Overview of Cellular Therapeutics Clinical Trials: Advances, Challenges, and Future Directions
Abstract
:1. Introduction
1.1. Challenges and Solutions in the Practice of Cell Therapy Clinical Trials
1.1.1. Selection of Study Populations
1.1.2. Cell Source and Collection
1.1.3. Transport and Storage of Cell Preparations
1.1.4. Monitoring and Management of Adverse Events in Cell Therapy Clinical Trials
2. Cell Therapy Landscape in China
- Stem cell trials (n = 57): Degenerative disorders (Figure 2) accounted for 59.65% (n = 34), including diabetes complications, osteoarthritis, and ischemic stroke etc.
- Immune cell trials (n = 115): Hematologic malignancies were targeted in 40.87% (n = 47), with CAR-T therapies focusing on CD19+ B-cell malignancies (63.83%, n = 30/47).
- Phase I/II trials constituted 88.95% (n = 153/172) of the analyzed studies, highlighting an emphasis on preliminary safety assessments. Cumulative cell doses administered exceeded 190 billion across more than 1200 patients, with a median follow-up duration of 18 months (interquartile range [IQR] 12–24) [3]. The cell therapy method in which the treatment was associated with most adverse events was Olfactory ensheathing cell and BMSC combination therapy (55%), and the lowest level of adverse events was with embryonic stem cell therapies (2.33% of patients) [16]. In a meta-analysis, the total prevalence of adverse events in cell therapy was 19% and the highest pulled effect size belonged to urinary tract and localized adverse events; for example, the most common adverse events were transient backache and meningism (90%) and cord malacia (80%) in MSCs-based clinical trials of spinal cord injury [16]. The most frequently reported adverse event is transient fever, predominantly associated with intravenous infusion. This fever typically occurs within 24 h post-infusion and resolves spontaneously within 48 h without requiring intervention [17]. Administration-site reactions, including localized pain, swelling, or erythema, occur in up to 12% of patients receiving intra-articular or intralesional injections. Severe adverse events (SAEs), such as thromboembolism, infections, and organ-specific toxicities, are infrequent. These SAEs are often attributable to procedural factors or patient comorbidities rather than inherent properties of the cells themselves [18,19]. Also, the total prevalence of adverse events in 14 cell therapy methods was 18% and four cell types (neural stem cell, bone marrow hematopoietic stem cell, embryonic stem cell, and UCMSC) had the most effect. None of the adverse events were reported at (death) grading scales 4 (life-threatening consequences) and 5 [16]. Notably, CAR-T therapies were associated with higher incidences of cytokine release syndrome (CRS: 68.2%) and immune effector cell-associated neurotoxicity syndrome (ICANS: 21.4%) [20].
3. Disease-Specific Clinical Advancements and Therapeutic Efficacy
3.1. Degenerative Diseases
3.1.1. Osteoarthritis (OA)
3.1.2. Neurodegenerative Disorders
3.1.3. Type 2 Diabetes Mellitus (T2DM) and Complications
3.1.4. Cardiac Tissue Engineering Milestones
3.1.5. Hepatic Regeneration Paradigms
3.2. Immune-Mediated Diseases
3.2.1. Autoimmune Disorders
3.2.2. Inflammatory Conditions (COVID-19, Chronic Obstructive Pulmonary Disease (COPD))
3.3. Car-T Innovations
4. Discussion and Future Perspectives
Author Contributions
Funding
Conflicts of Interest
Abbreviations
WOMAC | Western Ontario and McMaster Universities Osteoarthritis Index |
TCM | Traditional Chinese Medicine |
CXCR4 | C-X-C Motif Chemokine Receptor |
ATMPs | Advanced Therapy Medicinal Products |
CAR-T | Chimeric Antigen Receptor T cells |
MSC | Mesenchymal Stem cell |
CRS | Cytokine Release Syndrome |
ICANS | Immune Effector Cell-Associated Neurotoxicity Syndrome |
hESCs | Human Embryonic Stem Cells |
hiPSCs | Human induced Pluripotent Stem Cells |
NMPA | China’s National Medical Products Administration |
NK | Natural Killer Cells |
TIL | Tumor Infiltrating Lymphocytes |
DC | Dendritic Cells |
CAR-NK | Chimeric Antigen Receptor- Natural Killer Cells |
UCMSCs | Umbilical Cord Mesenchymal Stem Cells |
ADMSCs | Adipose-Derived Mesenchymal Stem Cells |
BMSCs | Bone Marrow-Derived Mesenchymal Stem Cells |
EMSCs | Endometrial Mesenchymal Stem Cells |
HSCs | Hematopoietic Stem Cells |
AMSCs | Amniotic Mesenchymal Stem Cells |
PMSCs | Placental Mesenchymal Stem Cells |
DPMSCs | Dental Pulp Mesenchymal Stem Cells |
IQR | Interquartile Range |
SAEs | Severe Adverse Events |
OA | Osteoarthritis |
PRP | Platelet-Rich Plasma |
HAMA-PBA | Hyaluronic Acid Methacrylate-Phenylboronic Acid |
PD | Parkinson’s Disease |
AD | Alzheimer’s Disease |
IS | Ischemic Stroke |
PGE2 | Prostaglandin E2 |
TSG-6 | Tumor-Necrosis-Factor-Inducible Gene 6 Protein |
PR | Progesterone Receptor |
GR | Glucocorticoid Receptors |
WTAP | Wilms’ Tumor 1-Associated Protein |
18F-DOPA PET | Fluorine-18 Fluorodopa Positron Emission Tomography |
T2DM | Type 2 Diabetes Mellitus |
IPCs | Insulin-Producing Cells |
ESCs | Embryonic Stem Cells |
PGC-1α | Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1α |
ROS | Reactive Oxygen Species |
NLRP3 | NACHT, LRR, and PYD Domains-Containing Protein 3 |
TNTs | Tunneling Nanotubes |
CMs | Cardiomyocytes |
ISO | Isoproterenol |
EGF | Epidermal Growth Factor |
RA | Rheumatoid Arthritis |
SLE | Systemic Lupus Erythematosus |
EVs | Extracellular Vesicles |
DAS28 | Disease Activity Scores In 28 Joints |
anti-CCP | Anti-Circular Citrullinated Peptide |
COPD | Chronic Obstructive Pulmonary Disease |
ARDS | Acute Respiratory Distress Syndrome |
FEV1 | Forced Expiratory Volume In One Second |
PFS | Progression-Free Survival |
NMRD | Negative Measurable Residual Disease |
hPSC | Human Pluripotent Stem Cell |
ctDNA | Circulating Tumor DNA |
TCR | T Cell Receptor |
CK | Ginsenoside Compound K |
GLUT1 | Glucose Transporter 1 |
FDA | Food and Drug Administration |
QbD | Quality-By-Design |
RCTs | Randomized Controlled Trials |
References
- WHO. Global Cancer Burden Growing, Amidst Mounting Need for Services. 2024. Available online: https://www.who.int/news/item/01-02-2024-global-cancer-burden-growing--amidst-mounting-need-for-services (accessed on 14 May 2025).
