Neuroprotective Mechanisms of Porcine Brain Enzyme Hydrolysate in Memory Impairment: Multi-Target Strategy Against Amyloid-β-Induced Neurotoxicity
Abstract
1. Introduction
2. Results
2.1. Amount of Index Compounds Present in PBEH and Cytotoxicity Assessment
2.2. PBEH Reduction in Aβ Processing and Aggregation
2.3. PBEH Attenuation of Oxidative Stress and Neuroinflammation
2.4. PBEH Enhancement in Synaptic Plasticity Markers
2.5. PBEH Modulation of Cholinergic Function
2.6. PBEH Anti-Apoptotic Activity in Neuronal Cells
3. Discussion
4. Materials and Methods
4.1. Preparation of PBEH and Measurement of Its Primary Components as Index Compounds
4.2. Cell Culture and Treatment Conditions
4.3. Positive Control Compounds
4.4. Treatment Protocol
4.5. Evaluation of Cytotoxicity
4.6. Evaluation of Neuroprotective Effects of PBEH
4.7. Aβ Aggregation Measured by Thioflavin T Fluorescence Analysis
4.8. Evaluation of Production of Neurotrophic Factors
4.9. Assessment of Acetylcholinesterase (AChE) Inhibition by PBEH
4.10. Measurement of Reactive Oxygen Species (ROS) Scavenging
4.11. Western Blot Analysis
4.12. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ma, C.; Hong, F.; Yang, S. Amyloidosis in Alzheimer’s Disease: Pathogeny, Etiology, and Related Therapeutic Directions. Molecules 2022, 27, 1210. [Google Scholar] [CrossRef] [PubMed]
- Ansari, M.A.; Al-Jarallah, A.; Babiker, F.A. Impaired Insulin Signaling Alters Mediators of Hippocampal Synaptic Dynamics/Plasticity: A Possible Mechanism of Hyperglycemia-Induced Cognitive Impairment. Cells 2023, 12, 1728. [Google Scholar] [CrossRef] [PubMed]
- Dash, U.C.; Bhol, N.K.; Swain, S.K.; Samal, R.R.; Nayak, P.K.; Raina, V.; Panda, S.K.; Kerry, R.G.; Duttaroy, A.K.; Jena, A.B. Oxidative stress and inflammation in the pathogenesis of neurological disorders: Mechanisms and implications. Acta Pharm. Sin. B 2025, 15, 15–34. [Google Scholar] [CrossRef] [PubMed]
- Busche, M.A.; Hyman, B.T. Synergy between amyloid-β and tau in Alzheimer’s disease. Nat. Neurosci. 2020, 23, 1183–1193. [Google Scholar] [CrossRef]
- Inestrosa, N.C.; Alvarez, A.; Pérez, C.A.; Moreno, R.D.; Vicente, M.; Linker, C.; Casanueva, O.I.; Soto, C.; Garrido, J. Acetylcholinesterase Accelerates Assembly of Amyloid-β-Peptides into Alzheimer’s Fibrils: Possible Role of the Peripheral Site of the Enzyme. Neuron 1996, 16, 881–891. [Google Scholar] [CrossRef]
- Bittner, N.; Funk, C.S.M.; Schmidt, A.; Bermpohl, F.; Brandl, E.J.; Algharably, E.E.A.; Kreutz, R.; Riemer, T.G. Psychiatric Adverse Events of Acetylcholinesterase Inhibitors in Alzheimer’s Disease and Parkinson’s Dementia: Systematic Review and Meta-Analysis. Drugs Aging 2023, 40, 953–964. [Google Scholar] [CrossRef]
- Wang, S.; Sun-Waterhouse, D.; Neil Waterhouse, G.I.; Zheng, L.; Su, G.; Zhao, M. Effects of food-derived bioactive peptides on cognitive deficits and memory decline in neurodegenerative diseases: A review. Trends Food Sci. Technol. 2021, 116, 712–732. [Google Scholar] [CrossRef]
- Zhang, T.; Kim, M.J.; Kim, M.J.; Wu, X.; Yang, H.J.; Yuan, H.; Huang, S.; Yoon, S.M.; Kim, K.-N.; Park, S. Long-Term Effect of Porcine Brain Enzyme Hydrolysate Intake on Scopolamine-Induced Memory Impairment in Rats. Int. J. Mol. Sci. 2022, 23, 3361. [Google Scholar] [CrossRef]
- Liu, L.W.; Yue, H.Y.; Zou, J.; Tang, M.; Zou, F.M.; Li, Z.L.; Jia, Q.Q.; Li, Y.B.; Kang, J.; Zuo, L.H. Comprehensive metabolomics and lipidomics profiling uncovering neuroprotective effects of Ginkgo biloba L. leaf extract on Alzheimer’s disease. Front. Pharmacol. 2022, 13, 1076960. [Google Scholar] [CrossRef]
