Improvement in Transient Agarose Spot (TAS) Cell Migration Assay: Microplate-Based Detection and Evaluation
Abstract
:1. Introduction
2. Results
2.1. Data Acquisition by Microplate Reader
2.2. Optimization of Hoechst Staining
2.3. Representative Experiments
3. Discussion
4. Materials and Methods
4.1. Cell Lines and Treatments
4.2. Transient Agarose Spot (TAS) Assay
4.3. Cell Staining
4.4. Data Acquisition by Microscopy
4.5. Data Acquisition by Microplate Reader
4.6. Cell Viability Assay
4.7. Mesenchymal Stem Cell-Derived Extracellular Vesicle Isolation and Characterization
4.8. Statistics
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
EV | extracellular vesicle |
FBS | fetal bovine serum |
GFP | green fluorescent protein |
MSC | mesenchymal stem cell |
NTA | nanoparticle tracking analysis |
RFP | red fluorescent protein |
TAS | transient agarose spot |
TEM | transmission electron microscopy |
References
- Mayor, R.; Etienne-Manneville, S. The front and rear of collective cell migration. Nat. Rev. Mol. Cell Biol. 2016, 17, 97–109. [Google Scholar] [CrossRef] [PubMed]
- Spatarelu, C.-P.; Zhang, H.; Nguyen, D.T.; Han, X.; Liu, R.; Guo, Q.; Notbohm, J.; Fan, J.; Liu, L.; Chen, Z. Biomechanics of Collective Cell Migration in Cancer Progression: Experimental and Computational Methods. ACS Biomater. Sci. Eng. 2019, 5, 3766–3787. [Google Scholar] [CrossRef]
- Balko, S.; Kerr, E.; Buchel, E.; Logsetty, S.; Raouf, A. A Robust and Standardized Approach to Quantify Wound Closure Using the Scratch Assay. Methods Protoc. 2023, 6, 87. [Google Scholar] [CrossRef]
- Veres-Székely, A.; Pap, D.; Szebeni, B.; Őrfi, L.; Szász, C.; Pajtók, C.; Lévai, E.; Szabó, A.J.; Vannay, Á. Transient Agarose Spot (TAS) Assay: A New Method to Investigate Cell Migration. Int. J. Mol. Sci. 2022, 23, 2119. [Google Scholar] [CrossRef]
- Radstake, W.E.; Gautam, K.; Van Rompay, C.; Vermeesen, R.; Tabury, K.; Verslegers, M.; Baatout, S.; Baselet, B. Comparison of in vitro scratch wound assay experimental procedures. Biochem. Biophys. Rep. 2023, 33, 101423. [Google Scholar] [CrossRef]
- Berg, E.L. The future of phenotypic drug discovery. Cell Chem. Biol. 2021, 28, 424–430. [Google Scholar] [CrossRef] [PubMed]
- Nyffeler, J.; Haggard, D.E.; Willis, C.; Setzer, R.W.; Judson, R.; Paul-Friedman, K.; Everett, L.J.; Harrill, J.A. Comparison of Approaches for Determining Bioactivity Hits from High-Dimensional Profiling Data. SLAS Discov. 2021, 26, 292–308. [Google Scholar] [CrossRef] [PubMed]
- Quancard, J.; Bach, A.; Cox, B.; Craft, R.; Finsinger, D.; Guéret, S.M.; Hartung, I.V.; Laufer, S.; Messinger, J.; Sbardella, G.; et al. The European Federation for Medicinal Chemistry and Chemical Biology (EFMC) Best Practice Initiative: Phenotypic Drug Discovery. ChemMedChem 2021, 16, 1736–1739. [Google Scholar] [CrossRef]
- Grada, A.; Otero-Vinas, M.; Prieto-Castrillo, F.; Obagi, Z.; Falanga, V. Research techniques made simple: Analysis of collective cell migration using the wound healing assay. J. Investig. Dermatol. 2017, 137, e11–e16. [Google Scholar] [CrossRef]
- Bobadilla, A.V.P.; Arévalo, J.; Sarró, E.; Byrne, H.M.; Maini, P.K.; Carraro, T.; Balocco, S.; Meseguer, A.; Alarcón, T. In vitro cell migration quantification method for scratch assays. J. R. Soc. Interface 2019, 16, 20180709. [Google Scholar] [CrossRef]
- Guy, J.B.; Espenel, S.; Vallard, A.; Battiston-Montagne, P.; Wozny, A.S.; Ardail, D.; Alphonse, G.; Rancoule, C.; Rodriguez-Lafrasse, C.; Magne, N. Evaluation of the Cell Invasion and Migration Process: A Comparison of the Video Microscope-based Scratch Wound Assay and the Boyden Chamber Assay. J. Vis. Exp. 2017, 129, 56337. [Google Scholar] [CrossRef]