- Takahashi, J. iPSC-based cell replacement therapy: From basic research to clinical application. Cytotherapy 2025. ahead-of-print. [Google Scholar] [CrossRef] [PubMed]
- Im, G.I. Clinical updates in mesenchymal stromal cell therapy for osteoarthritis treatment. Expert. Opin. Biol. Ther. 2025, 25, 187–195. [Google Scholar] [CrossRef] [PubMed]
- Larson, C.; Mendez, N.; Reid, T. Targeting tumors using nanoparticle platforms: A phase I study of a systemically administered gene therapy system. Mol. Ther. 2013, 21, 922–923. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Dai, H.; Wang, Y.; Wu, Z.; Wang, H.; Qian, W.; Liang, A.; Han, W. Regional empowerment through decentralised governance under a centralised regulatory system facilitates the development of cellular therapy in China. Lancet Haematol. 2022, 9, e942–e954. [Google Scholar] [CrossRef]
- Ferrari, N.; Seguin, R. Oligonucleotide-Based Drugs and Therapeutics: Preclinical and Clinical Considerations for Development; John Wiley & Sons: Hoboken, NJ, USA, 2018. [Google Scholar]
- Hoffman, R. Hematology: Basic Principles and Practice, 6th ed.; Saunders/Elsevier: Philadelphia, PA, USA, 2013; Volume xxxi, 2343p. [Google Scholar]
- Galli, M.C.; Serabian, M. Regulatory Aspects of Gene Therapy and Cell Therapy Products: A Global Perspective. In American Society of Gene & Cell Therapy, 1st ed.; Springer International Publishing: Cham, Switzerland, 2015; p. 1. [Google Scholar]
- Galli, M.C. Regulatory Aspects of Gene Therapy and Cell Therapy Products; Springer Science+Business Media: New York, NY, USA, 2015. [Google Scholar]
- Han, S.; Yim, H.W.; Jeong, H.; Choi, S.; Han, S. Establishing Rationale for the Clinical Development of Cell Therapy Products: Consensus between Risk and Benefit. Int. J. Stem Cells 2023, 16, 16–26. [Google Scholar] [CrossRef]
- Korea, A.n.o.n. Sikpʻum Ŭiyakpʻum Anjŏnchʻŏng. Sepʻo chojik Konghak Cheje ŭi Piimsang, Imsang pʻyŏngka Sarye Punsŏk yŏnʼgu = Analysis of Non-Clinical and Clinical Evaluation of Cell Therapy Products; Sikpʻum Ŭiyakpʻum Anjŏnchʻŏng Saengmul Ŭiyakpʻum Ponbu Sepʻo Chojik Konghak Chejetʻim: Seoul, Republic of Korea, 2007; 51p. [Google Scholar]
- Alyea, E.P.; Ho, V.T.; Glotzbecker, B.E.; Nageshwar, P. Handbook of Stem Cell Transplantation and Cellular Therapy Management; Springer Publishing Company, LLC.: New York, NY, USA, 2021; p. 1. [Google Scholar]
- Bruntraeger, M.; Byrne, M.; Long, K.; Bassett, A.R. Editing the Genome of Human Induced Pluripotent Stem Cells Using CRISPR/Cas9 Ribonucleoprotein Complexes. Methods Mol. Biol. 2019, 1961, 153–183. [Google Scholar]
- Okano, H.; Morimoto, S. iPSC-based disease modeling and drug discovery in cardinal neurodegenerative disorders. Cell Stem Cell 2022, 29, 189–208. [Google Scholar] [CrossRef]
- Song, L.; Zhang, N.; Jiang, T.T.; Jia, Y.; Liu, Y. Paediatric Drug Development in China: Current Status and Future Prospects. Paediatr. Drugs 2024, 26, 555–563. [Google Scholar] [CrossRef]
- Davoudi-Monfared, E.; Abolghasemi, R.; Allahyari, F.; Farzanegan, G. Adverse events of cell therapy clinical trials in human chronic spinal cord injury, a systematic review and meta-analysis. Regen. Ther. 2024, 27, 381–397. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Mou, Q.; Yi, H.; Meng, Z. Transient Fever: The Sole Treatment-Related Adverse Event Associated with Mesenchymal Stromal Cells and Solid Clues from the Real World. Curr. Stem Cell Res. Ther. 2024, 19, 1263–1285. [Google Scholar] [CrossRef]
- Wang, Y.; Yi, H.; Song, Y. The safety of MSC therapy over the past 15 years: A meta-analysis. Stem Cell Res. Ther. 2021, 12, 545. [Google Scholar] [CrossRef] [PubMed]
- Baranovskii, D.S.; Klabukov, I.D.; Arguchinskaya, N.V.; Yakimova, A.O.; Kisel, A.A.; Yatsenko, E.M.; Ivanov, S.A.; Shegay, P.V.; Kaprin, A.D. Adverse events, side effects and complications in mesenchymal stromal cell-based therapies. Stem Cell Investig. 2022, 9, 7. [Google Scholar] [CrossRef] [PubMed]
- Chorao, P.; Lloret, P.; Montesinos, P.; Guerreiro, M. CAR-T cell therapy in T-Cell lymphoblastic leukemia/lymphoma: Where do we stand now? Expert. Rev. Anticancer. Ther. 2025, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.S.; Song, C.Y.; Cheng, W.J.; Wang, K.Y. Mechanisms and challenges of mesenchymal stem cells in the treatment of knee osteoarthritis. World J. Stem Cells 2025, 17, 102923. [Google Scholar] [CrossRef]
- Chen, L.Q.; Ma, S.; Yu, J.; Zuo, D.C.; Yin, Z.J.; Li, F.Y.; He, X.; Peng, H.T.; Shi, X.Q.; Huang, W.J.; et al. Human umbilical cord mesenchymal stem cell-derived exosomal miR-199a-3p inhibits the MAPK4/NF-kappaB signaling pathway to relieve osteoarthritis. World J. Stem Cells 2025, 17, 103919. [Google Scholar] [CrossRef]
- Song, Y.; Jorgensen, C. Mesenchymal Stromal Cells in Osteoarthritis: Evidence for Structural Benefit and Cartilage Repair. Biomedicines 2022, 10, 1278. [Google Scholar] [CrossRef]
- Tjandra, K.C.; Novriansyah, R.; Sudiasa, I.N.S.; Ar, A.; Rahmawati, N.A.D.; Dilogo, I.H. Modified Mesenchymal stem cell, platelet-rich plasma, and hyaluronic acid intervention in early stage osteoarthritis: A systematic review, meta-analysis, and meta-regression of arthroscopic-guided intra-articular approaches. PLoS ONE 2024, 19, e0295876. [Google Scholar] [CrossRef]
- Lin, Y.; Mu, D. Immunomodulatory effect of human dedifferentiated fat cells: Comparison with adipose-derived stem cells. Cytotechnology 2023, 75, 231–242. [Google Scholar] [CrossRef]
- Chen, H.; Zheng, T.; Wu, C.; Wang, J.; Ye, F.; Cui, M.; Sun, S.; Zhang, Y.; Li, Y.; Dong, Z. A Shape-Adaptive Gallic Acid Driven Multifunctional Adhesive Hydrogel Loaded with Scolopin2 for Wound Repair. Pharmaceuticals 2022, 15, 1422. [Google Scholar] [CrossRef]
- Jo, C.H.; Lee, Y.G.; Shin, W.H.; Kim, H.; Chai, J.W.; Jeong, E.C.; Kim, J.E.; Shim, H.; Shin, J.S.; Shin, I.S.; et al. Intra-articular injection of mesenchymal stem cells for the treatment of osteoarthritis of the knee: A proof-of-concept clinical trial. Stem Cells 2014, 32, 1254–1266. [Google Scholar] [CrossRef]
- Lamo-Espinosa, J.M.; Blanco, J.F.; Sanchez, M.; Moreno, V.; Granero-Molto, F.; Sanchez-Guijo, F.; Crespo-Cullel, I.; Mora, G.; San Vicente, D.D.; Pompei-Fernandez, O.; et al. Phase II multicenter randomized controlled clinical trial on the efficacy of intra-articular injection of autologous bone marrow mesenchymal stem cells with platelet rich plasma for the treatment of knee osteoarthritis. J. Transl. Med. 2020, 18, 356. [Google Scholar] [CrossRef] [PubMed]
- Freitag, J.; Bates, D.; Wickham, J.; Shah, K.; Huguenin, L.; Tenen, A.; Paterson, K.; Boyd, R. Adipose-derived mesenchymal stem cell therapy in the treatment of knee osteoarthritis: A randomized controlled trial. Regen. Med. 2019, 14, 213–230. [Google Scholar] [CrossRef] [PubMed]