- Mureșanu, D.; Verișezan-Roșu, O.; Jemna, N.; Benedek, I.; Rednic, J.; Vlad, I.M.; Buruiană, A.M.; Mureșanu, I.; Chira, D.; Popa, L.L.; et al. Neuropsychological Performance after Extended N-Pep-12 Dietary Supplementation in Supratentorial Ischemic Stroke. Brain Sci. 2024, 14, 986. [Google Scholar] [CrossRef]
- Amigo, L.; Hernández-Ledesma, B. Current Evidence on the Bioavailability of Food Bioactive Peptides. Molecules 2020, 25, 4479. [Google Scholar] [CrossRef] [PubMed]
- Galland, F.; de Espindola, J.S.; Lopes, D.S.; Taccola, M.F.; Pacheco, M.T.B. Food-derived bioactive peptides: Mechanisms of action underlying inflammation and oxidative stress in the central nervous system. Food Chem. Adv. 2022, 1, 100087. [Google Scholar] [CrossRef]
- Hoffmann, L.F.; Martins, A.; Majolo, F.; Contini, V.; Laufer, S.; Goettert, M.I. Neural regeneration research model to be explored: SH-SY5Y human neuroblastoma cells. Neural Regen. Res. 2023, 18, 1265–1266. [Google Scholar] [CrossRef]
- Cetin, S.; Knez, D.; Gobec, S.; Kos, J.; Pišlar, A. Cell models for Alzheimer’s and Parkinson’s disease: At the interface of biology and drug discovery. Biomed. Pharmacother. 2022, 149, 112924. [Google Scholar] [CrossRef]
- Song, H.; Kim, D.I.; Abbasi, S.A.; Latifi Gharamaleki, N.; Kim, E.; Jin, C.; Kim, S.; Hwang, J.; Kim, J.Y.; Chen, X.Z.; et al. Multi-target cell therapy using a magnetoelectric microscale biorobot for targeted delivery and selective differentiation of SH-SY5Y cells via magnetically driven cell stamping. Mater. Horiz. 2022, 9, 3031–3038. [Google Scholar] [CrossRef] [PubMed]
- Yang, D.; Ding, C.; Qi, G.; Feldmeyer, D. Cholinergic and Adenosinergic Modulation of Synaptic Release. Neuroscience 2021, 456, 114–130. [Google Scholar] [CrossRef]
- Hampel, H.; Hardy, J.; Blennow, K.; Chen, C.; Perry, G.; Kim, S.H.; Villemagne, V.L.; Aisen, P.; Vendruscolo, M.; Iwatsubo, T.; et al. The Amyloid-β Pathway in Alzheimer’s Disease. Mol. Psychiatry 2021, 26, 5481–5503. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Chen, H.; Li, R.; Sterling, K.; Song, W. Amyloid β-based therapy for Alzheimer’s disease: Challenges, successes and future. Signal Transduct. Target. Ther. 2023, 8, 248. [Google Scholar] [CrossRef]
- Morató, X.; Tartari, J.P.; Pytel, V.; Boada, M. Pharmacodynamic and Clinical Effects of Ginkgo Biloba Extract EGb 761 and Its Phytochemical Components in Alzheimer’s Disease. J. Alzheimers Dis. 2024, 101, S285–S298. [Google Scholar] [CrossRef]
- Li, X.Y.; Wang, Q.F.; Duan, Y.; Zhang, Y.W.; Wang, H.; Liu, A.J. Inhibition of Mitochondrial Oxidative Stress and Apoptosis in the Protection of Ginkgo biloba extract 50 Against Cognitive Impairment. J. Ethnopharmacol. 2025, 120059. [Google Scholar] [CrossRef]
- Impellizzeri, D.; Tomasello, M.; Cordaro, M.; D’Amico, R.; Fusco, R.; Abdelhameed, A.S.; Wenzel, U.; Siracusa, R.; Calabrese, V.; Cuzzocrea, S.; et al. Memophenol(TM) Prevents Amyloid-β Deposition and Attenuates Inflammation and Oxidative Stress in the Brain of an Alzheimer’s Disease Rat. Int. J. Mol. Sci. 2023, 24, 6938. [Google Scholar] [CrossRef] [PubMed]
- Kung, H.C.; Lin, K.J.; Kung, C.T.; Lin, T.K. Oxidative Stress, Mitochondrial Dysfunction, and Neuroprotection of Polyphenols with Respect to Resveratrol in Parkinson’s Disease. Biomedicines 2021, 9, 918. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Xiao, G.; Wang, H.; He, S.; Zhu, Y. A preparation of Ginkgo biloba L. leaves extract inhibits the apoptosis of hippocampal neurons in post-stroke mice via regulating the expression of Bax/Bcl-2 and Caspase-3. J. Ethnopharmacol. 2021, 280, 114481. [Google Scholar] [CrossRef] [PubMed]
