The SGLT2 Inhibitor Empagliflozin Mitigates the Harmful Effects of Methylglyoxal Exposure on Ovalbumin-Induced Mouse Airway Inflammation
Abstract
:1. Introduction
2. Results
2.1. MGO Exposure and Empagliflozin Treatment Do Not Affect Blood Glucose Levels and Body Weight
2.2. Analysis of Inflammatory Cell Migration in BALF
2.3. Analysis of Inflammatory Cell Migration, Collagen Deposition and Mucus Secretion in the Lung Tissue
2.4. Analysis of IgE, IL-4, IL-5, IL-13 and Eotaxin Levels
2.5. Analysis of TNF-α, IL-17 and IL-10 Levels
2.6. SGLT2 Inhibition Reduces MGO and MG-H1 and Increases GLO Activity in Lung or Serum in OVA-Challenged Mice
3. Discussion
4. Materials and Methods
4.1. Animals
4.2. Study Design: MGO and SGLT2 Treatments
4.3. Fasting Blood Glucose and Body Weight Analysis
4.4. Induction of Airway Inflammation via OVA Immunization and Challenge
4.5. Bronchoalveolar Lavage Fluid Collection and Cellular Analysis
4.6. Quantification of Cytokines, Eotaxin, IgE, and MGO Levels in Serum and BALF
4.7. Histological Processing and Morphometric Analysis of Lung Tissue
4.8. Immunohistochemistry for MGO Detection in Lung Tissue
4.9. Protein Extraction and Western Blot Analysis from Mouse Lung Tissue
4.10. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
OVA | Ovalbumin |
IgE | immunoglobulin E |
MGO | Methylglyoxal |
GLO | Glyoxalase |
AGE | Advanced Glycation end-Products |
SGLT2 | Selective Sodium-Glucose Cotransporter 2 |
PBS | Phosphate-Buffered Saline |
BALF | Bronchoalveolar Lavage Fluid |
MG-H1 | Methylglyoxal-Derived Hydroimidazolone |
EMP | Empagliflozin |
References
- Gyawali, B.; Georas, S.N.; Khurana, S. Biologics in severe asthma: A state-of-the-art review. Eur Respir Rev. 2025, 8, 240088. [Google Scholar] [CrossRef]
- Hussain, M.; Liu, G. Eosinophilic Asthma: Pathophysiology and Therapeutic Horizons. Cells 2024, 13, 384. [Google Scholar] [CrossRef]
- Kroegel, C.; Virchow, J.C.; Luttmann, W.; Walker, C.; Warner, J.A. Pulmonary immune cells in health and disease: The eosinophil leucocyte (Part I). Eur. Respir. J. 1994, 7, 519–543. [Google Scholar] [CrossRef] [PubMed]
- Kuruvilla, M.E.; Lee, F.E.; Lee, G.B. Understanding Asthma Phenotypes, Endotypes, and Mechanisms of Disease. Clin. Rev. Allergy Immunol. 2019, 56, 219–233. [Google Scholar] [CrossRef]
- Galli, S.J.; Tsai, M. IgE and mast cells in allergic disease. Nat. Med. 2012, 18, 693–704. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, T.H.; Maltby, S.; Simpson, J.L.; Eyers, F.; Baines, K.J.; Gibson, P.G.; Foster, P.S.; Yang, M. TNF-α and Macrophages Are Critical for Respiratory Syncytial Virus-Induced Exacerbations in a Mouse Model of Allergic Airways Disease. J. Immunol. 2016, 196, 3547–3558. [Google Scholar] [CrossRef]
- Ogawa, Y.; Duru, E.A.; Ameredes, B.T. Role of IL-10 in the resolution of airway inflammation. Curr. Mol. Med. 2008, 8, 437–445. [Google Scholar] [CrossRef] [PubMed]