- Lamo-Espinosa, J.M.; Mora, G.; Blanco, J.F.; Granero-Molto, F.; Nunez-Cordoba, J.M.; Lopez-Elio, S.; Andreu, E.; Sanchez-Guijo, F.; Aquerreta, J.D.; Bondia, J.M.; et al. Intra-articular injection of two different doses of autologous bone marrow mesenchymal stem cells versus hyaluronic acid in the treatment of knee osteoarthritis: Long-term follow up of a multicenter randomized controlled clinical trial (phase I/II). J. Transl. Med. 2018, 16, 213. [Google Scholar] [CrossRef] [PubMed]
- Lee, W.S.; Kim, H.J.; Kim, K.I.; Kim, G.B.; Jin, W. Intra-Articular Injection of Autologous Adipose Tissue-Derived Mesenchymal Stem Cells for the Treatment of Knee Osteoarthritis: A Phase IIb, Randomized, Placebo-Controlled Clinical Trial. Stem Cells Transl. Med. 2019, 8, 504–511. [Google Scholar] [CrossRef]
- Song, Y.; Du, H.; Dai, C.; Zhang, L.; Li, S.; Hunter, D.J.; Lu, L.; Bao, C. Human adipose-derived mesenchymal stem cells for osteoarthritis: A pilot study with long-term follow-up and repeated injections. Regen. Med. 2018, 13, 295–307. [Google Scholar] [CrossRef]
- Chahal, J.; Gomez-Aristizabal, A.; Shestopaloff, K.; Bhatt, S.; Chaboureau, A.; Fazio, A.; Chisholm, J.; Weston, A.; Chiovitti, J.; Keating, A.; et al. Bone Marrow Mesenchymal Stromal Cell Treatment in Patients with Osteoarthritis Results in Overall Improvement in Pain and Symptoms and Reduces Synovial Inflammation. Stem Cells Transl. Med. 2019, 8, 746–757. [Google Scholar] [CrossRef]
- Chen, H.H.; Chen, Y.C.; Yu, S.N.; Lai, W.L.; Shen, Y.S.; Shen, P.C.; Lin, S.H.; Chang, C.H.; Lee, S.M. Infrapatellar fat pad-derived mesenchymal stromal cell product for treatment of knee osteoarthritis: A first-in-human study with evaluation of the potency marker. Cytotherapy 2022, 24, 72–85. [Google Scholar] [CrossRef]
- Lu, L.; Dai, C.; Zhang, Z.; Du, H.; Li, S.; Ye, P.; Fu, Q.; Zhang, L.; Wu, X.; Dong, Y.; et al. Treatment of knee osteoarthritis with intra-articular injection of autologous adipose-derived mesenchymal progenitor cells: A prospective, randomized, double-blind, active-controlled, phase IIb clinical trial. Stem Cell Res. Ther. 2019, 10, 143. [Google Scholar] [CrossRef]
- Orozco, L.; Munar, A.; Soler, R.; Alberca, M.; Soler, F.; Huguet, M.; Sentis, J.; Sanchez, A.; Garcia-Sancho, J. Treatment of knee osteoarthritis with autologous mesenchymal stem cells: A pilot study. Transplantation 2013, 95, 1535–1541. [Google Scholar] [CrossRef]
- Vega, A.; Martin-Ferrero, M.A.; Del Canto, F.; Alberca, M.; Garcia, V.; Munar, A.; Orozco, L.; Soler, R.; Fuertes, J.J.; Huguet, M.; et al. Treatment of Knee Osteoarthritis with Allogeneic Bone Marrow Mesenchymal Stem Cells: A Randomized Controlled Trial. Transplantation 2015, 99, 1681–1690. [Google Scholar] [CrossRef]
- Soler, R.; Orozco, L.; Munar, A.; Huguet, M.; Lopez, R.; Vives, J.; Coll, R.; Codinach, M.; Garcia-Lopez, J. Final results of a phase I-II trial using ex vivo expanded autologous Mesenchymal Stromal Cells for the treatment of osteoarthritis of the knee confirming safety and suggesting cartilage regeneration. Knee 2016, 23, 647–654. [Google Scholar] [CrossRef] [PubMed]
- Al-Najar, M.; Khalil, H.; Al-Ajlouni, J.; Al-Antary, E.; Hamdan, M.; Rahmeh, R.; Alhattab, D.; Samara, O.; Yasin, M.; Abdullah, A.A.; et al. Intra-articular injection of expanded autologous bone marrow mesenchymal cells in moderate and severe knee osteoarthritis is safe: A phase I/II study. J. Orthop. Surg. Res. 2017, 12, 190. [Google Scholar] [CrossRef] [PubMed]
- Gupta, P.K.; Chullikana, A.; Rengasamy, M.; Shetty, N.; Pandey, V.; Agarwal, V.; Wagh, S.Y.; Vellotare, P.K.; Damodaran, D.; Viswanathan, P.; et al. Efficacy and safety of adult human bone marrow-derived, cultured, pooled, allogeneic mesenchymal stromal cells (Stempeucel(R)): Preclinical and clinical trial in osteoarthritis of the knee joint. Arthritis Res. Ther. 2016, 18, 301. [Google Scholar] [CrossRef] [PubMed]
- Sadri, B.; Tamimi, A.; Nouraein, S.; Bagheri Fard, A.; Mohammadi, J.; Mohammadpour, M.; Hassanzadeh, M.; Bajouri, A.; Madani, H.; Barekat, M.; et al. Clinical and laboratory findings following transplantation of allogeneic adipose-derived mesenchymal stromal cells in knee osteoarthritis, a brief report. Connect. Tissue Res. 2022, 63, 663–674. [Google Scholar] [CrossRef]
- Khalifeh Soltani, S.; Forogh, B.; Ahmadbeigi, N.; Hadizadeh Kharazi, H.; Fallahzadeh, K.; Kashani, L.; Karami, M.; Kheyrollah, Y.; Vasei, M. Safety and efficacy of allogenic placental mesenchymal stem cells for treating knee osteoarthritis: A pilot study. Cytotherapy 2019, 21, 54–63. [Google Scholar] [CrossRef]
- Zhao, X.; Ruan, J.; Tang, H.; Li, J.; Shi, Y.; Li, M.; Li, S.; Xu, C.; Lu, Q.; Dai, C. Multi-compositional MRI evaluation of repair cartilage in knee osteoarthritis with treatment of allogeneic human adipose-derived mesenchymal progenitor cells. Stem Cell Res. Ther. 2019, 10, 308. [Google Scholar] [CrossRef]
- Lu, L.; Dai, C.; Du, H.; Li, S.; Ye, P.; Zhang, L.; Wang, X.; Song, Y.; Togashi, R.; Vangsness, C.T.; et al. Intra-articular injections of allogeneic human adipose-derived mesenchymal progenitor cells in patients with symptomatic bilateral knee osteoarthritis: A Phase I pilot study. Regen. Med. 2020, 15, 1625–1636. [Google Scholar] [CrossRef]
- Mohamed, W. Nanocarriers in Neurodegenerative Disorders: Therapeutic Hopes and Hypes, 1st ed.; CRC Press: Boca Raton, FL, USA, 2025; p. 1. [Google Scholar]
- Valente, S.; Ciavarella, C.; Pasanisi, E.; Ricci, F.; Stella, A.; Pasquinelli, G. Hepatocyte Growth Factor Effects on Mesenchymal Stem Cells Derived from Human Arteries: A Novel Strategy to Accelerate Vascular Ulcer Wound Healing. Stem Cells Int. 2016, 2016, 3232859. [Google Scholar] [CrossRef]
- Golenia, A.; Olejnik, P. The Role of Oxidative Stress in Ischaemic Stroke and the Influence of Gut Microbiota. Antioxidants 2025, 14, 542. [Google Scholar] [CrossRef]
- Kopalli, S.R.; Behl, T.; Kyada, A.; Rekha, M.M.; Kundlas, M.; Rani, P.; Nathiya, D.; Satyam Naidu, K.; Gulati, M.; Bhise, M.; et al. Synaptic plasticity and neuroprotection: The molecular impact of flavonoids on neurodegenerative disease progression. Neuroscience 2025, 569, 161–183. [Google Scholar] [CrossRef]
- Xu, C.; Fu, F.; Li, X.; Zhang, S. Mesenchymal stem cells maintain the microenvironment of central nervous system by regulating the polarization of macrophages/microglia after traumatic brain injury. Int. J. Neurosci. 2017, 127, 1124–1135. [Google Scholar] [CrossRef] [PubMed]
- Xu, Q.; Gu, L.; Li, Z.; Gao, L.; Wei, L.; Shafiq, Z.; Chen, S.; Cai, Q. Current Status of Research on Nanomaterials Combined with Mesenchymal Stem Cells for the Treatment of Ischemic Stroke. Neuromolecular Med. 2024, 26, 51. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Wang, X.; Feng, L.; Li, X. Exosomes from WTAP-depleted mesenchymal stem cells mitigate OGD/R-triggered cellular injury in SK-N-SH cells through m6A-dependent epigenetic silencing of RPL9. Shock 2025. Online ahead of print. [Google Scholar] [CrossRef] [PubMed]
