicrobial Evaluation. International Journal of Molecular Sciences, 26(12), 5505. https://doi.org/10.3390/ijms26125505