Understanding the Role of Endocannabinoids in Posttraumatic Stress Disorder
Abstract
:1. Introduction
2. Background
2.1. Posttraumatic Stress Disorder
2.2. How Is PTSD Studied Experimentally?
2.2.1. Fear Conditioning
2.2.2. Trauma Film Paradigm
2.2.3. Additional Animal Models of PTSD
2.3. Endocannabinoid System Primer
3. Understanding Endocannabinoid Involvement in PTSD Using Preclinical Models
3.1. Animal Models of Endocannabinoid Modulation of Stress
3.2. Animal Models of Fear Conditioning
3.2.1. Seminal Fear Conditioning Endocannabinoids Research in Animals
3.2.2. Fear Conditioning Findings with High Relevance to Therapy
3.2.3. Discrepant Findings
3.2.4. Subsection Summary
3.3. Animal Models of PTSD
3.3.1. General Findings
3.3.2. Sex Differences
3.3.3. Discrepant Literature and the Difference Between Long- and Short-Term Outcomes
3.3.4. Subsection Summary
4. Understanding the Role of Endocannabinoid Signalling in PTSD in Humans
4.1. Human Tests of Endocannabinoids During Stress
4.2. Human Models of Fear Conditioning
4.2.1. Seminal Fear Conditioning Endocannabinoids Research in Humans
4.2.2. Emphasis on the FAAH Polymorphism in Fear Conditioning
4.2.3. THC Administration During Fear Conditioning
4.2.4. Endocannabinoids During the Trauma Film Paradigm
4.2.5. Subsection Summary
4.3. Association Between PTSD and Endocannabinoid Signalling in Humans
4.3.1. Circulating Endocannabinoids and PTSD Symptomology
4.3.2. FAAH Polymorphism and PTSD Symptomology
4.3.3. Relationship Between Exercise, Endocannabinoids, and PTSD
4.3.4. Endocannabinoids During Therapy and During Experimentation in Patients with PTSD
4.3.5. Trials and Retrospective Studies
4.3.6. Population-Based Cross-Sectional Studies
4.3.7. Subsection Summary
5. The Current Hypothesis, Challenges, and Future Directions
5.1. The Current Hypothesis and Approaches to Treatment
5.2. Challenges and Future Directions
5.2.1. Future Directions in Experimental Research
5.2.2. Clinical Trials
5.2.3. Contextual and Logistical Challenges
5.2.4. Risks of Cannabinoid Use in PTSD
5.3. Section Summary
6. Summary and Conclusions
Funding
Conflicts of Interest
Abbreviations
2-AG | 2-arachidonoyl glycerol |
AEA | Arachidonoyl ethanolamide |
CB1 | Cannabinoid Receptor 1 |
CB2 | Cannabinoid Receptor 2 |
CBD | Cannabidiol |
CS | Conditioned stimulus |
DAGL | Diacylglycerol lipase |
FAAH | Fatty acid amide hydrolase |
HPA | Hypothalamic–pituitary–adrenal |
MAGL | Monoacylglycerol lipase |
OEA | Oleoylethanolamide |
PEA | Palmitoylethanolamide |
PTSD | Posttraumatic stress disorder |
THC | Delta9-tetrahydrocannabinol |
US | Unconditioned stimulus |
References
- Kessler, R.C.; Aguilar-Gaxiola, S.; Alonso, J.; Benjet, C.; Bromet, E.J.; Cardoso, G.; Degenhardt, L.; de Girolamo, G.; Dinolova, R.V.; Ferry, F.; et al. Trauma and PTSD in the WHO World Mental Health Surveys. Eur. J. Psychotraumatol. 2017, 8, 1353383. [Google Scholar] [CrossRef] [PubMed]
- Koenen, K.C.; Ratanatharathorn, A.; Ng, L.; McLaughlin, K.A.; Bromet, E.J.; Stein, D.J.; Karam, E.G.; Meron Ruscio, A.; Benjet, C.; Scott, K.; et al. Posttraumatic stress disorder in the World Mental Health Surveys. Psychol. Med. 2017, 47, 2260–2274. [Google Scholar] [CrossRef] [PubMed]
- American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders, 5th ed.; American Psychiatric Association: Washington, DC, USA, 2013. [Google Scholar]
- Steinert, C.; Mareike, H.; Falk, L.; Kruse, J. The course of PTSD in naturalistic long-term studies: High variability of outcomes. A systematic review. Nord. J. Psychiatry 2015, 69, 483–496. [Google Scholar] [CrossRef] [PubMed]
- Jellestad, L.; Vital, N.A.; Malamud, J.; Taeymans, J.; Mueller-Pfeiffer, C. Functional impairment in Posttraumatic Stress Disorder: A systematic review and meta-analysis. J. Psychiatr. Res. 2021, 136, 14–22. [Google Scholar] [CrossRef]
- Bisson, J.I.; Roberts, N.P.; Andrew, M.; Cooper, R.; Lewis, C. Psychological therapies for chronic post-traumatic stress disorder (PTSD) in adults. Cochrane Database Syst. Rev. 2013, CD003388. [Google Scholar] [CrossRef]
- Stein, D.J.; Ipser, J.C.; Seedat, S. Pharmacotherapy for post traumatic stress disorder (PTSD). Cochrane Database Syst. Rev. 2006, CD002795. [Google Scholar] [CrossRef]
- Levi, O.; Ben Yehuda, A.; Pine, D.S.; Bar-Haim, Y. A Sobering Look at Treatment Effectiveness of Military-Related Posttraumatic Stress Disorder. Clin. Psychol. Sci. 2021, 10, 690–699. [Google Scholar] [CrossRef]
- Hill, M.N.; Campolongo, P.; Yehuda, R.; Patel, S. Integrating Endocannabinoid Signaling and Cannabinoids into the Biology and Treatment of Posttraumatic Stress Disorder. Neuropsychopharmacology 2018, 43, 80–102. [Google Scholar] [CrossRef]
- Howlett, A.C.; Barth, F.; Bonner, T.I.; Cabral, G.; Casellas, P.; Devane, W.A.; Felder, C.C.; Herkenham, M.; Mackie, K.; Martin, B.R.; et al. International Union of Pharmacology. XXVII. Classification of Cannabinoid Receptors. Pharmacol. Rev. 2002, 54, 161–202. [Google Scholar] [CrossRef]
- Ligresti, A.; De Petrocellis, L.; Di Marzo, V. From Phytocannabinoids to Cannabinoid Receptors and Endocannabinoids: Pleiotropic Physiological and Pathological Roles Through Complex Pharmacology. Physiol. Rev. 2016, 96, 1593–1659. [Google Scholar] [CrossRef]
- Pagotto, U.; Marsicano, G.; Fezza, F.; Theodoropoulou, M.; Grübler, Y.; Stalla, J.; Arzberger, T.; Milone, A.; Losa, M.; Di Marzo, V.; et al. Normal human pituitary gland and pituitary adenomas express cannabinoid receptor type 1 and synthesize endogenous cannabinoids: First evidence for a direct role of cannabinoids on hormone modulation at the human pituitary level. J. Clin. Endocrinol. Metab. 2001, 86, 2687–2696. [Google Scholar] [CrossRef] [PubMed]
- Marsicano, G.; Wotjak, C.T.; Azad, S.C.; Bisognok, T.; Rammes, G.; Casciok, M.G.; Hermann, H.; Tang, J.; Hofmann, C.; Zieglgansberger, W.; et al. The endogenous cannabinoid system controls extinction of aversive memories. Nature 2002, 418, 530–534. [Google Scholar] [CrossRef] [PubMed]
- Melis, M.; Pistis, M. Endocannabinoid signaling in midbrain dopamine neurons: More than physiology? Curr. Neuropharmacol. 2007, 5, 268–277. [Google Scholar] [CrossRef] [PubMed]
- Wise, L.E.; Iredale, P.A.; Lichtman, A.H. The cannabinoid CB(1) receptor antagonist CE prolongs spatial memory duration in a rat delayed radial arm maze memory task. Eur. J. Pharmacol. 2008, 590, 246–249. [Google Scholar] [CrossRef]
- Pamplona, F.A.; Bitencourt, R.M.; Takahashi, R.N. Short- and long-term effects of cannabinoids on the extinction of contextual fear memory in rats. Neurobiol. Learn. Mem. 2008, 90, 290–293. [Google Scholar] [CrossRef]
- Mayo, L.M.; Rabinak, C.A.; Hill, M.N.; Heilig, M. Targeting the endocannabinoid system in the treatment of PTSD: A promising case of preclinical-clinical translation? Biol. Psychiatry 2021, 91, 262–272. [Google Scholar] [CrossRef]
- Bassir Nia, A.; Bender, R.; Harpaz-Rotem, I. Endocannabinoid System Alterations in Posttraumatic Stress Disorder: A Review of Developmental and Accumulative Effects of Trauma. Chronic Stress 2019, 3, 2470547019864096. [Google Scholar] [CrossRef]
- Ney, L.J.; Matthews, A.; Bruno, R.; Felmingham, K.L. Cannabinoid interventions for PTSD: Where to next? Prog. Neuropsychopharmacol. Biol. Psychiatry 2019, 93, 124–140. [Google Scholar] [CrossRef]
- Ney, L.J.; Akosile, W.; Davey, C.G.; Pitcher, L.; Felmingham, K.; Mayo, L.; Hill, M.; Strodl, E. Australian clinical feasibility considerations for treatment of PTSD with cannabinoid-augmented exposure therapy. Aust. N. Z. J. Psychiatry 2023, 58, 198–200. [Google Scholar] [CrossRef]
- Lutz, B. The endocannabinoid system and extinction learning. Mol. Neurobiol. 2007, 36, 92–101. [Google Scholar] [CrossRef]
- Ney, L.J.; Matthews, A.; Bruno, R.; Felmingham, K.L. Modulation of the endocannabinoid system by sex hormones: Implications for Posttraumatic Stress Disorder. Neurosci. Biobehav. Rev. 2018, 94, 302–320. [Google Scholar] [CrossRef] [PubMed]
- Trezza, V.; Campolongo, P. The endocannabinoid system as a possible target to treat both the cognitive and emotional features of post-traumatic stress disorder (PTSD). Front. Behav. Neurosci. 2013, 7, 100. [Google Scholar] [CrossRef] [PubMed]
- de Bitencourt, R.M.; Pamplona, F.A.; Takahashi, R.N. A current overview of cannabinoids and glucocorticoids in facilitating extinction of aversive memories: Potential extinction enhancers. Neuropharmacology 2013, 64, 389–395. [Google Scholar] [CrossRef] [PubMed]
- Papini, S.; Sullivan, G.M.; Hien, D.A.; Shvil, E.; Neria, Y. Toward a translational approach to targeting the endocannabinoid system in posttraumatic stress disorder: A critical review of preclinical research. Biol. Psychol. 2015, 104, 8–18. [Google Scholar] [CrossRef]
- Korem, N.; Zer-Aviv, T.M.; Ganon-Elazar, E.; Abush, H.; Akirav, I. Targeting the endocannabinoid system to treat anxiety-related disorders. J. Basic. Clin. Physiol. Pharmacol. 2016, 27, 193–202. [Google Scholar] [CrossRef]
- Zer-Aviv, T.M.; Segev, A.; Akirav, I. Cannabinoids and post-traumatic stress disorder: Clinical and preclinical evidence for treatment and prevention. Behav. Pharmacol. 2016, 27, 561–569. [Google Scholar] [CrossRef]
- Berardi, A.; Schelling, G.; Campolongo, P. The endocannabinoid system and Post Traumatic Stress Disorder (PTSD): From preclinical findings to innovative therapeutic approaches in clinical settings. Pharmacol. Res. 2016, 111, 668–678. [Google Scholar] [CrossRef]
- Patel, S.; Hill, M.N.; Cheer, J.F.; Wotjak, C.T.; Holmes, A. The endocannabinoid system as a target for novel anxiolytic drugs. Neurosci. Biobehav. Rev. 2017, 76, 56–66. [Google Scholar] [CrossRef]
- Steenkamp, M.M.; Blessing, E.M.; Galatzer-Levy, I.R.; Hollahan, L.C.; Anderson, W.T. Marijuana and other cannabinoids as a treatment for posttraumatic stress disorder: A literature review. Depress. Anxiety 2017, 34, 207–216. [Google Scholar] [CrossRef]
- Foa, E.B.; Kozak, M.J. Emotional processing of fear: Exposure to corrective information. Psychol. Bull. 1986, 99, 20–35. [Google Scholar] [CrossRef]
- Ney, L.J.; Hsu, C.; Nicholson, E.; Zuj, D.V.; Clark, L.; Kleim, B.; Felmingham, K.L. The Effect of Self-Reported REM Behavior Disorder Symptomology on Intrusive Memories in Post-Traumatic Stress Disorder. Behav. Sleep Med. 2020, 19, 178–191. [Google Scholar] [CrossRef]
- Germain, A. Sleep Disturbances as the Hallmark of PTSD: Where Are We Now? Am. J. Psychiatry Off. J. Am. Psychiatr. Assoc. 2013, 170, 372–382. [Google Scholar] [CrossRef]
- Mysliwiec, V.; Brock, M.S.; Creamer, J.L.; O’Reilly, B.M.; Germain, A.; Roth, B.J. Trauma associated sleep disorder: A parasomnia induced by trauma. Sleep Med. Rev. 2018, 37, 94–104. [Google Scholar] [CrossRef]
- Bryant, R.A. Acute stress disorder as a predictor of posttraumatic stress disorder: A systematic review. J. Clin. Psychiatry 2010, 71, 381. [Google Scholar] [CrossRef]
- Bryant, R.A.; O’Donnell, M.L.; Creamer, M.; McFarlane, A.C.; Silove, D. A multisite analysis of the fluctuating course of posttraumatic stress disorder. JAMA Psychiatry 2013, 70, 839–846. [Google Scholar] [CrossRef]
- Breslau, N.; Kessler, R.C.; Chilcoat, H.D.; Schultz, L.R.; Davis, G.C.; Andreski, P. Trauma and posttraumatic stress disorder in the community: The 1996 Detroit Area Survey of Trauma. Arch. Gen. Psychiatry 1998, 55, 626–632. [Google Scholar] [CrossRef]
- Kessler, R.C.; Chiu, W.T.; Demler, O.; Watters, E.E. Prevalence, Severity, and Comorbidity of 12-Month DSM-IV Disorders in the National Comorbidity Survey Replication. Arch. Gen. Psychiatry 2005, 62, 617–627. [Google Scholar] [CrossRef]
- Scott, K.M.; Koenen, K.C.; King, A.; Petukhova, M.V.; Alonso, J.; Bromet, E.J.; Bruffaerts, R.; Bunting, B.; de Jonge, P.; Haro, J.M.; et al. Post-traumatic stress disorder associated with sexual assault among women in the WHO World Mental Health Surveys. Psychol. Med. 2018, 48, 155–167. [Google Scholar] [CrossRef]
- Maercker, A.; Horn, A.B. A socio-interpersonal perspective on PTSD: The case for environments and interpersonal processes. Clin. Psychol. Psychother. 2013, 20, 465–481. [Google Scholar] [CrossRef]
- Christiansen, D.M.; Berke, E.T. Gender-and sex-based contributors to sex differences in PTSD. Curr. Psychiatry Rep. 2020, 22, 19. [Google Scholar] [CrossRef]
- Davis, L.L.; Schein, J.; Cloutier, M.; Gagnon-Sanschagrin, P.; Maitland, J.; Urganus, A.; Guerin, A.; Lefebvre, P.; Houle, C.R. The Economic Burden of Posttraumatic Stress Disorder in the United States From a Societal Perspective. J. Clin. Psychiatry 2022, 83, 21m14116. [Google Scholar] [CrossRef] [PubMed]
- Ferry, F.R.; Brady, S.E.; Bunting, B.P.; Murphy, S.D.; Bolton, D.; O’Neill, S.M. The Economic Burden of PTSD in Northern Ireland. J. Trauma. Stress 2015, 28, 191–197. [Google Scholar] [CrossRef] [PubMed]
- Ivanova, J.I.; Birnbaum, H.G.; Chen, L.; Duhig, A.M.; Dayoub, E.J.; Kantor, E.S.; Schiller, M.B.; Phillips, G.A. Cost of post-traumatic stress disorder vs major depressive disorder among patients covered by medicaid or private insurance. Am. J. Manag. Care 2011, 17, e314–e323. [Google Scholar]
- Kessler, R.C. Posttraumatic stress disorder: The burden to the individual and to society. J. Clin. Psychiatry 2000, 61 (Suppl. S5), 4–12, discussion 13–14. [Google Scholar]