- Moore, S.F.; Guzman, N.V.; Mason, S.L.; Williams-Gray, C.H.; Barker, R.A. Which patients with Parkinson’s disease participate in clinical trials? One centre’s experiences with a new cell based therapy trial (TRANSEURO). J. Parkinsons Dis. 2014, 4, 671–676. [Google Scholar] [CrossRef]
- Kawabori, M.; Shichinohe, H.; Kuroda, S.; Houkin, K. Clinical Trials of Stem Cell Therapy for Cerebral Ischemic Stroke. Int. J. Mol. Sci. 2020, 21, 7380. [Google Scholar] [CrossRef]
- Savitz, S.I.; Misra, V.; Kasam, M.; Juneja, H.; Cox, C.S., Jr.; Alderman, S.; Aisiku, I.; Kar, S.; Gee, A.; Grotta, J.C. Intravenous autologous bone marrow mononuclear cells for ischemic stroke. Ann. Neurol. 2011, 70, 59–69. [Google Scholar] [CrossRef]
- Hess, D.C.; Wechsler, L.R.; Clark, W.M.; Savitz, S.I.; Ford, G.A.; Chiu, D.; Yavagal, D.R.; Uchino, K.; Liebeskind, D.S.; Auchus, A.P.; et al. Safety and efficacy of multipotent adult progenitor cells in acute ischaemic stroke (MASTERS): A randomised, double-blind, placebo-controlled, phase 2 trial. Lancet Neurol. 2017, 16, 360–368. [Google Scholar] [CrossRef]
- Laskowitz, D.T.; Bennett, E.R.; Durham, R.J.; Volpi, J.J.; Wiese, J.R.; Frankel, M.; Shpall, E.; Wilson, J.M.; Troy, J.; Kurtzberg, J. Allogeneic Umbilical Cord Blood Infusion for Adults with Ischemic Stroke: Clinical Outcomes from a Phase I Safety Study. Stem Cells Transl. Med. 2018, 7, 521–529. [Google Scholar] [CrossRef]
- Friedrich, M.A.; Martins, M.P.; Araujo, M.D.; Klamt, C.; Vedolin, L.; Garicochea, B.; Raupp, E.F.; Sartori El Ammar, J.; Machado, D.C.; Costa, J.C.; et al. Intra-arterial infusion of autologous bone marrow mononuclear cells in patients with moderate to severe middle cerebral artery acute ischemic stroke. Cell Transplant. 2012, 21 (Suppl. S1), S13–S21. [Google Scholar] [CrossRef]
- Moniche, F.; Gonzalez, A.; Gonzalez-Marcos, J.R.; Carmona, M.; Pinero, P.; Espigado, I.; Garcia-Solis, D.; Cayuela, A.; Montaner, J.; Boada, C.; et al. Intra-arterial bone marrow mononuclear cells in ischemic stroke: A pilot clinical trial. Stroke 2012, 43, 2242–2244. [Google Scholar] [CrossRef]
- Correa, P.L.; Mesquita, C.T.; Felix, R.M.; Azevedo, J.C.; Barbirato, G.B.; Falcao, C.H.; Gonzalez, C.; Mendonca, M.L.; Manfrim, A.; de Freitas, G.; et al. Assessment of intra-arterial injected autologous bone marrow mononuclear cell distribution by radioactive labeling in acute ischemic stroke. Clin. Nucl. Med. 2007, 32, 839–841. [Google Scholar] [CrossRef] [PubMed]
- Banerjee, S.; Bentley, P.; Hamady, M.; Marley, S.; Davis, J.; Shlebak, A.; Nicholls, J.; Williamson, D.A.; Jensen, S.L.; Gordon, M.; et al. Intra-Arterial Immunoselected CD34+ Stem Cells for Acute Ischemic Stroke. Stem Cells Transl. Med. 2014, 3, 1322–1330. [Google Scholar] [CrossRef] [PubMed]
- Qiao, L.Y.; Huang, F.J.; Zhao, M.; Xie, J.H.; Shi, J.; Wang, J.; Lin, X.Z.; Zuo, H.; Wang, Y.L.; Geng, T.C. A two-year follow-up study of cotransplantation with neural stem/progenitor cells and mesenchymal stromal cells in ischemic stroke patients. Cell Transplant. 2014, 23 (Suppl. S1), S65–S72. [Google Scholar] [CrossRef] [PubMed]
- Prasad, K.; Mohanty, S.; Bhatia, R.; Srivastava, M.V.; Garg, A.; Srivastava, A.; Goyal, V.; Tripathi, M.; Kumar, A.; Bal, C.; et al. Autologous intravenous bone marrow mononuclear cell therapy for patients with subacute ischaemic stroke: A pilot study. Indian. J. Med. Res. 2012, 136, 221–228. [Google Scholar]
- Bhasin, A.; Srivastava, M.; Bhatia, R.; Mohanty, S.; Kumaran, S.; Bose, S. Autologous intravenous mononuclear stem cell therapy in chronic ischemic stroke. J. Stem Cells Regen. Med. 2012, 8, 181–189. [Google Scholar]
- Rosado-de-Castro, P.H.; Schmidt Fda, R.; Battistella, V.; Lopes de Souza, S.A.; Gutfilen, B.; Goldenberg, R.C.; Kasai-Brunswick, T.H.; Vairo, L.; Silva, R.M.; Wajnberg, E.; et al. Biodistribution of bone marrow mononuclear cells after intra-arterial or intravenous transplantation in subacute stroke patients. Regen. Med. 2013, 8, 145–155. [Google Scholar] [CrossRef]
- Prasad, K.; Sharma, A.; Garg, A.; Mohanty, S.; Bhatnagar, S.; Johri, S.; Singh, K.K.; Nair, V.; Sarkar, R.S.; Gorthi, S.P.; et al. Intravenous autologous bone marrow mononuclear stem cell therapy for ischemic stroke: A multicentric, randomized trial. Stroke 2014, 45, 3618–3624. [Google Scholar] [CrossRef]
- Taguchi, A.; Sakai, C.; Soma, T.; Kasahara, Y.; Stern, D.M.; Kajimoto, K.; Ihara, M.; Daimon, T.; Yamahara, K.; Doi, K.; et al. Intravenous Autologous Bone Marrow Mononuclear Cell Transplantation for Stroke: Phase1/2a Clinical Trial in a Homogeneous Group of Stroke Patients. Stem Cells Dev. 2015, 24, 2207–2218. [Google Scholar] [CrossRef]
- Bhasin, A.; Srivastava, M.V.P.; Mohanty, S.; Vivekanandhan, S.; Sharma, S.; Kumaran, S.; Bhatia, R. Paracrine Mechanisms of Intravenous Bone Marrow-Derived Mononuclear Stem Cells in Chronic Ischemic Stroke. Cerebrovasc. Dis. Extra 2016, 6, 107–119. [Google Scholar] [CrossRef]
- Lee, J.S.; Hong, J.M.; Moon, G.J.; Lee, P.H.; Ahn, Y.H.; Bang, O.Y. A long-term follow-up study of intravenous autologous mesenchymal stem cell transplantation in patients with ischemic stroke. Stem Cells 2010, 28, 1099–1106. [Google Scholar] [CrossRef]
- Honmou, O.; Houkin, K.; Matsunaga, T.; Niitsu, Y.; Ishiai, S.; Onodera, R.; Waxman, S.G.; Kocsis, J.D. Intravenous administration of auto serum-expanded autologous mesenchymal stem cells in stroke. Brain 2011, 134, 1790–1807. [Google Scholar] [CrossRef] [PubMed]
- Fang, J.; Guo, Y.; Tan, S.; Li, Z.; Xie, H.; Chen, P.; Wang, K.; He, Z.; He, P.; Ke, Y.; et al. Autologous Endothelial Progenitor Cells Transplantation for Acute Ischemic Stroke: A 4-Year Follow-Up Study. Stem Cells Transl. Med. 2019, 8, 14–21. [Google Scholar] [CrossRef] [PubMed]
- Jaillard, A.; Hommel, M.; Moisan, A.; Zeffiro, T.A.; Favre-Wiki, I.M.; Barbieux-Guillot, M.; Vadot, W.; Marcel, S.; Lamalle, L.; Grand, S.; et al. Autologous Mesenchymal Stem Cells Improve Motor Recovery in Subacute Ischemic Stroke: A Randomized Clinical Trial. Transl. Stroke Res. 2020, 11, 910–923. [Google Scholar] [CrossRef] [PubMed]
- Barbosa da Fonseca, L.M.; Gutfilen, B.; Rosado de Castro, P.H.; Battistella, V.; Goldenberg, R.C.; Kasai-Brunswick, T.; Chagas, C.L.; Wajnberg, E.; Maiolino, A.; Salles Xavier, S.; et al. Migration and homing of bone-marrow mononuclear cells in chronic ischemic stroke after intra-arterial injection. Exp. Neurol. 2010, 221, 122–128. [Google Scholar] [CrossRef]
- Battistella, V.; de Freitas, G.R.; da Fonseca, L.M.; Mercante, D.; Gutfilen, B.; Goldenberg, R.C.; Dias, J.V.; Kasai-Brunswick, T.H.; Wajnberg, E.; Rosado-de-Castro, P.H.; et al. Safety of autologous bone marrow mononuclear cell transplantation in patients with nonacute ischemic stroke. Regen. Med. 2011, 6, 45–52. [Google Scholar] [CrossRef]
- Ghali, A.A.; Yousef, M.K.; Ragab, O.A.; ElZamarany, E.A. Intra-arterial Infusion of Autologous Bone Marrow Mononuclear Stem Cells in Subacute Ischemic Stroke Patients. Front. Neurol. 2016, 7, 228. [Google Scholar] [CrossRef]