- Di Meo, F.; Cuciniello, R.; Margarucci, S.; Bergamo, P.; Petillo, O.; Peluso, G.; Filosa, S.; Crispi, S. Ginkgo biloba Prevents Oxidative Stress-Induced Apoptosis Blocking p53 Activation in Neuroblastoma Cells. Antioxidants 2020, 9, 279. [Google Scholar] [CrossRef]
- Miranda, M.; Morici, J.F.; Zanoni, M.B.; Bekinschtein, P. Brain-Derived Neurotrophic Factor: A Key Molecule for Memory in the Healthy and the Pathological Brain. Front. Cell. Neurosci. 2019, 13, 363. [Google Scholar] [CrossRef]
- Kushwah, N.; Jain, V.; Kadam, M.; Kumar, R.; Dheer, A.; Prasad, D.; Kumar, B.; Khan, N. Ginkgo biloba L. Prevents Hypobaric Hypoxia–Induced Spatial Memory Deficit Through Small Conductance Calcium-Activated Potassium Channel Inhibition: The Role of ERK/CaMKII/CREB Signaling. Front. Pharmacol. 2021, 12, 669701. [Google Scholar] [CrossRef]
- Wang, C.S.; Kavalali, E.T.; Monteggia, L.M. BDNF signaling in context: From synaptic regulation to psychiatric disorders. Cell 2022, 185, 62–76. [Google Scholar] [CrossRef]
- Huang, Q.; Liao, C.; Ge, F.; Ao, J.; Liu, T. Acetylcholine bidirectionally regulates learning and memory. J. Neurorestoratol. 2022, 10, 100002. [Google Scholar] [CrossRef]
- Singh, M.; Jindal, D.; Kumar, R.; Pancham, P.; Haider, S.; Gupta, V.; Mani, S.; Rachana, R.; Tiwari, R.K.; Chanda, S. Molecular Docking and Network Pharmacology Interaction Analysis of Gingko Biloba (EGB761) Extract with Dual Target Inhibitory Mechanism in Alzheimer’s Disease. J. Alzheimers Dis. 2023, 93, 705–726. [Google Scholar] [CrossRef]
- Kobus-Cisowska, J.; Marcin, D.; Oskar, S.; Weronika, K.; Dominik, K.; Marta, L.; Aleksandra, T.; Szymon, B.; Piotr, S.; Szwajgier, D. Phytocomponents and evaluation of acetylcholinesterase inhibition by Ginkgo biloba L. leaves extract depending on vegetation period. CyTA—J. Food 2020, 18, 606–615. [Google Scholar] [CrossRef]
- Suleiman Khoury, Z.; Sohail, F.; Wang, J.; Mendoza, M.; Raake, M.; Tahoor Silat, M.; Reddy Bathinapatta, M.; Sadeghzadegan, A.; Meghana, P.; Paul, J. Neuroinflammation: A Critical Factor in Neurodegenerative Disorders. Cureus 2024, 16, e62310. [Google Scholar] [CrossRef]
- Sun, L.; Apweiler, M.; Tirkey, A.; Klett, D.; Normann, C.; Dietz, G.P.H.; Lehner, M.D.; Fiebich, B.L. Anti-Neuroinflammatory Effects of Ginkgo biloba Extract EGb 761 in LPS-Activated BV2 Microglial Cells. Int. J. Mol. Sci. 2024, 25, 8108. [Google Scholar] [CrossRef]
- Wang, Z.-Y.; Deng, Y.-L.; Zhou, T.-Y.; Liu, Y.; Cao, Y. Effects of natural extracts in cognitive function of healthy adults: A systematic review and network meta-analysis. Front. Pharmacol. 2025, 16, 1573034. [Google Scholar] [CrossRef]
- Lopez-Suarez, L.; Awabdh, S.A.; Coumoul, X.; Chauvet, C. The SH-SY5Y human neuroblastoma cell line, a relevant in vitro cell model for investigating neurotoxicology in human: Focus on organic pollutants. Neurotoxicology 2022, 92, 131–155. [Google Scholar] [CrossRef]
- Yue, Y.; Yang, H.J.; Zhang, T.; Li, C.; Kim, M.J.; Kim, K.-N.; Park, S. Porcine Brain Enzyme Hydrolysate Enhances Immune Function and Antioxidant Defense via Modulation of Gut Microbiota in a Cyclophosphamide-Induced Immunodeficiency Model. Antioxidants 2024, 13, 476. [Google Scholar] [CrossRef] [PubMed]