- McGowan, I. The Economic Burden of PTSD. A brief review of salient literature. Int. J. Psychiatry Ment. Health 2019, 1, 20–26. [Google Scholar] [CrossRef]
- Bruffaerts, R.; Vilagut, G.; Demyttenaere, K.; Alonso, J.; Alhamzawi, A.; Andrade, L.H.; Benjet, C.; Bromet, E.; Bunting, B.; de Girolamo, G.; et al. Role of common mental and physical disorders in partial disability around the world. Br. J. Psychiatry J. Ment. Sci. 2012, 200, 454–461. [Google Scholar] [CrossRef]
- Nichter, B.; Norman, S.; Haller, M.; Pietrzak, R.H. Psychological burden of PTSD, depression, and their comorbidity in the U.S. veteran population: Suicidality, functioning, and service utilization. J. Affect. Disord. 2019, 256, 633–640. [Google Scholar] [CrossRef]
- Nichter, B.; Norman, S.; Haller, M.; Pietrzak, R.H. Physical health burden of PTSD, depression, and their comorbidity in the U.S. veteran population: Morbidity, functioning, and disability. J. Psychosom. Res. 2019, 124, 109744. [Google Scholar] [CrossRef]
- McNally, R.J.; Frueh, B.C. Why are Iraq and Afghanistan War veterans seeking PTSD disability compensation at unprecedented rates? J. Anxiety Disord. 2013, 27, 520–526. [Google Scholar] [CrossRef]
- O’Donnell, M.L.; Creamer, M.; Pattison, P. Posttraumatic Stress Disorder and Depression Following Trauma: Understanding Comorbidity. Am. J. Psychiatry 2004, 161, 1390–1396. [Google Scholar] [CrossRef]
- Spinhoven, P.; Penninx, B.W.; Van Hemert, A.M.; De Rooij, M.; Elzinga, B.M. Comorbidity of PTSD in anxiety and depressive disorders: Prevalence and shared risk factors. Child Abus. Negl. 2014, 38, 1320–1330. [Google Scholar] [CrossRef] [PubMed]
- Saladin, M.E.; Brady, K.T.; Dansky, B.S.; Kilpatrick, D.G. Understanding comorbidity between PTSD and substance use disorders: Two preliminary investigations. Addict. Behav. 1995, 20, 643–655. [Google Scholar] [CrossRef] [PubMed]
- Panagioti, M.; Gooding, P.A.; Tarrier, N. A meta-analysis of the association between posttraumatic stress disorder and suicidality: The role of comorbid depression. Compr. Psychiatry 2012, 53, 915–930. [Google Scholar] [CrossRef]
- Graham, B.M.; Callaghan, B.L.; Richardson, R. Bridging the gap: Lessons we have learnt from the merging of psychology and psychiatry for the optimisation of treatments for emotional disorders. Behav. Res. Ther. 2014, 62, 3–16. [Google Scholar] [CrossRef]
- Squires, N.K.; Squires, K.C.; Hillyard, S.A. Two varieties of long-latency positive waves evoked by unpredictable auditory stimuli in man. Electroencephalogr. Clin. Neurophysiol. 1975, 38, 387–401. [Google Scholar] [CrossRef]
- MacLeod, C.; Mathews, A.; Tata, P. Attentional bias in emotional disorders. J. Abnorm. Psychol. 1986, 95, 15–20. [Google Scholar] [CrossRef]
- Pavlov, I.P. Conditioned Reflexes: An Investigation of the Physiological Activity of the Cerebral Cortex; Oxford University Press: London, UK, 1927. [Google Scholar]
- Bouton, M.E.; Maren, S.; McNally, G.P. Behavioral and neurobiological mechanisms of pavlovian and instrumental extinction learning. Physiol. Rev. 2020, 101, 611–681. [Google Scholar] [CrossRef]
- Lonsdorf, T.B.; Menz, M.M.; Andreatta, M.; Fullana, M.A.; Golkar, A.; Haaker, J.; Heitland, I.; Hermann, A.; Kuhn, M.; Kruse, O.; et al. Don’t fear ‘fear conditioning’: Methodological considerations for the design and analysis of studies on human fear acquisition, extinction, and return of fear. Neurosci. Biobehav. Rev. 2017, 77, 247–285. [Google Scholar] [CrossRef]
- Vervliet, B.; Craske, M.G.; Hermans, D. Fear extinction and relapse: State of the art. Annu. Rev. Clin. Psychol. 2013, 9, 215–248. [Google Scholar] [CrossRef]
- Beckers, T.; Hermans, D.; Lange, I.; Luyten, L.; Scheveneels, S.; Vervliet, B. Understanding clinical fear and anxiety through the lens of human fear conditioning. Nat. Rev. Psychol. 2023, 2, 233–245. [Google Scholar] [CrossRef]
- Ehlers, A.; Clark, D.M. A cognitive model of posttraumatic stress disorder. Behav. Res. Ther. 2000, 38, 319–345. [Google Scholar] [CrossRef] [PubMed]
- Foa, E.B.; Chrestman, K.R.; Gilboa-Schechtman, E. Prolonged Exposure Therapy for Adolescents with PTSD Therapist Guide: Emotional Processing of Traumatic Experiences; Oxford Academic: Oxford, UK, 2008. [Google Scholar] [CrossRef]
- Craske, M.G.; Treanor, M.; Conway, C.C.; Zbozinek, T.; Vervliet, B. Maximizing exposure therapy: An inhibitory learning approach. Behav. Res. Ther. 2014, 58, 10–23. [Google Scholar] [CrossRef] [PubMed]
- Bouton, M.E. Context and behavioral processes in extinction. Learn. Mem. 2004, 11, 485–494. [Google Scholar] [CrossRef] [PubMed]
- Foa, E.B.; Hembree, E.A.; Rothbaum, B.O.; Rauch, S.A.M. Prolonged Exposure Therapy for PTSD: Emotional Processing of Traumatic Experiences: Therapist Guide, 2nd ed.; Oxford University Press: New York, NY, USA, 2019; pp. xi, 181. [Google Scholar]
- Foa, E.B.; Kozak, M.J. Emotional processing: Theory, research, and clinical implications for anxiety disorders. In Emotion, Psychotherapy, and Change; The Guilford Press: New York, NY, USA, 1991; pp. 21–49. [Google Scholar]
- Lipp, O.V. Human Fear Learning: Contemporary Procedures and Measurement. In Fear and Learning: From Basic Processes to Clinical Implications; American Psychological Association: Washington, DC, USA, 2006; pp. 37–51. [Google Scholar]
- Haaker, J.; Maren, S.; Andreatta, M.; Merz, C.J.; Richter, J.; Richter, S.H.; Meir Drexler, S.; Lange, M.D.; Jüngling, K.; Nees, F.; et al. Making translation work: Harmonizing cross-species methodology in the behavioural neuroscience of Pavlovian fear conditioning. Neurosci. Biobehav. Rev. 2019, 107, 329–345. [Google Scholar] [CrossRef]
- Wang, Y.; Olsson, S.; Lipp, O.V.; Ney, L.J. Renewal in human fear conditioning: A systematic review and meta-analysis. Neurosci. Biobehav. Rev. 2024, 159, 105606. [Google Scholar] [CrossRef]
- Ney, L.J.; Laing, P.A.F.; Steward, T.; Zuj, D.V.; Dymond, S.; Harrison, B.; Graham, B.; Felmingham, K.L. Methodological implications of sample size and extinction gradient on the robustness of fear conditioning across different analytic strategies. PLoS ONE 2022, 17, e0268814. [Google Scholar] [CrossRef]
- Beckers, T.; Krypotos, A.M.; Boddez, Y.; Effting, M.; Kindt, M. What’s wrong with fear conditioning? Biol. Psychol. 2013, 92, 90–96. [Google Scholar] [CrossRef]
- Scheveneels, S.; Boddez, Y.; Hermans, D. Predicting clinical outcomes via human fear conditioning: A narrative review. Behav. Res. Ther. 2021, 142, 103870. [Google Scholar] [CrossRef]
- Zuj, D.V.; Palmer, M.A.; Lommen, M.J.; Felmingham, K.L. The centrality of fear extinction in linking risk factors to PTSD: A narrative review. Neurosci. Biobehav. Rev. 2016, 69, 15–35. [Google Scholar] [CrossRef]
- Graham, B.M.; Milad, M.R. The Study of Fear Extinction: Implications for Anxiety Disorders. Am. J. Psychiatry 2011, 168, 1255–1265. [Google Scholar] [CrossRef]
- Culver, N.; Vervliet, B.; Craske, M. Compound Extinction: Using the Rescorla-Wagner Model to Maximize Exposure Therapy Effects for Anxiety Disorders. Clin. Psychol. Sci. 2014, 3, 335–348. [Google Scholar] [CrossRef]
- Lipp, O.V.; Waters, A.M.; Luck, C.C.; Ryan, K.M.; Craske, M.G. Novel approaches for strengthening human fear extinction: The roles of novelty, additional USs, and additional GSs. Behav. Res. Ther. 2020, 124, 103529. [Google Scholar] [CrossRef]
- Scheveneels, S.; Boddez, Y.; Vervliet, B.; Hermans, D. The validity of laboratory-based treatment research: Bridging the gap between fear extinction and exposure treatment. Behav. Res. Ther. 2016, 86, 87–94. [Google Scholar] [CrossRef]
- Ney, L.J.; Crombie, K.M.; Mayo, L.M.; Felmingham, K.L.; Bowser, T.; Matthews, A. Translation of animal endocannabinoid models of PTSD mechanisms to humans: Where to next? Neurosci. Biobehav. Rev. 2022, 132, 76–91. [Google Scholar] [CrossRef]
- Horowitz, M.J. Psychic trauma. Return of images after a stress film. Arch. Gen. Psychiatry 1969, 20, 552–559. [Google Scholar] [CrossRef]
- Lazarus, R.S. A laboratory approach to the dynamics of psychological stress. Am. Psychol. 1964, 19, 400–411. [Google Scholar] [CrossRef]
- Holmes, E.A.; Brewin, C.R.; Hennessy, R.G. Trauma films, information processing, and intrusive memory development. J. Exp. Psychol. Gen. 2004, 133, 3–22. [Google Scholar] [CrossRef]
- Holmes, E.A.; James, E.L.; Coode-Bate, T.; Deeprose, C. Can Playing the Computer Game “Tetris” Reduce the Build-Up of Flashbacks for Trauma? A Proposal from Cognitive Science. PLoS ONE 2009, 4, e4153. [Google Scholar] [CrossRef]
- Iyadurai, L.; Visser, R.M.; Lau-Zhu, A.; Porcheret, K.; Horsch, A.; Holmes, E.A.; James, E.L. Intrusive memories of trauma: A target for research bridging cognitive science and its clinical application. Clin. Psychol. Rev. 2019, 69, 67–82. [Google Scholar] [CrossRef]
- Holmes, E.A.; Bourne, C. Inducing and modulating intrusive emotional memories: A review of the trauma film paradigm. Acta Psychol. 2008, 127, 553–566. [Google Scholar] [CrossRef]
- James, E.L.; Lau-Zhu, A.; Clark, I.A.; Visser, R.M.; Hagenaars, M.A.; Holmes, E.A. The trauma film paradigm as an experimental psychopathology model of psychological trauma: Intrusive memories and beyond. Clin. Psychol. Rev. 2016, 47, 106–142. [Google Scholar] [CrossRef] [PubMed]
- Lau-Zhu, A.; Holmes, E.A.; Porcheret, K. Intrusive Memories of Trauma in the Laboratory: Methodological Developments and Future Directions. Curr. Behav. Neurosci. Rep. 2018, 5, 61–71. [Google Scholar] [CrossRef] [PubMed]
- Horsch, A.; Vial, Y.; Favrod, C.; Morisod Harari, M.; Blackwell, S.; Watson, P.; Iyadurai, L.; Bonsall, M.; Holmes, E. Reducing intrusive traumatic memories after emergency caesarean section: A proof-of-principle randomized controlled study. Behav. Res. Ther. 2017, 94, 36–47. [Google Scholar] [CrossRef]
- Iyadurai, L.; Blackwell, S.E.; Meiser-Stedman, R.; Watson, P.C.; Bonsall, M.B.; Geddes, J.R.; Nobre, A.C.; Holmes, E.A. Preventing intrusive memories after trauma via a brief intervention involving Tetris computer game play in the emergency department: A proof-of-concept randomized controlled trial. Mol. Psychiatry 2018, 23, 674–682. [Google Scholar] [CrossRef]
- Iyadurai, L.; Hales, S.; Blackwell, S.; Young, K.; Holmes, E. Targeting intrusive imagery using a competing task technique: A case study. Behav. Cogn. Psychother. 2020, 48, 739–744. [Google Scholar] [CrossRef]
- Kanstrup, M.; Singh, L.; Göransson, K.; Widoff, J.; Taylor, R.; Gamble, B.; Iyadurai, L.; Moulds, M.; Holmes, E. Reducing intrusive memories after trauma via a brief cognitive task intervention in the hospital emergency department: An exploratory pilot randomised controlled trial. Transl. Psychiatry 2021, 11, 30. [Google Scholar] [CrossRef]
- Wegerer, M.; Blechert, J.; Kerschbaum, H.; Wilhelm, F.H. Relationship between fear conditionability and aversive memories: Evidence from a novel conditioned-intrusion paradigm. PLoS ONE 2013, 8, e79025. [Google Scholar] [CrossRef]
- Ney, L.J.; Schenker, M.; Lipp, O.V. Combining the trauma film and fear conditioning paradigms: A theoretical review and meta-analysis with relevance to PTSD. Behav. Res. Ther. 2022, 152, 104081. [Google Scholar] [CrossRef]
- Borghans, B.; Homberg, J.R. Animal models for posttraumatic stress disorder: An overview of what is used in research. World J. Psychiatry 2015, 5, 387–396. [Google Scholar] [CrossRef]
- Yehuda, R.; Antelman, S.M. Criteria for rationally evaluating animal models of posttraumatic stress disorder. Biol. Psychiatry 1993, 33, 479–486. [Google Scholar] [CrossRef]
- Pulliam, J.V.; Dawaghreh, A.M.; Alema-Mensah, E.; Plotsky, P.M. Social defeat stress produces prolonged alterations in acoustic startle and body weight gain in male Long Evans rats. J. Psychiatr. Res. 2010, 44, 106–111. [Google Scholar] [CrossRef] [PubMed]
- Corley, M.J.; Caruso, M.J.; Takahashi, L.K. Stress-induced enhancement of fear conditioning and sensitization facilitates extinction-resistant and habituation-resistant fear behaviors in a novel animal model of posttraumatic stress disorder. Physiol. Behav. 2012, 105, 408–416. [Google Scholar] [CrossRef] [PubMed]
- Cohen, H.; Kaplan, Z.; Matar, M.A.; Loewenthal, U.; Zohar, J.; Richter-Levin, G. Long-lasting behavioral effects of juvenile trauma in an animal model of PTSD associated with a failure of the autonomic nervous system to recover. Eur. Neuropsychopharmacol. 2007, 17, 464–477. [Google Scholar] [CrossRef] [PubMed]
- Cohen, H.; Zohar, J. An animal model of posttraumatic stress disorder: The use of cut-off behavioral criteria. Ann. N. Y. Acad. Sci. 2004, 1032, 167–178. [Google Scholar] [CrossRef]
- Hall, C.; Ballachey, E.L. A study of the rat’s behavior in a field. A contribution to method in comparative psychology. Univ. Calif. Publ. Psychol. 1932, 6, 1–12. [Google Scholar]
- Brewin, C.R.; Gregory, J.D.; Lipton, M.; Burgess, N. Intrusive images in psychological disorders: Characteristics, neural mechanisms, and treatment implications. Psychol. Rev. 2010, 117, 210–232. [Google Scholar] [CrossRef]
- Olton, D.S.; Collison, C.; Werz, M.A. Spatial memory and radial arm maze performance of rats. Learn. Motiv. 1977, 8, 289–314. [Google Scholar] [CrossRef]
- Morris, R. Developments of a water-maze procedure for studying spatial learning in the rat. J. Neurosci. Methods 1984, 11, 47–60. [Google Scholar] [CrossRef]
- Vogel-Ciernia, A.; Wood, M.A. Examining object location and object recognition memory in mice. Curr. Protoc. Neurosci. 2014, 69, 8.31.1–8.31.17. [Google Scholar] [CrossRef]