- Bhatia, V.; Gupta, V.; Khurana, D.; Sharma, R.R.; Khandelwal, N. Randomized Assessment of the Safety and Efficacy of Intra-Arterial Infusion of Autologous Stem Cells in Subacute Ischemic Stroke. AJNR Am. J. Neuroradiol. 2018, 39, 899–904. [Google Scholar] [CrossRef]
- Savitz, S.I.; Yavagal, D.; Rappard, G.; Likosky, W.; Rutledge, N.; Graffagnino, C.; Alderazi, Y.; Elder, J.A.; Chen, P.R.; Budzik, R.F., Jr.; et al. A Phase 2 Randomized, Sham-Controlled Trial of Internal Carotid Artery Infusion of Autologous Bone Marrow-Derived ALD-401 Cells in Patients With Recent Stable Ischemic Stroke (RECOVER-Stroke). Circulation 2019, 139, 192–205. [Google Scholar] [CrossRef]
- Jiang, Y.; Zhu, W.; Zhu, J.; Wu, L.; Xu, G.; Liu, X. Feasibility of delivering mesenchymal stem cells via catheter to the proximal end of the lesion artery in patients with stroke in the territory of the middle cerebral artery. Cell Transplant. 2013, 22, 2291–2298. [Google Scholar] [CrossRef]
- Kalladka, D.; Muir, K.W. Brain repair: Cell therapy in stroke. Stem Cells Cloning 2014, 7, 31–44. [Google Scholar]
- Bhasin, A.; Kumaran, S.S.; Bhatia, R.; Mohanty, S.; Srivastava, M.V.P. Safety and Feasibility of Autologous Mesenchymal Stem Cell Transplantation in Chronic Stroke in Indian patients. A four-year follow up. J. Stem Cells Regen. Med. 2017, 13, 14–19. [Google Scholar] [PubMed]
- Levy, M.L.; Crawford, J.R.; Dib, N.; Verkh, L.; Tankovich, N.; Cramer, S.C. Phase I/II Study of Safety and Preliminary Efficacy of Intravenous Allogeneic Mesenchymal Stem Cells in Chronic Stroke. Stroke 2019, 50, 2835–2841. [Google Scholar] [CrossRef] [PubMed]
- Bhasin, A.; Srivastava, M.V.; Mohanty, S.; Bhatia, R.; Kumaran, S.S.; Bose, S. Stem cell therapy: A clinical trial of stroke. Clin. Neurol. Neurosurg. 2013, 115, 1003–1008. [Google Scholar] [CrossRef] [PubMed]
- Sharma, A.; Sane, H.; Gokulchandran, N.; Khopkar, D.; Paranjape, A.; Sundaram, J.; Gandhi, S.; Badhe, P. Autologous bone marrow mononuclear cells intrathecal transplantation in chronic stroke. Stroke Res. Treat. 2014, 2014, 234095. [Google Scholar] [CrossRef]
- Wang, L.; Ji, H.; Li, M.; Zhou, J.; Bai, W.; Zhong, Z.; Li, N.; Zhu, D.; Zhang, Z.; Liu, Y.; et al. Intrathecal Administration of Autologous CD34 Positive Cells in Patients with Past Cerebral Infarction: A Safety Study. ISRN Neurol. 2013, 2013, 128591. [Google Scholar] [CrossRef]
- Rabinovich, S.S.; Seledtsov, V.I.; Banul, N.V.; Poveshchenko, O.V.; Senyukov, V.V.; Astrakov, S.V.; Samarin, D.M.; Taraban, V.Y. Cell therapy of brain stroke. Bull. Exp. Biol. Med. 2005, 139, 126–128. [Google Scholar] [CrossRef]
- Duma, C.; Kopyov, O.; Kopyov, A.; Berman, M.; Lander, E.; Elam, M.; Arata, M.; Weiland, D.; Cannell, R.; Caraway, C.; et al. Human intracerebroventricular (ICV) injection of autologous, non-engineered, adipose-derived stromal vascular fraction (ADSVF) for neurodegenerative disorders: Results of a 3-year phase 1 study of 113 injections in 31 patients. Mol. Biol. Rep. 2019, 46, 5257–5272. [Google Scholar] [CrossRef]
- Suarez-Monteagudo, C.; Hernandez-Ramirez, P.; Alvarez-Gonzalez, L.; Garcia-Maeso, I.; de la Cuetara-Bernal, K.; Castillo-Diaz, L.; Bringas-Vega, M.L.; Martinez-Aching, G.; Morales-Chacon, L.M.; Baez-Martin, M.M.; et al. Autologous bone marrow stem cell neurotransplantation in stroke patients. An open study. Restor. Neurol. Neurosci. 2009, 27, 151–161. [Google Scholar] [CrossRef]
- Chen, D.C.; Lin, S.Z.; Fan, J.R.; Lin, C.H.; Lee, W.; Lin, C.C.; Liu, Y.J.; Tsai, C.H.; Chen, J.C.; Cho, D.Y.; et al. Intracerebral implantation of autologous peripheral blood stem cells in stroke patients: A randomized phase II study. Cell Transplant. 2014, 23, 1599–1612. [Google Scholar] [CrossRef]
- Steinberg, G.K.; Kondziolka, D.; Wechsler, L.R.; Lunsford, L.D.; Coburn, M.L.; Billigen, J.B.; Kim, A.S.; Johnson, J.N.; Bates, D.; King, B.; et al. Clinical Outcomes of Transplanted Modified Bone Marrow-Derived Mesenchymal Stem Cells in Stroke: A Phase 1/2a Study. Stroke 2016, 47, 1817–1824. [Google Scholar] [CrossRef]
- Steinberg, G.K.; Kondziolka, D.; Wechsler, L.R.; Lunsford, L.D.; Kim, A.S.; Johnson, J.N.; Bates, D.; Poggio, G.; Case, C.; McGrogan, M.; et al. Two-year safety and clinical outcomes in chronic ischemic stroke patients after implantation of modified bone marrow-derived mesenchymal stem cells (SB623): A phase 1/2a study. J. Neurosurg. 2019, 131, 1462–1472. [Google Scholar] [CrossRef] [PubMed]
- Buchan, A.M.; Warren, D.; Burnstein, R. Transplantation of cultured human neuronal cells for patients with stroke. Neurology 2001, 56, 821–822. [Google Scholar] [CrossRef] [PubMed]
- Kalladka, D.; Sinden, J.; Pollock, K.; Haig, C.; McLean, J.; Smith, W.; McConnachie, A.; Santosh, C.; Bath, P.M.; Dunn, L.; et al. Human neural stem cells in patients with chronic ischaemic stroke (PISCES): A phase 1, first-in-man study. Lancet 2016, 388, 787–796. [Google Scholar] [CrossRef] [PubMed]
- Muir, K.W.; Bulters, D.; Willmot, M.; Sprigg, N.; Dixit, A.; Ward, N.; Tyrrell, P.; Majid, A.; Dunn, L.; Bath, P.; et al. Intracerebral implantation of human neural stem cells and motor recovery after stroke: Multicentre prospective single-arm study (PISCES-2). J. Neurol. Neurosurg. Psychiatry 2020, 91, 396–401. [Google Scholar] [CrossRef]
- Kondziolka, D.; Steinberg, G.K.; Wechsler, L.; Meltzer, C.C.; Elder, E.; Gebel, J.; Decesare, S.; Jovin, T.; Zafonte, R.; Lebowitz, J.; et al. Neurotransplantation for patients with subcortical motor stroke: A phase 2 randomized trial. J. Neurosurg. 2005, 103, 38–45. [Google Scholar] [CrossRef]
- Chen, L.; Xi, H.; Huang, H.; Zhang, F.; Liu, Y.; Chen, D.; Xiao, J. Multiple cell transplantation based on an intraparenchymal approach for patients with chronic phase stroke. Cell Transplant. 2013, 22 (Suppl. S1), S83–S91. [Google Scholar] [CrossRef]
- Savitz, S.I.; Dinsmore, J.; Wu, J.; Henderson, G.V.; Stieg, P.; Caplan, L.R. Neurotransplantation of fetal porcine cells in patients with basal ganglia infarcts: A preliminary safety and feasibility study. Cerebrovasc. Dis. 2005, 20, 101–107. [Google Scholar] [CrossRef]
- Shimizu, K.; Shindou, H.; Tomita, K.; Nishinaka, T. Approaches to the Treatment of Lifestyle-related Diseases Through the Regulation of Phospholipid Biosynthesis in the Liver. Yakugaku Zasshi 2025, 145, 171–176. [Google Scholar] [CrossRef]
- Yu, C.H.; Zinman, B. Type 2 diabetes and impaired glucose tolerance in aboriginal populations: A global perspective. Diabetes Res. Clin. Pract. 2007, 78, 159–170. [Google Scholar] [CrossRef]
- Datla, S.; Albar, Z.; Eaton, E.; Porges, J.; Nennstiel, M.; Sullivan, C.; Greene, L.; Al-Kindi, S.G.; Montgomery, E.; Padiyar, A.; et al. Chronic kidney disease prevalence and outcomes in patients with type 2 diabetes or prediabetes at high cardiovascular risk: Results from the CINEMA program. Am. J. Prev. Cardiol. 2025, 22, 101004. [Google Scholar] [CrossRef]