- Foster, P.S.; Maltby, S.; Rosenberg, H.F.; Tay, H.L.; Hogan, S.P.; Collison, A.M.; Yang, M.; Kaiko, G.E.; Hansbro, P.M.; Kumar, R.K. Modeling TH2 responses and airway inflammation to understand fundamental mechanisms regulating the pathogenesis of asthma. Immunol. Rev. 2017, 278, 20–40. [Google Scholar] [CrossRef]
- Gevaert, P.; Wong, K.; Millette, L.A.; Carr, T.F. The Role of IgE in Upper and Lower Airway Disease: More Than Just Allergy! Clin. Rev. Allergy Immunol. 2022, 62, 200–215. [Google Scholar] [CrossRef]
- Berends, E.; Oostenbrugge, R.J.; Foulquier, S.; Schalkwijk, C.G. Methylglyoxal, a highly reactive dicarbonyl compound, as a threat for blood brain barrier integrity. Fluids Barriers CNS. 2023, 20, 75. [Google Scholar] [CrossRef]
- Kong, J.; Yang, F.; Bai, M.; Zong, Y.; Li, Z.; Meng, X.; Zhao, X.; Wang, J. Airway immune response in the mouse models of obesity-related asthma. Front. Physiol. 2022, 13, 909209. [Google Scholar] [CrossRef] [PubMed]
- Leiria, L.O.; Martins, M.A.; Saad, M.J. Obesity and asthma: Beyond TH2 inflammation. Metabolism 2015, 64, 172–181. [Google Scholar] [CrossRef] [PubMed]
- Uppal, P.; Mohammed, S.A.; Rajashekar, S.; Giri, R.S.; Kakarla, M.; Ausaja, G.M.; Yousri, S.M.; Haidar, I.N.; Tavalla, P.; Hamid, P. Type 2 Diabetes Mellitus and Asthma: Pathomechanisms of Their Association and Clinical Implications. Cureus 2023, 15, e36047. [Google Scholar] [CrossRef] [PubMed]
- Bartziokas, K.; Papaioannou, A.I.; Drakopanagiotakis, F.; Gouveri, E.; Papanas, N.; Steiropoulos, P. Unraveling the Link between Ιnsulin Resistance and Bronchial Asthma. Biomedicines 2024, 12, 437. [Google Scholar] [CrossRef]
- Calixto, M.C.; Lintomen, L.; Schenka, A.; Saad, M.J.; Zanesco, A.; Antunes, E. Obesity enhances eosinophilic inflammation in a murine model of allergic asthma. Br. J. Pharmacol. 2010, 159, 617–625. [Google Scholar] [CrossRef]
- Weare-Regales, N.; Carr, T.; Holguin, F.; Tibbitt, C.A.; Lockey, R.F. Obesity and hormonal influences on asthma: Mechanisms, management challenges, and emerging therapeutic strategies. J. Allergy Clin. Immunol. 2024, 154, 1355–1368. [Google Scholar] [CrossRef]
- Oliveira, A.L.; Oliveira, M.G.; Mónica, F.Z.; Antunes, E. Methylglyoxal and Advanced Glycation End Products (AGEs): Targets for the Prevention and Treatment of Diabetes-Associated Bladder Dysfunction? Biomedicines 2024, 12, 939. [Google Scholar] [CrossRef]
- Oppermann, H.; Birkemeyer, C.; Meixensberger, J.; Gaunitz, F. Non-enzymatic reaction of carnosine and glyceraldehyde-3-phosphate accompanies metabolic changes of the pentose phosphate pathway. Cell Prolif. 2020, 53, 12702. [Google Scholar] [CrossRef]
- Schalkwijk, C.G. Vascular AGE-ing by methylglyoxal: The past, the present and the future. Diabetologia 2015, 58, 1715–1719. [Google Scholar] [CrossRef]
- Maessen, D.E.; Stehouwer, C.D.; Schalkwijk, C.G. The role of methylglyoxal and the glyoxalase system in diabetes and other age-related diseases. Clin. Sci. 2015, 128, 839–861. [Google Scholar] [CrossRef]