- Hudson, B.B. One-trial learning in the domestic rat. Genet. Psychol. Monogr. 1950, 41, 99–145. [Google Scholar]
- Ojala, K.E.; Bach, D.R. Measuring learning in human classical threat conditioning: Translational, cognitive and methodological considerations. Neurosci. Biobehav. Rev. 2020, 114, 96–112. [Google Scholar] [CrossRef] [PubMed]
- Ney, L.J.; Wade, M.; Reynolds, A.; Zuj, D.V.; Dymond, S.; Matthews, A.; Felmingham, K.L. Critical evaluation of current data analysis strategies for psychophysiological measures of fear conditioning and extinction in humans. Int. J. Psychophysiol. 2018, 134, 95–107. [Google Scholar] [CrossRef] [PubMed]
- Howlett, A.C.; Champion, T.M.; Wilken, G.H.; Mechoulam, R. Stereochemical effects of 11-OH-Δ8-tetrahydrocannabinol-dimethylheptyl to inhibit adenylate cyclase and bind to the cannabinoid receptor. Neuropharmacology 1990, 29, 161–165. [Google Scholar] [CrossRef] [PubMed]
- Mechoulam, R.; Ben-Shabat, S.; Hanus, L.; Ligumsky, M.; Kaminski, N.E.; Schatz, A.R.; Gopher, A.; Almog, S.; Martin, B.R.; Compton, D.R.; et al. Identification of an Endogenous 2-Monoglyceride, Present in Canine Gut, that Binds to Cannbinoid Receptors. Biochem. Pharmacol. 1995, 50, 83–90. [Google Scholar] [CrossRef]
- Mechoulam, R.; Gaoni, Y. A Total Synthesis of dl-Δ1-Tetrahydrocannabinol, the Active Constituent of Hashish. J. Am. Chem. Soc. 1965, 87, 3273–3275. [Google Scholar] [CrossRef]
- Mechoulam, R.; Lander, N.; Srebnik, M.; Breuer, A.; Segal, M.; Feigenbaum, J.; Jarbe, T.; Consroe, P. Stereochemical requirements for cannabimimetic activity. NIDA Res. Monogr. 1987, 79, 15–30. [Google Scholar]
- Devane, W.; Dysarz, F.A.; Johnson, M.R.; Melvin, L.S.; Howlett, A. Determination and Characterization of a Cannabinoid Receptor in Rat Brain. Mol. Pharmacol. 1988, 34, 605–613. [Google Scholar] [CrossRef]
- Devane, W.A.; Hanus, L.; Breuer, A.; Pertwee, R.G.; Stevenson, L.A.; Griffin, G.; Gibson, D.; Mandelbaum, A.; Etinger, A.; Mechoulam, R. Isolation and Structure of a Brain Constituent That Binds to the Cannabinoid Receptor. Science 1992, 258, 1946–1949. [Google Scholar] [CrossRef]
- Suguira, T.; Kondo, S.; Sukawaga, A.; Nakane, S.; Shinoda, A.; Itoh, K.; Yamashita, A.; Waku, K. 2-Arachidonoylgylcerol: A possible endogenous cannabinoid receptor ligand in the brain. Biochem. Biophys. Res. Commun. 1995, 215, 89–97. [Google Scholar] [CrossRef]
- Howlett, A.C. Cannabinoid receptor signaling. In Handbook of Experimental Pharmacology; Springer: Berlin/Heidelberg, Germany, 2005; pp. 53–79. [Google Scholar] [CrossRef]
- Pertwee, R.G. The diverse CB1 and CB2 receptor pharmacology of three plant cannabinoids: Delta9-tetrahydrocannabinol, cannabidiol and delta9-tetrahydrocannabivarin. Br. J. Pharmacol. 2008, 153, 199–215. [Google Scholar] [CrossRef]
- McPartland, J.M.; Duncan, M.; Di Marzo, V.; Pertwee, R.G. Are cannabidiol and Delta(9)-tetrahydrocannabivarin negative modulators of the endocannabinoid system? A systematic review. Br. J. Pharmacol. 2015, 172, 737–753. [Google Scholar] [CrossRef]
- Pertwee, R.G. Cannabinoid pharmacology: The first 66 years. Br. J. Pharmacol. 2006, 147 (Suppl. S1), S163–S171. [Google Scholar] [CrossRef] [PubMed]
- Kano, M.; Ohno-Shosaku, T.; Hashimotodani, Y.; Uchigashima, M.; Watanabe, M. Endocannabinoid-mediated control of synaptic transmission. Physiol. Rev. 2009, 89, 309–380. [Google Scholar] [CrossRef]
- Ohno-Shosaku, T.; Maejima, T.; Kano, M. Endogenous Cannabinoids Mediate Retrograde Signals from Depolarized Postsynaptic Neurons to Presynaptic Terminals. Neuron 2001, 29, 729–738. [Google Scholar] [CrossRef]
- De Petrocellis, L.; Di Marzo, V. Non-CB1, non-CB2 receptors for endocannabinoids, plant cannabinoids, and synthetic cannabimimetics: Focus on G-protein-coupled receptors and transient receptor potential channels. J. Neuroimmune Pharmacol. 2010, 5, 103–121. [Google Scholar] [CrossRef]
- Di Marzo, V. Targeting the endocannabinoid system: To enhance or reduce? Nat. Rev. Drug Discov. 2008, 7, 438–455. [Google Scholar] [CrossRef]
- Di Marzo, V.; Fontana, A.; Cadas, H.; Schinelli, S.; Cimino, G.; Schwartz, J.-C.; Piomelli, D. Formation and inactivation of endogenous cannabinoid anandamide in central neurons. Nature 1994, 372, 686. [Google Scholar] [CrossRef]
- Di Marzo, V.; Stella, N.; Zimmer, A. Endocannabinoid signalling and the deteriorating brain. Nat. Rev. Neurosci. 2015, 16, 30–42. [Google Scholar] [CrossRef]
- Di Marzo, V.; Petrosino, S. Endocannabinoids and the regulation of their levels in health and disease. Curr. Opin. Lipidol. 2007, 18, 129–140. [Google Scholar] [CrossRef]
- Hill, M.N.; Tasker, J.G. Endocannabinoid signaling, glucocorticoid-mediated negative feedback, and regulation of the hypothalamic-pituitary-adrenal axis. Neuroscience 2012, 204, 5–16. [Google Scholar] [CrossRef]
- Evanson, N.K.; Tasker, J.G.; Hill, M.N.; Hillard, C.J.; Herman, J.P. Fast feedback inhibition of the HPA axis by glucocorticoids is mediated by endocannabinoid signaling. Endocrinology 2010, 151, 4811–4819. [Google Scholar] [CrossRef] [PubMed]
- Patel, S.; Roelke, C.T.; Rademacher, D.J.; Cullinan, W.E.; Hillard, C.J. Endocannabinoid signaling negatively modulates stress-induced activation of the hypothalamic-pituitary-adrenal axis. Endocrinology 2004, 145, 5431–5438. [Google Scholar] [CrossRef] [PubMed]
- Patel, S.; Roelke, C.T.; Rademacher, D.J.; Hillard, C.J. Inhibition of restraint stress-induced neural and behavioural activation by endogenous cannabinoid signalling. Eur. J. Neurosci. 2005, 21, 1057–1069. [Google Scholar] [CrossRef] [PubMed]
- Hill, M.N.; McLaughlin, R.J.; Viau, V.; Gorzalka, B.B.; Hillard, C.J. Stress-induced alterations in limbic endocannabinoid content in the rat: Correlations to HPA axis activation. In Proceedings of the 17th Annual Symposium of the International Cannabinoid Research Society, Saint-Sauveur, QC, Canada, 26–30 June 2007; p. 23. [Google Scholar]
- Patel, S.; Hillard, C.J. Adaptations in endocannabinoid signaling in response to repeated homotypic stress: A novel mechanism for stress habituation. Eur. J. Neurosci. 2008, 27, 2821–2829. [Google Scholar] [CrossRef]
- Balsevich, G.; Petrie, G.N.; Hill, M.N. Endocannabinoids: Effectors of glucocorticoid signaling. Front. Neuroendocrinol. 2017, 47, 86–108. [Google Scholar] [CrossRef]
- Morena, M.; Patel, S.; Bains, J.S.; Hill, M.N. Neurobiological Interactions Between Stress and the Endocannabinoid System. Neuropsychopharmacology 2016, 41, 80–102. [Google Scholar] [CrossRef]
- Di, S.; Malcher-Lopes, R.; Halmos, K.C.; Tasker, J.G. Nongenomic Glucocorticoid Inhibition via Endocannabinoid Release in the Hypothalamus: A Fast Feedback Mechanism. J. Neurosci. 2003, 23, 4850–4857. [Google Scholar] [CrossRef]
- Di, S.; Malcher-Lopes, R.; Marcheselli, V.L.; Bazan, N.G.; Tasker, J.G. Rapid glucocorticoid-mediated endocannabinoid release and opposing regulation of glutamate and gamma-aminobutyric acid inputs to hypothalamic magnocellular neurons. Endocrinology 2005, 146, 4292–4301. [Google Scholar] [CrossRef]
- Hermann, H.; Lutz, B. Coexpression of the cannabinoid receptor type 1 with the corticotropin-releasing hormone receptor type 1 in distinct regions of the adult mouse forebrain. Neurosci. Lett. 2005, 375, 13–18. [Google Scholar] [CrossRef]
- Hill, M.N.; McEwen, B.S. Endocannabinoids: The silent partner of glucocorticoids in the synapse. Proc. Natl. Acad. Sci. USA 2009, 106, 4579–4580. [Google Scholar] [CrossRef]
- Hill, M.N.; McLaughlin, R.J.; Morrish, A.C.; Viau, V.; Floresco, S.B.; Hillard, C.J.; Gorzalka, B.B. Suppression of amygdalar endocannabinoid signaling by stress contributes to activation of the hypothalamic-pituitary-adrenal axis. Neuropsychopharmacology 2009, 34, 2733–2745. [Google Scholar] [CrossRef] [PubMed]
- Gray, J.M.; Vecchiarelli, H.A.; Morena, M.; Lee, T.T.; Hermanson, D.J.; Kim, A.B.; McLaughlin, R.J.; Hassan, K.I.; Kuhne, C.; Wotjak, C.T.; et al. Corticotropin-releasing hormone drives anandamide hydrolysis in the amygdala to promote anxiety. J. Neurosci. 2015, 35, 3879–3892. [Google Scholar] [CrossRef] [PubMed]
- Gray, J.M.; Wilson, C.D.; Lee, T.T.; Pittman, Q.J.; Deussing, J.M.; Hillard, C.J.; McEwen, B.S.; Schulkin, J.; Karatsoreos, I.N.; Patel, S.; et al. Sustained glucocorticoid exposure recruits cortico-limbic CRH signaling to modulate endocannabinoid function. Psychoneuroendocrinology 2016, 66, 151–158. [Google Scholar] [CrossRef]
- Natividad, L.A.; Buczynski, M.W.; Herman, M.A.; Kirson, D.; Oleata, C.S.; Irimia, C.; Polis, I.; Ciccocioppo, R.; Roberto, M.; Parsons, L.H. Constitutive Increases in Amygdalar Corticotropin-Releasing Factor and Fatty Acid Amide Hydrolase Drive an Anxious Phenotype. Biol. Psychiatry 2017, 82, 500–510. [Google Scholar] [CrossRef] [PubMed]
- Di, S.; Itoga, C.A.; Fisher, M.O.; Solomonow, J.; Roltsch, E.A.; Gilpin, N.W.; Tasker, J.G. Acute Stress Suppresses Synaptic Inhibition and Increases Anxiety via Endocannabinoid Release in the Basolateral Amygdala. J. Neurosci. 2016, 36, 8461–8470. [Google Scholar] [CrossRef]
- Di, S.; Popescu, I.R.; Tasker, J.G. Glial control of endocannabinoid heterosynaptic modulation in hypothalamic magnocellular neuroendocrine cells. J. Neurosci. 2013, 33, 18331–18342. [Google Scholar] [CrossRef]
- Wang, M.; Hill, M.N.; Zhang, L.; Gorzalka, B.B.; Hillard, C.J.; Alger, B.E. Acute restraint stress enhances hippocampal endocannabinoid function via glucocorticoid receptor activation. J. Psychopharmacol. 2012, 26, 56–70. [Google Scholar] [CrossRef]
- Hill, M.N.; McLaughlin, R.J.; Pan, B.; Fitzgerald, M.L.; Roberts, C.J.; Lee, T.T.; Karatsoreos, I.N.; Mackie, K.; Viau, V.; Pickel, V.M.; et al. Recruitment of prefrontal cortical endocannabinoid signaling by glucocorticoids contributes to termination of the stress response. J. Neurosci. 2011, 31, 10506–10515. [Google Scholar] [CrossRef]
- Dubreucq, S.; Matias, I.; Cardinal, P.; Haring, M.; Lutz, B.; Marsicano, G.; Chaouloff, F. Genetic dissection of the role of cannabinoid type-1 receptors in the emotional consequences of repeated social stress in mice. Neuropsychopharmacology 2012, 37, 1885–1900. [Google Scholar] [CrossRef]
- McLaughlin, R.J.; Hill, M.N.; Bambico, F.R.; Stuhr, K.L.; Gobbi, G.; Hillard, C.J.; Gorzalka, B.B. Prefrontal cortical anandamide signaling coordinates coping responses to stress through a serotonergic pathway. Eur. Neuropsychopharmacol. 2012, 22, 664–671. [Google Scholar] [CrossRef]
- Bedse, G.; Hartley, N.D.; Neale, E.; Gaulden, A.D.; Patrick, T.A.; Kingsley, P.J.; Uddin, M.J.; Plath, N.; Marnett, L.J.; Patel, S. Functional Redundancy Between Canonical Endocannabinoid Signaling Systems in the Modulation of Anxiety. Biol. Psychiatry 2017, 82, 488–499. [Google Scholar] [CrossRef] [PubMed]
- Bedse, G.; Bluett, R.J.; Patrick, T.A.; Romness, N.K.; Gaulden, A.D.; Kingsley, P.J.; Plath, N.; Marnett, L.J.; Patel, S. Therapeutic endocannabinoid augmentation for mood and anxiety disorders: Comparative profiling of FAAH, MAGL and dual inhibitors. Transl. Psychiatry 2018, 8, 92. [Google Scholar] [CrossRef] [PubMed]
- Roberts, C.J.; Stuhr, K.L.; Hutz, M.J.; Raff, H.; Hillard, C.J. Endocannabinoid signaling in hypothalamic-pituitary-adrenocortical axis recovery following stress: Effects of indirect agonists and comparison of male and female mice. Pharmacol. Biochem. Behav. 2014, 117, 17–24. [Google Scholar] [CrossRef] [PubMed]
- Bitencourt, R.M.; Pamplona, F.A.; Takahashi, R.N. Facilitation of contextual fear memory extinction and anti-anxiogenic effects of AM404 and cannabidiol in conditioned rats. Eur. Neuropsychopharmacol. 2008, 18, 849–859. [Google Scholar] [CrossRef]
- Chhatwal, J.P.; Davis, M.; Maguschak, K.A.; Ressler, K.J. Enhancing cannabinoid neurotransmission augments the extinction of conditioned fear. Neuropsychopharmacology 2005, 30, 516–524. [Google Scholar] [CrossRef]
- Kamprath, K.; Marsicano, G.; Tang, J.; Monory, K.; Bisogno, T.; Di Marzo, V.; Lutz, B.; Wotjak, C.T. Cannabinoid CB1 receptor mediates fear extinction via habituation-like processes. J. Neurosci. 2006, 26, 6677–6686. [Google Scholar] [CrossRef]
- Pamplona, F.A.; Prediger, R.D.; Pandolfo, P.; Takahashi, R.N. The cannabinoid receptor agonist WIN 55,212-2 facilitates the extinction of contextual fear memory and spatial memory in rats. Psychopharmacology 2006, 188, 641–649. [Google Scholar] [CrossRef]
- Gunduz-Cinar, O.; MacPherson, K.P.; Cinar, R.; Gamble-George, J.; Sugden, K.; Williams, B.; Godlewski, G.; Ramikie, T.S.; Gorka, A.X.; Alapafuja, S.O.; et al. Convergent translational evidence of a role for anandamide in amygdala-mediated fear extinction, threat processing and stress-reactivity. Mol. Psychiatry 2013, 18, 813–823. [Google Scholar] [CrossRef]
- Ramos-Medina, L.; Rosas-Vidal, L.E.; Patel, S. Pharmacological diacylglycerol lipase inhibition impairs contextual fear extinction in mice. Psychopharmacology 2024, 241, 569–584. [Google Scholar] [CrossRef]
- Aisenberg, N.; Serova, L.; Sabban, E.L.; Akirav, I. The effects of enhancing endocannabinoid signaling and blocking corticotrophin releasing factor receptor in the amygdala and hippocampus on the consolidation of a stressful event. Eur. Neuropsychopharmacol. 2017, 27, 913–927. [Google Scholar] [CrossRef]