- Vang Mouritzen, M.; Jenssen, H. Optimized Scratch Assay for In Vitro Testing of Cell Migration with an Automated Optical Camera. J. Vis. Exp. 2018, 129, 56337. [Google Scholar] [CrossRef]
- Omar Zaki, S.S.; Kanesan, L.; Leong, M.Y.D.; Vidyadaran, S. The influence of serum-supplemented culture media in a transwell migration assay. Cell Biol. Int. 2019, 43, 1201–1204. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.Y.; Lee, S.Y.; Yun, S.H.; Jeong, J.W.; Kim, J.H.; Kim, H.W.; Choi, J.S.; Kim, G.D.; Joo, S.T.; Choi, I.; et al. Review of the Current Research on Fetal Bovine Serum and the Development of Cultured Meat. Food Sci. Anim. Resour. 2022, 42, 775–799. [Google Scholar] [CrossRef]
- Liu, S.; Yang, W.; Li, Y.; Sun, C. Fetal bovine serum, an important factor affecting the reproducibility of cell experiments. Sci. Rep. 2023, 13, 1942. [Google Scholar] [CrossRef] [PubMed]
- Recho, P.; Ranft, J.; Marcq, P. One-dimensional collective migration of a proliferating cell monolayer. Soft Matter 2016, 12, 2381–2391. [Google Scholar] [CrossRef]
- Ghasemi, M.; Turnbull, T.; Sebastian, S.; Kempson, I. The MTT Assay: Utility, Limitations, Pitfalls, and Interpretation in Bulk and Single-Cell Analysis. Int. J. Mol. Sci. 2021, 22, 12827. [Google Scholar] [CrossRef]
- Fuchs, H.; Jahn, K.; Hu, X.; Meister, R.; Binter, M.; Framme, C. Breaking a Dogma: High-Throughput Live-Cell Imaging in Real-Time with Hoechst 33342. Adv. Healthc. Mater. 2023, 12, e2300230. [Google Scholar] [CrossRef]
- Gillissen, M.A.; Yasuda, E.; de Jong, G.; Levie, S.E.; Go, D.; Spits, H.; van Helden, P.M.; Hazenberg, M.D. The modified FACS calcein AM retention assay: A high throughput flow cytometer based method to measure cytotoxicity. J. Immunol. Methods 2016, 434, 16–23. [Google Scholar] [CrossRef]
- Cirulis, J.T.; Strasser, B.C.; Scott, J.A.; Ross, G.M. Optimization of staining conditions for microalgae with three lipophilic dyes to reduce precipitation and fluorescence variability. Cytom. Part A 2012, 81, 618–626. [Google Scholar] [CrossRef]
- Swain, B.M.; Guo, D.; Singh, H.; Rawlins, P.B.; McAlister, M.; van Veen, H.W. Complexities of a protonatable substrate in measurements of Hoechst 33342 transport by multidrug transporter LmrP. Sci. Rep. 2020, 10, 20026. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.; Turnquist, H.; Jackson, J.; Sgagias, M.; Yan, Y.; Gong, M.; Dean, M.; Sharp, J.G.; Cowan, K. The multidrug resistance transporter ABCG2 (breast cancer resistance protein 1) effluxes Hoechst 33342 and is overexpressed in hematopoietic stem cells. Clin. Cancer Res. 2002, 8, 22–28. [Google Scholar] [PubMed]
- Helms, H.C.; Hersom, M.; Kuhlmann, L.B.; Badolo, L.; Nielsen, C.U.; Brodin, B. An electrically tight in vitro blood-brain barrier model displays net brain-to-blood efflux of substrates for the ABC transporters, P-gp, Bcrp and Mrp-1. AAPS J. 2014, 16, 1046–1055. [Google Scholar] [CrossRef] [PubMed]
- Maemondo, M.; Inoue, A.; Kobayashi, K.; Sugawara, S.; Oizumi, S.; Isobe, H.; Gemma, A.; Harada, M.; Yoshizawa, H.; Kinoshita, I.; et al. Gefitinib or chemotherapy for non-small-cell lung cancer with mutated EGFR. N. Engl. J. Med. 2010, 362, 2380–2388. [Google Scholar] [CrossRef]
- Reck, M.; Kaiser, R.; Mellemgaard, A.; Douillard, J.-Y.; Orlov, S.; Krzakowski, M.; von Pawel, J.; Gottfried, M.; Bondarenko, I.; Liao, M.; et al. Docetaxel plus nintedanib versus docetaxel plus placebo in patients with previously treated non-small-cell lung cancer (LUME-Lung 1): A phase 3, double-blind, randomised controlled trial. Lancet Oncol. 2014, 15, 143–155. [Google Scholar] [CrossRef]