- Deepu, V.; Rai, V.; Agrawal, D.K. Quantitative Assessment of Intracellular Effectors and Cellular Response in RAGE Activation. Arch. Intern. Med. Res. 2024, 7, 80–103. [Google Scholar] [CrossRef] [PubMed]
- Rabbani, N.; Adaikalakoteswari, A.; Larkin, J.R.; Panagiotopoulos, S.; MacIsaac, R.J.; Yue, D.K.; Fulcher, G.R.; Roberts, M.A.; Thomas, M.; Ekinci, E.; et al. Analysis of Serum Advanced Glycation Endproducts Reveals Methylglyoxal-Derived Advanced Glycation MG-H1 Free Adduct Is a Risk Marker in Non-Diabetic and Diabetic Chronic Kidney Disease. Int. J. Mol. Sci. 2022, 24, 152. [Google Scholar] [CrossRef]
- Sutkowska, E.; Fecka, I.; Marciniak, D.; Bednarska, K.; Sutkowska, M.; Hap, K. Analysis of Methylglyoxal Concentration in a Group of Patients with Newly Diagnosed Prediabetes. Biomedicines 2023, 11, 2968. [Google Scholar] [CrossRef] [PubMed]
- Vangrieken, P.; Scheijen, J.L.J.M.; Schiffers, P.M.H.; van de Waarenburg, M.P.H.; Foulquier, S.; Schalkwijk, C.C.G. Modelling the effects of elevated methylglyoxal levels on vascular and metabolic complications. Sci. Rep. 2025, 15, 6025. [Google Scholar] [CrossRef] [PubMed]
- Tezuka, Y.; Nakaya, I.; Nakayama, K.; Nakayama, M.; Yahata, M.; Soma, J. Methylglyoxal as a prognostic factor in patients with chronic kidney disease. Nephrology 2019, 24, 943–950. [Google Scholar] [CrossRef]
- Hanssen, J.; Westerink, J.; Scheijen, M.; Graaf, Y.; Stehouwer, A.; Schalkwijk, C.G. SMART Study Group. Higher Plasma Methylglyoxal Levels Are Associated with Incident Cardiovascular Disease and Mortality in Individuals with Type 2 Diabetes. Diabetes Care 2018, 41, 1689–1695. [Google Scholar] [CrossRef]
- Ferreira, M.D.; Cavalcante, K.V.N.; Costa, J.M.; Bessa, A.S.M.; Amaro, A.; Castro, C.H.; Xavier, C.H.; Silva, S.; Fonseca, D.A.; Matafome, P.; et al. Early Methylglyoxal Exposure Leads to Worsened Cardiovascular Function in Young Rats. Nutrients 2024, 16, 2029. [Google Scholar] [CrossRef]
- Klochkov, V.; Chan, C.M.; Lin, W.W. Methylglyoxal: A Key Factor for Diabetic Retinopathy and Its Effects on Retinal Damage. Biomedicines 2024, 12, 2512. [Google Scholar] [CrossRef]
- Oliveira, M.G.; Medeiros, M.L.; Tavares, E.B.G.; Mónica, F.Z.; Antunes, E. Methylglyoxal, a Reactive Glucose Metabolite, Induces Bladder Overactivity in Addition to Inflammation in Mice. Front Physiol. 2020, 3, 290. [Google Scholar] [CrossRef]
- Belpomme, D.; Lacomme, S.; Poletti, C.; Bonesso, L.; Hinault, B.C.; Barbier, S.; Irigaray, P. Free Methylglyoxal as a Metabolic New Biomarker of Tumor Cell Proliferation in Cancers. Cancers 2024, 16, 3922. [Google Scholar] [CrossRef]
- Haddad, M.; Perrotte, M.; Khedher, M.R.B.; Demongin, C.; Lepage, A.; Fülöp, T.; Ramassamy, C. Methylglyoxal and Glyoxal as Potential Peripheral Markers for MCI Diagnosis and Their Effects on the Expression of Neurotrophic, Inflammatory and Neurodegenerative Factors in Neurons and in Neuronal Derived-Extracellular Vesicles. Int. J. Mol. Sci. 2019, 20, 4906. [Google Scholar] [CrossRef] [PubMed]