- Segev, A.; Rubin, A.S.; Abush, H.; Richter-Levin, G.; Akirav, I. Cannabinoid receptor activation prevents the effects of chronic mild stress on emotional learning and LTP in a rat model of depression. Neuropsychopharmacology 2014, 39, 919–933. [Google Scholar] [CrossRef] [PubMed]
- Zubedat, S.; Akirav, I. The involvement of cannabinoids and mTOR in the reconsolidation of an emotional memory in the hippocampal-amygdala-insular circuit. Eur. Neuropsychopharmacol. 2017, 27, 336–349. [Google Scholar] [CrossRef] [PubMed]
- Ganon-Elazar, E.; Akirav, I. Cannabinoids and traumatic stress modulation of contextual fear extinction and GR expression in the amygdala-hippocampal-prefrontal circuit. Psychoneuroendocrinology 2013, 38, 1675–1687. [Google Scholar] [CrossRef] [PubMed]
- Ganon-Elazar, E.; Akirav, I. Cannabinoid receptor activation in the basolateral amygdala blocks the effects of stress on the conditioning and extinction of inhibitory avoidance. J. Neurosci. 2009, 29, 11078–11088. [Google Scholar] [CrossRef]
- Stern, C.A.; Gazarini, L.; Vanvossen, A.C.; Zuardi, A.W.; Galve-Roperh, I.; Guimaraes, F.S.; Takahashi, R.N.; Bertoglio, L.J. Delta9-Tetrahydrocannabinol alone and combined with cannabidiol mitigate fear memory through reconsolidation disruption. Eur. Neuropsychopharmacol. 2015, 25, 958–965. [Google Scholar] [CrossRef]
- Shoshan, N.; Segev, A.; Abush, H.; Mizrachi Zer-Aviv, T.; Akirav, I. Cannabinoids prevent the differential long-term effects of exposure to severe stress on hippocampal- and amygdala-dependent memory and plasticity. Hippocampus 2017, 27, 1093–1109. [Google Scholar] [CrossRef]
- Micale, V.; Stepan, J.; Jurik, A.; Pamplona, F.A.; Marsch, R.; Drago, F.; Eder, M.; Wotjak, C.T. Extinction of avoidance behavior by safety learning depends on endocannabinoid signaling in the hippocampus. J. Psychiatr. Res. 2017, 90, 46–59. [Google Scholar] [CrossRef]
- Lisboa, S.F.; Niraula, A.; Resstel, L.B.; Guimaraes, F.S.; Godbout, J.P.; Sheridan, J.F. Repeated social defeat-induced neuroinflammation, anxiety-like behavior and resistance to fear extinction were attenuated by the cannabinoid receptor agonist WIN55,212-2. Neuropsychopharmacology 2018, 43, 1924–1933. [Google Scholar] [CrossRef]
- Portugalov, A.; Peled, G.; Zorin, S.; Akirav, I. Cannabidiol Modulates Neuroinflammatory Markers in a PTSD Model Conducted on Female Rats. Biomolecules 2024, 14, 1384. [Google Scholar] [CrossRef]
- Lightfoot, S.H.M.; Nastase, A.S.; Costa Lenz Cesar, G.; Hume, C.; Gom, R.C.; Teskey, G.C.; Hill, M.N. Acute and chronic cannabis vapor exposure produces immediate and delayed impacts on phases of fear learning in a sex specific manner. Psychopharmacology 2025. [Google Scholar] [CrossRef]
- Stern, C.A.J.; da Silva, T.R.; Raymundi, A.M.; de Souza, C.P.; Hiroaki-Sato, V.A.; Kato, L.; Guimaraes, F.S.; Andreatini, R.; Takahashi, R.N.; Bertoglio, L.J. Cannabidiol disrupts the consolidation of specific and generalized fear memories via dorsal hippocampus CB1 and CB2 receptors. Neuropharmacology 2017, 125, 220–230. [Google Scholar] [CrossRef] [PubMed]
- Lisboa, S.F.; Stern, C.A.J.; Gazarini, L.; Bertoglio, L.J. Chapter Ten—Cannabidiol effects on fear processing and implications for PTSD: Evidence from rodent and human studies. In International Review of Neurobiology; Del-Bel, E., Gomes, F.V., Lisboa, S.F., Eds.; Academic Press: Cambridge, MA, USA, 2024; Volume 177, pp. 235–250. [Google Scholar]
- Song, C.; Stevenson, C.W.; Guimaraes, F.S.; Lee, J.L. Bidirectional Effects of Cannabidiol on Contextual Fear Memory Extinction. Front. Pharmacol. 2016, 7, 493. [Google Scholar] [CrossRef] [PubMed]
- Uhernik, A.L.; Montoya, Z.T.; Balkissoon, C.D.; Smith, J.P. Learning and memory is modulated by cannabidiol when administered during trace fear-conditioning. Neurobiol. Learn. Mem. 2018, 149, 68–76. [Google Scholar] [CrossRef] [PubMed]
- Papagianni, E.P.; Warren, W.G.; Cassaday, H.J.; Stevenson, C.W. Cannabidiol Prevents Spontaneous Fear Recovery after Extinction and Ameliorates Stress-Induced Extinction Resistance. Int. J. Mol. Sci. 2022, 23, 9333. [Google Scholar] [CrossRef]
- Kondev, V.; Morgan, A.; Najeed, M.; Winters, N.D.; Kingsley, P.J.; Marnett, L.; Patel, S. The Endocannabinoid 2-Arachidonoylglycerol Bidirectionally Modulates Acute and Protracted Effects of Predator Odor Exposure. Biol. Psychiatry 2022, 92, 739–749. [Google Scholar] [CrossRef]
- Hartley, N.D.; Gunduz-Cinar, O.; Halladay, L.; Bukalo, O.; Holmes, A.; Patel, S. 2-arachidonoylglycerol signaling impairs short-term fear extinction. Transl. Psychiatry 2016, 6, e749. [Google Scholar] [CrossRef]
- Gunduz-Cinar, O. The endocannabinoid system in the amygdala and modulation of fear. Prog. Neuropsychopharmacol. Biol. Psychiatry 2021, 105, 110116. [Google Scholar] [CrossRef]
- Llorente-Berzal, A.; Terzian, A.L.B.; Di Marzo, V.; Micale, V.; Viveros, M.P.; Wotjak, C.T. 2-AG promotes the expression of conditioned fear via cannabinoid receptor type 1 on GABAergic neurons. Psychopharmacology 2015, 232, 2811–2825. [Google Scholar] [CrossRef]
- Ten Blanco, M.; Flores, Á.; Pereda-Pérez, I.; Piscitelli, F.; Izquierdo Luengo, C.; Cristino, L.; Romero, J.; Maldonado, R.; Marzo, V. Amygdalar CB2 cannabinoid receptor mediates fear extinction deficits promoted by orexin-A/hypocretin-1. Biomed. Pharmacother. 2022, 149, 112925. [Google Scholar] [CrossRef]
- Mizuno, I.; Matsuda, S.; Tohyama, S.; Mizutani, A. The role of the cannabinoid system in fear memory and extinction in male and female mice. Psychoneuroendocrinology 2022, 138, 105688. [Google Scholar] [CrossRef]
- Warren, W.G.; Papagianni, E.P.; Hale, E.; Brociek, R.A.; Cassaday, H.J.; Stevenson, C.W. Endocannabinoid metabolism inhibition has no effect on spontaneous fear recovery or extinction resistance in Lister hooded rats. Front. Pharmacol. 2022, 13, 1082760. [Google Scholar] [CrossRef] [PubMed]
- Fidelman, S.; Mizrachi Zer-Aviv, T.; Lange, R.; Hillard, C.J.; Akirav, I. Chronic treatment with URB597 ameliorates post-stress symptoms in a rat model of PTSD. Eur. Neuropsychopharmacol. 2018, 28, 630–642. [Google Scholar] [CrossRef] [PubMed]
- Morena, M.; Berardi, A.; Colucci, P.; Palmery, M.; Trezza, V.; Hill, M.N.; Campolongo, P. Enhancing Endocannabinoid Neurotransmission Augments The Efficacy of Extinction Training and Ameliorates Traumatic Stress-Induced Behavioral Alterations in Rats. Neuropsychopharmacology 2017, 43, 1284–1296. [Google Scholar] [CrossRef] [PubMed]
- Molla, H.M.; Miguelez Fernández, A.M.M.; Tseng, K.Y. Late-adolescent onset of prefrontal endocannabinoid control of hippocampal and amygdalar inputs and its impact on trace-fear conditioning behavior. Neuropsychopharmacology 2024, 49, 1417–1424. [Google Scholar] [CrossRef]
- Amir Hamzah, K.; Toms, L.-M.; Kucharski, N.; Orr, J.; Turner, N.P.; Hobson, P.; Nichols, D.S.; Ney, L.J. Sex-dimorphism in human serum endocannabinoid and n-acyl ethanolamine concentrations across the lifespan. Sci. Rep. 2023, 13, 23059. [Google Scholar] [CrossRef]
- Ellgren, M.; Artmann, A.; Tkalych, O.; Gupta, A.; Hansen, H.S.; Hansen, S.H.; Devi, L.A.; Hurd, Y.L. Dynamic changes of the endogenous cannabinoid and opioid mesocorticolimbic systems during adolescence: THC effects. Eur. Neuropsychopharmacol. 2008, 18, 826–834. [Google Scholar] [CrossRef]
- Lee, T.T.; Hill, M.N.; Hillard, C.J.; Gorzalka, B.B. Temporal changes in N-acylethanolamine content and metabolism throughout the peri-adolescent period. Synapse 2013, 67, 4–10. [Google Scholar] [CrossRef]
- Szente, L.; Balla, G.Y.; Varga, Z.K.; Toth, B.; Biro, L.; Balogh, Z.; Hill, M.N.; Toth, M.; Mikics, E.; Aliczki, M. Endocannabinoid and neuroplasticity-related changes as susceptibility factors in a rat model of posttraumatic stress disorder. Neurobiol. Stress 2024, 32, 100662. [Google Scholar] [CrossRef]
- Cooper, Z.D.; Craft, R.M. Sex-Dependent Effects of Cannabis and Cannabinoids: A Translational Perspective. Neuropsychopharmacology 2018, 43, 34–51. [Google Scholar] [CrossRef]
- Vozella, V.; Cruz, B.; Feldman, H.C.; Bullard, R.; Bianchi, P.C.; Natividad, L.A.; Cravatt, B.F.; Zorrilla, E.P.; Ciccocioppo, R.; Roberto, M. Sexually dimorphic effects of monoacylglycerol lipase inhibitor MJN110 on stress-related behaviour and drinking in Marchigian Sardinian alcohol-preferring rats. Br. J. Pharmacol. 2023, 180, 3130–3145. [Google Scholar] [CrossRef]
- Schenker, M.T.; Ince, S.; Ney, L.J.; Hsu, C.-M.K.; Zuj, D.V.; Jordan, A.S.; Nicholas, C.L.; Felmingham, K.L. Sex differences in the effect of subjective sleep on fear conditioning, extinction learning, and extinction recall in individuals with a range of PTSD symptom severity. Behav. Res. Ther. 2022, 159, 104222. [Google Scholar] [CrossRef] [PubMed]
- Merz, C.J.; Kinner, V.L.; Wolf, O.T. Let’s talk about sex … differences in human fear conditioning. Curr. Opin. Behav. Sci. 2018, 23, 7–12. [Google Scholar] [CrossRef]
- Silove, D.; Baker, J.R.; Mohsin, M.; Teesson, M.; Creamer, M.; O’Donnell, M.; Forbes, D.; Carragher, N.; Slade, T.; Mills, K.; et al. The contribution of gender-based violence and network trauma to gender differences in Post-Traumatic Stress Disorder. PLoS ONE 2017, 12, e0171879. [Google Scholar] [CrossRef] [PubMed]
- Wade, D.; Varker, T.; Kartal, D.; Hetrick, S.; O’Donnell, M.; Forbes, D. Gender difference in outcomes following trauma-focused interventions for posttraumatic stress disorder: Systematic review and meta-analysis. Psychol. Trauma. 2016, 8, 356–364. [Google Scholar] [CrossRef]
- Morena, M.; Nastase, A.S.; Santori, A.; Cravatt, B.F.; Shansky, R.M.; Hill, M.N. Sex-dependent effects of endocannabinoid modulation of conditioned fear extinction in rats. Br. J. Pharmacol. 2021, 178, 983–996. [Google Scholar] [CrossRef]
- Craft, R.M.; Marusich, J.A.; Wiley, J.L. Sex differences in cannabinoid pharmacology: A reflection of differences in the endocannabinoid system? Life Sci. 2013, 92, 476–481. [Google Scholar] [CrossRef]
- Calakos, K.C.; Bhatt, S.; Foster, D.W.; Cosgrove, K.P. Mechanisms Underlying Sex Differences in Cannabis Use. Curr. Addict. Rep. 2017, 4, 439–453. [Google Scholar] [CrossRef]
- MacNair, L.; Kulpa, J.; Hill, M.L.; Eglit, G.M.L.; Mosesova, I.; Bonn-Miller, M.O.; Peters, E.N. Sex Differences in the Pharmacokinetics of Cannabidiol and Metabolites Following Oral Administration of a Cannabidiol-Dominant Cannabis Oil in Healthy Adults. Cannabis Cannabinoid Res. 2023, 9, e1170–e1178. [Google Scholar] [CrossRef]
- Sallam, N.A.; Peterson, C.S.; Baglot, S.L.; Kohro, Y.; Trang, T.; Hill, M.N.; Borgland, S.L. Sex Differences in Plasma, Adipose Tissue, and Central Accumulation of Cannabinoids, and Behavioral Effects of Oral Cannabis Consumption in Male and Female C57BL/6 Mice. Int. J. Neuropsychopharmacol. 2023, 26, 773–783. [Google Scholar] [CrossRef]
- Wiley, J.L.; Burston, J.J. Sex differences in Delta(9)-tetrahydrocannabinol metabolism and in vivo pharmacology following acute and repeated dosing in adolescent rats. Neurosci. Lett. 2014, 576, 51–55. [Google Scholar] [CrossRef]
- Bangasser, D.A.; Valentino, R.J. Sex differences in stress-related psychiatric disorders: Neurobiological perspectives. Front. Neuroendocrinol. 2014, 35, 303–319. [Google Scholar] [CrossRef] [PubMed]
- Blanco, C.; Hoertel, N.; Wall, M.M.; Franco, S.; Peyre, H.; Neria, Y.; Helpman, L.; Limosin, F. Toward Understanding Sex Differences in the Prevalence of Posttraumatic Stress Disorder: Results From the National Epidemiologic Survey on Alcohol and Related Conditions. J. Clin. Psychiatry 2018, 79, 16m11364. [Google Scholar] [CrossRef] [PubMed]
- Bryant, R.A.; Harvey, A.G. Gender differences in the relationship between acute stress disorder and posttraumatic stress disorder following motor vehicle accidents. Aust. N. Z. J. Psychiatry 2003, 37, 226–229. [Google Scholar] [CrossRef]
- Tolin, D.F.; Foa, E.B. Sex differences in trauma and posttraumatic stress disorder: A quantitative review of 25 years of research. Psychol. Bull. 2006, 132, 959–992. [Google Scholar] [CrossRef]
- Fotio, Y.; Mabou Tagne, A.; Jung, K.-M.; Piomelli, D. Fatty acid amide hydrolase inhibition alleviates anxiety-like symptoms in a rat model used to study post-traumatic stress disorder. Psychopharmacology 2023. [Google Scholar] [CrossRef]
- Carnevali, L.; Barbetti, M.; Fotio, Y.; Ferlenghi, F.; Vacondio, F.; Mor, M.; Piomelli, D.; Sgoifo, A. Enhancement of peripheral fatty acyl ethanolamide signaling prevents stress-induced social avoidance and anxiety-like behaviors in male rats. Psychopharmacology 2023, 242, 997–1009. [Google Scholar] [CrossRef]
- Navarria, A.; Tamburella, A.; Iannotti, F.A.; Micale, V.; Camillieri, G.; Gozzo, L.; Verde, R.; Imperatore, R.; Leggio, G.M.; Drago, F.; et al. The dual blocker of FAAH/TRPV1 N-arachidonoylserotonin reverses the behavioral despair induced by stress in rats and modulates the HPA-axis. Pharmacol. Res. 2014, 87, 151–159. [Google Scholar] [CrossRef]
- Danandeh, A.; Vozella, V.; Lim, J.; Oveisi, F.; Ramirez, G.L.; Mears, D.; Wynn, G.; Piomelli, D. Effects of fatty acid amide hydrolase inhibitor URB597 in a rat model of trauma-induced long-term anxiety. Psychopharmacology 2018, 235, 3211–3221. [Google Scholar] [CrossRef]
- Ganon-Elazar, E.; Akirav, I. Cannabinoids prevent the development of behavioral and endocrine alterations in a rat model of intense stress. Neuropsychopharmacology 2012, 37, 456–466. [Google Scholar] [CrossRef]