- Tian, X.; Wang, L.; Zhang, L.; Chen, X.; Wang, W.; Zhang, K.; Ge, X.; Luo, Z.; Zhai, X.; Shao, H. New discoveries in therapeutic targets and drug development pathways for type 2 diabetes mellitus under the guidance of precision medicine. Eur. J. Med. Res. 2025, 30, 450. [Google Scholar] [CrossRef] [PubMed]
- Kashbour, M.; Abdelmalik, A.; Yassin, M.N.A.; Abed, M.; Aldieb, E.; Abdullah, D.M.; Elmozugi, T.; Isawi, Y.; Hassan, E.; Almuzghi, F. Mesenchymal stem cell-based therapy for type 1 & 2 diabetes mellitus patients: A systematic review and meta-analysis of randomized controlled trials. Diabetol. Metab. Syndr. 2025, 17, 189. [Google Scholar] [PubMed]
- Wu, Z.; Huang, S.; Li, S.; Cai, J.; Huang, L.; Wu, W.; Chen, J.; Tan, J. Bone marrow mesenchymal stem cell and mononuclear cell combination therapy in patients with type 2 diabetes mellitus: A randomized controlled study with 8-year follow-up. Stem Cell Res. Ther. 2024, 15, 339. [Google Scholar] [CrossRef] [PubMed]
- He, J.; Kong, D.; Yang, Z.; Guo, R.; Amponsah, A.E.; Feng, B.; Zhang, X.; Zhang, W.; Liu, A.; Ma, J.; et al. Clinical efficacy on glycemic control and safety of mesenchymal stem cells in patients with diabetes mellitus: Systematic review and meta-analysis of RCT data. PLoS ONE 2021, 16, e0247662. [Google Scholar] [CrossRef]
- Entz, L.; Falgayrac, G.; Chauveau, C.; Pasquier, G.; Lucas, S. The extracellular matrix of human bone marrow adipocytes and glucose concentration differentially alter mineralization quality without impairing osteoblastogenesis. Bone Rep. 2022, 17, 101622. [Google Scholar] [CrossRef]
- Radosevich, D.M.; Jevne, R.; Bellin, M.; Kandaswamy, R.; Sutherland, D.E.; Hering, B.J. Comprehensive health assessment and five-yr follow-up of allogeneic islet transplant recipients. Clin. Transplant. 2013, 27, E715–E724. [Google Scholar] [CrossRef]
- Song, H.; Li, J.; Yang, H.; Kong, B.; Xu, Y.; Li, X.; Li, H. Enhancement of functional insulin-producing cell differentiation from embryonic stem cells through MST1-silencing. Diabetol. Metab. Syndr. 2025, 17, 93. [Google Scholar] [CrossRef]
- Wang, Y.; Ding, Y.; Dong, H.; Wuren, T.; Luo, P. MSCs in Acute Kidney Injury Treatment: Modulating Mitochondrial Function and Inhibiting Pyroptosis via PGC-1alpha. Exp. Cell Res. 2025, 450, 114583. [Google Scholar] [CrossRef]
- Huang, X.; Wang, H.; Xu, Y. Induced Pluripotent Stem Cells (iPSC)-derived Mesenchymal Stem Cells (MSCs) Showed Comparable Effects in Repair of Acute Kidney Injury as Compared to Adult MSCs. Urol. J. 2020, 17, 204–209. [Google Scholar]
- Zhang, J.; Jiang, H.; Liu, S.; Xian, Z.; Zhao, L.; Li, Y.; Lu, W.; Shao, C.; Chai, S. Bone marrow mesenchymal stem cells transport connexin43 via tunneling nanotubes to alleviate isopreterenol-induced myocardial hypertrophy. Stem Cell Res. Ther. 2025, 16, 229. [Google Scholar] [CrossRef]
- Bartunek, J.; Davison, B.; Sherman, W.; Povsic, T.; Henry, T.D.; Gersh, B.; Metra, M.; Filippatos, G.; Hajjar, R.; Behfar, A.; et al. Congestive Heart Failure Cardiopoietic Regenerative Therapy (CHART-1) trial design. Eur. J. Heart Fail. 2016, 18, 160–168. [Google Scholar] [CrossRef] [PubMed]
- Sun, B.; Zhao, C.; Mao, Y. MiR-218-5p Mediates Myocardial Fibrosis after Myocardial Infarction by Targeting CX43. Curr. Pharm. Des. 2021, 27, 4504–4512. [Google Scholar] [CrossRef] [PubMed]
- Komori, J.; Boone, L.; DeWard, A.; Hoppo, T.; Lagasse, E. The mouse lymph node as an ectopic transplantation site for multiple tissues. Nat. Biotechnol. 2012, 30, 976–983. [Google Scholar] [CrossRef] [PubMed]
- Forte, G.; Minieri, M.; Cossa, P.; Antenucci, D.; Sala, M.; Gnocchi, V.; Fiaccavento, R.; Carotenuto, F.; De Vito, P.; Baldini, P.M.; et al. Hepatocyte growth factor effects on mesenchymal stem cells: Proliferation, migration, and differentiation. Stem Cells 2006, 24, 23–33. [Google Scholar] [CrossRef]
- Tsai, H.I.; Wu, Y.; Liu, X.; Xu, Z.; Liu, L.; Wang, C.; Zhang, H.; Huang, Y.; Wang, L.; Zhang, W.; et al. Engineered Small Extracellular Vesicles as a FGL1/PD-L1 Dual-Targeting Delivery System for Alleviating Immune Rejection. Adv. Sci. 2022, 9, e2102634. [Google Scholar] [CrossRef]
- Wang, L.; Huang, S.; Li, S.; Li, M.; Shi, J.; Bai, W.; Wang, Q.; Zheng, L.; Liu, Y. Efficacy and Safety of Umbilical Cord Mesenchymal Stem Cell Therapy for Rheumatoid Arthritis Patients: A Prospective Phase I/II Study. Drug Des. Devel Ther. 2019, 13, 4331–4340. [Google Scholar] [CrossRef]
- Yang, Q.; Liu, Y.; Chen, G.; Zhang, W.; Tang, S.; Zhou, T. An Overview of the Safety, Efficiency, and Signal Pathways of Stem Cell Therapy for Systemic Lupus Erythematosus. Stem Cells Int. 2021, 2021, 2168595. [Google Scholar] [CrossRef]
- Wei, J.; Ouyang, X.; Tang, Y.; Li, H.; Wang, B.; Ye, Y.; Jin, M.; Al Azab, M.; Li, W.; Li, X. ER-stressed MSC displayed more effective immunomodulation in RA CD4(+)CXCR5(+)ICOS(+) follicular helper-like T cells through higher PGE2 binding with EP2/EP4. Mod. Rheumatol. 2020, 30, 509–516. [Google Scholar] [CrossRef]
- Izadi, M.; Sadr Hashemi Nejad, A.; Moazenchi, M.; Masoumi, S.; Rabbani, A.; Kompani, F.; Hedayati Asl, A.A.; Abbasi Kakroodi, F.; Jaroughi, N.; Mohseni Meybodi, M.A.; et al. Mesenchymal stem cell transplantation in newly diagnosed type-1 diabetes patients: A phase I/II randomized placebo-controlled clinical trial. Stem Cell Res. Ther. 2022, 13, 264. [Google Scholar] [CrossRef]
- Linkova, N.; Khavinson, V.; Diatlova, A.; Petukhov, M.; Vladimirova, E.; Sukhareva, M.; Ilina, A. The Influence of KE and EW Dipeptides in the Composition of the Thymalin Drug on Gene Expression and Protein Synthesis Involved in the Pathogenesis of COVID-19. Int. J. Mol. Sci. 2023, 24, 13377. [Google Scholar] [CrossRef]
- Wang, Y.; Gao, T.; Li, W.; Tai, C.; Xie, Y.; Chen, D.; Liu, S.; Huang, F.; Wang, W.; Chen, Y.; et al. Engineered clinical-grade mesenchymal stromal cells combating SARS-CoV-2 omicron variants by secreting effective neutralizing antibodies. Cell Biosci. 2023, 13, 160. [Google Scholar] [CrossRef] [PubMed]
- Mun, C.H.; Kang, M.I.; Shin, Y.D.; Kim, Y.; Park, Y.B. Correction to: The Expression of Immunomodulation-Related Cytokines and Genes of Adipose- and Bone Marrow-Derived Human Mesenchymal Stromal Cells from Early to Late Passages. Tissue Eng. Regen. Med. 2019, 16, 103–105. [Google Scholar] [CrossRef] [PubMed]
- Clark, H.L.; Files, D.C. Adapting for the future: What can we learn from REMAP-CAP and COVID-19 pandemic trials? Thorax 2025, 223319. [Google Scholar] [CrossRef] [PubMed]
- Weiss, D.J.; Segal, K.; Casaburi, R.; Hayes, J.; Tashkin, D. Effect of mesenchymal stromal cell infusions on lung function in COPD patients with high CRP levels. Respir. Res. 2021, 22, 142. [Google Scholar] [CrossRef]
- Tieu, A.; Stewart, D.J.; Chwastek, D.; Lansdell, C.; Burger, D.; Lalu, M.M. Biodistribution of mesenchymal stromal cell-derived extracellular vesicles administered during acute lung injury. Stem Cell Res. Ther. 2023, 14, 250. [Google Scholar] [CrossRef]