- Todoriki, S.; Hosoda, Y.; Yamamoto, T.; Watanabe, M.; Sekimoto, A.; Sato, H.; Mori, T.; Miyazaki, M.; Takahashi, N.; Sato, E. Methylglyoxal Induces Inflammation, Metabolic Modulation and Oxidative Stress in Myoblast Cells. Toxins 2022, 14, 263. [Google Scholar] [CrossRef]
- Medeiros, M.L.; Oliveira, M.G.; Tavares, E.G.; Mello, G.C.; Anhê, G.F.; Mónica, F.Z.; Antunes, E. Long-term methylglyoxal intake aggravates murine Th2-mediated airway eosinophil infiltration. Int. Immunopharmacol. 2020, 81, 106254. [Google Scholar] [CrossRef]
- Medeiros, M.L.; Oliveira, A.L.; Mello, G.C.; Antunes, E. Metformin Counteracts the Deleterious Effects of Methylglyoxal on Ovalbumin-Induced Airway Eosinophilic Inflammation and Remodeling. Int. J. Mol. Sci. 2023, 24, 9549. [Google Scholar] [CrossRef] [PubMed]
- Kwak, S.; Choi, Y.S.; Na, H.G.; Bae, C.H.; Song, S.Y.; Kim, Y.D. Glyoxal and methylglyoxal as E-cigarette vapor ingredients-induced pro-inflammatory cytokine and mucins expression in human nasal epithelial cells. Am. J. Rhinol. Allergy 2021, 35, 213–220. [Google Scholar] [CrossRef]
- Ruggiero-Lopez, D.; Lecomte, M.; Moinet, G.; Patereau, G.; Lagarde, M.; Wiernsperger, N. Reaction of metformin with dicarbonyl compounds. Possible implication in the inhibition of advanced glycation end product formation. Biochem. Pharmacol. 1999, 58, 1765–1773. [Google Scholar] [CrossRef] [PubMed]
- Kinsky, O.R.; Hargraves, T.L.; Anumol, T.; Jacobsen, N.E.; Dai, J.; Snyder, S.A.; Monks, T.J.; Lau, S.S. Metformin scavenges methylglyoxal to form a novel imidazolinone metabolite in humans. Chem. Res. Toxicol. 2016, 29, 227–234. [Google Scholar] [CrossRef]
- Wu, T.D.; Keet, C.A.; Fawzy, A.; Segal, J.B.; Brigham, E.P.; McCormack, M.C. Association of metformin initiation and risk of asthma exacerbation. A claims-based cohort study. Ann. Am. Thorac. Soc. 2019, 16, 1527–1533. [Google Scholar] [CrossRef]
- Ge, D.; Foer, D.; Cahill, K.N. Utility of hypoglycemic agents to treat Asthma with comorbid obesity. Pulm. Ther. 2023, 9, 71–89. [Google Scholar] [CrossRef]
- Fatima, A.; Rasool, S.; Devi, S.; Talha, M.; Waqar, F.; Nasir, M.; Khan, M.R.; Ibne, A.; Jaffari, S.M.; Haider, A. Exploring the Cardiovascular Benefits of Sodium-Glucose Cotransporter-2 (SGLT2) Inhibitors: Expanding Horizons Beyond Diabetes Management. Cureus 2023, 15, e46243. [Google Scholar] [CrossRef]
- Williams, J.M.; Murphy, S.R.; Wu, W.; Border, J.J.; Fan, F.; Roman, R.J. Renoprotective effects of empagliflozin in type 1 and type 2 models of diabetic nephropathy superimposed with hypertension. Geroscience 2022, 44, 2845–2861. [Google Scholar] [CrossRef]
- Lee, S.A.; Riella, L.V. Narrative Review of Immunomodulatory and Anti-inflammatory Effects of Sodium-Glucose Cotransporter 2 Inhibitors: Unveiling Novel Therapeutic Frontiers. Kidney Int. Rep. 2024, 9, 1601–1613. [Google Scholar] [CrossRef] [PubMed]