- Abush, H.; Akirav, I. Cannabinoids ameliorate impairments induced by chronic stress to synaptic plasticity and short-term memory. Neuropsychopharmacology 2013, 38, 1521–1534. [Google Scholar] [CrossRef]
- Xie, G.; Gao, X.; Guo, Q.; Liang, H.; Yao, L.; Li, W.; Ma, B.; Wu, N.; Han, X.; Li, J. Cannabidiol ameliorates PTSD-like symptoms by inhibiting neuroinflammation through its action on CB2 receptors in the brain of male mice. Brain Behav. Immun. 2024, 119, 945–964. [Google Scholar] [CrossRef] [PubMed]
- Berman, P.; Sulimani, L.; Gelfand, A.; Amsalem, K.; Lewitus, G.M.; Meiri, D. Cannabinoidomics—An analytical approach to understand the effect of medical Cannabis treatment on the endocannabinoid metabolome. Talanta 2020, 219, 121336. [Google Scholar] [CrossRef] [PubMed]
- Bisogno, T.; Hanus, L.; de Petrocellis, L.; Tchilibon, S.; Ponde, D.E.; Brandi, I.; Morielle, A.S.; Davis, J.B.; Mechoulam, R.; di Marzo, V. Molecular targets for cannabidiol and its synthetic analogues: Effect on vanilloid VR1 receptors and on the cellular uptake and enzymatic hydrolysis of anandamide. Br. J. Pharmacol. 2001, 134, 845–852. [Google Scholar] [CrossRef] [PubMed]
- Blessing, E.M.; Steenkamp, M.M.; Manzanares, J.; Marmar, C.R. Cannabidiol as a Potential Treatment for Anxiety Disorders. Neurotherapeutics 2015, 12, 825–836. [Google Scholar] [CrossRef]
- Mizrachi Zer-Aviv, T.; Islami, L.; Hamilton, P.J.; Parise, E.M.; Nestler, E.J.; Sbarski, B.; Akirav, I. Enhancing Endocannabinoid Signaling via β-Catenin in the Nucleus Accumbens Attenuates PTSD- and Depression-like Behavior of Male Rats. Biomedicines 2022, 10, 1789. [Google Scholar] [CrossRef]
- Hill, M.N.; McEwen, B.S. Involvement of the Endocannabinoid System in the Neurobehavioral Effects of Stress and Glucocorticoids. Progress Neuro-Psychopharmacol. Biol. Psychiatry 2010, 35, 791–797. [Google Scholar] [CrossRef]
- Hill, M.N.; McLaughlin, R.J.; Bingham, B.; Shrestha, L.; Lee, T.T.; Gray, J.M.; Hillard, C.J.; Gorzalka, B.B.; Viau, V. Endogenous cannabinoid signaling is essential for stress adaptation. Proc. Natl. Acad. Sci. USA 2010, 107, 9406–9411. [Google Scholar] [CrossRef]
- Santana, F.; Sierra, R.O.; Haubrich, J.; Crestani, A.P.; Duran, J.M.; de Freitas Cassini, L.; de Oliveira Alvares, L.; Quillfeldt, J.A. Involvement of the infralimbic cortex and CA1 hippocampal area in reconsolidation of a contextual fear memory through CB1 receptors: Effects of CP55,940. Neurobiol. Learn. Mem. 2016, 127, 42–47. [Google Scholar] [CrossRef]
- Ney, L.J.; Akhurst, J.; Bruno, R.; Laing, P.A.F.; Matthews, A.; Felmingham, K.L. Dopamine, endocannabinoids and their interaction in fear extinction and negative affect in PTSD. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2021, 105, 110118. [Google Scholar] [CrossRef]
- Covey, D.P.; Mateo, Y.; Sulzer, D.; Cheer, J.F.; Lovinger, D.M. Endocannabinoid modulation of dopamine neurotransmission. Neuropharmacology 2017, 124, 52–61. [Google Scholar] [CrossRef]
- Garcia, C.; Palomo-Garo, C.; Gomez-Galvez, Y.; Fernandez-Ruiz, J. Cannabinoid–dopamine interactions in the physiology and physiopathology of the basal ganglia. Br. J. Pharmacol. 2016, 173, 2069–2079. [Google Scholar] [CrossRef] [PubMed]
- Nasehi, M.; Shahbazzadeh, S.; Ebrahimi-Ghiri, M.; Zarrindast, M.R. Bidirectional influence of amygdala beta1-adrenoceptors blockade on cannabinoid signaling in contextual and auditory fear memory. J. Psychopharmacol. 2018, 32, 932–942. [Google Scholar] [CrossRef] [PubMed]
- Nasehi, M.; Farrahizadeh, M.; Ebrahimi-Ghiri, M.; Zarrindast, M.R. Modulation of cannabinoid signaling by hippocampal 5-HT4 serotonergic system in fear conditioning. J. Psychopharmacol. 2016, 30, 936–944. [Google Scholar] [CrossRef] [PubMed]
- Burstein, O.; Shoshan, N.; Doron, R.; Akirav, I. Cannabinoids prevent depressive-like symptoms and alterations in BDNF expression in a rat model of PTSD. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2018, 84, 129–139. [Google Scholar] [CrossRef]
- Albrechet-Souza, L.; Nastase, A.S.; Hill, M.N.; Gilpin, N.W. Amygdalar endocannabinoids are affected by predator odor stress in a sex-specific manner and modulate acoustic startle reactivity in female rats. Neurobiol. Stress 2021, 15, 100387. [Google Scholar] [CrossRef]
- Vecchiarelli, H.A.; Morena, M.; Lee, T.T.Y.; Nastase, A.S.; Aukema, R.J.; Leitl, K.D.; Gray, J.M.; Petrie, G.N.; Tellez-Monnery, K.J.; Hill, M.N. Sex and stressor modality influence acute stress-induced dynamic changes in corticolimbic endocannabinoid levels in adult Sprague Dawley rats. Neurobiol. Stress 2022, 20, 100470. [Google Scholar] [CrossRef]
- Fabris, D.; Carvalho, M.C.; Brandão, M.L.; Prado, W.A.; Zuardi, A.W.; Crippa, J.A.; de Oliveira, A.R.; Lovick, T.A.; Genaro, K. Sex-dependent differences in the anxiolytic-like effect of cannabidiol in the elevated plus-maze. J. Psychopharmacol. 2022, 36, 1371–1383. [Google Scholar] [CrossRef]
- Zer-Aviv, T.M.; Akirav, I. Sex differences in hippocampal response to endocannabinoids after exposure to severe stress. Hippocampus 2016, 26, 947–957. [Google Scholar] [CrossRef]
- Mayer, T.A.; Matar, M.A.; Kaplan, Z.; Zohar, J.; Cohen, H. Blunting of the HPA-axis underlies the lack of preventive efficacy of early post-stressor single-dose Delta-9-tetrahydrocannabinol (THC). Pharmacol. Biochem. Behav. 2014, 122, 307–318. [Google Scholar] [CrossRef]
- Hill, M.N.; Kambo, J.S.; Sun, J.C.; Gorzalka, B.B.; Galea, L.A.M. Endocannabinoids modulate stress-induced suppression of hippocampal cell proliferation and activation of defensive behaviours. Eur. J. Neurosci. 2006, 24, 1845–1849. [Google Scholar] [CrossRef]
- Danan, D.; Todder, D.; Zohar, J.; Cohen, H. Is PTSD-Phenotype Associated with HPA-Axis Sensitivity? The Endocannabinoid System in Modulating Stress Response in Rats. Int. J. Mol. Sci. 2021, 22, 6416. [Google Scholar] [CrossRef] [PubMed]
- Lim, J.; Igarashi, M.; Jung, K.M.; Butini, S.; Campiani, G.; Piomelli, D. Endocannabinoid Modulation of Predator Stress-Induced Long-Term Anxiety in Rats. Neuropsychopharmacology 2016, 41, 1329–1339. [Google Scholar] [CrossRef]
- Ivy, D.; Palese, F.; Vozella, V.; Fotio, Y.; Yalcin, A.; Ramirez, G.; Mears, D.; Wynn, G.; Piomelli, D. Cannabinoid CB2 receptors mediate the anxiolytic-like effects of monoacylglycerol lipase inhibition in a rat model of predator-induced fear. Neuropsychopharmacology 2020, 45, 1330–1338. [Google Scholar] [CrossRef] [PubMed]
- Huffstetler, C.M.; Cochran, B.; May, C.A.; Maykut, N.; Silver, C.R.; Cedeno, C.; Franck, E.; Cox, A.; Fadool, D.A. Single cannabidiol administration affects anxiety-, obsessive compulsive-, object memory-, and attention-like behaviors in mice in a sex and concentration dependent manner. Pharmacol. Biochem. Behav. 2023, 222, 173498. [Google Scholar] [CrossRef]
- Liu, J.; Scott, B.W.; Burnham, W.M. Effects of cannabidiol and Δ9-tetrahydrocannabinol in the elevated plus maze in mice. Behav. Pharmacol. 2022, 33, 206–212. [Google Scholar] [CrossRef] [PubMed]
- Kasten, C.R.; Zhang, Y.; Boehm, S.L. Acute Cannabinoids Produce Robust Anxiety-Like and Locomotor Effects in Mice, but Long-Term Consequences Are Age- and Sex-Dependent. Front. Behav. Neurosci. 2019, 13, 32. [Google Scholar] [CrossRef]
- Gowatch, L.C.; Evanski, J.M.; Ely, S.L.; Zundel, C.G.; Bhogal, A.; Carpenter, C.; Shampine, M.M.; O’Mara, E.; Mazurka, R.; Barcelona, J.; et al. Endocannabinoids and Stress-Related Neurospsychiatric Disorders: A Systematic Review and Meta-Analysis of Basal Concentrations and Response to Acute Psychosocial Stress. Cannabis Cannabinoid Res. 2024, 9, 1217–1234. [Google Scholar] [CrossRef]
- Hill, M.N.; Miller, G.E.; Carrier, E.J.; Gorzalka, B.B.; Hillard, C.J. Circulating endocannabinoids and N-acyl ethanolamines are differentially regulated in major depression and following exposure to social stress. Psychoneuroendocrinology 2009, 34, 1257–1262. [Google Scholar] [CrossRef]
- Schroeder, C.; Batkai, S.; Engeli, S.; Tank, J.; Diedrich, A.; Luft, F.C.; Jordan, J. Circulating endocannabinoid concentrations during orthostatic stress. Clin. Auton. Res. 2009, 19, 343–346. [Google Scholar] [CrossRef]
- Ney, L.J.; Stone, C.; Nichols, D.; Felmingam, K.L.; Bruno, R.; Matthews, A. Endocannabinoid Reactivity to Acute Stress: Investigation of the Relationship between Salivary and Plasma Levels. Biol. Psychol. 2021, 159, 108022. [Google Scholar] [CrossRef]
- Dlugos, A.; Childs, E.; Stuhr, K.L.; Hillard, C.J.; de Wit, H. Acute stress increases circulating anandamide and other N-acylethanolamines in healthy humans. Neuropsychopharmacology 2012, 37, 2416–2427. [Google Scholar] [CrossRef] [PubMed]
- Mayo, L.M.; Asratian, A.; Lindé, J.; Morena, M.; Haataja, R.; Hammar, V.; Augier, G.; Hill, M.N.; Heilig, M. Elevated Anandamide, Enhanced Recall of Fear Extinction, and Attenuated Stress Responses Following Inhibition of Fatty Acid Amide Hydrolase: A Randomized, Controlled Experimental Medicine Trial. Biol. Psychiatry 2020, 87, 538–547. [Google Scholar] [CrossRef] [PubMed]
- Crombie, K.M.; Leitzelar, B.N.; Brellenthin, A.G.; Hillard, C.J.; Koltyn, K.F. Loss of exercise- and stress-induced increases in circulating 2-arachidonoylglycerol concentrations in adults with chronic PTSD. Biol. Psychol. 2019, 145, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Petrowski, K.; Kirschbaum, C.; Gao, W.; Hardt, J.; Conrad, R. Blood endocannabinoid levels in patients with panic disorder. Psychoneuroendocrinology 2020, 122, 104905. [Google Scholar] [CrossRef]
- Akirav, I. The role of cannabinoids in modulating emotional and non-emotional memory processes in the hippocampus. Front. Behav. Neurosci. 2011, 5, 34. [Google Scholar] [CrossRef]
- Lafenetre, P.; Chaouloff, F.; Marsicano, G. The endocannabinoid system in the processing of anxiety and fear and how CB1 receptors may modulate fear extinction. Pharmacol. Res. 2007, 56, 367–381. [Google Scholar] [CrossRef]
- Laricchiuta, D.; Centonze, D.; Petrosini, L. Effects of endocannabinoid and endovanilloid systems on aversive memory extinction. Behav. Brain Res. 2013, 256, 101–107. [Google Scholar] [CrossRef]
- Lutz, B.; Marsicano, G.; Maldonado, R.; Hillard, C.J. The endocannabinoid system in guarding against fear, anxiety and stress. Nat. Rev. Neurosci. 2015, 16, 705–718. [Google Scholar] [CrossRef]
- Heitland, I.; Klumpers, F.; Oosting, R.S.; Evers, D.J.; Leon Kenemans, J.; Baas, J.M. Failure to extinguish fear and genetic variability in the human cannabinoid receptor 1. Transl. Psychiatry 2012, 2, e162. [Google Scholar] [CrossRef]
- Rabinak, C.A.; Angstadt, M.; Lyons, M.; Mori, S.; Milad, M.R.; Liberzon, I.; Phan, K.L. Cannabinoid modulation of prefrontal-limbic activation during fear extinction learning and recall in humans. Neurobiol. Learn. Mem. 2014, 113, 125–134. [Google Scholar] [CrossRef]
- Rabinak, C.A.; Angstadt, M.; Sripada, C.S.; Abelson, J.L.; Liberzon, I.; Milad, M.R.; Phan, K.L. Cannabinoid facilitation of fear extinction memory recall in humans. Neuropharmacology 2013, 64, 396–402. [Google Scholar] [CrossRef] [PubMed]
- Das, R.K.; Kamboj, S.K.; Ramadas, M.; Yogan, K.; Gupta, V.; Redman, E.; Curran, H.V.; Morgan, C.J. Cannabidiol enhances consolidation of explicit fear extinction in humans. Psychopharmacology 2013, 226, 781–792. [Google Scholar] [CrossRef] [PubMed]
- Klumpers, F.; Denys, D.; Kenemans, J.L.; Grillon, C.; van der Aart, J.; Baas, J.M. Testing the effects of Delta9-THC and D-cycloserine on extinction of conditioned fear in humans. J. Psychopharmacol. 2012, 26, 471–478. [Google Scholar] [CrossRef]
- Rabinak, C.; Phan, K. Cannabinoid Modulation of Fear Extinction Brain Circuits: A Novel Target to Advance Anxiety Treatment. Curr. Pharm. Des. 2014, 20, 2212–2217. [Google Scholar] [CrossRef]
- Hammoud, M.Z.; Peters, C.; Hatfield, J.R.B.; Gorka, S.M.; Phan, K.L.; Milad, M.R.; Rabinak, C.A. Influence of Δ9-tetrahydrocannabinol on long-term neural correlates of threat extinction memory retention in humans. Neuropsychopharmacology 2019, 44, 1769–1777. [Google Scholar] [CrossRef]
- Kwee, C.M.B.; van der Flier, F.E.; Duits, P.; van Balkom, A.J.L.M.; Cath, D.C.; Baas, J.M.P. Effects of cannabidiol on fear conditioning in anxiety disorders: Decreased threat expectation during retention, but no enhanced fear re-extinction. Psychopharmacology 2024, 241, 833–847. [Google Scholar] [CrossRef]
- Paulus, M.P.; Stein, M.B.; Simmons, A.N.; Risbrough, V.B.; Halter, R.; Chaplan, S.R. The effects of FAAH inhibition on the neural basis of anxiety-related processing in healthy male subjects: A randomized clinical trial. Neuropsychopharmacology 2020, 46, 1011–1019. [Google Scholar] [CrossRef]
- Zabik, N.L.; Iadipaolo, A.; Peters, C.A.; Baglot, S.L.; Hill, M.N.; Rabinak, C.A. Dose-dependent effect of acute THC on extinction memory recall and fear renewal: A randomized, double-blind, placebo-controlled study. Psychoneuroendocrinology 2024. [Google Scholar] [CrossRef]
- Sipe, J.C.; Chiang, K.; Gerber, A.L.; Beutler, E.; Cravatt, B.F. A missense mutation in human fatty acid amide hydrolase associated with problem drug use. Proc. Natl. Acad. Sci. USA 2002, 99, 8394–8399. [Google Scholar] [CrossRef]
- Flanagan, J.M.; Gerber, A.L.; Cadet, J.L.; Beutler, E.; Sipe, J.C. The fatty acid amide hydrolase 385 A/A (P129T) variant: Haplotype analysis of an ancient missense mutation and validation of risk for drug addiction. Hum. Genet. 2006, 120, 581–588. [Google Scholar] [CrossRef]