- Kaur, A.; Krishnan, V.V. Immunoprofiles of COVID-19 uniquely differentiated from other viruses: A machine learning investigation of multiplex immunoassay data. Proc. Natl. Acad. Sci. USA Nexus 2024, 3, pgae327. [Google Scholar] [CrossRef]
- Rajput, A.; Sajjad, S.A.; Kumar, A.; Singh, K. Safety and Efficacy of CD19-Targeted Chimeric Antigen Receptor (CAR) T-cells Generated Using DNA Transposon Systems: A Meta-Analysis. Cureus 2025, 17, e81930. [Google Scholar] [CrossRef]
- Wang, H.; Wang, G.; Li, T.; Zhang, P.; Mao, Z.; Luo, H.; Zhu, X.; Li, D.; Zhou, J.; Zhou, X.; et al. Efficacy and safety of a novel CD19, CD22 dual-targeted fully human loop bi-CAR-T for the treatment of relapsed/refractory B cell non-Hodgkin lymphoma. J. Transl. Med. 2025, 23, 630. [Google Scholar] [CrossRef]
- He, B.; Lin, R.; Xu, N.; Qin, L.; Wang, Z.; Wang, Q.; Li, X.; Wei, X.; Wei, Y.; Tang, Z.; et al. Efficacy and safety of third-generation CD19-CAR T cells incorporating CD28 and TLR2 intracellular domains for B-cell malignancies with central nervous system involvement: Results of a pivotal trial. J. Transl. Med. 2025, 23, 594. [Google Scholar] [CrossRef]
- Vryza, P.; Fischer, T.; Mistakidi, E.; Zaravinos, A. Tumor mutation burden in the prognosis and response of lung cancer patients to immune-checkpoint inhibition therapies. Transl. Oncol. 2023, 38, 101788. [Google Scholar] [CrossRef]
- Iyer, S.P.; Sica, R.A.; Ho, P.J.; Prica, A.; Zain, J.; Foss, F.M.; Hu, B.; Beitinjaneh, A.; Weng, W.K.; Kim, Y.H.; et al. Safety and activity of CTX130, a CD70-targeted allogeneic CRISPR-Cas9-engineered CAR T-cell therapy, in patients with relapsed or refractory T-cell malignancies (COBALT-LYM): A single-arm, open-label, phase 1, dose-escalation study. Lancet Oncol. 2025, 26, 110–122. [Google Scholar] [CrossRef]
- Figueiredo, C.; Blasczyk, R. Generation of HLA Universal Megakaryocytes and Platelets by Genetic Engineering. Front. Immunol. 2021, 12, 768458. [Google Scholar] [CrossRef] [PubMed]
- Foy, S.P.; Jacoby, K.; Bota, D.A.; Hunter, T.; Pan, Z.; Stawiski, E.; Ma, Y.; Lu, W.; Peng, S.; Wang, C.L.; et al. Non-viral precision T cell receptor replacement for personalized cell therapy. Nature 2023, 615, 687–696. [Google Scholar] [CrossRef] [PubMed]
- Ma, C.Y.; Zhai, Y.; Li, C.T.; Liu, J.; Xu, X.; Chen, H.; Tse, H.F.; Lian, Q. Translating mesenchymal stem cell and their exosome research into GMP compliant advanced therapy products: Promises, problems and prospects. Med. Res. Rev. 2024, 44, 919–938. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Xue, Y.; Guo, H.D. Intervention effects of traditional Chinese medicine on stem cell therapy of myocardial infarction. Front. Pharmacol. 2022, 13, 1013740. [Google Scholar] [CrossRef]
- Zakrzewski, W.; Dobrzynski, M.; Szymonowicz, M.; Rybak, Z. Stem cells: Past, present, and future. Stem Cell Res. Ther. 2019, 10, 68. [Google Scholar] [CrossRef]
- Song, C.Y.; Guo, Y.; Chen, F.Y.; Liu, W.G. Resveratrol Promotes Osteogenic Differentiation of Bone Marrow-Derived Mesenchymal Stem Cells Through miR-193a/SIRT7 Axis. Calcif. Tissue Int. 2022, 110, 117–130. [Google Scholar] [CrossRef]
- Lu, C.; Zhang, Y.; Sun, C.; Na, Y.; Sun, H.; Ma, J.; Wang, X.; Cang, X. Stromal Cell Derived Factor-1 Promotes Hepatic Insulin Resistance via Inhibiting Hepatocyte Lipophagy. J. Cell Mol. Med. 2025, 29, e70352. [Google Scholar] [CrossRef]
- Chen, X.; Qian, W.; Zhang, Y.; Zhao, P.; Lin, X.; Yang, S.; Zhuge, Q.; Ni, H. Ginsenoside CK cooperates with bone mesenchymal stem cells to enhance angiogenesis post-stroke via GLUT1 and HIF-1alpha/VEGF pathway. Phytother. Res. 2024, 38, 4321–4335. [Google Scholar] [CrossRef]
- Xu, Y.; Jiang, Y.; Jia, B.; Wang, Y.; Li, T. Icariin stimulates osteogenesis and suppresses adipogenesis of human bone mesenchymal stem cells via miR-23a-mediated activation of the Wnt/beta-catenin signaling pathway. Phytomedicine 2021, 85, 153485. [Google Scholar] [CrossRef]
- Li, X.; Zhang, Y.; Hong, Z.; Gong, S.; Liu, W.; Zhou, X.; Sun, Y.; Qian, J.; Qu, H. Transcriptome Profiling Analysis Reveals the Potential Mechanisms of Three Bioactive Ingredients of Fufang E’jiao Jiang During Chemotherapy-Induced Myelosuppression in Mice. Front. Pharmacol. 2018, 9, 616. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Li, L.; Gu, W.; Mao, Y.; Wang, T. Resveratrol Reverses Osteogenic Decline of Bone Marrow Mesenchymal Stem Cells Via Upregulation of YAP Expression in Inflammatory Environment. Stem Cells Dev. 2021, 30, 1202–1214. [Google Scholar] [CrossRef] [PubMed]
- Fang, C.; Wang, Y.; Pan, Z. Formation of self-assembly aggregates in traditional Chinese medicine decoctions and their application in cancer treatments. RSC Adv. 2025, 15, 5476–5506. [Google Scholar] [CrossRef] [PubMed]
Ref. | MSC Tissue Source | Cell Dose (×106 Cells) | Number Treated | Time Points | Cartilage Outcomes |
---|---|---|---|---|---|
[27] | AD | 10, 50, 100 | 12 (100 × 106 dose); 3 (50 × 106 dose); 3 (10 × 106 dose) | 0, 3, 6 months (MRl, X-Ray); 0, 6 months (arthroscopy histology) | Regeneration favoring high-dose group by MRl, arthroscopy, histology |
[28] | BM | 10, 100 | 10 (100 × 106 dose); 10 (10 × 106 dose); 10 (control) | 0, 6, 12 months | Possible regeneration favoring high-dose group by X-Ray and MRI |
[29] | AD | 100 | 10 (single dose); 10 (two doses); 10 (control) | 0, 12 months | Chondroprotection favoring two-dose group |
[30] | BM | 100 | 30 (MSC + PRP); 30 (control) | 0, 12 months | No significant effects |
[31] | AD | 100 | 12 (MSC group); 12 (control) | 0, 6 months | Chondroprotection; significant increase in defect size observed in saline- but not MSC-treated group by MRI |
[32] | AD | 10, 20, 50 | 6/dose group | 0, 12, 24, 48, 72, 96 weeks | Regeneration favoring high-dose group with subsequent reduction in cartilage volume at 96 weeks |
[33] | BM | 1, 10, 50 | 4 (50 × 106 dose); 4 (10 × 106 dose); 4 (1 × 106 dose) | 0, 6, 12 months (MRI); 2, 6, 12, 24, and 48 weeks (ELISA) | Possible chondroprotection; no changes by MRl but catabolic biomarkers were significantly reduced and favored high-dose group |
[34] | AD | 50 | 12 | 0, 48 weeks | Regeneration indicated by reduced MOAKs articular cartilage pathology scores |
[35] | AD | 50 | 26/group | 0, 24, 48 weeks | Regeneration in MSC group with degeneration in HA group |
[36] | BM | 40 | 12 | 0, 6, 12 months | Regeneration indicated by significant reduction in PCl scores at 6 and 12 months |
[37] | BM | 40 | 50 | 0, 12 months | Regeneration indicated by significant reduction in T2 values |
[38] | BM | 40 | 15 | 0, 6, 12 months | Regeneration indicated by significant reduction in T2 values at 6 and 12 months |
[39] | BM | 30.5 | 13 | 0, 6, 12 months | Regeneration indicated by increased cartilage thickness at 12 months |
[40] | BM | 25, 50, 75, 150 | 10 (for each MSC dose); 20 (control) | 0, 6, 12 months (MRl); 0, 3, 6 months (X-Ray) | No significant effects |