- Scagliotti, G.; Novello, S.; Pawel, J.v.; Reck, M.; Pereira, J.R.; Thomas, M.; Miziara, J.E.A.; Balint, B.; Marinis, F.D.; Keller, A.; et al. Phase III Study of Carboplatin and Paclitaxel Alone or With Sorafenib in Advanced Non–Small-Cell Lung Cancer. J. Clin. Oncol. 2010, 28, 1835–1842. [Google Scholar] [CrossRef]
- Weng, Z.; Zhang, B.; Wu, C.; Yu, F.; Han, B.; Li, B.; Li, L. Therapeutic roles of mesenchymal stem cell-derived extracellular vesicles in cancer. J. Hematol. Oncol. 2021, 14, 136. [Google Scholar] [CrossRef]
- Li, T.; Zhou, X.; Wang, J.; Liu, Z.; Han, S.; Wan, L.; Sun, X.; Chen, H. Adipose-derived mesenchymal stem cells and extracellular vesicles confer antitumor activity in preclinical treatment of breast cancer. Pharmacol. Res. 2020, 157, 104843. [Google Scholar] [CrossRef]
- Pakravan, K.; Babashah, S.; Sadeghizadeh, M.; Mowla, S.J.; Mossahebi-Mohammadi, M.; Ataei, F.; Dana, N.; Javan, M. MicroRNA-100 shuttled by mesenchymal stem cell-derived exosomes suppresses in vitro angiogenesis through modulating the mTOR/HIF-1α/VEGF signaling axis in breast cancer cells. Cell. Oncol. 2017, 40, 457–470. [Google Scholar] [CrossRef]
- Tabak, S.; Schreiber-Avissar, S.; Beit-Yannai, E. Extracellular vesicles have variable dose-dependent effects on cultured draining cells in the eye. J. Cell. Mol. Med. 2018, 22, 1992–2000. [Google Scholar] [CrossRef]
- Yi, J.; Kim, S.; Han, C.; Park, J. Evaluation of extracellular vesicle aggregation by single vesicle analysis. Analyst 2024, 149, 5638–5648. [Google Scholar] [CrossRef]
- Liu, B.; Guan, Q.; Li, J.; da Roza, G.; Wang, H.; Du, C. Mesenchymal stroma cells in peritoneal dialysis effluents from patients. Human Cell 2017, 30, 51–59. [Google Scholar] [CrossRef] [PubMed]
- Szebeni, B.; Veres-Székely, A.; Pap, D.; Bokrossy, P.; Varga, Z.; Gaál, A.; Mihály, J.; Pállinger, É.; Takács, I.M.; Pajtók, C. Extracellular Vesicles of Patients on Peritoneal Dialysis Inhibit the TGF-β-and PDGF-B-Mediated Fibrotic Processes. Cells 2024, 13, 605. [Google Scholar] [CrossRef]
- Welsh, J.A.; Goberdhan, D.C.I.; O’Driscoll, L.; Buzas, E.I.; Blenkiron, C.; Bussolati, B.; Cai, H.; Di Vizio, D.; Driedonks, T.A.P.; Erdbrügger, U.; et al. Minimal information for studies of extracellular vesicles (MISEV2023): From basic to advanced approaches. J. Extracell. Vesicles 2024, 13, e12404. [Google Scholar] [CrossRef]
- Kazsoki, A.; Németh, K.; Visnovitz, T.; Lenzinger, D.; Buzás, E.I.; Zelkó, R. Formulation and characterization of nanofibrous scaffolds incorporating extracellular vesicles loaded with curcumin. Sci. Rep. 2024, 14, 27574. [Google Scholar] [CrossRef] [PubMed]
- Bebesi, T.; Pálmai, M.; Szigyártó, I.C.; Gaál, A.; Wacha, A.; Bóta, A.; Varga, Z.; Mihály, J. Surface-enhanced infrared spectroscopic study of extracellular vesicles using plasmonic gold nanoparticles. Colloids Surf. B Biointerfaces 2025, 246, 114366. [Google Scholar] [CrossRef] [PubMed]
- Fülöp, D.; Varga, Z.; Kiss, É.; Gyulai, G. Interfacial Behavior of Biodegradable Poly(lactic-co-glycolic acid)-Pluronic F127 Nanoparticles and Its Impact on Pickering Emulsion Stability. Langmuir 2024, 40, 12353–12367. [Google Scholar] [CrossRef]
- Théry, C.; Amigorena, S.; Raposo, G.; Clayton, A. Isolation and characterization of exosomes from cell culture supernatants and biological fluids. Curr. Protoc. Cell Biol. 2006, 30, 3–22. [Google Scholar] [CrossRef]