- Chiang, K.P.; Gerber, A.L.; Sipe, J.C.; Cravatt, B.F. Reduced cellular expression and activity of the P129T mutant of human fatty acid amide hydrolase: Evidence for a link between defects in the endocannabinoid system and problem drug use. Hum. Mol. Genet. 2004, 13, 2113–2119. [Google Scholar] [CrossRef] [PubMed]
- Dincheva, I.; Drysdale, A.T.; Hartley, C.A.; Johnson, D.C.; Jing, D.; King, E.C.; Ra, S.; Gray, J.M.; Yang, R.; DeGruccio, A.M.; et al. FAAH genetic variation enhances fronto-amygdala function in mouse and human. Nat. Commun. 2015, 6, 6395. [Google Scholar] [CrossRef]
- Gee, D.G.; Fetcho, R.N.; Jing, D.; Li, A.; Glatt, C.E.; Drysdale, A.T.; Cohen, A.O.; Dellarco, D.V.; Yang, R.R.; Dale, A.M.; et al. Individual differences in frontolimbic circuitry and anxiety emerge with adolescent changes in endocannabinoid signaling across species. Proc. Natl. Acad. Sci. USA 2016, 113, 4500–4505. [Google Scholar] [CrossRef]
- Hariri, A.R.; Gorka, A.; Hyde, L.W.; Kimak, M.; Halder, I.; Ducci, F.; Ferrell, R.E.; Goldman, D.; Manuck, S.B. Divergent effects of genetic variation in endocannabinoid signaling on human threat- and reward-related brain function. Biol. Psychiatry 2009, 66, 9–16. [Google Scholar] [CrossRef]
- Spagnolo, P.A.; Ramchandani, V.A.; Schwandt, M.L.; Kwako, L.E.; George, D.T.; Mayo, L.M.; Hillard, C.J.; Heilig, M. FAAH Gene Variation Moderates Stress Response and Symptom Severity in Patients with Posttraumatic Stress Disorder and Comorbid Alcohol Dependence. Alcohol. Clin. Exp. Res. 2016, 40, 2426–2434. [Google Scholar] [CrossRef]
- Mayo, L.M.; Asratian, A.; Lindé, J.; Holm, L.; Natt, D.; Augier, G.; Stensson, N.; Vecchiarelli, H.A.; Balsevich, G.; Aukema, R.J.; et al. Protective effects of elevated anandamide on stress and fear-related behaviors: Translational evidence from humans and mice. Mol. Psychiatry 2020, 25, 993–1005. [Google Scholar] [CrossRef]
- Ney, L.J.; Matthews, A.; Hsu, C.K.; Zuj, D.V.; Nicholson, E.; Steward, T.; Nichols, D.; Graham, B.; Harrison, B.; Bruno, R.; et al. Cannabinoid polymorphisms interact with plasma endocannabinoid levels to predict fear extinction learning. Depress. Anxiety 2021, 38, 1087–1099. [Google Scholar] [CrossRef]
- Zabik, N.L.; Iadipaolo, A.S.; Marusak, H.A.; Peters, C.; Burghardt, K.; Rabinak, C.A. A common genetic variant in fatty acid amide hydrolase is linked to alterations in fear extinction neural circuitry in a racially diverse, nonclinical sample of adults. J. Neurosci. Res. 2021, 100, 744–761. [Google Scholar] [CrossRef]
- Spohrs, J.; Ulrich, M.; Grön, G.; Prost, M.; Plener, P.L.; Fegert, J.M.; Bindila, L.; Abler, B. Fear extinction learning and anandamide: An fMRI study in healthy humans. Transl. Psychiatry 2021, 11, 161. [Google Scholar] [CrossRef]
- Crombie, K.M.; Privratsky, A.A.; Schomaker, C.M.; Heilicher, M.; Ross, M.C.; Sartin-Tarm, A.; Sellnow, K.; Binder, E.B.; Andrew James, G.; Cisler, J.M. The influence of FAAH genetic variation on physiological, cognitive, and neural signatures of fear acquisition and extinction learning in women with PTSD. NeuroImage Clin. 2022, 33, 102922. [Google Scholar] [CrossRef]
- Spohrs, J.; Ulrich, M.; Grön, G.; Plener, P.L.; Abler, B. FAAH polymorphism (rs324420) modulates extinction recall in healthy humans: An fMRI study. Eur. Arch. Psychiatry Clin. Neurosci. 2022, 272, 1495–1504. [Google Scholar] [CrossRef] [PubMed]
- Crombie, K.M.; Sartin-Tarm, A.; Sellnow, K.; Ahrenholtz, R.; Lee, S.; Matalamaki, M.; Almassi, N.E.; Hillard, C.J.; Koltyn, K.F.; Adams, T.G.; et al. Exercise-induced increases in Anandamide and BDNF during extinction consolidation contribute to reduced threat following reinstatement: Preliminary evidence from a randomized controlled trial. Psychoneuroendocrinology 2021, 132, 105355. [Google Scholar] [CrossRef]
- Ney, L.J.; Cooper, J.; Lam, G.N.; Moffitt, K.; Nichols, D.S.; Mayo, L.M.; Lipp, O.V. Hair endocannabinoids predict physiological fear conditioning and salivary endocannabinoids predict subjective stress reactivity in humans. Psychoneuroendocrinology 2023, 154, 106296. [Google Scholar] [CrossRef] [PubMed]
- Ney, L.J.; Nichols, D.S.; Lipp, O.V. Fear conditioning depends on the nature of the unconditional stimulus and may be related to hair levels of endocannabinoids. Psychophysiology 2023, 60, e14297. [Google Scholar] [CrossRef] [PubMed]
- Ney, L.J.; Matthews, A. Chapter 6—Anandamide and disease. Role in stress, fear, and PTSD. In Anandamide in Health and Disease; Foll, B.L., Ed.; Academic Press: Cambridge, MA, USA, 2025; pp. 213–243. [Google Scholar]
- Johnson, D.S.; Stiff, C.; Lazerwith, S.E.; Kesten, S.R.; Fay, L.K.; Morris, M.; Beidler, D.; Liimatta, M.B.; Smith, S.E.; Dudley, D.T.; et al. Discovery of PF-04457845: A Highly Potent, Orally Bioavailable, and Selective Urea FAAH Inhibitor. ACS Med. Chem. Lett. 2011, 2, 91–96. [Google Scholar] [CrossRef]
- Keith, J.M.; Jones, W.M.; Tichenor, M.; Liu, J.; Seierstad, M.; Palmer, J.A.; Webb, M.; Karbarz, M.; Scott, B.P.; Wilson, S.J.; et al. Preclinical Characterization of the FAAH Inhibitor JNJ-42165279. ACS Med. Chem. Lett. 2015, 6, 1204–1208. [Google Scholar] [CrossRef]
- Rabinak, C.A.; Peters, C.; Marusak, H.A.; Ghosh, S.; Phan, K.L. Effects of acute Δ9-tetrahydrocannabinol on next-day extinction recall is mediated by post-extinction resting-state brain dynamics. Neuropharmacology 2018, 143, 289–298. [Google Scholar] [CrossRef]
- Zabik, N.L.; Rabinak, C.A.; Peters, C.A.; Iadipaolo, A. Cannabinoid modulation of corticolimbic activation during extinction learning and fear renewal in adults with posttraumatic stress disorder. Neurobiol. Learn. Mem. 2023, 201, 107758. [Google Scholar] [CrossRef]
- O’Donohue, M.P.; Amir Hamzah, K.; Nichols, D.; Ney, L.J. Trauma film viewing and intrusive memories: Relationship between salivary alpha amylase, endocannabinoids, and cortisol. Psychoneuroendocrinology 2024, 164, 107007. [Google Scholar] [CrossRef]
- Amir Hamzah, K.; Turner, N.; Nichols, D.; Ney, L.J. Advances in targeted liquid chromatography-tandem mass spectrometry methods for endocannabinoid and N-acylethanolamine quantification in biological matrices: A systematic review. Mass Spectrom. Rev. 2024, 44, 513–538. [Google Scholar] [CrossRef]
- Hill, M.N.; Bierer, L.M.; Makotkine, I.; Golier, J.A.; Galea, S.; McEwen, B.S.; Hillard, C.J.; Yehuda, R. Reductions in circulating endocannabinoid levels in individuals with post-traumatic stress disorder following exposure to the World Trade Center attacks. Psychoneuroendocrinology 2013, 38, 2952–2961. [Google Scholar] [CrossRef] [PubMed]
- Wilker, S.; Pfeiffer, A.; Elbert, T.; Ovuga, E.; Karabatsiakis, A.; Krumbholz, A.; Thieme, D.; Schelling, G.; Kolassa, I.T. Endocannabinoid concentrations in hair are associated with PTSD symptom severity. Psychoneuroendocrinology 2016, 67, 198–206. [Google Scholar] [CrossRef] [PubMed]
- Bergunde, L.; Karl, M.; Schälicke, S.; Weise, V.; Mack, J.T.; von Soest, T.; Gao, W.; Weidner, K.; Garthus-Niegel, S.; Steudte-Schmiedgen, S. Childbirth-related posttraumatic stress symptoms—Examining associations with hair endocannabinoid concentrations during pregnancy and lifetime trauma. Transl. Psychiatry 2023, 13, 335. [Google Scholar] [CrossRef]
- Neumeister, A.; Normandin, M.D.; Pietrzak, R.H.; Piomelli, D.; Zheng, M.Q.; Gujarro-Anton, A.; Potenza, M.N.; Bailey, C.R.; Lin, S.F.; Najafzadeh, S.; et al. Elevated brain cannabinoid CB1 receptor availability in post-traumatic stress disorder: A positron emission tomography study. Mol. Psychiatry 2013, 18, 1034–1040. [Google Scholar] [CrossRef]
- Hauer, D.; Schelling, G.; Gola, H.; Campolongo, P.; Morath, J.; Roozendaal, B.; Hamuni, G.; Karabatsiakis, A.; Atsak, P.; Vogeser, M.; et al. Plasma concentrations of endocannabinoids and related primary fatty acid amides in patients with post-traumatic stress disorder. PLoS ONE 2013, 8, e62741. [Google Scholar] [CrossRef]
- Schaefer, C.; Enning, F.; Mueller, J.K.; Bumb, J.M.; Rohleder, C.; Odorfer, T.M.; Klosterkotter, J.; Hellmich, M.; Koethe, D.; Schmahl, C.; et al. Fatty acid ethanolamide levels are altered in borderline personality and complex posttraumatic stress disorders. Eur. Arch. Psychiatry Clin. Neurosci. 2014, 264, 459–463. [Google Scholar] [CrossRef]
- Croissant, M.; Glaesmer, H.; Klucken, T.; Kirschbaum, C.; Gao, W.; Stalder, T.; Sierau, S. Endocannabinoid concentrations in hair and mental health of unaccompanied refugee minors. Psychoneuroendocrinology 2020, 116, 104683. [Google Scholar] [CrossRef]
- Coccaro, E.F.; Hill, M.N.; Robinson, L.; Lee, R.J. Circulating endocannabinoids and affect regulation in human subjects. Psychoneuroendocrinology 2018, 92, 66–71. [Google Scholar] [CrossRef]
- Leen, N.A.; de Weijer, A.D.; van Rooij, S.J.H.; Kennis, M.; Baas, J.M.P.; Geuze, E. The Role of the Endocannabinoids 2-AG and Anandamide in Clinical Symptoms and Treatment Outcome in Veterans with PTSD. Chronic Stress 2022, 6, 24705470221107290. [Google Scholar] [CrossRef]
- Crombie, K.M.; Sartin-Tarm, A.; Sellnow, K.; Ahrenholtz, R.; Lee, S.; Matalamaki, M.; Adams, T.G.; Cisler, J.M. Aerobic exercise and consolidation of fear extinction learning among women with posttraumatic stress disorder. Behav. Res. Ther. 2021, 142, 103867. [Google Scholar] [CrossRef]
- Marusak, H.A.; Ely, S.L.; Zundel, C.G.; Gowatch, L.C.; Shampine, M.; Carpenter, C.; Tamimi, R.; Jaster, A.M.; Shakir, T.; May, L.; et al. Endocannabinoid dysregulation and PTSD in urban adolescents: Associations with anandamide concentrations and FAAH genotype. Psychopharmacology 2024. [Google Scholar] [CrossRef] [PubMed]
- deRoon-Cassini, T.A.; Bergner, C.L.; Chesney, S.A.; Schumann, N.R.; Lee, T.S.; Brasel, K.J.; Hillard, C.J. Circulating endocannabinoids and genetic polymorphisms as predictors of posttraumatic stress disorder symptom severity: Heterogeneity in a community-based cohort. Transl. Psychiatry 2022, 12, 48. [Google Scholar] [CrossRef] [PubMed]
- Marusak, H.A.; Evanski, J.; Desai, S.; Rabinak, C.A. Impact of Childhood Trauma Exposure, Genetic Variation in Endocannabinoid Signaling, and Anxiety on Frontolimbic Pathways in Children. Cannabis Cannabinoid Res. 2022, 8, 1079–1089. [Google Scholar] [CrossRef] [PubMed]
- Lazary, J.; Eszlari, N.; Juhasz, G.; Bagdy, G. Genetically reduced FAAH activity may be a risk for the development of anxiety and depression in persons with repetitive childhood trauma. Eur. Neuropsychopharmacol. 2016, 26, 1020–1028. [Google Scholar] [CrossRef]
- Desai, S.; Zundel, C.G.; Evanski, J.M.; Gowatch, L.C.; Bhogal, A.; Ely, S.; Carpenter, C.; Shampine, M.; O’Mara, E.; Rabinak, C.A.; et al. Genetic variation in endocannabinoid signaling: Anxiety, depression, and threat- and reward-related brain functioning during the transition into adolescence. Behav. Brain Res. 2024, 463, 114925. [Google Scholar] [CrossRef]
- Ney, L.J.; Felmingham, K.L.; Matthews, A.; Bruno, R.; Nichols, D. Simultaneous quantification of endocannabinoids, oleoylethanolamide and steroid hormones in human plasma and saliva. J. Chromatogr. B 2020, 1152, 122252. [Google Scholar] [CrossRef]
- Belitardo de Oliveira, A.; de Mello, M.T.; Tufik, S.; Peres, M.F.P. Weight loss and improved mood after aerobic exercise training are linked to lower plasma anandamide in healthy people. Physiol. Behav. 2019, 201, 191–197. [Google Scholar] [CrossRef]
- Dietrich, A.; McDaniel, W.F. Endocannabinoids and exercise. Br. J. Sports Med. 2004, 38, 536. [Google Scholar] [CrossRef]
- Mourtakos, S.; Vassiliou, G.; Kontoangelos, K.; Philippou, A.; Tzavellas, E.; Tornero-Aguilera, J.F.; Clemente-Suárez, V.J.; Papageorgiou, C.; Sidossis, L.S.; Papageorgiou, C. Endocannabinoids and Heart Rate Variability Alterations after Exposure to Prolonged Intensive Physical Exercise of the Hellenic Navy SEALs. Int. J. Environ. Res. Public Health 2021, 19, 28. [Google Scholar] [CrossRef]
- Botsford, C.; Brellenthin, A.G.; Cisler, J.M.; Hillard, C.J.; Koltyn, K.F.; Crombie, K.M. Circulating endocannabinoids and psychological outcomes in women with PTSD. J. Anxiety Disord. 2023, 93, 102656. [Google Scholar] [CrossRef]
- Crombie, K.M.; Cisler, J.M.; Hillard, C.J.; Koltyn, K.F. Aerobic exercise reduces anxiety and fear ratings to threat and increases circulating endocannabinoids in women with and without PTSD. Ment. Health Phys. Act. 2021, 20, 100366. [Google Scholar] [CrossRef] [PubMed]
- Rabinak, C.A.; Blanchette, A.; Zabik, N.L.; Peters, C.; Marusak, H.A.; Iadipaolo, A.; Elrahal, F. Cannabinoid modulation of corticolimbic activation to threat in trauma-exposed adults: A preliminary study. Psychopharmacology 2020, 237, 1813–1826. [Google Scholar] [CrossRef] [PubMed]
- Pacitto, R.; Peters, C.; Iadipaolo, A.; Rabinak, C.A. Cannabinoid modulation of brain activation during volitional regulation of negative affect in trauma-exposed adults. Neuropharmacology 2022, 218, 109222. [Google Scholar] [CrossRef] [PubMed]
- Fraser, G.A. The use of a synthetic cannabinoid in the management of treatment-resistant nightmares in posttraumatic stress disorder (PTSD). CNS Neurosci. Ther. 2009, 15, 84–88. [Google Scholar] [CrossRef]