[41] | AD | 100 | 3 | 0, 6 months (MRl); 0, 1 week, 1, 3, 6 months | Possible chondroprotection and regeneration by MRl and ELISA but small sample size |
[42] | Placenta | 50–60 | 10 (MSC); 10 (control) | 0, 24 weeks | Regeneration indicated by increased cartilage thickness relative to baseline in MSC but not control group |
[43,44] | AD | 10, 20, 50 | 7 (10 × 106 group); 8 (20 × 106 group); 7 (50 × 106 group) | 0, 48 weeks | Regeneration favoring high-dose group |
Ref. | Country | Cell Source | Dose | Route | Transplant Timing | Treated Patient Number (Control) | Major Outcome |
---|---|---|---|---|---|---|---|
Acute | |||||||
[54] | USA | BM | 4–6 × 108 | IV | 1–3 D | 10 | Showed good neurological recovery |
[55] | USA | BM | 1.2 × 108 | IV | 1–2 D | 65 (58) | No difference |
[56] | USA | UC | 1.2 × 106 (CD34+) | IV | 3–9 D | 10 | Safe |
[57] | Brazil | BM | 5–6 × 107 | IA | 3–10 D | 20 | 30% of patients showed satisfactory clinical outcome |
[58] | Spain | BM | 1.6 × 108 | IA | 5–9 D | 10 (10) | No difference |
[59] | Brazil | BM | 3 × 107 | IA | 9 D | 1 | Brain/liver/spleen uptake at 8 h |
[60] | UK | BM | 1–3 × 106 (CD34+) | IA | 1 W | 5 | Good recovery |
[61] | China | UC & NPC | 3 × 107 (UC:IV), 1.5 × 107 (UC:IT), 1.8 × 107 (NPC:IT) | IV & IT | 1 W | 1 | Showed some degree of neurological recovery |
Sub-Acute | |||||||
[62] | India | BM | 2–19 × 108 | IV | 2–4 W | 11 | Favorable outcomes were mostly found in early treatment group |
[63] | India | BM | 5 × 107 | IV | 3–4 M | 1 (3) | Safe |
[64] | Brazil | BM | 2–5 × 108 | IV | 1–3 M | 5 | Cells in brain were scarce (1%), IV (21%) showed high cell distribution in lung compared with IV (7%) |
[65] | India | BM | 2.8 × 107 | IV | 18 D | 59 (59) | No significant recovery compared with control |
[66] | Japan | BM | 2.5–3.4 × 108 | IV | 7–10 D | 12 | Better NlHSS recovery compared with historical control |
[67] | Korea | BM | 1 × 108 | IV | 1–2 M | 5 (25) | Cell treatment group showed better neurological recovery than control |
[68] | Korea | BM | 1 × 108 | IV | 2 M | 16 (36) | Better recovery, less mortality within 5 years |
[69] | Japan | BM | 0.8–1.5 × 108 | IV | 1–4 M | 12 | Recoveries were mainly seen 0–1 W from transplantation |
[70] | China | BM | 3 × 108 | IV | 1 M | 12 (6) | No neurological difference compared with control |
[71] | France | BM | 1 or 3 × 108 | IV | 1–2 M | 16 (15) | No overall change, but motor functional evaluations indicated improvement |
[61] | China | UC | 1.2 × 108 | IV | 2 & 3 M | 2 | Showed some degree of neurological recovery |
[72] | Brazil | BM | 1–5 × 108 | IA | 2–3 M | 6 | Cells were found in the brain after 2 h, but not after 24 h |
[73] | Brazil | BM | 1–5 × 108 | IA | 2–3 M | 6 | Safe, but cells could not be seen 24 h after injection in 4 out of 6 patients |
[64] | Brazil | BM | 1–5 × 108 | IA | 1–3 M | 7 | Cells in brain were scarce (1%), IA (41%) showed high cell distribution in liver compared with lV (13%) |
[74] | Egypt | BM | 1 × 106 | IA | 2–4 W | 21 (18) | lA treatment did not improve neurological recovery compared with control |
[75] | India | BM | 5 × 108 | IA | 1–2 W | 10 (10) | Good recovery was observed in treatment group (p = 0.06) |
[76] | USA | BM | 3 × 106 | IA | 2–3 W | 29 (17) | No statistical difference compared to control |
[77] | China | UC & NPC | 2 × 107 | IA | 11–22 D | 3 | Showed neurological recovery in 2 out of 3 patients |
[78] | Russia | Fetus neuronal cell | 2 × 108 | IT | 4 M | 1 | Cell treatment showed 33% increase in score |
[61] | China | UC & NPC | 3 × 107 (UC:IV), 1.5 × 107 (UC:IT), 1.8 × 107 (NPC:IT) | IV&IT | 2 W | 1 | Showed some degree of neurological recovery |
Chronic | |||||||
[67] | India | BM | 5 × 107 | IV | 6–15 M | 11 (9) | Significant improvement in mBl, but not in FM |
[63,79] | India | BM | 5–6 × 107 | IV | 8–12 M | 6 (6) | No significant difference compared with control up to 4 years |
[80] | USA | BM | 1 × 108 | IV | 7 M–25 Y | 36 | Significant recovery was observed |
[81] | India | BM | 5–6 × 107 | IV | 3 M–2 Y | 20 (20) | mBl showed significant improvement |
[82] | India | BM | 6 × 107 | IT | 4 M–12 Y | 14 | Showed recovery, but this study included hemorrhagic stroke |
[83] | China | UC(CD34+) | 1–3 × 107 | IT | 1–7 Y | 8 | Patients showed recovery, but this may have been due to natural history |
[84] | Russia | Fetus neuronal cell | 2 × 108 | IT | 8 M–1.5 Y | 6 (6) | Cell treatment groups showed better recovery |
[85] | USA | AD | N.D. | IT | 1 Y | 1 | Stable |
[86] | Cuba | BM | 1–5 × 107 | IC | 3–5 Y | 3 | Recovery compared with pre-operation was found |
[87] | Taiwan | UC (CD34+) | 3–8 × 106 | IC | 6 M–5 Y | 15 (15) | Statistically significant recovery |
[88,89] | USA | BM | 2.5, 5, 10 × 106 | IC | 7–36 M | 18 | Neurological recovery (ESS, NIHSS, F-M test) was observed up to 2 years |
[90] | USA | Fetus neuronal cell | 2 × 106 (n = 8) or 6 × 106 (n = 4) | IC | 7 M–5 Y | 12 | 6 × 106 showed better recovery than 2 × 106 |
[91] | UK | Fetus neuronal cell | 2, 5, 10, 20 × 106 | IC | 1–4 Y | 11 | Neurological recovery (median NlHSS of 2) was observed |
[92] | UK | Fetus neuronal cell | 2 × 107 | IC | 2 M–1 Y | 23 | Upper limb function recovered from baseline |
[93] | USA | Fetus neuronal cell | 5, 10 × 106 | IC | 1–6 Y | 18 (4) | No difference for neurological recovery (primary endpoint), but showed partial recovery in some tests |
[94] | China | OEC | 1 × 106 | IC | 3 Y | 1 | Recovery in speech and gait |
[94] | China | OEC & NPC | 1 × 106 & 2 × 106 | IC | 5 Y | 1 | Recovery in motor function |
[95] | USA | Fetus neuronal cell | 2 × 107 | IC | 1.5–10 Y | 5 | Slight recovery, but 2 patients exhibited adverse events (seizure and motor deficit) |
[94] | China | OEC & NPC | 1 × 106 & 2 × 106 | IC & IT | 1–20 Y | 4 | Recovery in gait |
[61] | China | UC & NPC | 3 × 107 (UC:IV), 1.5 × 107 (UC:IT), 1.8 × 107 (NPC:IT) | IV & IT | 10 M & 2 Y | 2 | Showed some degree of neurological recovery |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, M.; Zheng, B.; Zeng, X.; Wang, X.; Tzeng, C.-M. Overview of Cellular Therapeutics Clinical Trials: Advances, Challenges, and Future Directions. Int. J. Mol. Sci. 2025, 26, 5770. https://doi.org/10.3390/ijms26125770
Guo M, Zheng B, Zeng X, Wang X, Tzeng C-M. Overview of Cellular Therapeutics Clinical Trials: Advances, Challenges, and Future Directions. International Journal of Molecular Sciences. 2025; 26(12):5770. https://doi.org/10.3390/ijms26125770
Chicago/Turabian StyleGuo, Meizhai, Bingyi Zheng, Xiaoling Zeng, Xueting Wang, and Chi-Meng Tzeng. 2025. "Overview of Cellular Therapeutics Clinical Trials: Advances, Challenges, and Future Directions" International Journal of Molecular Sciences 26, no. 12: 5770. https://doi.org/10.3390/ijms26125770
APA StyleGuo, M., Zheng, B., Zeng, X., Wang, X., & Tzeng, C.-M. (2025). Overview of Cellular Therapeutics Clinical Trials: Advances, Challenges, and Future Directions. International Journal of Molecular Sciences, 26(12), 5770. https://doi.org/10.3390/ijms26125770