- Schönberger, E.; Mihaljević, V.; Steiner, K.; Šarić, S.; Kurevija, T.; Majnarić, L.T.; Bilić, Ć.I.; Canecki, V.S. Immunomodulatory Effects of SGLT2 Inhibitors-Targeting Inflammation and Oxidative Stress in Aging. Int. J. Environ. Res. Public Health 2023, 20, 6671. [Google Scholar] [CrossRef] [PubMed]
- Hussein, N.A.; Abdel Gawad, H.S.; Maklad, H.M.; El-Fakharany, E.M.; Aly, R.G.; Samy, D.M. Empagliflozin inhibits autophagy and mitigates airway inflammation and remodelling in mice with ovalbumin-induced allergic asthma. Eur. J. Pharmacol. 2023, 950, 175701. [Google Scholar] [CrossRef] [PubMed]
- Tabaa, M.M.E.; Fattah, A.M.K.; Shaalan, M.; Rashad, E.; Mahdy, N.A. Dapagliflozin mitigates ovalbumin-prompted airway inflammatory-oxidative successions and associated bronchospasm in a rat model of allergic asthma. Expert. Opin. Ther. Targets 2022, 26, 487–506. [Google Scholar] [CrossRef]
- Vašková, J.; Kováčová, G.; Pudelský, J.; Palenčár, D.; Mičková, H. Methylglyoxal Formation-Metabolic Routes and Consequences. Antioxidants 2025, 14, 212. [Google Scholar] [CrossRef]
- Wei, S.L.; Yang, Y.; Si, W.Y.; Zhou, Y.; Li, T.; Du, T.; Zhang, P.; Li, X.L.; Duan, R.N.; Duan, R.S.; et al. Methylglyoxal suppresses microglia inflammatory response through NRF2-IκBζ pathway. Redox. Biol. 2023, 65, 102843. [Google Scholar] [CrossRef]
- Yamawaki, H.; Saito, K.; Okada, M.; Hara, Y. Methylglyoxal mediates vascular inflammation via JNK and p38 in human endothelial cells. Am. J. Physiol. Cell Physiol. 2008, 295, C1510–C1517. [Google Scholar] [CrossRef]
- Savin, I.A.; Zenkova, M.A.; Sen’kova, A.V. Bronchial Asthma, Airway Remodeling and Lung Fibrosis as Successive Steps of One Process. Int. J. Mol. Sci. 2023, 24, 16042. [Google Scholar] [CrossRef]
- Rufin, M.; Nalbach, M.; Rakuš, M.; Fuchs, M.; Poik, M.; Schitter, G.; Thurner, P.J.; Andriotis, O.G. Methylglyoxal alters collagen fibril nanostiffness and surface potential. Acta Biomater. 2024, 189, 208–216. [Google Scholar] [CrossRef] [PubMed]
- Brightling, C.; Berry, M.; Amrani, Y. Targeting TNF-alpha: A novel therapeutic approach for asthma. J. Allergy Clin. Immunol. 2008, 121, 5–10; quiz 11–12. [Google Scholar] [CrossRef] [PubMed]
- Bezold, V.; Rosenstock, P.; Scheffler, J.; Geyer, H.; Horstkorte, R.; Bork, K. Glycation of macrophages induces expression of pro-inflammatory cytokines and reduces phagocytic efficiency. Aging 2019, 11, 5258–5275. [Google Scholar] [CrossRef]
- Iyer, S.S.; Cheng, G. Role of interleukin 10 transcriptional regulation in inflammation and autoimmune disease. Crit. Rev. Immunol. 2012, 32, 23–63. [Google Scholar] [CrossRef]
- Anaya, S.A.; Berry, S.B.; Espich, S.; Zilinskas, A.; Tran, P.M.; Agudelo, C.; Samani, H.; Darwin, K.H.; Portnoy, D.A.; Stanley, S.A. Methylglyoxal is an antibacterial effector produced by macrophages during infection. bioRxiv 2024, 3. [Google Scholar] [CrossRef]