- Jetly, R.; Heber, A.; Fraser, G.; Boisvert, D. The efficacy of nabilone, a synthetic cannabinoid, in the treatment of PTSD-associated nightmares: A preliminary randomized, double-blind, placebo-controlled cross-over design study. Psychoneuroendocrinology 2015, 51, 585–588. [Google Scholar] [CrossRef]
- Meakin, C.; Fraser, G.; Boisvert, D.; Miller, C. Use of a synthetic cannabinoid (nabilone) in the ongoing management of posttraumatic stress disorder nightmares in the Canadian Armed Forces: Results of an anonymous online survey. J. Mil. Veteran Fam. Health 2020, 6, 3–8. [Google Scholar] [CrossRef]
- Cameron, C.; Watson, D.; Robinson, J. Use of a synthetic cannabinoid in a correctional population for posttraumatic stress disorder-related insomnia and nightmares, chronic pain, harm reduction, and other indications: A retrospective evaluation. J. Clin. Psychopharmacol. 2014, 34, 559–564. [Google Scholar] [CrossRef]
- Roitman, P.; Mechoulam, R.; Cooper-Kazaz, R.; Shalev, A. Preliminary, open-label, pilot study of add-on oral Δ9-tetrahydrocannabinol in chronic post-traumatic stress disorder. Clin. Drug Investig. 2014, 34, 587–591. [Google Scholar] [CrossRef]
- Nacasch, N.; Avni, C.; Toren, P. Medical cannabis for treatment-resistant combat PTSD. Front. Psychiatry 2023, 13, 1014630. [Google Scholar] [CrossRef]
- Smith, P.; Chan, S.; Blake, A.; Wolt, A.; Ba, L.; Zhang, L.; Wan, B.; Zaki, P.; Lam, H.; Deangelis, C.; et al. Medical cannabis use in military and police veterans diagnosed with post-traumatic stress disorder (PTSD). J. Pain Manag. 2017, 10, 397–405. [Google Scholar]
- Drost, L.; Wan, B.; Chan, S.; Wolt, A.; Zhang, L.; Slaven, M.; Shaw, E.; Deangelis, C.; Lam, H.; Zaki, P.; et al. Efficacy of different varieties of medical cannabis in relieving symptoms in post-traumatic stress disorder (PTSD) patients. J. Pain Manag. 2017, 10, 375–383. [Google Scholar]
- Sznitman, S.R.; Meiri, D.; Amit, B.H.; Rosenberg, D.; Greene, T. Posttraumatic stress disorder, sleep and medical cannabis treatment: A daily diary study. J. Anxiety Disord. 2022, 92, 102632. [Google Scholar] [CrossRef] [PubMed]
- Walsh, Z.; Mitchell, I.; Crosby, K.; St Pierre, M.; DeClerck, D.; Ong, K.; Lucas, P. A small clinical trial of vaporized cannabis for PTSD: Suggestive results and directions for future study. Trials 2023, 24, 578. [Google Scholar] [CrossRef]
- Elms, L.; Shannon, S.; Hughes, S.; Lewis, N. Cannabidiol in the Treatment of Post-Traumatic Stress Disorder: A Case Series. J. Altern. Complement. Med. 2019, 25, 392–397. [Google Scholar] [CrossRef]
- Passie, T.; Emrich, H.M.; Karst, M.; Brandt, S.D.; Halpern, J.H. Mitigation of post-traumatic stress symptoms by Cannabis resin: A review of the clinical and neurobiological evidence. Drug Test. Anal. 2012, 4, 649–659. [Google Scholar] [CrossRef]
- Shannon, S.; Lewis, N.; Lee, H.; Hughes, S. Cannabidiol in Anxiety and Sleep: A Large Case Series. Perm. J. 2019, 23, 18–041. [Google Scholar] [CrossRef]
- Shannon, S.; Opila-Lehman, J. Effectiveness of Cannabidiol Oil for Pediatric Anxiety and Insomnia as Part of Posttraumatic Stress Disorder: A Case Report. Perm. J. 2016, 20, 108–111. [Google Scholar] [CrossRef]
- Ragnhildstveit, A.; Kaiyo, M.; Snyder, M.B.; Jackson, L.K.; Lopez, A.; Mayo, C.; Miranda, A.C.; August, R.J.; Seli, P.; Robison, R.; et al. Cannabis-assisted psychotherapy for complex dissociative posttraumatic stress disorder: A case report. Front. Psychiatry 2023, 14, 1051542. [Google Scholar] [CrossRef]
- Bonn-Miller, M.O.; Sisley, S.; Riggs, P.; Yazar-Klosinski, B.; Wang, J.B.; Loflin, M.J.E.; Shechet, B.; Hennigan, C.; Matthews, R.; Emerson, A.; et al. The short-term impact of 3 smoked cannabis preparations versus placebo on PTSD symptoms: A randomized cross-over clinical trial. PLoS ONE 2021, 16, e0246990. [Google Scholar] [CrossRef]
- Johnson, M.J.; Pierce, J.D.; Mavandadi, S.; Klaus, J.; Defelice, D.; Ingram, E.; Oslin, D.W. Mental health symptom severity in cannabis using and non-using Veterans with probable PTSD. J. Affect. Disord. 2016, 190, 439–442. [Google Scholar] [CrossRef]
- Metrik, J.; Stevens, A.K.; Gunn, R.L.; Borsari, B.; Jackson, K.M. Cannabis use and posttraumatic stress disorder: Prospective evidence from a longitudinal study of veterans. Psychol. Med. 2022, 52, 446–456. [Google Scholar] [CrossRef] [PubMed]
- Bolsoni, L.M.; Crippa, J.A.S.; Hallak, J.E.C.; Guimarães, F.S.; Zuardi, A.W. Effects of cannabidiol on symptoms induced by the recall of traumatic events in patients with posttraumatic stress disorder. Psychopharmacology 2022, 239, 1499–1507. [Google Scholar] [CrossRef] [PubMed]
- Loflin, M.; Earleywine, M.; Bonn-Miller, M. Medicinal versus recreational cannabis use: Patterns of cannabis use, alcohol use, and cued-arousal among veterans who screen positive for PTSD. Addict. Behav. 2017, 68, 18–23. [Google Scholar] [CrossRef] [PubMed]
- Gradus, J.L.; Qin, P.; Lincoln, A.K.; Miller, M.; Lawler, E.; Sørensen, H.T.; Lash, T.L. Posttraumatic Stress Disorder and Completed Suicide. Am. J. Epidemiol. 2010, 171, 721–727. [Google Scholar] [CrossRef]
- Bonn-Miller, M.O.; Boden, M.T.; Vujanovic, A.A.; Drescher, K.D. Prospective investigation of the impact of cannabis use disorders on posttraumatic stress disorder symptoms among veterans in residential treatment. Psychol. Trauma Theory Res. Pract. Policy 2013, 5, 193–200. [Google Scholar] [CrossRef]
- Bonn-Miller, M.O.; Vujanovic, A.A.; Drescher, K.D. Cannabis use among military veterans after residential treatment for posttraumatic stress disorder. Psychol. Addict. Behav. 2011, 25, 485–491. [Google Scholar] [CrossRef]
- Wilkinson, S.T.; Stefanovics, E.; Rosenheck, R.A. Marijuana use is associated with worse outcomes in symptom severity and violent behavior in patients with posttraumatic stress disorder. J. Clin. Psychiatry 2015, 76, 1174–1180. [Google Scholar] [CrossRef]
- Hill, M.L.; Loflin, M.; Nichter, B.; Na, P.J.; Herzog, S.; Norman, S.B.; Pietrzak, R.H. Cannabis use among U.S. military veterans with subthreshold or threshold posttraumatic stress disorder: Psychiatric comorbidities, functioning, and strategies for coping with posttraumatic stress symptoms. J. Trauma. Stress. 2022, 35, 1154–1166. [Google Scholar] [CrossRef]
- Murkar, A.; Kendzerska, T.; Shlik, J.; Quilty, L.; Saad, M.; Robillard, R. Increased cannabis intake during the COVID-19 pandemic is associated with worsening of depression symptoms in people with PTSD. BMC Psychiatry 2022, 22, 554. [Google Scholar] [CrossRef]
- Lake, S.; Kerr, T.; Buxton, J.; Walsh, Z.; Marshall, B.D.L.; Wood, E.; Milloy, M.J. Does cannabis use modify the effect of post-traumatic stress disorder on severe depression and suicidal ideation? Evidence from a population-based cross-sectional study of Canadians. J. Psychopharmacol. 2019, 34, 181–188. [Google Scholar] [CrossRef]
- Greer, G.R.; Grob, C.S.; Halberstadt, A.L. PTSD symptom reports of patients evaluated for the New Mexico Medical Cannabis Program. J. Psychoact. Drugs 2014, 46, 73–77. [Google Scholar] [CrossRef] [PubMed]
- Bonn-Miller, M.O.; Brunstetter, M.; Simonian, A.; Loflin, M.J.; Vandrey, R.; Babson, K.A.; Wortzel, H. The Long-Term, Prospective, Therapeutic Impact of Cannabis on Post-Traumatic Stress Disorder. Cannabis Cannabinoid Res. 2020, 7, 214–223. [Google Scholar] [CrossRef] [PubMed]
- Cougle, J.R.; Bonn-Miller, M.O.; Vujanovic, A.A.; Zvolensky, M.J.; Hawkins, K.A. Posttraumatic stress disorder and cannabis use in a nationally representative sample. Psychol. Addict. Behav. 2011, 25, 554–558. [Google Scholar] [CrossRef] [PubMed]
- Bassir Nia, A.; Weleff, J.; Fogelman, N.; Nourbakhsh, S.; Sinha, R. Regular cannabis use is associated with history of childhood and lifetime trauma in a non-clinical community sample. J. Psychiatr. Res. 2023, 159, 159–164. [Google Scholar] [CrossRef]
- Magruder, K.M.; Yeager, D.; Brawman-Mintzer, O. The Role of Pain, Functioning, and Mental Health in Suicidality Among Veterans Affairs Primary Care Patients. Am. J. Public Health 2012, 102, S118–S124. [Google Scholar] [CrossRef]
- Farrelly, K.N.; Romero-Sanchiz, P.; Mahu, T.; Barrett, S.P.; Collins, P.; Rasic, D.; Stewart, S.H. Posttraumatic Stress Disorder Symptoms and Coping Motives are Independently Associated with Cannabis Craving Elicited by Trauma Cues. J. Trauma. Stress 2022, 35, 178–185. [Google Scholar] [CrossRef]
- Rodas, J.D.; George, T.P.; Hassan, A.N. A Systematic Review of the Clinical Effects of Cannabis and Cannabinoids in Posttraumatic Stress Disorder Symptoms and Symptom Clusters. J. Clin. Psychiatry 2024, 85, 23r14862. [Google Scholar] [CrossRef]
- Short, N.A.; Zvolensky, M.J.; Schmidt, N.B. A pilot randomized clinical trial of Brief Behavioral Treatment for Insomnia to reduce problematic cannabis use among trauma-exposed young adults. J. Subst. Abus. Treat. 2021, 131, 108537. [Google Scholar] [CrossRef]
- Livingston, N.A.; Farmer, S.L.; Mahoney, C.T.; Marx, B.P.; Keane, T.M. Longitudinal course of mental health symptoms among veterans with and without cannabis use disorder. Psychol. Addict. Behav. 2022, 36, 131–143. [Google Scholar] [CrossRef]
- Dillon, K.H.; Van Voorhees, E.E.; Elbogen, E.B.; Beckham, J.C.; Brancu, M.; Beckham, J.C.; Calhoun, P.S.; Dedert, E.; Elbogen, E.B.; Fairbank, J.A.; et al. Cannabis use disorder, anger, and violence in Iraq/Afghanistan-era veterans. J. Psychiatr. Res. 2021, 138, 375–379. [Google Scholar] [CrossRef]
- Hicks, T.A.; Bountress, K.E.; Adkins, A.E.; Svikis, D.S.; Gillespie, N.A.; Dick, D.M.; Spit For Science Working, G.; Amstadter, A.B. A longitudinal mediational investigation of risk pathways among cannabis use, interpersonal trauma exposure, and trauma-related distress. Psychol. Trauma. 2023, 15, 969–978. [Google Scholar] [CrossRef] [PubMed]
- Jayan, D.; Timmer-Murillo, S.; Fitzgerald, J.M.; Hillard, C.J.; de Roon-Cassini, T.A. Endocannabinoids, cortisol, and development of post-traumatic psychopathological trajectories. Gen. Hosp. Psychiatry 2023, 85, 199–206. [Google Scholar] [CrossRef] [PubMed]
- Ney, L.J.; Crombie, K.M.; Mayo, L.M. Chapter 5—The endocannabinoid system and posttraumatic stress disorder (PTSD): A new narrative. In Neurobiology and Physiology of the Endocannabinoid System; Patel, V.B., Preedy, V.R., Martin, C.R., Eds.; Academic Press: Cambridge, MA, USA, 2023; pp. 67–79. [Google Scholar]
- Arnold, J. A primer on medicinal cannabis safety and potential adverse effects. Aust. J. Gen. Pract. 2021, 50, 345–350. [Google Scholar] [CrossRef]
- Englund, A.; Oliver, D.; Chesney, E.; Chester, L.; Wilson, J.; Sovi, S.; De Micheli, A.; Hodsoll, J.; Fusar-Poli, P.; Strang, J.; et al. Does cannabidiol make cannabis safer? A randomised, double-blind, cross-over trial of cannabis with four different CBD:THC ratios. Neuropsychopharmacology 2023, 48, 869–876. [Google Scholar] [CrossRef]
- Huggins, J.P.; Smart, T.S.; Langman, S.; Taylor, L.; Young, T. An efficient randomised, placebo-controlled clinical trial with the irreversible fatty acid amide hydrolase-1 inhibitor PF-04457845, which modulates endocannabinoids but fails to induce effective analgesia in patients with pain due to osteoarthritis of the knee. Pain 2012, 153, 1837–1846. [Google Scholar] [CrossRef]
- Campos, A.C.; Moreira, F.A.; Gomes, F.V.; Del Bel, E.A.; Guimaraes, F.S. Multiple mechanisms involved in the large-spectrum therapeutic potential of cannabidiol in psychiatric disorders. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2012, 367, 3364–3378. [Google Scholar] [CrossRef]
- Morales, P.; Reggio, P.H.; Jagerovic, N. An Overview on Medicinal Chemistry of Synthetic and Natural Derivatives of Cannabidiol. Front. Pharmacol. 2017, 8, 422. [Google Scholar] [CrossRef]
- Morales, P.; Hurst, D.P.; Reggio, P.H. Molecular Targets of the Phytocannabinoids: A Complex Picture. Prog. Chem. Org. Nat. Prod. 2017, 103, 103–131. [Google Scholar] [CrossRef]
- Bergamaschi, M.M.; Queiroz, R.H.; Chagas, M.H.; de Oliveira, D.C.; De Martinis, B.S.; Kapczinski, F.; Quevedo, J.; Roesler, R.; Schroder, N.; Nardi, A.E.; et al. Cannabidiol reduces the anxiety induced by simulated public speaking in treatment-naive social phobia patients. Neuropsychopharmacology 2011, 36, 1219–1226. [Google Scholar] [CrossRef]
- ElBatsh, M.M.; Assareh, N.; Marsden, C.A.; Kendall, D.A. Anxiogenic-like effects of chronic cannabidiol administration in rats. Psychopharmacology 2012, 221, 239–247. [Google Scholar] [CrossRef]
- Guimarães, F.S.; Chiaretti, T.M.; Graeff, F.G.; Zuardi, A.W. Antianxiety effect of cannabidiol in the elevated plus-maze. Psychopharmacology 1990, 100, 558–559. [Google Scholar] [CrossRef] [PubMed]
- Linares, I.M.; Zuardi, A.W.; Pereira, L.C.; Queiroz, R.H.; Mechoulam, R.; Guimarães, F.S.; Crippa, J.A. Cannabidiol presents an inverted U-shaped dose-response curve in a simulated public speaking test. Rev. Bras. Psiquiatr. 2019, 41, 9–14. [Google Scholar] [CrossRef] [PubMed]
- Zuardi, A.W.; Rodrigues, N.P.; Silva, A.L.; Bernardo, S.A.; Hallak, J.E.C.; Guimaraes, F.S.; Crippa, J.A.S. Inverted U-Shaped Dose-Response Curve of the Anxiolytic Effect of Cannabidiol during Public Speaking in Real Life. Front. Pharmacol. 2017, 8, 259. [Google Scholar] [CrossRef]
- Vaughn, L.K.; Denning, G.; Stuhr, K.L.; de Wit, H.; Hill, M.N.; Hillard, C.J. Endocannabinoid signalling: Has it got rhythm? Br. J. Pharmacol. 2010, 160, 530–543. [Google Scholar] [CrossRef]