- Hernández-Hernández, E.M.; Caporal Hernandez, K.; Vázquez-Roque, R.A.; Díaz, A.; de la Cruz, F.; Florán, B.; Flores, G. The neuropeptide-12 improves recognition memory and neuronal plasticity of the limbic system in old rats. Synapse 2018, 72, e22036. [Google Scholar] [CrossRef] [PubMed]
- Flores, I.O.; Treviño, S.; Díaz, A. Neurotrophic fragments as therapeutic alternatives to ameliorate brain aging. Neural Regen. Res. 2023, 18, 51–56. [Google Scholar] [CrossRef] [PubMed]
- Hutter-Paier, B.; Reininger-Gutmann, B.; Wronski, R.; Doppler, E.; Moessler, H. Long-term treatment of aged Long Evans rats with a dietary supplement containing neuroprotective peptides (N-PEP-12) to prevent brain aging: Effects of three months daily treatment by oral gavage. J. Med. Life 2015, 8, 207–212. [Google Scholar]
- Windisch, M.; Hutter-Paier, B.; Grygar, E.; Doppler, E.; Moessler, H. N-PEP-12--a novel peptide compound that protects cortical neurons in culture against different age and disease associated lesions. J. Neural Transm. 2005, 112, 1331–1343. [Google Scholar] [CrossRef]
- Dogan, R.; Sjostrand, A.P.; Yenıgun, A.; Karatas, E.; Kocyigit, A.; Ozturan, O. Influence of Ginkgo Biloba extract (EGb 761) on expression of IL-1 Beta, IL-6, TNF-alfa, HSP-70, HSF-1 and COX-2 after noise exposure in the rat cochlea. Auris Nasus Larynx 2018, 45, 680–685. [Google Scholar] [CrossRef]
- Tripathi, P.N.; Lodhi, A.; Rai, S.N.; Nandi, N.K.; Dumoga, S.; Yadav, P.; Tiwari, A.K.; Singh, S.K.; El-Shorbagi, A.A.; Chaudhary, S. Review of Pharmacotherapeutic Targets in Alzheimer’s Disease and Its Management Using Traditional Medicinal Plants. Degener. Neurol. Neuromuscul. Dis. 2024, 14, 47–74. [Google Scholar] [CrossRef] [PubMed]
Pathway | Marker | PBEH | Com-A | Com-B |
---|---|---|---|---|
Aβ aggregation | APP | ↓ | - | ↓ |
BACE | ↓↓ | - | ↓↓ | |
Aβ | ↓↓ | - | ↓↓ | |
Oxidative stress | ROS | ↓ | – | ↓ |
Synaptic plasticity | BDNF | ↑↑ | ↑↑↑ | |
p-ERK | ↑↑ | ↑ | ↑↑ | |
Cell survival | Neuroprotection | ↑↑↑ | ↑↑↑ | ↑↑ |
Apoptosis | BAX/BCL-2 | ↓↓ | ↓ | ↓↓↓ |
Caspase-3 | ↓↓ | ↓ | ↓↓↓ | |
Cholinergic | ChAT | ↑ | ↑ | - |
AChE | ↓ | - | ↓ | |
Inflammation | IL-1β | ↓↓ | ↓ | ↓↓↓ |
p-JNK | ↓ | - | ↓ | |
p-p38 | ↓ | - | ↓↓ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yoon, S.M.; Lee, Y.-W.; Kim, M.J.; Shin, J.-J.; Bae, G.W.; Park, S. Neuroprotective Mechanisms of Porcine Brain Enzyme Hydrolysate in Memory Impairment: Multi-Target Strategy Against Amyloid-β-Induced Neurotoxicity. Int. J. Mol. Sci. 2025, 26, 6030. https://doi.org/10.3390/ijms26136030
Yoon SM, Lee Y-W, Kim MJ, Shin J-J, Bae GW, Park S. Neuroprotective Mechanisms of Porcine Brain Enzyme Hydrolysate in Memory Impairment: Multi-Target Strategy Against Amyloid-β-Induced Neurotoxicity. International Journal of Molecular Sciences. 2025; 26(13):6030. https://doi.org/10.3390/ijms26136030
Chicago/Turabian StyleYoon, Sun Myung, Ye-Won Lee, Min Ju Kim, Jae-Joon Shin, Gun Won Bae, and Sunmin Park. 2025. "Neuroprotective Mechanisms of Porcine Brain Enzyme Hydrolysate in Memory Impairment: Multi-Target Strategy Against Amyloid-β-Induced Neurotoxicity" International Journal of Molecular Sciences 26, no. 13: 6030. https://doi.org/10.3390/ijms26136030
APA StyleYoon, S. M., Lee, Y.-W., Kim, M. J., Shin, J.-J., Bae, G. W., & Park, S. (2025). Neuroprotective Mechanisms of Porcine Brain Enzyme Hydrolysate in Memory Impairment: Multi-Target Strategy Against Amyloid-β-Induced Neurotoxicity. International Journal of Molecular Sciences, 26(13), 6030. https://doi.org/10.3390/ijms26136030