- Couper, K.N.; Blount, D.G.; Riley, E.M. IL-10: The master regulator of immunity to infection. J. Immunol. 2008, 180, 5771–5777. [Google Scholar] [CrossRef] [PubMed]
- Ray, A.; Kolls, J.K. Neutrophilic Inflammation in Asthma and Association with Disease Severity. Trends Immunol. 2017, 38, 942–954. [Google Scholar] [CrossRef]
- Chehimi, M.; Vidal, H.; Eljaafari, A. Pathogenic Role of IL-17-Producing Immune Cells in Obesity, and Related Inflammatory Diseases. J. Clin. Med. 2017, 6, 68. [Google Scholar] [CrossRef]
- Hanssen, N.M.J.; Scheijen, J.L.J.M.; Jorsal, A.; Parving, H.H.; Tarnow, L.; Rossing, P.; Stehouwer, C.D.A.; Schalkwijk, C.G. Higher Plasma Methylglyoxal Levels Are Associated with Incident Cardiovascular Disease in Individuals with Type 1 Diabetes: A 12-Year Follow-up Study. Diabetes 2017, 66, 2278–2283. [Google Scholar] [CrossRef]
- Castoldi, G.; Carletti, R.; Barzaghi, F.; Meani, M.; Zatti, G.; Perseghin, G.; Di Gioia, C.R.T.; Zerbini, G. Sodium Glucose Cotransporter-2 Inhibitors in Non-Diabetic Kidney Disease: Evidence in Experimental Models. Pharmaceuticals 2024, 17, 362. [Google Scholar] [CrossRef]
- Schnell, O.; Valensi, P.; Standl, E.; Ceriello, A. Comparison of mechanisms and transferability of outcomes of SGLT2 inhibition between type 1 and type 2 diabetes. Endocrinol. Diabetes Metab. 2020, 3, e00129. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.E.; Im, D.S. SGLT2 Inhibitors Empagliflozin and Canagliflozin Ameliorate Allergic Asthma Responses in Mice. Int. J. Mol. Sci. 2024, 25, 7567. [Google Scholar] [CrossRef]
- Rykova, E.Y.; Klimontov, V.V.; Shmakova, E.; Korbut, A.I.; Merkulova, T.I.; Kzhyshkowska, J. Anti-Inflammatory Effects of SGLT2 Inhibitors: Focus on Macrophages. Int. J. Mol. Sci. 2025, 26, 1670. [Google Scholar] [CrossRef] [PubMed]
- El-Rous, M.A.; Saber, S.; Raafat, E.M.; Ahmed, A.A.E. Dapagliflozin, an SGLT2 inhibitor, ameliorates acetic acid-induced colitis in rats by targeting NFκB/AMPK/NLRP3 axis. Inflammopharmacology 2021, 29, 1169–1185. [Google Scholar] [CrossRef]
- El-Kashef, D.H.; Sewilam, H.M. Empagliflozin mitigates methotrexate-induced hepatotoxicity: Targeting ASK-1/JNK/Caspase-3 pathway. Int. Immunopharmacol. 2023, 114, 109494. [Google Scholar] [CrossRef] [PubMed]
- Miklankova, D.; Markova, I.; Hüttl, M.; Malinska, H. Empagliflozin alters lipid metabolism in the myocardium and liver in a prediabetes model with severe dyslipidemia. Front. Pharmacol. 2024, 15, 1393946. [Google Scholar] [CrossRef]
- Hassanein, E.H.M.; Saleh, F.M.; Ali, F.E.M.; Rashwan, E.K.; Atwa, A.M.; Abd El-Ghafar, O.A.M. Neuroprotective effect of canagliflozin against cisplatin-induced cerebral cortex injury is mediated by regulation of HO-1/PPAR-γ, SIRT1/FOXO-3, JNK/AP-1, TLR4/iNOS, and Ang II/Ang 1-7 signals. Immunopharmacol. Immunotoxicol. 2023, 45, 304–316. [Google Scholar] [CrossRef]