- Fanelli, F.; Di Lallo, V.D.; Belluomo, I.; De Iasio, R.; Baccini, M.; Casadio, E.; Gasparini, D.I.; Colavita, M.; Gambineri, A.; Grossi, G.; et al. Estimation of reference intervals of five endocannabinoids and endocannabinoid related compounds in human plasma by two dimensional-LC/MS/MS. J. Lipid Res. 2012, 53, 481–493. [Google Scholar] [CrossRef]
- Hillard, C.J. Circulating Endocannabinoids: From Whence Do They Come and Where are They Going? Neuropsychopharmacology 2017, 43, 155–172. [Google Scholar] [CrossRef]
- Greaves, M.D.; Felmingham, K.L.; Ney, L.J.; Nicholson, E.; Li, S.; Vervliet, B.; Harrison, B.J.; Graham, B.M.; Steward, T. Using Electrodermal Activity to Estimate Fear Learning Differences in Anxiety: A Multiverse Analysis. Behav. Res. Ther. 2024, 181, 104598. [Google Scholar] [CrossRef]
- Lonsdorf, T.B.; Klingelhöfer-Jens, M.; Andreatta, M.; Beckers, T.; Chalkia, A.; Gerlicher, A.; Jentsch, V.L.; Meir Drexler, S.; Mertens, G.; Richter, J.; et al. Navigating the garden of forking paths for data exclusions in fear conditioning research. eLife 2019, 8, e52465. [Google Scholar] [CrossRef]
- Lonsdorf, T.B.; Merz, C.J.; Fullana, M.A. Fear extinction retention: Is it what we think it is? Biol. Psychiatry 2019, 85, 1074–1082. [Google Scholar] [CrossRef]
- Yin, J.; Wang, Y.; Lipp, O.V.; Mayo, L.M.; Ney, L.J. Examining the reliability of the emotional conflict resolution and adaptation effects in the emotional conflict task via secondary data analysis, systematic review, and meta-analysis. J. Exp. Psychol. Gen. 2024, 153, 1361–1373. [Google Scholar] [CrossRef]
- Ney, L.J.; Akosile, W.; Davey, C.; Pitcher, L.; Felmingham, K.L.; Mayo, L.M.; Hill, M.N.; Strodl, E. Challenges and considerations for treating PTSD with medicinal cannabis: The Australian clinician’s perspective. Expert Rev. Clin. Pharmacol. 2023, 16, 1093–1108. [Google Scholar] [CrossRef] [PubMed]
- Hill, M.L.; Kline, A.C.; Saraiya, T.C.; Gette, J.; Ruglass, L.M.; Norman, S.B.; Back, S.E.; Saavedra, L.M.; Hien, D.A.; Morgan-López, A.A. Cannabis use and trauma-focused treatment for co-occurring posttraumatic stress disorder and substance use disorders: A meta-analysis of individual patient data. J. Anxiety Disord. 2024, 102, 102827. [Google Scholar] [CrossRef] [PubMed]
- Hale, A.C.; Bremer-Landau, J.; Wright, T.P.; McDowell, J.E.; Rodriguez, J.L. Residential PTSD treatment outcomes during cognitive processing therapy for veterans with and without recent histories of cannabis use. Psychol. Serv. 2021, 18, 497–503. [Google Scholar] [CrossRef] [PubMed]
- Ramaekers, J.G.; Mason, N.L.; Kloft, L.; Theunissen, E.L. The why behind the high: Determinants of neurocognition during acute cannabis exposure. Nat. Rev. Neurosci. 2021, 22, 439–454. [Google Scholar] [CrossRef]
- Arkell, T.R.; McCartney, D.; McGregor, I.S. Medical cannabis and driving. Aust. J. Gen. Pract. 2021, 50, 357–362. [Google Scholar] [CrossRef]
- MacCallum, C.A.; Russo, E.B. Practical considerations in medical cannabis administration and dosing. Eur. J. Intern. Med. 2018, 49, 12–19. [Google Scholar] [CrossRef]
- McCartney, D.; Arkell, T.R.; Irwin, C.; McGregor, I.S. Determining the magnitude and duration of acute Δ9-tetrahydrocannabinol (Δ9-THC)-induced driving and cognitive impairment: A systematic and meta-analytic review. Neurosci. Biobehav. Rev. 2021, 126, 175–193. [Google Scholar] [CrossRef]
- Arnold, W.R.; Weigle, A.T.; Das, A. Cross-talk of cannabinoid and endocannabinoid metabolism is mediated via human cardiac CYP2J2. J. Inorg. Biochem. 2018, 184, 88–99. [Google Scholar] [CrossRef]
- Bland, T.M.; Haining, R.L.; Tracy, T.S.; Callery, P.S. CYP2C-catalyzed delta9-tetrahydrocannabinol metabolism: Kinetics, pharmacogenetics and interaction with phenytoin. Biochem. Pharmacol. 2005, 70, 1096–1103. [Google Scholar] [CrossRef]
- Lucas, C.J.; Galettis, P.; Schneider, J. The pharmacokinetics and the pharmacodynamics of cannabinoids. Br. J. Clin. Pharmacol. 2018, 84, 2477–2482. [Google Scholar] [CrossRef]
- Sholler, D.J.; Strickland, J.C.; Spindle, T.R.; Weerts, E.M.; Vandrey, R. Sex differences in the acute effects of oral and vaporized cannabis among healthy adults. Addict. Biol. 2021, 26, e12968. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Melchert, P.W.; Markowitz, J.S. Pharmacokinetic Variability of Oral Cannabidiol and Its Major Metabolites after Short-Term High-Dose Exposure in Healthy Subjects. Med. Cannabis Cannabinoids 2024, 7, 1–9. [Google Scholar] [CrossRef] [PubMed]
- McCartney, D.; Arkell, T.R.; Irwin, C.; Kevin, R.C.; McGregor, I.S. Are blood and oral fluid Δ9-tetrahydrocannabinol (THC) and metabolite concentrations related to impairment? A meta-regression analysis. Neurosci. Biobehav. Rev. 2022, 134, 104433. [Google Scholar] [CrossRef] [PubMed]
- Suraev, A.; McCartney, D.; Kevin, R.; Gordon, R.; Grunstein, R.R.; Hoyos, C.M.; McGregor, I.S. Detection of Δ9-tetrahydrocannabinol (THC) in oral fluid using two point-of-collection testing devices following oral administration of a THC and cannabidiol containing oil. Drug Test. Anal. 2024, 16, 1487–1495. [Google Scholar] [CrossRef]
- McCartney, D.; Kevin, R.C.; Suraev, A.S.; Sahinovic, A.; Doohan, P.T.; Bedoya-Pérez, M.A.; Grunstein, R.R.; Hoyos, C.M.; McGregor, I.S. How long does a single oral dose of cannabidiol persist in plasma? Findings from three clinical trials. Drug Test. Anal. 2023, 15, 334–344. [Google Scholar] [CrossRef]
- Arkell, T.R.; Hayley, A.C.; Downey, L.A. High standards: Considerations for the application of the standard THC unit. Lancet Psychiatry 2021, 8, 947–948. [Google Scholar] [CrossRef]
- Arkell, T.R.; Spindle, T.R.; Kevin, R.C.; Vandrey, R.; McGregor, I.S. The failings of per se limits to detect cannabis-induced driving impairment: Results from a simulated driving study. Traffic Inj. Prev. 2021, 22, 102–107. [Google Scholar] [CrossRef]
- Sharpe, L.; Sinclair, J.; Kramer, A.; de Manincor, M.; Sarris, J. Cannabis, a cause for anxiety? A critical appraisal of the anxiogenic and anxiolytic properties. J. Transl. Med. 2020, 18, 374. [Google Scholar] [CrossRef]
- Lichenstein, S.D. THC, CBD, and Anxiety: A review of recent findings on the anxiolytic and anxiogenic effects of cannabis’ primary cannabinoids. Curr. Addict. Rep. 2022, 9, 473–485. [Google Scholar] [CrossRef]
- Pabon, E.; Rockwood, F.; Norman, G.J.; de Wit, H. Acute effects of oral delta-9-tetrahydrocannabinol (THC) on autonomic cardiac activity and their relation to subjective and anxiogenic effects. Psychophysiology 2022, 59, e13955. [Google Scholar] [CrossRef]
- Spindle, T.R.; Zamarripa, C.A.; Russo, E.; Pollak, L.; Bigelow, G.; Ward, A.M.; Tompson, B.; Sempio, C.; Shokati, T.; Klawitter, J.; et al. Vaporized D-limonene selectively mitigates the acute anxiogenic effects of Δ9-tetrahydrocannabinol in healthy adults who intermittently use cannabis. Drug Alcohol. Depend. 2024, 257, 111267. [Google Scholar] [CrossRef] [PubMed]
- Lac, A.; Luk, J.W. Testing the Amotivational Syndrome: Marijuana Use Longitudinally Predicts Lower Self-Efficacy Even After Controlling for Demographics, Personality, and Alcohol and Cigarette Use. Prev. Sci. 2018, 19, 117–126. [Google Scholar] [CrossRef] [PubMed]
- Arseneault, L.; Cannon, M.; Witton, J.; Murray, R.M. Causal association between cannabis and psychosis: Examination of the evidence. Br. J. Psychiatry 2004, 184, 110–117. [Google Scholar] [CrossRef] [PubMed]
- Grech, A.; Van Os, J.; Jones, P.B.; Lewis, S.W.; Murray, R.M. Cannabis use and outcome of recent onset psychosis. Eur. Psychiatry 2005, 20, 349–353. [Google Scholar] [CrossRef]
- Ramaekers, J.G.; Mason, N.L.; Theunissen, E.L. Blunted highs: Pharmacodynamic and behavioral models of cannabis tolerance. Eur. Neuropsychopharmacol. 2020, 36, 191–205. [Google Scholar] [CrossRef]
- Colizzi, M.; Bhattacharyya, S. Cannabis use and the development of tolerance: A systematic review of human evidence. Neurosci. Biobehav. Rev. 2018, 93, 1–25. [Google Scholar] [CrossRef]
- Zehra, A.; Burns, J.; Liu, C.K.; Manza, P.; Wiers, C.E.; Volkow, N.D.; Wang, G.J. Cannabis Addiction and the Brain: A Review. J. Neuroimmune Pharmacol. 2018, 13, 438–452. [Google Scholar] [CrossRef]
- Crean, R.D.; Crane, N.A.; Mason, B.J. An evidence-based review of acute and long-term effects of cannabis use on executive cognitive functions. J. Addict. Med. 2011, 5, 1–8. [Google Scholar] [CrossRef]
- Connor, J.P.; Stjepanović, D.; Le Foll, B.; Hoch, E.; Budney, A.J.; Hall, W.D. Cannabis use and cannabis use disorder. Nat. Rev. Dis. Primers 2021, 7, 16. [Google Scholar] [CrossRef]
- Bedard-Gilligan, M.; Garcia, N.; Zoellner, L.A.; Feeny, N.C. Alcohol, cannabis, and other drug use: Engagement and outcome in PTSD treatment. Psychol. Addict. Behav. 2018, 32, 277–288. [Google Scholar] [CrossRef]
- Brady, K.T.; Killeen, T.K.; Brewerton, T.; Lucerini, S. Comorbidity of psychiatric disorders and posttraumatic stress disorder. J. Clin. Psychiatry 2000, 61 (Suppl. S7), 22–32. [Google Scholar] [PubMed]
- Urits, I.; Charipova, K.; Gress, K.; Li, N.; Berger, A.A.; Cornett, E.M.; Kassem, H.; Ngo, A.L.; Kaye, A.D.; Viswanath, O. Adverse Effects of Recreational and Medical Cannabis. Psychopharmacol. Bull. 2021, 51, 94–109. [Google Scholar] [PubMed]
- DeVuono, M.V.; Parker, L.A. Cannabinoid Hyperemesis Syndrome: A Review of Potential Mechanisms. Cannabis Cannabinoid Res. 2020, 5, 132–144. [Google Scholar] [CrossRef] [PubMed]
- Habboushe, J.; Rubin, A.; Liu, H.; Hoffman, R.S. The Prevalence of Cannabinoid Hyperemesis Syndrome Among Regular Marijuana Smokers in an Urban Public Hospital. Basic. Clin. Pharmacol. Toxicol. 2018, 122, 660–662. [Google Scholar] [CrossRef]
- Galli, J.A.; Sawaya, R.A.; Friedenberg, F.K. Cannabinoid hyperemesis syndrome. Curr. Drug Abus. Rev. 2011, 4, 241–249. [Google Scholar] [CrossRef]
- DeFilippis, E.M.; Bajaj, N.S.; Singh, A.; Malloy, R.; Givertz, M.M.; Blankstein, R.; Bhatt, D.L.; Vaduganathan, M. Marijuana Use in Patients With Cardiovascular Disease: JACC Review Topic of the Week. J. Am. Coll. Cardiol. 2020, 75, 320–332. [Google Scholar] [CrossRef]
- Pasha, A.K.; Clements, C.Y.; Reynolds, C.A.; Lopez, M.K.; Lugo, C.A.; Gonzalez, Y.; Shirazi, F.M.; Abidov, A. Cardiovascular Effects of Medical Marijuana: A Systematic Review. Am. J. Med. 2021, 134, 182–193. [Google Scholar] [CrossRef]
- Atsmon, J.; Heffetz, D.; Deutsch, L.; Deutsch, F.; Sacks, H. Single-Dose Pharmacokinetics of Oral Cannabidiol Following Administration of PTL101: A New Formulation Based on Gelatin Matrix Pellets Technology. Clin. Pharmacol. Drug Dev. 2018, 7, 751–758. [Google Scholar] [CrossRef]
- Bornheim, L.M.; Kim, K.Y.; Li, J.; Perotti, B.Y.; Benet, L.Z. Effect of cannabidiol pretreatment on the kinetics of tetrahydrocannabinol metabolites in mouse brain. Drug Metab. Dispos. 1995, 23, 825. [Google Scholar] [CrossRef]
- Deiana, S.; Watanabe, A.; Yamasaki, Y.; Amada, N.; Arthur, M.; Fleming, S.; Woodcock, H.; Dorward, P.; Pigliacampo, B.; Close, S.; et al. Plasma and brain pharmacokinetic profile of cannabidiol (CBD), cannabidivarine (CBDV), Δ⁹-tetrahydrocannabivarin (THCV) and cannabigerol (CBG) in rats and mice following oral and intraperitoneal administration and CBD action on obsessive-compulsive behaviour. Psychopharmacology 2012, 219, 859–873. [Google Scholar] [CrossRef]
- ElSohly, M.A.; Gul, W.; Walker, L.A. Pharmacokinetics and Tolerability of Δ9-THC-Hemisuccinate in a Suppository Formulation as an Alternative to Capsules for the Systemic Delivery of Δ9-THC. Med. Cannabis Cannabinoids 2018, 1, 44–53. [Google Scholar] [CrossRef] [PubMed]
- Goodwin, R.S.; Gustafson, R.A.; Barnes, A.; Nebro, W.; Moolchan, E.T.; Huestis, M.A. Delta(9)-tetrahydrocannabinol, 11-hydroxy-delta(9)-tetrahydrocannabinol and 11-nor-9-carboxy-delta(9)-tetrahydrocannabinol in human plasma after controlled oral administration of cannabinoids. Ther. Drug Monit. 2006, 28, 545–551. [Google Scholar] [CrossRef] [PubMed]
- Grotenhermen, F. Pharmacokinetics and Pharmacodynamics of Cannabinoids. Clin. Pharmacokinet. 2003, 42, 327–360. [Google Scholar] [CrossRef] [PubMed]
- Spindle, T.R.; Cone, E.J.; Herrmann, E.S.; Mitchell, J.M.; Flegel, R.; LoDico, C.; Bigelow, G.E.; Vandrey, R. Pharmacokinetics of Cannabis Brownies: A Controlled Examination of Δ9-Tetrahydrocannabinol and Metabolites in Blood and Oral Fluid of Healthy Adult Males and Females. J. Anal. Toxicol. 2020, 44, 661–671. [Google Scholar] [CrossRef]
- Barner, E.; Corbett, A.; Ney, L.J. Comment on Zabik et al. (2024): Timing and dosage effects of THC in fear extinction: Challenges and feasibility in a clinical setting. Psychopharmacology 2025. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ney, L. Understanding the Role of Endocannabinoids in Posttraumatic Stress Disorder. Int. J. Mol. Sci. 2025, 26, 5527. https://doi.org/10.3390/ijms26125527
Ney L. Understanding the Role of Endocannabinoids in Posttraumatic Stress Disorder. International Journal of Molecular Sciences. 2025; 26(12):5527. https://doi.org/10.3390/ijms26125527
Chicago/Turabian StyleNey, Luke. 2025. "Understanding the Role of Endocannabinoids in Posttraumatic Stress Disorder" International Journal of Molecular Sciences 26, no. 12: 5527. https://doi.org/10.3390/ijms26125527
APA StyleNey, L. (2025). Understanding the Role of Endocannabinoids in Posttraumatic Stress Disorder. International Journal of Molecular Sciences, 26(12), 5527. https://doi.org/10.3390/ijms26125527