- Koncz, A.; Turiák, L.; Németh, K.; Lenzinger, D.; Bárkai, T.; Lőrincz, P.; Zelenyánszki, H.; Vukman, K.V.; Buzás, E.I.; Visnovitz, T. Endoplasmin Is a Hypoxia-Inducible Endoplasmic Reticulum-Derived Cargo of Extracellular Vesicles Released by Cardiac Cell Lines. Membranes 2023, 13, 431. [Google Scholar] [CrossRef]
Fixation | Dye | Staining | |
---|---|---|---|
SRB | 10% TCA at 4 °C for 1 h | Sulforodamine B sodium salt (#S1402, Merck) | 0.4% SRB in 1% AA for 30 min |
FastGreen | Kahle’s solution at RT for 15 min | FastGreen FCF (#F7252, Merck) | 0.1% FastGreen in 1% AA for 5 min |
methylene blue | Kahle’s solution at RT for 15 min | Methylene blue solution acc. To Loeffler (#42335, Molar Chemicals, Hálasztelek, Hungary) | 1% methylene blue in H2O for 5 min |
Cresyl Violet | Kahle’s solution at RT for 15 min | Cresyl Fast Violet—Certistain (#K2247947, Merck) | 0.14 mg/mL in 6.8 mM sodium acetate + 83 mM AA mix for 20 min |
DiI | - | 1,1′-Dioctadecyl-3,3,3′,3′-Tetramethylindocarbocyanine Perchlorate (#D282, Thermo Fisher Scientific) | 0.1 mg/mL in cell culture medium for 24 h |
WGA | - | Wheat Germ Agglutinin Alexa Fluor 488 conjugate (#W11261, Thermo Fisher Scientific) | 0.01 mg/mL in cell culture medium for 4 h |
Calcein AM | - | Calcein AM (#C3099, Thermo Fisher Scientific) | 10 μM in cell culture medium for 1 h |
Cell Tracker | - | Cell Tracker Green CMFDA (#C7025, Thermo Fisher Scientific) | 5 μM in cell culture medium for 1 h |
Hoechst | - | Hoechst 33,342 trihydrochloride (#B2261, Merck) | 0.5 μg/mL (1:10 000) in cell culture medium for 4 h |
PI | Kahle’s solution at RT for 15 min | Propidium Iodide Staining Solution (#51-66211E, BD Pharmingen, San Diego, CA, USA) | 0.5 μM in cell culture medium for 5 min |
Staining | Measurement Method | Excitation [nm] | Emission [nm] |
---|---|---|---|
- | Absorbance | 285 | - |
SRB | Absorbance | 565 | - |
Fluorescence | 550 | 605 | |
FastGreen | Absorbance | 624 | - |
methylene blue | Absorbance | 668 | - |
Cresyl Violet | Absorbance | 590 | - |
Fluorescence | 583 | 627 | |
DiI | Fluorescence | 538 | 582 |
WGA | Fluorescence | 470 | 515 |
Calcein AM | Fluorescence | 490 | 533 |
Cell Tracker | Fluorescence | 470 | 515 |
Hoechst | Fluorescence | 355 | 455 |
PI | Fluorescence | 550 | 605 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Veres-Székely, A.; Szász, C.; Pap, D.; Bokrossy, P.; Lenzinger, D.; Visnovitz, T.; Mihály, J.; Pálmai, M.; Varga, Z.; Őrfi, L.; et al. Improvement in Transient Agarose Spot (TAS) Cell Migration Assay: Microplate-Based Detection and Evaluation. Int. J. Mol. Sci. 2025, 26, 5584. https://doi.org/10.3390/ijms26125584
Veres-Székely A, Szász C, Pap D, Bokrossy P, Lenzinger D, Visnovitz T, Mihály J, Pálmai M, Varga Z, Őrfi L, et al. Improvement in Transient Agarose Spot (TAS) Cell Migration Assay: Microplate-Based Detection and Evaluation. International Journal of Molecular Sciences. 2025; 26(12):5584. https://doi.org/10.3390/ijms26125584
Chicago/Turabian StyleVeres-Székely, Apor, Csenge Szász, Domonkos Pap, Péter Bokrossy, Dorina Lenzinger, Tamás Visnovitz, Judith Mihály, Marcell Pálmai, Zoltán Varga, László Őrfi, and et al. 2025. "Improvement in Transient Agarose Spot (TAS) Cell Migration Assay: Microplate-Based Detection and Evaluation" International Journal of Molecular Sciences 26, no. 12: 5584. https://doi.org/10.3390/ijms26125584
APA StyleVeres-Székely, A., Szász, C., Pap, D., Bokrossy, P., Lenzinger, D., Visnovitz, T., Mihály, J., Pálmai, M., Varga, Z., Őrfi, L., Szabó, A. J., Vannay, Á., & Szebeni, B. (2025). Improvement in Transient Agarose Spot (TAS) Cell Migration Assay: Microplate-Based Detection and Evaluation. International Journal of Molecular Sciences, 26(12), 5584. https://doi.org/10.3390/ijms26125584