- Huttl, M.; Markova, I.; Miklankova, D.; Oliyarnyk, O.; Trnovska, J.; Kucera, J.; Sedlacek, R.; Haluzik, M.; Malinska, H. Metabolic cardio- and reno-protective effects of empagliflozin in a prediabetic rat model. J. Physiol. Pharmacol. 2020, 71, 635–645. [Google Scholar]
- Toriumi, K.; Miyashita, M.; Suzuki, K.; Tabata, K.; Horiuchi, Y.; Ishida, H.; Itokawa, M.; Arai, M. Role of glyoxalase 1 in methylglyoxal detoxification-the broad player of psychiatric disorders. Redox. Biol. 2022, 49, 102222. [Google Scholar] [CrossRef]
- Pariano, M.; Costantini, C.; Santarelli, I.; Puccetti, M.; Giovagnoli, S.; Talesa, V.N.; Romani, L.; Antognelli, C. Defective Glyoxalase 1 Contributes to Pathogenic Inflammation in Cystic Fibrosis. Vaccines 2021, 9, 1311. [Google Scholar] [CrossRef]
- Ala, M.; Khoshdel, M.R.F.; Dehpour, A.R. Empagliflozin Enhances Autophagy, Mitochondrial Biogenesis, and Antioxidant Defense and Ameliorates Renal Ischemia/Reperfusion in Nondiabetic Rats. Oxid. Med. Cell Longev. 2022, 2022, 1197061. [Google Scholar] [CrossRef]
- Mohammed, N.N.; Tadros, M.G.; George, M.Y. Empagliflozin repurposing in Parkinson’s disease; modulation of oxidative stress, neuroinflammation, AMPK/SIRT-1/PGC-1α, and wnt/β-cateninpathways. Inflammopharmacology 2024, 32, 777–794. [Google Scholar] [CrossRef] [PubMed]
- Perakakis, N.; Chrysafi, P.; Feigh, M.; Veidal, S.S.; Mantzoros, C.S. Empagliflozin Improves Metabolic and Hepatic Outcomes in a Non-Diabetic Obese Biopsy-Proven Mouse Model of Advanced NASH. Int. J. Mol. Sci. 2021, 22, 6332. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.H.; Hong, S.M.; Ko, E.J.; Park, M.J.; Kim, J.Y.; Kim, S.Y. Neuroprotective Effects of a Combination of Dietary Trans-Resveratrol and Hesperidin Against Methylglyoxal-Induced Neurotoxicity in a Depressive Amnesia Mouse Model. Nutrients 2025, 17, 1548. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Medeiros, M.L.; Oliveira, A.L.; Antunes, E. The SGLT2 Inhibitor Empagliflozin Mitigates the Harmful Effects of Methylglyoxal Exposure on Ovalbumin-Induced Mouse Airway Inflammation. Int. J. Mol. Sci. 2025, 26, 5753. https://doi.org/10.3390/ijms26125753
Medeiros ML, Oliveira AL, Antunes E. The SGLT2 Inhibitor Empagliflozin Mitigates the Harmful Effects of Methylglyoxal Exposure on Ovalbumin-Induced Mouse Airway Inflammation. International Journal of Molecular Sciences. 2025; 26(12):5753. https://doi.org/10.3390/ijms26125753
Chicago/Turabian StyleMedeiros, Matheus L., Akila L. Oliveira, and Edson Antunes. 2025. "The SGLT2 Inhibitor Empagliflozin Mitigates the Harmful Effects of Methylglyoxal Exposure on Ovalbumin-Induced Mouse Airway Inflammation" International Journal of Molecular Sciences 26, no. 12: 5753. https://doi.org/10.3390/ijms26125753
APA StyleMedeiros, M. L., Oliveira, A. L., & Antunes, E. (2025). The SGLT2 Inhibitor Empagliflozin Mitigates the Harmful Effects of Methylglyoxal Exposure on Ovalbumin-Induced Mouse Airway Inflammation. International Journal of Molecular Sciences, 26(12), 5753. https://doi.org/10.3390/ijms26125753